[Résultats d’universalité faible pour une classe d’équations d’ondes non-linéaires]
We study the weak universality of the two-dimensional fractional nonlinear wave equation. For a sequence of Hamiltonians of high-degree potentials scaling to the fractional , we first establish a sufficient and almost necessary criteria for the convergence of invariant measures to the fractional . Then we prove the convergence result for the sequence of associated wave dynamics to the (renormalized) cubic wave equation. Our constraint on the fractional index is independent of the degree of the nonlinearity. This extends the result of Gubinelli–Koch–Oh [Renormalisation of the two-dimensional stochastic nonlinear wave equations, Trans. Amer. Math. Soc. 370 (2018)] to a situation where we do not have a local Cauchy theory with highly supercritical nonlinearities.
Nous étudions l’universalité faible de l’équation d’onde non linéaire fractionnaire en dimension deux. Pour une suite d’hamiltoniens de potentiels de haut degré convergeant vers le modèle fractionnaire, nous établissons d’abord un critère suffisant et presque nécessaire pour la convergence des mesures invariantes vers celle du modèle fractionnaire. Ensuite, nous démontrons le résultat de convergence pour la suite de dynamiques d’ondes associées vers l’équation d’onde cubique (renormalisée). Notre condition sur l’indice fractionnaire est indépendante du degré de la non-linéarité. Ceci étend un résultat de Gubinelli–Koch–Oh à une situation où nous n’avons pas de théorie de Cauchy locale avec des non-linéarités sur-critiques.
Révisé le :
Accepté le :
Première publication :
Keywords: Weak Universality, nonlinear wave equations, Invariant measures
Mots-clés : Universalité faible, équation d’onde non-linéaire, mesures invariantes
Sun, Chenmin 1 ; Tzvetkov, Nikolay 2 ; Xu, Weijun 3
@unpublished{AIF_0__0_0_A3_0, author = {Sun, Chenmin and Tzvetkov, Nikolay and Xu, Weijun}, title = {Weak universality results for a class of nonlinear wave equations}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3715}, language = {en}, note = {Online first}, }
TY - UNPB AU - Sun, Chenmin AU - Tzvetkov, Nikolay AU - Xu, Weijun TI - Weak universality results for a class of nonlinear wave equations JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3715 LA - en ID - AIF_0__0_0_A3_0 ER -
Sun, Chenmin; Tzvetkov, Nikolay; Xu, Weijun. Weak universality results for a class of nonlinear wave equations. Annales de l'Institut Fourier, Online first, 52 p.
[1] A variational method for , Duke Math. J., Volume 169 (2020) no. 17, pp. 3339-3415 | DOI | MR | Zbl
[2] A variational representation for certain functionals of Brownian motion, Ann. Probab., Volume 26 (1998) no. 4, pp. 1641-1659 | DOI | MR | Zbl
[3] Invariant measures for the D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | MR | Zbl
[4] Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball, J. Funct. Anal., Volume 266 (2014) no. 4, pp. 2319-2340 | DOI | MR | Zbl
[5] Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1355-1376 | DOI | Numdam | MR | Zbl
[6] Almost sure local well-posedness for a derivative nonlinear wave equation, Int. Math. Res. Not., Volume 2021 (2021) no. 11, pp. 8657-8697 | DOI | MR | Zbl
[7] Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlinearity I: measures, Stoch. Partial Differ. Equ., Anal. Comput., Volume 10 (2022) no. 1, pp. 1-89 | DOI | MR | Zbl
[8] Maximal functions associated to filtrations, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 409-425 | DOI | MR | Zbl
[9] Random tensors, propagation of randomness, and nonlinear dispersive equations, Invent. Math., Volume 228 (2022) no. 2, pp. 539-686 | DOI | MR | Zbl
[10] Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two, Ann. Math. (2), Volume 200 (2024) no. 2, pp. 399-486 | DOI | MR | Zbl
[11] Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary, J. Differ. Equations, Volume 263 (2017) no. 12, pp. 8804-8837 | DOI | MR | Zbl
[12] Weak universality of dynamical : polynomial potential and general smoothing mechanism, Electron. J. Probab., Volume 27 (2022), 112, 43 pages | DOI | MR | Zbl
[13] Weak universality for a class of 3d stochastic reaction-diffusion models, Probab. Theory Relat. Fields, Volume 173 (2019) no. 3-4, pp. 1099-1164 | DOI | MR | Zbl
[14] Exact smoothing properties of Schrödinger semigroups, Am. J. Math., Volume 118 (1996) no. 6, pp. 1215-1248 http://muse.jhu.edu/... | DOI | MR | Zbl
[15] Quasi-invariant Gaussian measures for the nonlinear wave equation in three dimensions, Probab. Math. Phys., Volume 3 (2022) no. 2, pp. 343-379 | DOI | MR | Zbl
[16] A class of growth models rescaling to KPZ, Forum Math. Pi, Volume 6 (2018), e3, 112 pages | DOI | MR | Zbl
[17] Large-scale behavior of three-dimensional continuous phase coexistence models, Commun. Pure Appl. Math., Volume 71 (2018) no. 4, pp. 688-746 | DOI | MR | Zbl
[18] Large scale limit of interface fluctuation models, Ann. Probab., Volume 47 (2019) no. 6, pp. 3478-3550 | DOI | MR | Zbl
[19] Construction of diagrams for pedestrians, From particle systems to partial differential equations (Springer Proceedings in Mathematics & Statistics), Volume 209, Springer, 2017, pp. 1-46 | DOI | MR | Zbl
[20] Focusing -model with a Hartree-type nonlinearity, Memoirs of the American Mathematical Society, 304, American Mathematical Society, 2024 no. 1529 | DOI | Zbl
[21] Invariant Gibbs measures for the - defocusing nonlinear wave equations, Ann. Fac. Sci. Toulouse, Math. (6), Volume 29 (2020) no. 1, pp. 1-26 | DOI | Numdam | MR | Zbl
[22] Weak universality of dynamical : non-Gaussian noise, Stoch. Partial Differ. Equ., Anal. Comput., Volume 6 (2018) no. 2, pp. 211-254 | DOI | MR | Zbl
[23] Gibbs measure dynamics for the fractional NLS, SIAM J. Math. Anal., Volume 52 (2020) no. 5, pp. 4638-4704 | DOI | MR | Zbl
[24] Variational calculation of Laplace transforms via entropy on Wiener space and applications, J. Funct. Anal., Volume 267 (2014) no. 8, pp. 3058-3083 | DOI | MR | Zbl
Cité par Sources :