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WEAK UNIVERSALITY RESULTS FOR A CLASS OF
NONLINEAR WAVE EQUATIONS

by Chenmin SUN, Nikolay TZVETKOV & Weijun XU (*)

Abstract. — We study the weak universality of the two-dimensional fractional
nonlinear wave equation. For a sequence of Hamiltonians of high-degree potentials
scaling to the fractional Φ4

2, we first establish a sufficient and almost necessary
criteria for the convergence of invariant measures to the fractional Φ4

2. Then we
prove the convergence result for the sequence of associated wave dynamics to the
(renormalized) cubic wave equation. Our constraint on the fractional index is in-
dependent of the degree of the nonlinearity. This extends the result of Gubinelli–
Koch–Oh [Renormalisation of the two-dimensional stochastic nonlinear wave equa-
tions, Trans. Amer. Math. Soc. 370 (2018)] to a situation where we do not have a
local Cauchy theory with highly supercritical nonlinearities.

Résumé. — Nous étudions l’universalité faible de l’équation d’onde non linéaire
fractionnaire en dimension deux. Pour une suite d’hamiltoniens de potentiels de
haut degré convergeant vers le modèle Φ4

2 fractionnaire, nous établissons d’abord un
critère suffisant et presque nécessaire pour la convergence des mesures invariantes
vers celle du modèle Φ4

2 fractionnaire. Ensuite, nous démontrons le résultat de
convergence pour la suite de dynamiques d’ondes associées vers l’équation d’onde
cubique (renormalisée). Notre condition sur l’indice fractionnaire est indépendante
du degré de la non-linéarité. Ceci étend un résultat de Gubinelli–Koch–Oh à une
situation où nous n’avons pas de théorie de Cauchy locale avec des non-linéarités
sur-critiques.
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1. Introduction

1.1. From microscopic to macroscopic wave dynamics

The aim of this article is to study the macroscopic behaviour of the
weakly interacting waves of the type

(1.1)
{
∂2

t ũ+ |∇|2αũ+N−θΠ̃NV
′(ũ) = 0, (t, x) ∈ R × T2

N ,

ũ(0, ·) = ϕ̃ , (∂tũ)(0, ·) = ψ̃,

where T2
N = (R/2πNZ)2 is the two dimensional torus of side length 2πN ,

V is an even polynomial satisfying certain structural conditions specified
below, and Π̃N is the Fourier projection operator on T2

N such that

Π̃Nf(x) =
∑

|k|⩽N

(FNf)(k) ei k·x
N , (FNf)(k) = 1

(2πN)2

∫
T2

N

f(y) e−i y·k
N dy.

The differential operator |∇|γ acts on functions on torus of side length N as

FN (|∇|γf)(k) :=
∣∣∣∣ kN
∣∣∣∣γ (FNf)(k) .

Here in the microscopic model, we take γ = 2α and L = 2πN . The initial
data ϕ̃ and ψ̃ are two random functions given by

ϕ̃N (x) = 1
2πN1−α

∑
|k|⩽N

gk√
1 + |k|2α

ei k·x
N , ψ̃N (x) = 1

2πN
∑

|k|⩽N

hk ei k·x
N ,

where {gk} and {hk} are standard complex Gaussians(1) with g−k = gk

and h−k = hk, and otherwise independent. This type of initial condition is
natural since the Gaussian measure it induces is invariant under the per-
turbed linear evolution above (with the differential operator |∇|2α replaced
by 1

N2α + |∇|2α and without nonlinear interaction).

Remark 1.1. — The initial data is, very roughly speaking, of the type
1

2πN
∑

|k|⩽N

ρ(k/N)gk(ω) ei k·x
N

for suitable function ρ : R2 → R. In our case, ρ(x) = 1
⟨x⟩α for the initial

position, and ρ(x) ≡ 1 for the initial velocity. Although natural from the
invariance of the perturbed linear dynamics, we should also note that our
choice is also very restrictive relating to the support of the corresponding
Gibbs measure.

(1) This means Egk = Eg2
k = 0, and E|gk|2 = 1.

ANNALES DE L’INSTITUT FOURIER
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Note that ϕ̃ has a stationary Gaussian distribution with ϕ̃N (x) ∼
N (0, σ2

N ), where

(1.2) σ2
N = 1

4π2N2(1−α)

∑
|k|⩽N

1
1 + |k|2α

= 1
4π2

∫
|ξ|⩽1

1
|ξ|2α

dξ︸ ︷︷ ︸
σ2

+ O(N−2(1−α)) .

Let σ2 be defined as above, µ̃ be the law of N (0, σ2), and

⟨V ⟩(z) :=
∫

R
V (z + y)µ̃(dy)

be the average of V under µ̃. Our main assumption on V is the criticality
and positivity of its averaged version ⟨V ⟩.

Assumption 1.2. — V is an even polynomial of degree 2m ⩾ 4 with
the form

V (z) =
2m∑
j=0

ajz
2j .

Furthermore, we assume
(1) z = 0 is a bifurcation point of ⟨V ⟩ in the sense that ⟨V ⟩′′(0) = 0.
(2) ⟨V ⟩(z) − ⟨V ⟩(0) > 0 for all z ̸= 0.

The averaged version ⟨V ⟩ has the expression

⟨V ⟩(z) =
m∑

j=0
ajz

2j

with

(1.3) aj = 1
(2j)!E

[
V (2j)(N (0, σ2)

)]
= 1

(2j)!

m∑
k=j

(2k)!
(2k − 2j)!! · ak · σ2(k−j) .

Hence, Condition (1) above is equivalent to say that a1 = 0. Since the
renormalisation term in the wave dynamics and the measures are constant
multiples of a1N

2(1−α)uN and a1N
2(1−α)ϕ⋄2

N respectively, Condition (1)
guarantees that the divergent parts in various terms are cancelled out au-
tomatically, and there is no need to subtract the renormalisation by hand.
With Condition (1), Condition (2) is then equivalent to the following pos-
itivity condition:

m∑
j=2

ajz
2(j−2) > 0 , ∀z ∈ R .(1.4)

TOME 0 (0), FASCICULE 0
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Example 1.3. — If we fix a2 > 0, . . . , am > 0, we can find a1 < 0 such
that our assumptions on V are satisfied. For example

V (z) = z6 − 45σ2z2

satisfies the assumptions. We can also find V ⩾ 0 such that our assumptions
are satisfied.

Our aim is to investigate the influence of the microscopic weak non-linear
interaction to the macroscopic behaviour of ũ under the above assumption
on V . For T2 = (R/2πZ)2, define the macroscopic process uN on R×T2 by

uN (t, x) := N1−αũ(Nαt,Nx) , (t, x) ∈ R × T2 .

It satisfies the equation

(1.5) ∂2
t uN + |∇|2αuN +N1+α−θΠNV

′(uN/N
1−α) = 0 , (t, x) ∈ R ×T2

with initial data

(1.6) (uN , ∂tuN )(0, x) = (ϕN (x), ψN (x))

= 1
2π

 ∑
|k|⩽N

gk√
1 + |k|2α

eik·x,
∑

|k|⩽N

hk eik·x

 ,

where ΠN is the Fourier projector on the unit tori:

(1.7)
Π̂Nf(k) = 1|k|⩽N f̂(k),

f̂(k) = (F1f)(k) = 1
(2π)2

∫
T2
f(y) e−ik·y dy.

In order for uN to converge to a cubic equation, one necessarily sets θ =
4α− 2 and hence 1 + α− θ = 3(1 − α).

1.2. The macroscopic model

Fix the two dimensional torus T2 = (R/2πZ)2. For every N > 0, let ΠN

be the Fourier projection operator on the unit tori introduced in (1.7). For
α ∈ ( 3

4 , 1), let µ = µα be the probability measure on D′(T2) (the space
of distributions on T2) with covariance operator (1 + |∇|2α)−1, and µ′ be
the white noise on T2. Equivalently, the Gaussian measures µα and µ′ are
induced by the random functions

ϕ = 1
2π

∑
k∈Z2

gk√
1 + |k|2α

eik·x , ψ = 1
2π

∑
k∈Z2

hk eik·x

ANNALES DE L’INSTITUT FOURIER
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respectively, where {gk}k∈Z2 and {hk}k∈Z2 are the same collection of cen-
tered complex Gaussian random variables as before. Since α will be a fixed
parameter throughout the article, we simply write µ = µα.

Let µN := µ ◦ Π−1
N and µ′

N = µ′ ◦ Π−1
N be the marginals of µ and µ′

on frequencies up to N . Hence, the initial data of the macroscopic wave
dynamics (1.5) are distributed according to µN ⊗µ′

N . Let σ̃2
N be the variance

of ϕ under µN , which is invariant under translations and hence σ̃2
N does

not depend on the spatial variable x. In fact, a direct computation shows

(1.8) σ̃2
N := Eµ|ΠNϕ|2 = 1

4π2

∑
k∈Z2,|k|⩽N

1
1+ |k|2α

= (σ2 + errN )︸ ︷︷ ︸
=:σ2

N

·N2(1−α) ,

where σ2
N and

(1.9) σ2 = 1
4π2

∫
|ξ|⩽1

1
|ξ|2α

dξ

are as defined in (1.2), and errN = O(N−2(1−α)) as N → +∞.
Now, let V be an even polynomial satisfying Assumption 1.2. For every

N ∈ N, let

(1.10) VN (φ) = N4(1−α)V (φ/N1−α) ,

and we have

(1.11) VN (φ) =
m∑

j=1
aj,NN

−(2j−4)(1−α)H2j(φ; σ̃2
N ) ,

where Hk( · , σ2) is the k-th Hermite polynomial with leading coefficient
1 and variance σ2. The coefficients aj,N are the (normalised) sizes of VN

projected onto the Hermite polynomial H2j( · , σ̃2
N ), and can be explicitly

computed as

(1.12) aj,N = 1
(2j)!E

[
V (2j)(N (0, σ2

N )
)]
.

Note that the variance in the above expression is σ2
N but not σ̃2

N since
the latter is balanced by the factor N−(2j−4)(1−α). For every j, we have
aj,N → aj as N → +∞, where aj are as given in (1.3). Furthermore, the
following slightly more delicate relation holds.

Proposition 1.4. — Assume that α ∈
( 1

2 , 1
)
. There exists an absolute

constant λ0 ∈ R, such that as N → ∞,

a1,N = a1 + λ0N
−2(1−α) +O(N−1) +O(N−4(1−α)).

Proof. — See Appendix D. □

TOME 0 (0), FASCICULE 0
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1.3. Wave dynamics

Our first main result concerns the behavior of the macroscopic wave-
dynamics as N → ∞. In this part, we always assume that V verifies As-
sumption 1.2 and denote λ := 4a2 > 0. The theorem is stated as follows.

Theorem 1.5. — Suppose that α ∈ ( 8
9 , 1). Let σ < α − 1 and suppose

that V satisfies Assumption 1.2 with λ := 4a2 > 0. Let uN be the solution of

∂2
t uN + |∇|2αuN + ΠNV

′
N (uN ) = 0,

with initial data

(uN , ∂tuN )|t=0 = 1
2π

∑
|k|⩽N

(
gk(ω)√
1 + |k|α

eik·x, hk(ω) eik·x

)
.

Then both uN and the solution vN of (with λ0 ∈ R given in Proposition 1.4)

∂2
t vN + |∇|2αvN + 2λ0vN + λΠN ((vN )3 − 3σ̃2

NvN ) = 0

with the same initial data converge almost surely in the sense of distribution
on R × T2, as N → ∞ and satisfy

lim
N→∞

∥uN − vN ∥C([−T,T ],Hσ(T2)) = 0, ∀T > 0.

Remark 1.6. — We have a more detailed convergence statement by de-
composing uN (and also vN ) into a random term with low regularity and
a smoother contribution. The latter converges in positive Sobolev norms.
See Propositions 4.1 and 4.2 for precise statements.

The restriction α > 8
9 is technical and can hopefully be improved using

recently developed methods ([6, 9, 10]). However, this is not in the objective
of this work. Instead we emphasize that our range of α is independent of the
degree 2m of the potential V . Indeed, the Cauchy problem (1.5) without
the negative powers of N in higher nonlinearities in V (see (1.11)) is highly
supercritical(2) . What saves us here is the truncation ΠN in frequency
space and the negative power of N in front of the high-power nonlinearity.
The same situation appears in Hairer–Quastel [16] for the KPZ equation
(though in a different setup where the problem is the singularity of the
driving noise instead of the initial data).

Remark 1.7. — The theorem still holds true if the sharp cutoff in the
truncation is replaced by a smoother cutoff with a sufficiently fast decay
smooth function. The constant λ in the final statement then will depend
on the actual cutoff function.
(2) For large m, this is even supercritical with respect to the probabilistic scaling, a
notion introduced in [9, 10].

ANNALES DE L’INSTITUT FOURIER
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1.4. The Gibbs measures

In order to prove Theorem 1.5, we re-write the macroscopic model (1.5)
as

(1.13) ∂2
t uN + (1 + |∇|2α)uN + ΠN

(
V ′

N (uN ) − uN

)
= 0 ,

still with initial data (1.6). We add a mass term in the linear part in order
to control the free evolution of the zero-th Fourier mode, and modified the
nonlinear term to compensate the change. In fact, without the mass term,
the zero-th mode will grow in time under the linear evolution. Let

ṼN (φ) := VN (φ) − 1
2
(
φ2 − σ̃2

N

)
,

and let νN be the probability measure given by

(1.14) νN (dϕ) = 1
ZN

e−
∫

T2 ṼN (ϕ)dx
µN (dϕ) .

The measure νN is well defined as long as am > 0, and νN ⊗µ′
N is invariant

under the dynamics (1.13). If λ := a2 > 0, then the measure

ν(dϕ) = 1
Z

e−λ
∫

T2 ϕ⋄4dx+ 1
2

∫
T2 ϕ⋄2dx

µ(dϕ)

is also well-defined, where ϕ⋄k denotes the k-th Wick power of ϕ with
respect to the Gaussian structure induced by µ. The measure ν is known as
the fractional ϕ4

2 with exponent α. See Section 2.3 for the precise definition.

Remark 1.8. — Note that the measure ν has an additional quadratic
term on the exponential with the opposite sign compared to the usual frac-
tional ϕ4

2. This is because we define the Gaussian measure µ to have covari-
ance (1 + |∇|2α)−1. Indeed, the measure ν is the same with the quadratic
term removed if the reference Gaussian measure has covariance |∇|−2α and
0-mode being a N (0, 1) random variable independent of all other modes.

Let µ′ be the white noise measure on T2, and define the measures µ⃗, ν⃗N

and ν⃗ by

µ⃗ := µ⊗ µ′ , ν⃗N := νN ⊗ µ′
N , ν⃗ := ν ⊗ µ′ .

More precisely, writing ϕ⃗ = (ϕ, ϕ′), we have

ν⃗N (dϕ⃗) = νN (dϕ)µ′
N (dϕ′) = Z−1

N e−
∫

T2 ṼN (ϕ)dx
µN (dϕ)µ′

N (dϕ′)︸ ︷︷ ︸
µ⃗N (dϕ⃗)

,

TOME 0 (0), FASCICULE 0
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and

ν⃗(dϕ⃗) = ν(dϕ)µ′(dϕ′) = Z−1 e−λ
∫

T2 ϕ⋄4dx+ 1
2

∫
T2 ϕ⋄2dx

µ(dϕ)µ′(dϕ′)︸ ︷︷ ︸
µ⃗(dϕ⃗)

,

where the values of ZN and Z are the same as before. The equation (1.13)
can be written as a Hamiltonian system for u⃗N := (uN , ∂tuN ) as

(1.15) ∂t

(
uN

∂tuN

)
=
(

0 1
−1 0

)
∂EN

∂(uN , ∂tuN ) ,

where the Hamiltonian is given by

EN (f, g) = 1
2

(
⟨|∇|2αf, f⟩L2 + ⟨g, g⟩L2

)
+
∫

T2
VN (ΠNf) dx .

For every N , the probability measure ν⃗N is invariant under the above
Hamiltonian dynamics. Theorem 1.10 implies that ν⃗N ⊗ µ⊥

N ⊗ (µ′
N )⊥ con-

verges to ν⃗ in the sense that the density with respect to µ⃗ converges in
Lp(µ⃗) for every p ⩾ 1. The measures µ⃗ and ν⃗ are supported on

H−(1−α)9(T2) := H−(1−α)9(T2) ×H−19(T2) ,

where
Hγ9 :=

⋂
ε>0

Hγ−ε .

The invariance of νN ⊗µ′
N under the dynamics (1.13) is an essential ingre-

dient in the proof of Theorem 1.5. In addition, convergence of the measures
itself may be of independent interest.

Remark 1.9. — We would like to emphasize that the invariance of νN ⊗
µ′

N under the dynamics (1.13) is used in two different ways. The first one
is that it gives key a priori bounds for truncated dynamics (for fixed N).
Second, the convergence of the invariant measures to a limiting measure (as
stated in Theorem 1.10 below) and the invariance of the limiting measure
under the limiting dynamics allows us to pass from local to global in time
convergence.

1.5. Convergence of the measures

We now state our result on the convergence of the Gibbs measures. For
convenience, we introduce another measure νN by

νN (dϕ) := νN ⊗ µ⊥
N = 1

ZN
e−
∫

T2 ṼN (ΠN ϕ)dx
µ(dϕ) ,

ANNALES DE L’INSTITUT FOURIER
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where the normalisation constant ZN is the same as the one in (1.14). For
every p ⩾ 1, define

Z(p)
N := Eµ

[
e−p

∫
T2 ṼN (ΠN ϕ)dx

]
.

Then ZN = Z(1)
N . Our first theorem is the following:

Theorem 1.10. — Let α ∈ ( 3
4 , 1). Suppose that V verifies Assump-

tion 1.2. Then for every p ⩾ 1, we have

sup
N

|log Z(p)
N | < +∞

Furthermore, λ := a2 > 0, and

lim
N→∞

Eµ

∣∣∣∣e−
∫

T2 ṼN (ΠN ϕ)dx − e−λ
∫

T2 ϕ⋄4dx+ 1
2

∫
T2 ϕ⋄2dx

∣∣∣∣p = 0

for every p ⩾ 1. Hence, νN converges as N → +∞ to the fractional ϕ4
2

measure ν in the sense that the densities with respect to µ converge in
Lp(µ).

Remark 1.11. — The restriction α > 3
4 is natural in the sense that in

this range, one can define the ϕ4 measure ν by an absolutely continuous
density with respect to the Gaussian measure µ. The fourth Wick power
ϕ⋄4 fails to exist under µ when α = 3

4 , in which case one expects to end up
with a measure (after further renormalisations) that is mutually singular
with respect to µ. Similar phenomena were studied in the Hartree-setting
in the recent works [7] and [20].

The next proposition says that (1.4) is actually almost necessary for the
main theorem.

Proposition 1.12. — If there exists θ ∈ R such that
∑m

j=1 a2θ
2(j−2) <

0, then there exists c > 0 such that log ZN > cN4(1−α) for all N ∈ N. As
a consequence, the densities dνN

dµ do not converge in L1(µ).

1.6. Comparison with parabolic equations and other dispersive
models

This type of weak universality was first studied by Hairer–Quastel ([16])
in deriving the KPZ equation from a large class of microscopic growth
models. It has later been extended in various directions in the setting of
parabolic singular stochastic PDEs ([12, 13, 17, 18, 22]). A key feature
in this type of this problem is that every term in the expansion of the

TOME 0 (0), FASCICULE 0
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nonlinearity has the same size — and hence the constant λ of this limiting
equation depends on the whole nonlinearity rather than the naive guess of
the corresponding power only. As far as we know, our Theorem 1.5 is the
first one for dispersive models fitting in this situation.

Technically, one difference between dispersive and parabolic equations
is the lack of L∞ based estimates in the dispersive setting. Hence, the
heuristic reasoning that negative powers of N balance out high powers of
singular objects needs more involved justification with the help of dispersive
tools. A second technical difference lies in the globalisation argument. In
the parabolic setting, the global-in-time convergence follows from the global
well-posedness of the limiting equation and stability. However in the current
dispersive setting, even though the limiting equation is globally well-posed,
the stability properties are not good enough here, and we need to make an
essential use of invariant measure to get global convergence.

Note that our techniques can be used to extend the weak universality
result of Gubinelli–Koch–Oh for the 2D stochastic nonlinear wave equation
to the stochastic nonlinear fractional wave equation with space-time white
noise, formally written as

∂2
t u+ |∇|2αu+ ∂tu+ λu⋄3 = ξ, (t, x) ∈ R+ × T2

when α > 8
9 . The weak universality result of Gubinelli–Koch–Oh is a con-

sequence of the almost sure global well-posedness for the two-dimensional
nonlinear wave equation (α = 1) with any order nonlinearity, while for the
fractional wave equation with α < 1, the situation is radically different.

1.7. Notations and conventions

We fix the parameter α ∈ ( 8
9 , 1) throughout this article. In the Gibbs

measure part, we relax its range to α ∈ ( 3
4 , 1). For z ∈ R, we write ⟨z⟩ :=

(1 + |z|2α) 1
2α , and write

⟨∇⟩ := (1 + |∇|2α) 1
2α .

We use the short symbol D := ⟨∇⟩ throughout this article (and hence
Dα = ⟨∇⟩α). The estimates X ≲ Y (X ≳ Y ) stand for X ⩽ CY (X ⩾ C ′Y )
for some unrelated constants C,C ′ > 0. We denote by X ∼ Y if X ≲ Y and
X ≳ Y . We also write X ≲ε,δ Y to emphasize that the constant depends
only on parameters ε, δ.

Space-time norms are frequently used in the article. For a Banach space
X , an interval I ⊂ R and q ∈ [1,∞], we denote by Lq

t X (I) the space

ANNALES DE L’INSTITUT FOURIER
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Lq(I; X ). If there is no risk of confusing about the time interval, we will
simply write Lq

t X . Banach spaces X can be Sobolev or Lebesgue spaces for
the spatial variable, such as Hs(Td),W s,p(Td), Lp(Td), etc. Furthermore,
since no local spatial norm will be used, we write Xx to stand form X (Td).

Globally reserved parameters: α ∈ ( 1
2 , 1), β := 1 − α, s0 = 4α − 3. The

even number 2m ∈ N stands for the degree of the potential V (z). We may
specify more restrictive ranges of them in different contexts.

For parameters A,B, the symbol A ≪ B means that B > CA for a very
large constant C, depending on the context.

1.8. Organization of the article

This article is organized as follows. In Section 2, we give some prelimi-
nary lemmas on functional inequalities and stochastic estimates. These will
be used throughout the article. In Section 3, we prove the convergence of
the measures νN to ν under Assumption 1.2 on V , and also give evidence
to show that this positivity assumption is also almost necessary for the
convergence result. Section 4 is devoted to the proof of Theorem 1.5, con-
vergence of the wave dynamics to the cubic wave equation. The appendices
collect detailed proofs of some technical lemmas.

2. Preliminaries

2.1. Functional spaces and nonlinear estimates

Let φ ∈ C∞
c (Rd; [0, 1]) be a radial functions such that supp(χ) ⊂ {ξ :

|ξ| ⩽ 4
3 }, supp(φ) ⊂ {ξ : 3

4 ⩽ |ξ| ⩽ 8
3 }. For j ⩾ 0, define φj(ξ) = φ(2−jξ).

Let χ : Rd → [0, 1] be a radial bump function such that

χ(ξ) +
∑
j⩾0

φj(ξ) ≡ 1.

Define the Fourier multiplier

P−1 = F−1
x χFx, Pj = F−1

x φjFx, j ⩾ 0.

The Besov space Bγ
p,q(Td) with indices γ ∈ R, 1 ⩽ p, q ⩽ ∞ is defined via

the norm
∥f∥Bγ

q,r(Td) :=
∥∥2jγ∥Pjf∥Lq(Td)

∥∥
lp
j

.
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12 Chenmin SUN, Nikolay TZVETKOV & Weijun XU

In the main part of the article, we use frequently the convention Cγ :=
Bγ

∞,∞. For γ ∈ R, 1 ⩽ p ⩽ ∞, the fractional Sobolev spaces W γ,p(Td) is
defined via the norm

∥f∥W γ,p(Td) := ∥Dγf∥Lp(Td)

By Littlewood–Paley’s square-function theorem, when γ ⩾ 0 and 1 < p <

∞, we hvae
∥f∥W γ,p(Td) ∼γ,p

∥∥∥2jγPjf∥l2
j

∥∥
Lp(Td).

Lemma 2.1 (Fractional Leibniz rule). — Let p ∈ (1,+∞) and
p1, p2, p̃1, p̃2 > 1 such that

1
p1

+ 1
p2

= 1
p̃1

+ 1
p̃2

= 1
p
.

Let β ⩾ 0. Then there exists C > 0 depending on all the above parameters
such that

∥⟨∇⟩β(fg)∥Lp ⩽ C
(
∥⟨∇⟩βf∥Lp1 ∥g∥Lp2 + ∥f∥Lp̃1 ∥⟨∇⟩βg∥Lp̃2

)
for all f, g ∈ C∞(T2).

Proof. — This is [14, Theorem 1]. □

Proposition 2.2 (General Gagliardo–Nirenberg inequality). — Let p ∈
(1+,∞), β > 0 and θ ∈ [0, 1]. Let p1, p2 > 1 and β1, β2 > 0 be such that

1
p

= θ

p1
+ 1 − θ

p2
and β = θβ1 + (1 − θ)β2 .

Then we have
∥f∥W β,p ≲ ∥f∥θ

W β1,p1 ∥f∥1−θ
W β2,p2

for all f ∈ C∞. The proportionality constant depends on all the above
parameters but is independent of f .

Proof. — This is the content of [5, Theorem 1]. □

2.2. Strichartz estimate

Consider the fractional wave equation on Rd, with 0 < α < 1:

∂2
t u+ (Dα)2u = F.(2.1)

We say that (q, r) is admissible, if
2
q
⩽ d

(
1
2 − 1

r

)
, (q, r, d) ̸= (2,∞, 2),
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and (q, r) is sharp admissible if the equality holds. Denote by

γq,r := d

(
1
2 − 1

r

)
− α

q
.

We have the following Strichartz estimate:

Proposition 2.3 ([11]). — Assume that α ∈ (0, 1). Let (q, r) be a sharp
admissible pair. For any solution u of (2.1), we have

(2.2) ∥u∥Lq
t Lr

x([0,T ]×Td)

⩽ Cq,r∥(u, ∂tu)|t=0∥Hγq,r (Td) + Cq,r∥F∥
L1

t H
γq,r−α
x ([0,T ]×Td),

where the constant Cq,r is independent of T > 0.

Note that when d = 2, if (q, r) is sharp admissible, then γq,r = 2−α
q . We

will only make use of the Strichartz space Lq
tL

r
x for q slightly greater than 2

in this article. Due to the finite propagation speed for the linear wave when
α < 1, the Strichartz estimate is the same as that in Rd, which follows
from a standard stationary phase analysis and a TT ∗ argument.In order to
be self-contained, we include a proof of Proposition 2.2 in the appendix.

2.3. Renormalisation and the white-noise functional

First we recall that the Hermite polynomials Hk(x;σ) can be defined via
the generating function

F (t, x;σ) = etx− 1
2 σt2

=
∞∑

k=0

tk

k!Hk(x;σ).

It follows that

Hk(x;σ) =
⌊ k

2 ⌋∑
j=0

(
k

2j

)
(2j − 1)!!(−σ)jxk−2j .(2.3)

When σ = 1, we denote by Hk(x) = Hk(x; 1). The relation of Hk(x, σ) and
Hk(x) is given by

Hk(x;σ) = σ
k
2Hk

( x√
σ

)
.

Taking derivatives of the generating function, one deduces easily that

∂j
xHk(x;σ) = k!

(k − j)!Hk−j(x;σ).

Furthermore, by the multiplicative property of the generating function:

F (t, x+ y;σ1 + σ2) = F (t, x;σ1) · F (t, x;σ2),
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14 Chenmin SUN, Nikolay TZVETKOV & Weijun XU

we have the binomial expansion

Hk(x+ y;σ1 + σ2) =
k∑

l=0

(
k

l

)
Hl(x;σ1)Hk−l(y;σ2).(2.4)

Hermite polynomials can be used to define the Wick-ordered product for
real-valued centered Gaussian random variables. Let z be a real-valued
centered Gaussian random variable with variance ν. Then we define its
Wick product as

z⋄k := Hk(z; ν).(2.5)

From (2.4), we have for any function w,

Hk(z + w; ν) =
k∑

l=0
Hl(z; ν) · wk−l.

When w represents a deterministic function, sometimes we will also use
(z+w)⋄k to represent Hk(z+w; ν). For independent real-valued Gaussian
random variables z1, z2 generated by (g̃k)k∈N with variance ν1, ν2, with
respectively, we have the binomial expansion:

(z1 + z2)⋄k := Hk(z1 + z2; ν1 + ν2)

=
k∑

l=0

(
k

l

)
Hl(z1; ν1)Hk−l(z2; ν2) =

k∑
l=0

(
k

l

)
z⋄l

1 · z⋄(k−l)
2 .(2.6)

In order to estimate the regularity of wick-products, it is convenient to
use the white-noise functional calculus. Let

ξω(x) =
∑

n∈Zd

g̃n(ω) einx

be the real-valued white noise distribution on Td, where (g̃n)n∈Z is a se-
quence of complex-valued independent NC(0; 1) Gaussian random variables
on a given probability space (Ω,F ,P), conditioned to ˜̃gn = g̃−n,∀n ∈ Zd.
We define the white-noise functional

W(·) : L2(Td) −→ L2(Ω,F ,P)

by
f 7−→ Wf (ω) = (f, ξω)L2(Td) :=

∑
n∈Zd

f̂(n)gn(ω).

Note that for any f, h ∈ L2(Td), we have

E[WfWh] = (f, h)L2(Td).
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Moreover, for any real-valued functions f, h ∈ L2(Td) with ∥f∥L2 =
∥h∥L2 = 1,

E[Hk(Wf )Hm(Wh)] = δkmk![(f, h)L2 ]k.(2.7)

We refer [21] for a proof. To represent the Wick-product as white noise
functional, we denote

ηN (x, y) := 1
σ̃N

∑
|k|⩽N

1√
1 + |k|2α

eik·(x+y) .

Then for
ϕω

N (x) :=
∑

|k|⩽N

gk(ω)√
1 + |k|2α

eik·x,

we have

ϕN (x) = σ̃NWηN (x,·), ϕ⋄l
N (x) =Hl(ϕN (x); σ̃2

N ) = σ̃l
NHl

(
WηN (x,·)

)
.(2.8)

Next we recall the Wiener chaos estimate. Let (gn)n∈N be a sequence
of independent standard Gaussian random variables on a probability space
(Ω,F ,P). Given k ∈ N (including the 0), we define the space of homo-
geneous Wiener chaos of degree k, Hk, to be the closure in L2(Ω,P) of
polynomials

∏∞
n=1 Hkn

(gn), where
∑∞

n=1 kn = k. Then we have the Ito–
Wiener decomposition

L2(Ω,F1,P) =
∞⊕

k=0
Hk,

where F1 is the σ-algebra generated by (gn)n∈N.
By the hypercontractivity, we have the following Wiener chaos estimate:

Proposition 2.4. — Assume that X ∈
⊕

j⩽k Hj , then for any finite
p ⩾ 2,

∥X∥Lp(Ω) ⩽ (p− 1) k
2 ∥X∥L2(Ω).

3. Convergence of the Gibbs measure

3.1. A variational formula for the partition function

The main strategy to prove Theorem 1.10 and Proposition 1.12 is the
recently developed variational approach to QFT ([1]). We first give a vari-
ational formula for − log ZN . We adapt the setting in [15].
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16 Chenmin SUN, Nikolay TZVETKOV & Weijun XU

Let {Bk(·)}k∈Z2 be a collection of standard Brownian motions on the
probability space (Ω,F ,P) such that Bk = B−k and otherwise indepen-
dent. Let

X(t) =
∑

k∈Z2

Bk(t) ek ,

which is the cylindrical Brownian motion on L2(T2) adapted to the filtra-
tion (Ft) generated by {Bk}.

For every N , let SN be the operator such that

(3.1) ŜNf(k) = f̂(k)
⟨k⟩α

· 1|k|⩽N .

Let WN (t) := SNX(t), and for every N , define the measure QN by
dQN

dP
:= 1

ZN
e−
∫

T2 ṼN (WN (1))dx
.

Here, the integration variable in x is from WN (1) = WN (1, ·). For t = 1,
we also simply write WN for WN (1). Then

LawP
(
WN (1)

)
= µ ,

and the normalisation constant ZN is the same as above.
By the martingale representation theorem, there exists an adapted L2

process u such that

(3.2) 1
ZN

e−
∫

T2 ṼN (WN )dx = dQN

dP = e
∫ 1

0
⟨u(t),dX(t)⟩− 1

2

∫ 1

0
∥u(t)∥2

L2 dt
.

Re-arranging the terms and taking logarithm, we get

− log ZN =
∫

T2
ṼN (WN )dx+

∫ 1

0
⟨u(t),dX(t)⟩ − 1

2

∫ 1

0
∥u(t)∥2

L2dt ,

where we recall the notation WN = WN (1). Now, for the above u, define

X̃(t) := X(t) −
∫ t

0
u(s)ds .

Then by Girsanov theorem, X̃ is a QN Brownian motion. Writing

(3.3) W̃N (t) := SN X̃(t) , IN (v) = SN

∫ 1

0
v(s)ds ,

we get

− log ZN =
∫

T2
VN

(
W̃N +IN (u)

)
dx+

∫ 1

0
⟨u(t),dX̃(t)⟩+ 1

2

∫ 1

0
∥u(t)∥2

L2dt .

Note that the second term on the right hand side above is a martingale
under QN , and hence vanishes under EQN . We have thus arrived at the
following proposition.

ANNALES DE L’INSTITUT FOURIER



WEAK UNIVERSALITY FOR WAVE EQUATIONS 17

Proposition 3.1. — Let u be the adapted L2 process in (3.2). Then
we have the identity

− log ZN = EQN

[∫
T2
VN

(
W̃N + IN (u)

)
dx+ 1

2

∫ 1

0
∥u(t)∥2

L2dt
]
,

where W̃N = W̃N (1) = ΠN X̃(1), and LawQN

(
W̃N

)
= Lawµ(ϕN ).

The above representation is sufficient for us to prove Theorem 1.10. But
it will be convenient for us to be able to change the “drift” u freely while
keeping the underlying probability space unchanged. For this reason, we
use the following deeper variational formula.

Proposition 3.2 ([2, 24]). — We have

(3.4) − log ZN = inf
v∈Ha

EP
[∫

T2
ṼN (WN + IN (v))dx+ 1

2

∫ 1

0
∥v(t)∥2

L2dt
]
,

where the infimum is taken over all predictable processes in L2 with respect
to the filtration generated by X.

Before we get into the proof of the main theorem, we first give a prelim-
inary lemma controlling ∥IN (v)∥Hα by the space-time L2-norm of v.

Lemma 3.3. — There exists C > 0 such that

sup
N

∥IN (f)∥2
Hα ⩽ C

∫ 1

0
∥f(t)∥2

L2dt

for all f ∈ L2([0, 1];L2(T2)
)
.

Proof. — By definition of IN , we have

ÎNf(k) = 1|k|⩽N
1

⟨k⟩α

∫ 1

0
f̂(t, k)dt ,

and hence

|ÎNf(k)|2 ⩽
1

⟨k⟩2α

∣∣∣ ∫ 1

0
f̂(t, k)dt

∣∣∣2 ⩽ ⟨k⟩−2α

∫ 1

0
|f̂(t, k)|2dt .

As a consequence, we have

∥INf∥2
Hα =

∑
k

⟨k⟩2α|ÎNf(k)|2 ⩽
∑

k

∫ 1

0
|f̂(t, k)|2dt = C

∫ 1

0
∥f(t)∥2

L2dt .

The proof is complete. □
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18 Chenmin SUN, Nikolay TZVETKOV & Weijun XU

3.2. Necessity of the positivity condition – proof of
Proposition 1.12

Suppose V and ρ are such that
m∑

j=2
ajθ

2j−4 < 0

for some θ ∈ R. By continuity, we can assume θ ̸= 0. Let u = θN1−α which
is certainly adapted. Write UN := IN (u) ≡ θN1−α. By Proposition 3.2, we
have

− log ZN ⩽ EP
[∫

T2
ṼN (WN + UN )dx+ 1

2

∫ 1

0
∥u(t)∥2

L2dt
]
.

We will show that for the above drift u, the right hand side above is smaller
than −cN4(1−α) for some c > 0.

For the term ṼN (WN + UN ), we have

ṼN (WN +UN ) =
m∑

j=2
aj,NN

−(2j−4)(1−α) (WN +UN )⋄(2j) − 1
2(WN +UN )⋄2 .

Expanding the Wick product for each j and re-organising the sum according
to the power of UN , we get

(3.5) ṼN (WN + UN ) =
2m∑
ℓ=0

m∑
j=2∨ ℓ

2

aj,N

(
2j
ℓ

)
N−(2j−4)(1−α) W

⋄(2j−ℓ)
N U ℓ

N

− 1
2
(
W ⋄2

N + 2WNUN + U2
N

)
,

where U ℓ
N is the ℓ-th power of UN = IN (u), and ⋄ denotes the Wick product

of WN with respect to its own Gaussian structure.
Note that for the terms in the above sum, the pointwise expectation EP

is non-zero only when ℓ = 2j. So for this drift u, we have

E
∫

T2
ṼN (WN + θN1−α)dx

= 4π2
m∑

j=2
aj,NN

−(2j−4)(1−α)(θN1−α)2j + O(N2(1−α))

< −cN4(1−α)

for some c > 0 (since θ ̸= 0). For the other term, we have∫ 1

0
∥u(t)∥2

L2dt = CN2(1−α) .
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Hence, by the variational formula, we have the bound

− log ZN < −cN4(1−α)

for all N , which implies that the densities
1

ZN
e−
∫

T2 VN (ΠN ϕ) −→ 0

in probability with respect to µ. But since their L1(µ) norm are 1, so it
cannot converge in L1. This completes the proof of Proposition 1.12.

3.3. Proof of Theorem 1.10

3.3.1. The main proposition and upper bound

Recall the renormalised potential VN and definition of the coefficients
aj,N in (1.11) and (1.12). Let

C
(1)
N = a1,NN

2(1−α) , C
(2)
N =

(
a0,N − a1,Nσ

2
N

)
N4(1−α).

Writing ϕN = ΠNϕ for simplicity, we have

VN (ϕN ) =
m∑

j=2
aj,NN

−(2j−4)(1−α)ϕ
⋄(2j)
N ,

where the Wick product is with respect to the Gaussian structure induced
by µ. In other words, we remove the 0-th and 2-nd chaos components from
the polynomial. By standard hyper-contractivity arguments, one has

Eµ

∣∣∣∣∫
T2
VN (ϕN )dx− λ

∫
T2
ϕ⋄4dx

∣∣∣∣p −→ 0

as N → +∞. The key ingredient to pass the convergence to the level of
exponential is the following uniform bound.

Proposition 3.4. — For every p ⩾ 1, we have

sup
N∈N

Eµ
(
e−p
∫

T2 ṼN (ϕN )dx
)
<+∞ , Eµ

(
e−λp

∫
T2 ϕ⋄4dx+ p

2

∫
T2 ϕ⋄2dx

)
<+∞.

We first show how Theorem 1.10 follows from Proposition 3.4.
Proof of Theorem 1.10. — Note that under µ, we have

ṼN (ϕN ) = VN (ϕN ) − 1
2ϕ

⋄2
N ,
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so it suffices to prove the corresponding statement with VN instead of ṼN

and with the ϕ⋄2 removed in the limiting measure. Since∫
T2
VN (ϕN )dx −→ λ

∫
T2
ϕ⋄4dx

in probability, and since the exponential function is continuous, we have

e−
∫

T2 VN (ϕN )dx −→ e−λ
∫

T2 ϕ⋄4dx

in probability as well. Theorem 1.10 then follows from the convergence in
probability together with the uniform bounds in Proposition 3.4 (with a
larger p). □

We now turn to proving Proposition 3.4. We only need to prove the first
bound, as the second one is the special case with a2,N = λ > 0 and aj,N = 0
for all other j. Also, by replacing aj,N with paj,N , the assumption (1.4) is
not affected. Hence we can assume without loss of generality that p = 1.

It suffices to prove a uniform-in-N bound for | log ZN |. Jensen’s inequality
gives

− log ZN = − log Eµ

[
e−
∫

T2 ṼN (ϕN )dx
]
⩽ Eµ

[∫
T2
ṼN (ϕN )dx

]
= 0 .

So it remains to prove a lower bound for − log ZN . The rest of the section
will be devoted to that.

3.3.2. Expansion

By the variational formula (3.4), it suffices to prove a lower bound of its
right hand side uniform over N and all L2 adapted process u.

Starting from the expansion (3.5) and re-organising the sums, we have

(3.6) ṼN (WN + UN ) =
2m−1∑

ℓ=0
YN,ℓU

ℓ
N − 1

2W
⋄2
N −WNUN

+
m∑

j=2
aj,NN

−(2j−4)(1−α)U2j
N − 1

2U
2
N ,

where

YN,ℓ =
m∑

j=2∨(⌊ ℓ
2 ⌋+1)

aj,N

( 2j
ℓ

)
N−(2j−4)(1−α) W

⋄(2j−ℓ)
N ,

and we have separated out the terms with 2j = ℓ in the sum. Note that the
sum in ℓ (in the first term) is up to 2m − 1 since the last one (ℓ = 2m) is
separated into the second term in (3.6), so the sum defining YN,ℓ is empty
when ℓ = 2m.
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Proposition 3.5. — If the positivity condition (1.4) holds, then there
exists c, C > 0 such that

m∑
j=2

aj,NN
−(2j−4)(1−α)U2j

N − U2
N ⩾ c

(
U4

N +N−(2m−4)(1−α)U2m
N

)
− C

for all sufficiently large N . As a consequence, we have

(3.7)
∫

T2
ṼN (WN + UN ) dx+ 1

2

∫ 1

0
∥u(t)∥2

L2 dt

⩾
∫

T2

(2m−1∑
ℓ=0

YN,ℓU
ℓ
N − 1

2W
⋄2
N −WNUN

)
dx− C

+ c
(

∥UN ∥4
L4 +N−(2m−4)(1−α)∥UN ∥2m

L2m + ∥UN ∥2
Hα

)
,

where UN = IN (u), and IN is defined in (3.3).

Proof. — The first claim follows from the positivity assumption (1.4),
the convergence aj,N → aj for every j, and that

U2
N ⩽M + U4

N

M

for every M ⩾ 1. The second claim is a consequence of the first one and
Lemma 3.3. □

Our next aim is to show that for every sufficiently small δ > 0, there
exists constant C = C(δ,m) such that

(3.8)
∣∣∣∣∫

T2
W ⋄2

N dx
∣∣∣∣+
∣∣∣∣∫

T2
WNUN dx

∣∣∣∣+
2m−1∑

ℓ=0

∣∣∣∣∫
T2

YN,ℓU
ℓ
N dx

∣∣∣∣
⩽ CQN (WN ) + δ

(
∥UN ∥4

L4 +N−(2m−4)(1−α)∥UN ∥2m
L2m + ∥UN ∥2

Hα

)
,

where QN (WN ) is some function depending on suitable (negative) Sobolev
norm of WN whose expectation is uniformly bounded in N . If (3.8) is true,
then we can combine it with (3.7) and Proposition 3.2 to conclude the lower
bound

− log ZN ⩾ −CE
(
Q(WN )

)
> −C

for some C independent of N . Also note that it suffices to show that each
term on the left hand side satisfies the bound. The rest of this section is
devoted to the proof of (3.8).
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3.3.3. The first two terms

The bounds for the first two terms on the left hand side of (3.8) are
straightforward. For the first one, we have∣∣∣∣∫

T2
W ⋄2

N dx
∣∣∣∣ ⩽ ∥W ⋄2

N ∥H−2(1−α)−ε ,

which is of the form QN (WN ). For the second one, we have∣∣∣∣∫
T2
WNUN dx

∣∣∣∣ ⩽ ∥WN ∥H−α∥UN ∥Hα ⩽
1
δ

∥WN ∥2
H−α + δ∥UN ∥2

Hα ,

which is again of the desired form.

3.3.4. The case 0 ⩽ ℓ ⩽ 3

We now turn to the terms YN,ℓU
ℓ
N . We first consider the case when

0 ⩽ ℓ ⩽ 3. A typical term in YN,ℓ for 0 ⩽ ℓ ⩽ 3 is of the form

N−(2j−4)(1−α)⟨W ⋄(2j−ℓ)
N , U ℓ

N ⟩

for j = 2, . . . ,m, where ⟨· , ·⟩ denotes the L2(T2) inner product.
The term ℓ = 0 corresponds to N−(2j−4)(1−α) ∫ W ⋄(2j)

N . It satisfies the
bound

N−(2j−4)(1−α)
∣∣∣∣∫ W

⋄(2j)
N

∣∣∣∣ ≲ N−(2j−4)(1−α)∥W ⋄(2j)
N ∥H−β

for every β ⩾ 0. By Lemma B.3, since α ∈ ( 3
4 , 1), its expectation is uni-

formly bounded in N as long as β > 1. Hence, we can take QN (WN ) =
N−(2j−4)(1−α)∥W ⋄(2j)

N ∥H−(1+ε) which satisfies the requirements for the
bound (3.8).

For ℓ = 1, it follows from duality and Cauchy–Schwarz that

N−(2j−4)(1−α)∣∣⟨W ⋄(2j−1)
N , UN ⟩

∣∣
⩽ N−(2j−4)(1−α)∥W ⋄(2j−1)

N ∥H−α∥UN ∥Hα

⩽ δ−1N−(4j−8)(1−α)∥W ⋄(2j−1)
N ∥2

H−α + δ∥UN ∥2
Hα .

By Lemma B.3, the quantity N−(4j−8)(1−α)E∥W ⋄(2j−1)
N ∥2

H−α is uniformly
bounded in N as long as 1 ∧ α > 3(1 − α), which is the case for α ∈ ( 3

4 , 1).
So the desired bound (3.8) is true for ℓ = 1.

For ℓ = 2, let β > 0 to be specified later, and p, q, q1, q2 ∈ (1,+∞) be
such that

1
p

+ 1
q

= 1 and 1
q1

+ 1
q2

= 1
q
.
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By duality of W−β,p and W β,q and then Lemma 2.1, we have∣∣⟨W ⋄(2j−2)
N , U2

N ⟩
∣∣ ⩽ ∥W ⋄(2j−2)

N ∥W −β,p∥U2
N ∥W β,q

≲ ∥W ⋄(2j−2)
N ∥W −β,p∥UN ∥W β,q1 ∥UN ∥Lq2 .

We furthermore choose q sufficiently close to 1 so that q1 ⩽ 2 and q2 ⩽ 4,
and choose β ∈ (2(1 −α), α). This is possible as long as α > 2

3 , which is in
the range of our assumption.

Then multiplying both sides by N−(2j−4)(1−α) and using Hölder to split
the three terms, we get

N−(2j−4)(1−α)∣∣⟨W ⋄(2j−2)
N U2

N ⟩
∣∣

≲ N−(2j−4)(1−α)∥W ⋄(2j−2)
N ∥W −β,p∥UN ∥Hα∥UN ∥L4

≲ δ−3N−4(2j−4)(1−α)∥W ⋄(2j−2)
N ∥4

W −β,p + δ
(
∥UN ∥2

Hα + ∥UN ∥4
L4

)
,

where the proportionality constant does not depend on δ. By Lemma B.3,
the first term above has finite (uniform-in-N) expectation since β > 2(1−α).
Hence, it is of the form of the right hand side of (3.8). The completes the
case ℓ = 2.

For ℓ = 3, by duality and Lemma 2.1, we have∣∣⟨W ⋄(2j−3)
N , U3

N ⟩
∣∣ ⩽ ∥W ⋄(2j−3)

N ∥
W −β,

1+ε
ε

∥U3
N ∥W β,1+ε

≲ ∥W ⋄(2j−3)
N ∥

W −β,
1+ε

ε
∥UN ∥

W
β,

2(1+ε)
1−ε

∥UN ∥2
L4 ,

where ε, β > 0 are to be specified later. By Proposition 2.2, for β < α, we
have

∥UN ∥
W

β,
2(1+ε)

1−ε
≲ε ∥UN ∥

β
α

W α,p∥UN ∥1− β
α

L4 ≲ ∥UN ∥
β
α

Hα∥UN ∥1− β
α

L4 ,

where
p = 4(1 + ε)β

(1 − 3ε)α+ (1 + ε)β < 2

if β < α and ε is sufficiently small (depending on α, β), and hence the
second inequality above (relaxing Wα,p to Hα) is valid. Plugging it back
into the original term and applying Hölder, we get

N−(2j−4)(1−α)∣∣⟨W ⋄(2j−3)
N , UN ⟩

∣∣
≲ε Cδ

(
N−(2j−4)(1−α)∥W ⋄(2j−3)

N ∥
W −β,

1+ε
ε

) 4α
α−β + δ

(
∥UN ∥2

Hα + ∥UN ∥4
L4

)
.

Again by Lemma B.3, if we choose β > 1 − α, then the expectation of
the first term above will be uniformly bounded in N , and hence satisfies
the form of (3.8). Recall that we have also required β < α when applying
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Proposition 2.2 in the previous step. This is possible if 1 −α < α, which is
true as long as α > 1

2 (which satisfies our assumption α ∈ ( 3
4 , 1)).

We have thus established the desired bound for 0 ⩽ ℓ ⩽ 3.

3.3.5. The case 4 ⩽ ℓ ⩽ 2m− 1

We now turn to the situation when 4 ⩽ ℓ ⩽ 2m− 1. The relevant terms
to control here are N−(2j−4)(1−α)⟨W ⋄(2j−ℓ)

N , U ℓ
N ⟩ where 4 ⩽ ℓ ⩽ 2m−1 and

2j − ℓ ⩾ 1. We will prove the following proposition.

Proposition 3.6. — Fix 4 ⩽ ℓ ⩽ 2m−1 and j ⩽ m such that 2j−ℓ ⩾ 1.
Let m0 =

⌊
ℓ
2
⌋

+ 1. Then m0 ⩽ m, and for every δ > 0, there exists Cδ such
that

N−(2j−4)(1−α)∣∣⟨W ⋄(2j−ℓ)
N , U ℓ

N ⟩
∣∣

⩽ CδQN (WN ) + δ
(
∥UN ∥2

Hα +N−(2m0−4)(1−α)∥UN ∥2m0
L2m0

)
,

where QN (WN ) is a positive function depending on certain negative Sobolev
norm of WN , and its expectation is uniformly bounded in N . The constant
Cδ is independent of N .

Proof. — We divide the argument into several steps.
Step 1. — Let β, ε > 0 be two parameters whose values will be specified

later. By duality and repeated applications of Lemma 2.1, we have∣∣⟨W ⋄(2j−ℓ)
N , U ℓ

N ⟩
∣∣ ⩽ ∥W ⋄(2j−ℓ)

N ∥
W −β,

1+ε
ε

∥U ℓ
N ∥W β,1+ε

≲ε ∥W ⋄(2j−ℓ)
N ∥

W −β,
1+ε

ε
∥UN ∥W β,pε ∥UN ∥ℓ−1

L2m0 ,

where pε = 2(1+ε)m0
2m0−(1+ε)(ℓ−1) , and it decreases to 2m0

2m0−ℓ+1 as ε → 0. If β < α,
then by Proposition 2.2, we can further control the quantity ∥UN ∥W β,pε by

∥UN ∥W β,pε ≲ ∥UN ∥
β
α

W α,qε ∥UN ∥1− β
α

L2m0 ,

where qε = 2m0β
2m0α

pε
−(α−β)

, and qε decreases to 2m0β
(2m0−ℓ)α+β as ε → 0. Hence,

if we choose β such that

(3.9) 2m0β

(2m0 − ℓ)α+ β
< 2 ,

and choose ε > 0 sufficiently small (depending on β), then qε < 2 and
we can relax ∥UN ∥W α,qε to ∥UN ∥Hα . Also relaxing ∥W ⋄(2j−ℓ)

N ∥
W −β,

1+ε
ε

to

∥W ⋄(2j−ℓ)
N ∥C−β , we obtain the bound

(3.10) |⟨W ⋄(2j−ℓ)
N , U ℓ

N ⟩| ≲ ∥W ⋄(2j−ℓ)
N ∥C−β ∥UN ∥

β
α

Hα∥UN ∥ℓ− β
α

L2m0 .
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The proportionality constant depends on the parameters α and β but is in-
dependent of N . Note that the right hand side as well as the proportionality
constant does not depend on ε.

Note that we have previously chosen β < α. But with the assumption
on m0, this is implied by the constraint (3.9). Hence the only constraint
for (3.10) to hold is (3.9).

Step 2. — We re-write the bound (3.10) as

N−(2j−4)(1−α)|⟨W ⋄(2j−ℓ)
N , U ℓ

N ⟩|

≲
∥W ⋄(2j−ℓ)

N ∥C−β

N (2j−4)(1−α)−γ
· ∥UN ∥

β
α

Hα ·
(
N− γα

ℓα−β ∥UN ∥L2m0

)ℓ− β
α .

Hence, if we choose γ such that

(3.11) γ · 2m0α

ℓα− β
= (2m0 − 4)(1 − α) ⇐⇒ γ = (m0 − 2)(ℓα− β)(1 − α)

m0α
,

we can use Hölder to separate the three terms in the product above so that

N−(2j−4)(1−α)|⟨W ⋄(2j−ℓ)
N , U ℓ

N ⟩|

⩽ Cδ

∥∥∥∥∥ W
⋄(2j−ℓ)
N

N (2j−4)(1−α)−γ

∥∥∥∥∥
η

C−β

+ δ
(
∥UN ∥2

Hα +N−(2m0−4)(1−α)∥UN ∥2m0
L2m0

)
,

where

η = 2m0α

(2m0 − ℓ)α− (m0 − 1)β .

Note that the use of Hölder and hence the above bound is valid if η > 1,
which is implied by the constraint (3.9).

Step 3. — It then remains to show that for every α ∈ ( 3
4 , 1), there exists

β satisfying (3.9) such that for γ given in (3.11) and

QN (WN ) = ∥W ⋄(2j−ℓ)
N ∥C−β

N (2j−4)(1−α)−γ
,

one has

sup
N

E|QN (WN )|η < +∞.

This is equivalent to the following two constraints on (β, γ):
(1) (2j − 4)(1 − α) − γ ⩾ 0;
(2) β ∧ 1 > γ − (ℓ− 4)(1 − α).
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We first check the second one. Note that (3.9) implies β < α < 1, so the
left hand side β ∧ 1 could be replaced by β. Routine algebraic calculations
then show that the second constraint above is equivalent to

(3.12) β >
2(2m0 − ℓ)α(1 − α)

m0 + 2α− 2 .

Combing (3.9) and (3.12), we see that a possible choice of β exists if
2(2m0 − ℓ)α(1 − α)

m0 + 2α− 2 <
2m0 − ℓ

m0 − 1 · α ,

which is true as long as α > 1
2 .

It remains to check the first constraint above. This can be reduced to

(3.13) β ⩾
(4m0 − 2ℓ) − (2j − ℓ)m0

m0 − 2 · α .

Combing it with (3.9), we see that a possible choice of β exists if
(4m0 − 2ℓ) − (2j − ℓ)m0

m0 − 2 <
2m0 − ℓ

m0 − 1 ,

which holds if 2j − ℓ ⩾ 1 and m0 =
⌊

ℓ
2
⌋

+ 1 ⩽ ℓ− 1.
We have thus shown that for α ∈ ( 3

4 , 1), there exists choice of β and γ

as specified above so that all the bounds hold. This completes the proof of
the proposition. □

4. The wave dynamics

Consider the wave dynamics:

(4.1)
{
∂2

t uN + |∇|2αuN + ΠNV
′

N (ΠNuN ) = 0 ,
(uN , ∂tuN )|t=0 = ΠN ϕ⃗,

where

ΠN ϕ⃗ := 1
2π

 ∑
|k|⩽N

gk(ω)√
1 + |k|2α

eik·x,
∑

|k|⩽N

hk(ω) eik·x

 .

Denote by

VN (φ) := a1,NN
2βH2(φ; σ̃2

N ) +WN (φ),

WN (φ) :=
m∑

j=2
aj,NN

−(2j−4)βH2j(φ; σ̃2
N ),
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where we recall β = 1 − α. We rewrite the equation (4.1) as

(4.2)
{
∂2

t uN + (Dα)2uN + κN ΠNuN + ΠNW
′
N (ΠNuN ) = 0 ,

(uN , ∂tuN )|t=0 = ΠN ϕ⃗ ,

where κN = 2a1,NN
2β − 1. Note that for each fixed N , (4.2) is globally

well-posed. Indeed, when writing in Fourier variables, the equation (4.2) is
a finite-dimensional system and its local well-posedness is ensured by the
Cauchy–Lipschitz Theorem. Moreover, the conserved energy

E(uN (t)) :=
∫

T2

(
1
2(|∂tuN |2 + ||∇|αuN |2) + VN (ΠNuN )

)
dx

is a Lyapunov functional that controls the quantity

∥∂tuN (t)∥2
L2(T2)+∥uN ∥2

Hα(T2)+N−(2m−4)β∥uN ∥2m
L2m(T2)−CN,m∥uN ∥2

L2(T2).

Since

∥uN ∥2
L2(T2) ⩽ C∥uN ∥2

L2m(T2) ⩽
1

2CN,m
N−(2m−4)β∥uN ∥2m

L2m(T2) + C ′
N,m,

we deduce that uN cannot blowup in finite time. We denote by Φ⃗N (t) the
flow of (4.2), and we recall that ν⃗N is invariant under Φ⃗N (t).

In this section, we will prove Theorem 1.5 with more precise statements:
the well-posedness of the renormalized and the convergence of (4.1). Heuris-
tically, recall from Proposition 1.4 that κN → κ ∈ R and

|κN − κ| ⩽ CN−(2α−1).

Then formal analysis suggests that as N → ∞, (4.2) should converge to
the renormalized cubic wave equation

∂2
t u+ (Dα)2u+ κu+ 4a2u

⋄3 = 0, (u, ∂tu)|t=0 = ϕ⃗(4.3)

where
u⋄3 := lim

N→∞
ΠNH4(ΠNu; σ̃2

N )

is a well-defined object on the support of µ. The goal of this section is to
rigorously justify the above convergence.

4.1. More notations

Before presenting the main propositions, we need more notations. Define
the linear propagators S(t) and S ′(t) by

S(t)f⃗ = cos(tDα)f+ sin(tDα)
Dα

f ′, S ′(t)f⃗ = −⟨D⟩α sin(tDα)f+cos(tDα)f ′,
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and let S⃗(t) =
(
S(t),S ′(t)

)
, where we again write f⃗ = (f, f ′). For every

ϕ⃗ ∈ D′(T2) × D′(T2), denote

(t, ·) = (ϕ⃗)(t, ·) := S(t)ϕ⃗ and ⃗ := S⃗(t)ϕ⃗.

Sometimes we will omit the dependence on ϕ⃗ in the notation for simplicity.
For an integer N ∈ N, denote N := ΠN and ⃗N := ΠN

⃗ .
We will frequently use two small parameters ε, θ0 such that

θ0 ≪ ε ≪ 1.

Throughout this section, the symbol ε ≪ 1 always means that

ε < 2−100m × β100.

Recall thatβ = 1 − α, s0 = 4α − 3. Since the flow of the wave equation is
vector-valued, we denote by

Hs := Hs ×Hs−α, Ws,r := W s,r ×W s−α,r.

For given functions f, f⃗ = (f, f ′) and I ⊂ R, we define for σ ∈ R the
norms

∥f∥Y σ(I) := ∥f∥L∞
t Hσ(I) + ∥f∥

L
2+θ0
t L

2+ 4
θ0

x (I)

and
∥f⃗∥Yσ(I) := ∥f⃗∥L∞

t Hσ(I) + ∥f∥
L

2+θ0
t L

2+ 4
θ0

x (I)
.

Note that the norm
(
2+θ0, 2+ 4

θ0

)
is Strichartz admissible. For the solution

u of
∂2

t u+ (Dα)2u = F, (t, x) ∈ I × T2,

we will use in particular the following inequality

∥(u(t), ∂tu(t))∥Y s1 (I) ≲ ∥(u(t0), ∂tu(t0))∥Hs1 + ∥F∥L1
t Hs1−α(I),(4.4)

provided that s1 >
2−α
2+θ0

and t0 ∈ I.

4.2. Well-posedness for the cubic equation

We sketch the almost sure global well-posedness of (4.3) whenever α > 8
9 .

The local well-posedness follows the recentering scheme of Bourgain [3],
while the global well-posedness follows the invariant argument of Bour-
gain [3].

Consider the truncated equation

∂2
t vN +(Dα)2vN +ΠN (κuN +4a2u

⋄3
N ) = 0, (uN , ∂tuN )|t=0 = ΠN ϕ⃗.(4.5)
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Denote by

Jt0 :=
∫ t

t0

sin((t− t′)Dα)
Dα

dt′,

the Duhamel operator starting at time t0, and we decompose the solution
vN (t) of (4.5) as vN (t) = N (t) + wN (t), then wN (t) solves the integral
equation

wN (t) = ΠN J0(κ( N + wN ) + 4a2( N + wN )⋄3).

The remainder w(t) is pretended to be in a more regular space L∞
t H

s
x with

s = s0 − ϵ. For q ∈ [2,∞), by the large deviation estimate, R-certainly, i.e.
outside a set of µ-measure < e−cRc′

, we have

∥ ⋄l

N ∥Lq
t W −lβ−ε,∞

x ([0,1]) ⩽ R, l = 1, 2, 3.

By Lemma A.1, for τ ≪ R− 4
3 ≪ 1,∥∥ΠN J0(κ( N + wN ) + 4a2( N + wN )⋄3)

∥∥
L∞

t Hs
x([0,τ ]×T2) ⩽ CRτ

3
4 ≪ 1,

where we have also used that ∥wN ∥L∞
t Hs([0,τ ]) ⩽ R. Therefore, R-certainly

we have local well-posedness on [0, τ ], with a reminder wN ∈ Y s([0, τ ]) as
well as the convergence wN → w in Y s([0, τ ]) for s = 4α− 3 − ε. To iterate
the local well-posedness (convergence) to a long time interval, we make use
of the invariance of the Gibbs measure

ν̃N (dϕ) := exp
(

−
∫

T2
κ(ΠNϕ)⋄2 + 4a2(ΠNϕ)⋄4

)
µα(dϕ).

Though the sign of κ may not be positive, due to the defocusing nature
a2 > 0, ν̃N → ν, the Gibbs measure associated to (4.3). The rest of the
globalization argument is standard (see for example [23]) and we omit the
detail. Furthermore, we have the invariance of ν⃗ := ν ⊗ µ′ along the flow
Φ⃗(t) of (4.3). To summarize, the version of well-posedness for the cubic
equation is as follows:

Proposition 4.1. — Let T > 0, α ∈
( 8

9 , 1
)
, 0 < ε ≪ 1, be given.

Assume that and s = s0−ε. Then there exists a measurable set Σ0 ⊂ H−β−ε

with µ⃗(Σ0) = 1 and a flow map

Φ⃗(t) =
(
Φ(t),Φ′(t)

)
defined on Σ0 with the following properties:

(1) u(t) := Φ(t)ϕ⃗ is the unique limit in C([0, T ];H−β−ε(T2)) of the
sequence of smooth solutions vN of (4.5).

(2) Φ⃗(t)(Σ0) = Σ0 for every t ∈ R and the flow property holds for Φ⃗(t).
(3) The measure ν⃗ is invariant under the flow Φ⃗(t).
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(4) For every ϕ⃗ ∈ Σ0 the function

(w(t), ∂tw(t)) := Φ⃗(t)ϕ⃗− ⃗(ϕ)

solves the equation{
∂2

tw + (Dα)2w + κw + 4a2
( ⋄3 + 3 ⋄2

w + 3 w2 + w3) = 0 ,(
w(0), ∂tw(0)

)
= (0, 0) .

in C([0, T ];Hs(T2))∩L2+θ0
t L

2(θ0+2)
θ0

x ([0, T ]×T2) in the sense that the
corresponding Duhamel formula holds. Furthermore, the random
object (ϕ) verifies

∥ (ϕ)⋄l∥L10m
t W −lβ−ε,∞

x ([0,T ]) < ∞, l = 1, 2, 3.

4.3. Convergence of higher order systems

Now we study the dynamical weak universality problem by proving the
following result which leads to Theorem 1.5:

Proposition 4.2. — Let T > 0, α ∈
( 8

9 , 1
)
, 0 < ε ≪ 1. Let s = s0 − ε

and s1 = s − 2ε. Then there exists a full µ⃗ measure set Σ ⊂ H−β−ε,
such that for any ϕ⃗ ∈ Σ, the solutions u⃗N (t) = Φ⃗N (t)ϕ⃗ of (4.1) admit a
decomposition u⃗N (t) = ⃗

N (t) + w⃗N (t) and converge in C([0, T ]; H−β−ε)
to the solution Φ⃗(t)ϕ⃗ of the cubic equation constructed in Proposition 4.1.
Moreover, the nonlinear remainders wN (t) converge in a smoother space:

lim
N→∞

∥wN (t) − w(t)∥L∞
t H

s1
x ([0,T ]) = 0.

The main ingredient to prove the almost sure convergence of (4.2) to (4.5)
in C([0, T ];H−β−ε(T2)) is a variant of the Bourgain–Bulut type argument
([4]). Briefly, we will use two global information, the first one is the invari-
ance of measures ν⃗N along the truncated flow Φ⃗N (t). This will allow us
to essentially control the L∞

x norm of the solution Φ⃗N (t)ϕ⃗ by Nβ+. The
second one is the solution of the cubic equation, thanks to Proposition 4.1.
Technically, since we deal with solutions in the space of negative regularity,
it would be more convenient to work with the nonlinear part of the flow
that leaves in the spaces of positive regularity.

Writing
uN = N + wN ,

ANNALES DE L’INSTITUT FOURIER



WEAK UNIVERSALITY FOR WAVE EQUATIONS 31

we expand the nonlinearity κN ΠNuN + ΠNW
′
N (ΠNuN ) as

κN ( N + wN ) + 4
3∑

l=0

(
3
l

)
a2,Nw

l
N

⋄3−l

N +
2m−1∑

l=0
RN,lw

l
N ,(4.6)

where

RN,l =
m∑

j=2∨(⌊ ℓ
2 ⌋+1)

(2j)!
l!(2j − l − 1)!aj,NN

−(2j−4)β ⋄(2j−l−1)
N .(4.7)

4.3.1. Large deviation estimates

First, we prove the following lemma that allows us to pass from νN

measure to µ:

Lemma 4.3. — For any R > 0 and N ∈ N,

µ

{
ϕ :
∣∣∣∣∫

T2
VN (ΠNϕ) dx

∣∣∣∣ > R

}
⩽ e−cR

1
2m .

Proof. — Since
∫

T2 VN (ΠNϕ) dx is a linear combination of multi-linear
Gaussians of degree smaller than or equal to 2m, by the Wiener-chaos
estimate

(4.8)
(
Eµ

[∣∣∣∣∫
T2
VN (ΠNϕ) dx

∣∣∣∣p])
1
p

⩽Cpm

(
Eµ

[∣∣∣∣∫
T2
VN (ΠNϕ) dx

∣∣∣∣2
]) 1

2

for any p ⩾ 2. Using the identity (see (2.7))

Eµ[(ΠNϕ)⋄j(x) · (ΠNϕ)⋄j′
(y)] = j!δj,j′

 ∑
|k|⩽N

1
⟨k⟩2α

eik·(x−y)

j

,

we deduce that

Eµ

[∣∣∣∣∫
T2
VN (ΠNϕ)dx

∣∣∣∣2
]

=
m∑

l=1
|al,N |2N−4(l−2)βl! ·

∑
k1+···+kl=0

|kj |⩽N

l∏
j=1

1
⟨kj⟩2α

.

By Lemma A.2 and the fact that α > 3
4 , the quantity∑

k1+k2+k3+k4=0
|kj |⩽N

4∏
j=1

1
⟨kj⟩2α

is uniformly bounded in N . This implies that the right hand side of (4.8) is
bounded by Cpm. The desired estimate then follows from the Chebyshev’s
inequality. □
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The following Lemma crucially uses the invariance of the measure ν⃗N ,
in the spirit of Bourgain–Bulut:

Lemma 4.4. — Let T > 0, γ > β = 1 −α and 2 ⩽ q, r < ∞. There exist
two positive constants CT,γ,q,r, cT,γ,q,r such that for all λ > 1, M < N ,

µ⃗
(

{ϕ⃗ : ∥π⊥
M Φ⃗N (t)ϕ⃗∥Lq

t W−γ,r
x ([0,T ]) > λ}

)
⩽ CT,γ,q,r exp

(
− (T− 1

qMγ−βλ)cT,γ,q,r
)
.

Here π⊥
M = Id − πM and πM is some smooth cutoff(3) .

Proof. — In the proof, we denote by ⟨∇⃗⟩−γ := ⟨∇⟩−γ ⊗ ⟨∇⟩−γ−α. The
notation Lq

t Xx will stand for Lq
t Xx([0, T ]).

Take a parameter λ1 > 0 to be fixed later, we have

µ⃗
{
ϕ⃗ : ∥π⊥

M Φ⃗N (t)ϕ⃗∥Lq
t W−γ,r

x
> λ

}
⩽ µ⃗

{
ϕ⃗ : ∥π⊥

M Φ⃗N (t)ϕ⃗∥Lq
t W−γ,r

x
> λ,

∫
T2
VN (ΠNϕ) dx ⩽ λ1

}
︸ ︷︷ ︸

I

+ µ⃗

{
ϕ⃗ : ∥π⊥

M Φ⃗N (t)ϕ⃗∥Lq
t W−γ,r

x
> λ,

∫
T2
VN (ΠNϕ) dx > λ1

}
︸ ︷︷ ︸

II

.

By Lemma 4.3,

II ⩽ e−cλ
1

2m
1 .(4.9)

To estimate I, we recall that

ν⃗N (dϕ⃗) = 1
ZN

e−
∫

T2 VN (ΠN ϕ)
µ⃗(dϕ⃗),

then

I ⩽ ZN eλ1 ν⃗N

{
ϕ⃗ : ∥π⊥

M Φ⃗N (t)ϕ⃗∥Lq
t W−γ,r

x
> λ

}
.

Take q1 ⩾ max{q, r} to be specified, by Chebyshev’s inequality and
Minkowski’s inequality, we have

I ⩽ ZN eλ1

λq1

∥∥∥∥∥
(∫

H−βε

|⟨∇⃗⟩−γπ⊥
M (Φ⃗N (t)ϕ⃗)|q1 ν⃗N (dϕ⃗)

) 1
q1

∥∥∥∥∥
q1

Lq
t Lr

x

.

(3) The same statement holds if we replace the smooth cutoff πM by ΠM . Here we state
the lemma with πM since ΠM is not bounded in Lp(T2), 1 < p < ∞.
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By the invariance of ν⃗N along Φ⃗N (t), we deduce that, for a.e.x ∈ T and
t ∈ [0, T ] (see Lemma 7.1 of [23] for a rigorous proof)∫

H−βε

|⟨∇⃗⟩−γπ⊥
M (Φ⃗N (t)ϕ⃗)|q1(x)ν⃗N (dϕ⃗) =

∫
H−βε

|⟨∇⃗⟩−γπ⊥
M (ϕ⃗)|q1(x)ν⃗N (dϕ⃗).

Hence

I ⩽ ZN eλ1 T
q1
q

λq1

∥∥∥∥∫
H−βε

|⟨∇⃗⟩−γπ⊥
M ϕ⃗|q1 ν⃗N (dϕ⃗)

∥∥∥∥
L

r
q1
x

.

By Cauchy–Schwarz, the boundedness of ZN ,Z−1
N and Proposition 3.4, the

above quantity can be controlled by

C eλ1 T
q1
q

λq1

∥∥∥∥∥
(∫

H−βε

|⟨∇⃗⟩−γπ⊥
M ϕ⃗|2q1 µ⃗(dϕ⃗)

) 1
2
∥∥∥∥∥

L
r

q1
x

⩽ Cq1T
q1
q eλ1

q
q1
2

1 M−(γ−β)q1

λq1
.

So for any q1 ⩾ q, r, λ1 ⩽ λ, we have

I + II ⩽ eλ1

(
CT

1
q
√
qM−(γ−β)

λ

)q1

+ e−λ
1

2m .

By optimizing the choice of λ1, q1, we complete the proof of Lemma 4.4. □

The following Lemma consists of key arguments of the proof of Proposi-
tion 4.2.

Lemma 4.5. — Let T ⩾ 1, ε ≪ 1. Let R ≫ 1, N ≫ 1 be large parame-
ters. Assume that ϕ⃗ ∈ H−β−ε satisfies

∥Φ⃗N (t)ϕ⃗∥L10m
t W−β−ε,∞

x
⩽ R, ∥⃗N ∥L10m

t W−β−ε,∞
x

⩽ R,(4.10)

and

∥ ⋄k

N ∥L10m
t L∞

x
⩽ Nkβ+ε,

∥ ⋄l

N ∥
L10m

t W
−lβ−2ε, 1

ε
x

⩽ R,

∥ ⋄(n−l−1)
N ∥

L10m
t W

−(3−l)β−2ε, 1
ε

x

⩽ N (n−4)β−ε,

∥ ⋄l

N − ⋄l∥
L10m

t W
−lβ−2ε, 1

ε
x

⩽ N− ε
2 ,
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for all 1 ⩽ k ⩽ 2m− 1, 4 ⩽ n ⩽ 2m− 1 and l ∈ {1, 2, 3}, where Lq
t X stands

for Lq([0, T ]; X ). Moreover, assume that on [0, T ], for all 1 ⩽ l ⩽ 3,

3∑
l=1

∥ ⋄l∥L10m
t W −lβ−ε,∞

x ([0,T ]) + ∥Φ⃗(t)ϕ⃗− ⃗∥Ys([0,T ]) ⩽ R.(4.11)

Then for any 2−α
2+θ0

< s1 = s0 −2ε, (4) there exist constants C = Cm,ε,β,s1 >

0 and K0 > 0, such that if the parameters R,N satisfy the constraint

(K0)T R100m

< N
ε
2 , or equivalently, R <

( ε logN
2T logK0

) 1
100m

,

then

∥(Φ⃗N (t)ϕ⃗− ⃗
N ) − (Φ⃗(t)ϕ⃗− ⃗)∥Ys1 ([0,T ]) ⩽ CεN

− ε
4 .

Proof. — We write

uN (t) = ΦN (t)ϕ⃗ = N + wN (t), u(t) = Φ(t)ϕ⃗ = + w(t).

By (4.10), (4.11) and Bernstein, we deduce that

∥wN (t)∥L10m
t L∞

x ([0,T ]) ⩽ CNβ+2εR, ∥w⃗(t)∥Ys([0,T ]) ⩽ R.(4.12)

Step 1: Recursive inequality. — Fix t0 ∈ [0, T −τ0] and It0,τ0 := [t0, t0 +
τ0], where τ0 is a small parameter to be chosen later. Throughout the
proof, the symbol A ≲ B stands for A ⩽ CB for some constant C that is
independent of parameters R,N, τ0, t0.

By the Strichartz inequality (4.4), we have

∥w⃗N (t) − w⃗(t)∥Ys1 (It0,τ0 ) ≲ ∥wN (t0) − w(t0)∥H
s1
x

(4.13)

+
[
AN (It0,τ0) +

2m−1∑
l=4

BN,l(It0,τ0) +
3∑

l=0

m∑
j=3

CN,j,l(It0,τ0)
]
,(4.14)

(4) Under the constraint α ∈ ( 8
9 , 1), for 0 < θ0 ≪ ϵ ≪ 1, s1 > 2−α

2+θ0
.
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where

AN (It0,τ0) := |λ− a2,N |∥ ⋄3 + 3 ⋄2
w + 3 w2 + w3∥

L1
t H

s1−α
x (It0,τ0 )

+ ∥ ⋄3
N − ⋄3∥

L1
t H

s1−α
x (It0,τ0 )

+ ∥ ⋄2
N · wN − ⋄2

w
∥∥

L1
t H

s1−α
x (It0,τ0 )

+ ∥ Nw
2
N − · w2∥

L1
t H

s1−α
x (It0,τ0 )

+ ∥w3
N − w3∥

L1
It

H
s1−α
x (It0,τ0 )

+ ∥Π⊥
N w⃗∥L∞

t Hs1
x (It0,τ0 ) + τR|κN − κ|∥w⃗∥L1

t Hs1
x (It0,τ0 )

+ τR|κN |∥w⃗N − w⃗∥L∞
t Hs1

x (It0,τ0 ),

BN,l := ∥Rl,N · wl
N ∥

L1
t H

s1−α
x (It0,τ0 ), 4 ⩽ l ⩽ 2m− 1

CN,j,l := N−(2j−4)β∥ ⋄(2j−1−l)
N · wl

N ∥
L1

t H
s1−α
x (It0,τ0 ),

0 ⩽ l ⩽ 3 and 3 ⩽ j ⩽ m.

From Lemma A.1, we have for sufficiently small ε > 0 and q > 1 large
enough,

∥ ⋄2
N wN − ⋄2

w∥
L1

t H
s1−α
x (It0,τ0 )(4.15)

≲ε ∥ ⋄2
N − ⋄2∥

L1
t W

−2β−2ε, 1
ε

x (It0,τ0 )
∥w∥L∞

t H
s1
x (It0,τ0 )

+ τ
1
2

0 ∥ ⋄2
N ∥

L2
t W

−2β−2ε, 1
ε

x (It0,τ0 )
∥wN − w∥L∞

t H
s1
x (It0,τ0 ).

∥ Nw
2
N − w2∥

L1
t H

s1−α
x (It0,τ0 )(4.16)

≲ε ∥ N − ∥
L1

1W
−β−2ε, 1

ε
x (It0,τ0 )

∥w∥2
L∞

t H
s1
x (It0,τ0 )

+ τ
1
2

0 ∥ N ∥
L4

t W
−β−2ε, 1

ε
x (It0,τ0 )

∥wN + w∥L4
t H

s1
x (It0,τ0 )

× ∥wN − w∥L∞
t H

s1
x (It0,τ0 )

and

(4.17) ∥w3
N − w3∥

L1
t H

s1−α
x (It0,τ0 )

≲ τ
1
2

0 ∥wN − w∥L∞
t H

s1
x (It0,τ0 )

(
∥wN ∥2

L4
t H

s1
x (It0,τ0 ) + ∥w∥2

L4
t H

s1
x (It0,τ0 )

)
,
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where all the implicit constants are independent of N,R, τ0, t0, but can
depend on m and ε. Therefore,

(4.18) AN (It0,τ0) ≲ DN (It0,τ0) + τ
1
2

0 FN (It0,τ0)∥wN − w∥L∞
t H

s1
x (It0,τ0 )

+ τ0|κN − κ|∥w⃗∥L∞
t Hs1

x (It0,τ0 ),

where

DN (It0,τ0) := |λ− a2,N |∥ ⋄3 + 3 ⋄2
w + 3 w2 + w3∥

L1
t H

s1−α
x (It0,τ0 )

+ ∥ ⋄3
N − ⋄3∥

L1
t H

s1−α
x (It0,τ0 )

+ ∥ ⋄2
N − ⋄2∥

L1
t W

−2β−ε, 1
ε

x (It0,τ0 )
∥w∥L∞

t H
s1
x (It0,τ0 )

+ ∥ N − ∥
L1

t W
−β−ε, 1

ε
x (It0,τ0 )

∥w∥2
L∞

t H
s1
x (It0,τ0 )

+ ∥Π⊥
Nw∥L∞

t H
s1
x (It0,τ0 ),

FN (It0,τ0) =: ∥ ⋄2
N ∥

L1
t W

−2β−ε, 1
ε

x (It0,τ0 )

+∥ N ∥
L1

t W
−β−ε, 1

ε
x (It0,τ0)

(
∥wN∥L∞

t H
s1
x (It0,τ0 ) +∥w∥L∞

t H
s1
x (It0,τ0)

)
+ ∥wN ∥2

L∞
t H

s1
x (It0,τ0 ) + ∥w∥2

L∞
t H

s1
x (It0,τ0 ) + 1.

Applying Lemma A.1, Cauchy–Schwarz and the fact that 1
ε ⩽ 2 + 4

θ0
, we

have (here it is important that l ⩾ 4)

(4.19) BN,l(It0,τ0)

≲ε

∑
l+1

2 ⩽j⩽m

N−(2j−4)β∥ ⋄(2j−1−l)
N wl−3

N ∥
L1

t L
2+ 4

θ0
x (It0,τ0 )

∥wN ∥3
L∞

t H
s1
x (It0,τ0 )

≲ε,m τ
1
4

0 N
−β∥wN ∥3

L∞
t H

s1
x (It0,τ0 )∥wN ∥

L2
t L

2+ 4
θ0

x (It0,τ0 )

sup
l+1

2 ⩽j⩽m

N−(2j−5)β∥ ⋄(2j−l−1)
N wl−4

N ∥L4
t L∞

x (It0,τ0 )

≲ τ
1
4

0 N
−β∥wN ∥4

Y s1 (It0,τ0 )

sup
2⩽j⩽m

N−(2j−5)β∥ ⋄(2j−l−1)
N ∥L10m

t L∞
x (It0,τ0 )∥wN ∥l−4

L10m
t L∞

x

≲ τ
1
4

0 N
−β+2mε∥wN ∥4

Y s1 (It0,τ0 ),

where to the last step, we have used (4.12) and the L10m
t L∞

x bound for
⋄(k)
N . Note that here it is crucial to put one wN in the space L2+θ0

t L
2+ 4

θ0
x
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in order to gain some negative power of N , as putting (4.12) on all wN will
lead to a bound N lε that does not converge to zero as N → ∞.

Similarly,

(4.20) CN,j,l(It0,τ0) ≲ε,m N−(2j−4)βτ
1
2

0

× ∥ ⋄(2j−l−1)
N ∥

L2
t W

−(3−l)β−2ε, 1
ε

x (It0,τ0 )
∥wN ∥l

L∞
t H

s1
x (It0,τ0 ).

Step 2: Bootstrap argument. — We first claim that if for some T1 ∈
(0, T ),

∥wN ∥Y s1 ([0,T1]) ⩽ 2R10,(4.21)

then for R,N large enough, there exist Cε > 0 and absolute constant
K0 > 0, such that

∥w⃗N − w⃗∥Ys1 ([0,T1]) ⩽ CεK
T R50m

0 N− ε
2 .(4.22)

Indeed, we decompose [0, T1] into k0 intervals of size τ0 = τ0(R) = R−100m,
and denote by

xk := ∥w⃗N − w⃗∥Ys1 (Jk),

where Jk = (kτ0, (k + 1)τ0]. By (4.13), (4.18), (4.19), (4.20), (4.12), we
deduce that

xk ⩽ Cετ
1
4

0 R
20mxk + C0xk−1 + CεR

3τ0N
− ε

2 + Cετ
1
2

0 R
50mN−β+2mε.

For R large enough, τ0 small enough such that

Cετ
1
4

0 R
20m <

1
2 ,

we deduce that (provided that ε < β/2m)

xk ⩽ 2C0xk−1 + Cετ
1
2

0 R
50mN− ε

2 .

This yields

xk ⩽ (2C0)
T1
τ0 x0 + (2C0)

T1
τ0 CεT1τ

1
2

0 R
50mN− ε

2 ⩽ Cε(2C0)
T
τ0 Tτ

1
2

0 R
50mN− ε

2 .

Hence (4.22) follows.
To finish the proof, it suffices to prove the bootstrap assumption (4.21)

up to time T1 = T , with slightly smaller upper bound R10 instead of 2R10.
More precisely, Let T∗ ⩽ T1 be the largest number such that

∥wN ∥Y s1 ([0,T∗]) ⩽ R10.

Since for fixed N , wN solves an ODE in the finite-dimensional space, we
deduce that the function

t 7−→ ∥wN ∥Y s1 ([0,t])
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is continuous, thus T∗ > 0. On the other hand, if T∗ < T1, again by conti-
nuity, there exists δ∗ ∈ (0, T1 − T∗), such that

∥wN ∥Y s1 ([0,T∗+δ∗]) < R10 + 1 < 2R10.

Therefore, we deduce that (4.22) holds with T1 = [0, T∗ +δ∗]. In particular,

∥wN ∥Y s1 ([0,T∗+δ∗]) ⩽ R+ Cε(K0)T0R100m

N− ε
2 < R(1 + CεN

− ε
4 ) < 2R,

provided that N is large enough such that CεN
− ε

4 < 1. This contradicts
to the definition of T∗. So we must have T∗ = T . The proof of Lemma 4.5
is complete. □

Proof of Proposition 4.2. — First we note that by choosing RN =
(logN)θ for θ ≪ 1, Lemma 4.5 allows to prove the almost sure convergence
of the dyadic sequence. To prove the convergence of the full sequence, we
first define properly the good data set. For each dyadic number N , let
RN = (logN)θ, MN = (logN)A0 for A0 ≫ 1, 0 < θ ≪ 1. Define

Σ1,N :=
3⋂

l=0

2m−1⋂
k=4

2N1⋂
N1=N

{
∥ ⋄l

N − ⋄l

N1
∥

L10m
t W

−lβ−ε, 1
ε

x

⩽ N− ε
2
}

∩


∥ ⋄k

N1
∥L10m

t L∞
x

⩽ Nkβ+ε,

∥ ⋄(k−l)
N ∥

L10m
t W

−(3−l)β−2ε, 1
ε

x

⩽ N (k−3)β−ε

 ,

Σ2,N :=
{

∥Φ⃗N (t)ϕ⃗∥L10m
t W−β−ε,∞

x
⩽ RN , ∥⃗N ∥L10m

t W−β−ε,∞
x

⩽ RN

}
,

Σ3,N :=
3⋂

l=0

{
∥ ⋄l∥

L10m
t W

−lβ−ε, 1
ε

x

+ ∥Φ⃗(t)ϕ⃗− ⃗∥Ys([0,T ]) ⩽ RN

}
,

Σ4,N :=
3⋂

l=0

2m−1⋂
k=4


∥ ⋄l

N ∥
L10m

t W
−lβ−ε, 1

ε
x

⩽ RN ,

∥ ⋄(k−l)
N ∥

L10m
t W

−(3−l)β−2ε, 1
ε

x

⩽ N (k−3)β−ε


∩
{

∥ ⋄l

N − ⋄l∥
L10m

t W
−lβ−ε, 1

ε
x

⩽ N− ε
2

}
,

Σ5,N :=
{

sup
N⩽N1⩽2N1

∥π⊥
MN

Φ⃗N (t)ϕ⃗∥L10m
t W−β−ε,∞

x
⩽ 1
}
.

Lemma 4.6. — There exist C > 0 and δ(ε) > 0 such that for i ∈
{1, 2, 3, 4, 5}, there holds

µ⃗(Σc
i,N ) ⩽ CN−δ(ε).

Proof. — In order not to perturb the main line of argument, we set aside
the proof of this lemma in Appendix B □
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Next, we define

ΣN =
5⋂

j=1
Σj,N .

Then by Lemma 4.6, we have∑
N∈2N

µ⃗(Σc
N ) < ∞.

Therefore, by Borel–Cantelli, the set

Σ := lim sup
j→∞

Σ2j

has full µ⃗ measure, i.e. µ(Σ) = 1. To finish the proof, we need to show that
for any ϕ⃗ ∈ Σ, Φ⃗N (t)ϕ⃗ converges to Φ⃗(t)ϕ⃗ in C([0, T ]; H−β−ε

x ).
By definition, there exists N0 such that ϕ⃗ ∈ ΣN for all dyadic number

N ⩾ N0. Pick N1 ∈ [N, 2N ], not necessarily a dyadic number, our goal is
to compare w⃗N1 and w⃗ in L∞

t Hs1
x . We will essentially follow the argument

of the proof of Lemma 4.5, with an additional care that we do not have the
bound

∥wN1∥L10m
t L∞

x ([0,T ]) ⩽ Nβ+2εRN

in a priori. Nevertheless, the choice of ΣN provides a control

∥π⊥
MN

wN1∥L∞
t W −β−ε,∞

x ([0,T ]) ⩽ 1.

Thus by the Sobolev embedding and Bernstein’s inequality,

∥wN1∥L∞
t W −β−ε,∞

x
⩽ ∥πMN

wN1∥L∞
t W −β−ε,∞

x
+ 1

⩽ ∥πMN
wN ∥L∞

t W −β−ε,∞
x

+MN ∥wN1 − wN ∥L∞
t H

s1
x

+ 1.

By Bernstein again,

∥wN1∥L∞
t L∞

x
≲ε ∥π2N1wN1∥

L∞
t W

2ε, 1
ε

x

(4.23)

≲ Nβ+3ε
1 ∥wN1∥L∞

t W −β−ε,∞
x

≲ Nβ+4εRN + (logN)A0Nβ+ε∥wN1 − w∥L∞
t H

s1
x
,

for N large enough.
Now we argue as in the Step 2 in the proof of Lemma 4.5. Assuming first

that for some T1 ∈ (0, T ),

∥wN1∥Y s1 ([0,T1]) ⩽ 2R10
N(4.24)

holds. Consequently, we have very roughly estimate

∥w⃗N1 − w⃗∥Ys1 ([0,T1]) ⩽ 3R10
N .
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Thanks to (4.23) and the choice RN = (logN)θ, we deduce that

∥wN1∥L∞
t L∞

x ([0,T1]) ⩽ Nβ+10ε.

The same iterative argument yields(by choosing τ0 = R−50m
N )

∥w⃗N1 − w⃗∥Ys1 ([0,T1]) ⩽ Cε(K0)T R100m
N N− ε

2 ⩽ CεN
− ε

4 ,(4.25)

provided that θ ≪ 1 such that R(N)100m = (logN)100mθ ≪ ε(logN).
Following the same bootstrap argument as in Step 2, we deduce

that (4.25) is indeed true up to time T . This completes the proof of Propo-
sition 4.2.

Appendix A. Nonlinear estimates and convolution
inequalities

Lemma A.1. — Let α ∈ ( 8
9 , 1) and s ∈ (1 − α

2 , 4α − 3). Let ε be suffi-
ciently small such that

(A.1) 1 − α

2 + 2ε < s < 4α− 3 − 2ε, 3α− 2 > 4ε.

Then we have the following bounds:
∥F0∥H−(α−s) ≲ ∥F0∥H−3(1−α)−2ε ,

∥Flu
l∥H−(α−s) ≲ ∥Fl∥

W −(3−l)(1−α)−2ε, 1
ε
∥u∥l

Hs

for l = 1, 2, 3.

Proof. — The first inequality is trivial. To prove the second, by duality,
it suffices to show that, for any G ∈ Hα−s such that ∥G∥Hα−s ⩽ 1 and
H ∈ L

1
ε , we have∣∣∣∣∫

T2
H · ⟨∇⟩(3−l)(1−α)+2ε(ulG) dx

∣∣∣∣ ≲ ∥H∥
L

1
ε
∥u∥l

Hs .(A.2)

By Hölder and Lemma 2.1, the left hand side of (A.2) is bounded by

∥H∥
L

1
ε

(
∥⟨∇⟩γ(ul)∥

L
2

1+α−s−2ε
∥G∥

L
2

1−α+s
+∥ul∥

L
2

1+α−s−2ε−γ
∥∇γG∥

L
2

1−α+s+γ

)
,

where γ = (3 − l)(1 − α) + 2ε. Using the Sobolev embedding

Hα−s(T2) ↪−→ L
2

1−α+s (T2), Hα−s(T2) ↪−→ W γ, 2
1−α+s+γ (T2),

the two norms of G are controlled by ∥G∥Hα−s ⩽ 1. Thanks to the con-
ditions s > 1 − α

2 + 2ε and 3α − 2 > 4ε, we have 2l
1+α−s−γ−2ε ⩽ 2

1−s , for
l = 1, 2, 3, thus by Hölder,

∥ul∥
L

2
1+α−s−2ε−γ

≲ ∥u∥l
Hs .
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When l = 1, γ = 2(1 −α) + 2ε, since 3α− 2 ⩾ 4ε, by Hölder and Sobolev’s
embedding we have

∥⟨∇⟩2(1−α)+2εu∥
L

2
1+α−s−2ε

≲ ∥⟨∇⟩2(1−α)+2εu∥
L

2
1+2(1−α)+2ε−s

≲ ∥u∥Hs .

For l = 2, 3, using Lemma 2.1, Hölder’s inequality and the constraint (A.1),
we get

∥⟨∇⟩γ(ul)∥
L

2
1+α−s−2ε

≲ ∥u∥
W

γ, 2
α−2ε−(l−2)(1−s)

∥ul−1∥
L

2
(l−1)(1−s)

≲ ∥u∥l
Hs .

This completes the proof of Lemma A.1. □

Lemma A.2. — Let 0 ⩽ η1 ⩽ η2 and η1 + η2 > d. Then there exists
C0 > 0, such that for every k0 ∈ Zd:

(1) If η2 < d, we have∑
k∈Zd

1
⟨k⟩η1⟨k − k0⟩η2

⩽
C0

⟨k0⟩η1+η2−d
.

(2) If η2 = d, then∑
k∈Zd

1
⟨k⟩η1⟨k − k0⟩η2

⩽
C0 log(k0)

⟨k0⟩η1
.

(3) If η2 > d, then∑
k∈Zd

1
⟨k⟩η1⟨k − k0⟩η2

⩽
C0

⟨k0⟩η1
.

(4) If (n−1)d
n < η < d, then we have the bound∑

(k1,...,kn)∈(Zd)n

k1+···+kn=k

1
⟨k1⟩η

· · · 1
⟨kn⟩η

≲
1

⟨k⟩nη−(n−1)d
,

Proof. — The proof follows from elementary calculus. □

Remark A.3. — For (4), we only need η > (n−1)d
n for the left hand side

above to be summable, while η < d is needed in order for the exponent of
⟨k⟩ to be −nη + (n− 1)d.

Corollary A.4. — Let l ∈ N and 1 ⩽ j ⩽ l. Then for all α ∈
(0, 1), 0 < ε ≪ 1 and γ = l(1 − α) + ε, there exists Cα,ε > 0, such that for
any N < M , we have∑

N<|k1|,...,|kj |⩽M
|kj+1|,...,|kl|⩽M

1
⟨k1 + · · · + kl⟩2γ

l∏
i=1

1
⟨ki⟩2α

⩽ Cα,εN
−2ε.

TOME 0 (0), FASCICULE 0



42 Chenmin SUN, Nikolay TZVETKOV & Weijun XU

Proof. — Thanks to the assumption on α and γ, we repeatedly ap-
plied (1) in Lemma A.2 l − 1 times, we control the desired summation by∑

N<|k1|⩽M

⟨k1⟩−2(α+γ−(l−1)(1−α)) =
∑

N<|k1|⩽M

⟨k1⟩−2(1+ε) ≲ N−2ε.

This completes the proof. □

Appendix B. Large deviation estimates

Lemma B.1. — Let ξ be a random process of the form such that for any
s, t ∈ R, ξ(s, ·) and ξ(t, ·) have the same law that is stationary in x ∈ T2.
Assume that for some γ ∈ R, (⟨∇⟩γξ)(t, x) belongs to H⩽l, the space of
Wiener chaos of degree less than l, and moreover

sup
t∈R

E
[
∥ξ(t, x)∥2

Hγ (T2)
]
⩽ A2

for some A > 0. Then for any γ1 < γ, there exist Cγ,q,r, cγ,q,r > 0, such
that for all λ > 1, T > 1 and q ⩾ 2, r ⩾ 2,

P
[
∥ξ∥Lq

t W γ,r
x ([0,T ]×T2)) > λ

]
⩽ Cγ,q,r exp

(
−cγ,q,rT

− 2
qlA− 2

l λ
2
l

)
.(B.1)

Proof. — For any p ⩾ q, r, by Chebyshev,

P
[
∥ξ∥Lq

t W γ,r
x ([0,T ]×T2)) > λ

]
⩽
Cp

γ,γ1

λp
E
[
∥ξ∥p

Lq
t W γ,r

x ([0,T ]×T2)
]
.

By Minkowski,[
E∥ξ(t)∥p

Lq
t W γ,r

x ([0,T ]×T2)
] 1

p ⩽ ∥⟨∇⟩γξ(t, x)∥Lq
t Lr

xLp
ω

Since for fixed t, x (⟨∇⟩γξ)(t, x) ∈ H⩽l and ξ(t) is stationary in space and
time, by Proposition 2.4, we deduce that

∥⟨∇⟩γξ(t, x)∥Lq
t Lr

xLp
ω
⩽ Cp

l
2T

1
q sup

t∈R
E
[
∥ξ(t)∥2

Hγ
x

] 1
2 ⩽ Cp

l
2T

1
qA.

Therefore,

P
[
∥ξ∥Lq

t W γ,r
x ([0,T ]×T2)) > λ

]
⩽
Cp

γ,γ1
p

lp
2 T

p
q Ap

λp
.

By optimizing the choice of p, the proof of Lemma B.1 is now complete. □

Lemma B.2. — If Ξ be a stationary random distribution on Td and
belongs to Wiener chaos of order n. Let {Ξ̂(k)}k∈Zd denote its Fourier
coefficients. If there exists γ ∈ R and C0 > 0 such that

E|Ξ̂(k)|2 ⩽ C0⟨k⟩−d+2γ
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for every k ∈ Zd, then for every σ > γ and every q ∈ [1,+∞), we have

E∥Ξ∥2
H−σ(Td) + E∥Ξ∥q

C−σ(Td) ⩽ C ,

where C depends on q, n, γ, σ, d and C0 only. In particular, the bound is
uniform in the class of stationary processes in order n that satisfies the
above bound for Fourier coefficients.

Proof. — The statement and proof is essentially identical to [19, Propo-
sition 3.6]. □

Lemma B.3. — Recall that

WN
law=

∑
k∈Z2, |k|⩽N

gk

⟨k⟩α
eik·x

is the truncated fractional Gaussian field on T2. If σ > 0, θ ⩾ 0 and n ∈ N
satisfy

σ ∧ 1 > n(1 − α) − θ > 0 ,

then for every q ∈ [1,+∞), there exists C = C(q, n, α, σ, θ) such that

sup
N

(
N−2θE∥W ⋄n

N ∥2
H−σ

)
+ sup

N

(
N−qθE∥W ⋄n

N ∥q
C−σ

)
< C .

As a consequence, the same is true when C−σ is replaced by W−σ,p for
every p ⩾ 1.

Proof. — Without loss of generality, we can restrict to the situation
where n(1 − α) − θ > 0. Also, since W ⋄n

N belongs to Wiener chaos of order
n, it suffices to prove for q = 2. By explicit computation, we have

E|Ŵ ⋄n
N (k)|2 = E

 ∑
k1+···+kn

=k

ŴN (k1) ⋄ · · · ⋄ ŴN (kn)



·

 ∑
ℓ1+···+ℓn

=k

ŴN (ℓ1) ⋄ · · · ⋄ ŴN (ℓn)


= n!

∑
k1+···+kn

=k

E|ŴN (k1)|2 · · · E|ŴN (kn)|2

≲
∑

k1+···+kn

=k

1
⟨k1⟩2α · · · ⟨kn⟩2α

1|k1|⩽N · · · 1|kn|⩽N .
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We have

N−2θE
∣∣∣Ŵ ⋄n

N (k)
∣∣∣2 ≲n

∑
k1+···+kn

=k

n∏
j=1

1
N

2θ
n

(
1 + |kj |2α

)1|kj |⩽N ,

Hence, we get

N−2θE
∣∣∣Ŵ ⋄n

N (k)
∣∣∣2 ≲

∑
k1+···+kn

=k

1
⟨k1⟩2α+ 2θ

n

· · · 1
⟨kn⟩2α+ 2θ

n

.

By (4) of Lemma A.2, if 2(n−1)
n < 2α+ 2θ

n < 2, we have the bound

N−2θE
∣∣∣Ŵ ⋄n

N (k)
∣∣∣2 ≲ ⟨k⟩−2(θ+1−n(1−α)) = ⟨k⟩−2+2(n(1−α)−θ .

Note that the above requirement is equivalently to our assumption

0 < n(1 − α) − θ < 1 .

Now by Lemma B.2, if
σ > n(1 − α) − θ ,

the desired bound follows. We have thus completed the proof of the
Lemma B.3. □

Now we provide the proof of Lemma 4.6:
Proof of Lemma 4.6. — From the Sobolev embedding W−β− ε

2 , 8
ε ↪→

W−β−ε,∞ and Lemma 4.4, we deduce that there exist C > 0 and δ =
δ(ε) > 0, such that

µ(Σc
2,N ) + µ(Σc

5,N ) < C e−δ(ε) .

To estimate µ(Σc
i,N ) for i = 1, 3, 4, by Lemma B.1, it suffices to show that

for all k ⩾ 4, 0 ⩽ l ⩽ 3, and N ⩽ N1 ⩽ N , we have the following estimates:

E
[
∥ ⋄l

N − ⋄l∥2
H−lβ−ε

]
+ E

[
∥ ⋄l

N − ⋄l

N1
∥2

H−lβ−ε

]
≲ε N

−2ε,(B.2)

E
[
∥ ⋄l

N ∥2
H−lβ−ε

]
≲ε 1,(B.3)

E
[
∥ ⋄k

N ∥2
H

ε
2

]
≲ε N

2kβ+ 3ε
2 ,(B.4)

E
[
∥ ⋄(k−l)

N ∥2
H−(3−l)β−2ε

]
≲ε N

2(k−3)β−ε.(B.5)

Note that (B.3), (B.4), (B.5) are consequences of Lemma B.3, hence it
remains to prove (B.2).

Let M > N and denote by γ = lβ + ε. Note that under the law µ,
⋄l

N − ⋄l

M is the same as ϕ⋄l
N − ϕ⋄l

M . Denote by

ϕN,M :=
∑

N<|k|⩽M

gk(ω)√
1 + |k|α

eik·x, σ̃2
N,M := σ̃M

2 − σ̃2
N .
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Using the white noise functional representation as in Section 2,

ϕN (x) = σ̃NWηN (x,·), ϕN,M (x) = σ̃NWηN,M (x,·),

where

ηN (x, ·) =
∑

|k|⩽N

1√
1 + |k|2α

eik·(x+·),

ηN (x, ·) =
∑

N<|k|⩽M

1√
1 + |k|2α

eik·(x+·) .

Combining (2.6), we can write

ϕ⋄l
N − ϕ⋄l

M =
l∑

j=1

(
l

j

)
σ̃j

N,M σ̃l−j
N Hj

(
WηN (x,·)

)
Hl−j

(
WηN,M (x,·)

)
.

Using (2.7) and the independence of WηN (x,·),WηN,M (x,·), for j ∈ {1, . . . , l},
we have

σ̃2j
N,M σ̃

2(l−j)
N E

[∥∥Hj(WηN (x,·))Hl−j(WηN,M (x,·))
∥∥2

H−γ

]
∼

∑
N<

|k1|,...,|kj |⩽M,
|kj+1|,...,|kl|,|k|⩽M

k1+···+kl+k=0

1
⟨k⟩2γ

l∏
j=1

1
⟨kj⟩2α

≲ N−2ε,

thanks to Corollary A.4. The proof of Lemma 4.6 is now complete. □

Appendix C. Proof of the Strichartz estimate on Td

Lemma C.1. — Let K±
j (t, x−y) be the Schwartz kernel of the operator

e±itDα Pj , j ⩾ 0. Then for any t ̸= 0,

sup
z∈Td

|K±
j (t, z)| ≲ 2jd

(
1− α

2

)
|t| d

2
.(C.1)

Consequently, for t ⩾ 0 and 2 ⩽ r ⩽ ∞,

∥ e±itDα

Pjf∥Lr(Td) ≲
2jd
(

1− α
2

)(
1− 2

r

)
|t|

d
2

(
1− 2

4

) ∥Pjf∥Lr′ (Td),(C.2)

where r′ is such that 1
r + 1

r′ = 1.
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Proof. — The kernel K±
j (t, z) takes the form

K±
j (t, z) =

∑
k∈Zd

φj(k) eit
√

1+|k|2α+ik·z .

From the Poisson summation formula, we have

K±
j (t, z) = (2π)d

∑
m∈Zd

F−1
Rd (φj( · ) e±it

√
1+|·|2α)(z +m)

= 2jd
∑

m∈Zd

κ±
j,m(t, z).(C.3)

where
κ±

j,m(t, z) :=
∫

Rd

φ(ξ) e±it
√

1+|2jξ|2α+iξ·2j(z+m) dξ.

Consider the phase function

Φ±
t,z,m(ξ) := ±

√
2−2jα + |ξ|2α + 2j(1−α)(z +m) · ξ,

then κ±
j,m(t, z) = Iz,m(2jαt), where

Iz,m(λt) :=
∫

Rd

φ(ξ) eiλtΦ±
t,z,m(ξ) dξ.

Note that

∇ξΦ±
t,z,m(ξ) = ±α|ξ|2α−2 ξ√

2−2jα + |ξ|2α
+ 2j(1−α)(z +m)

and on supp(φ),

|∇ξΦ±
t,z,m| ≳ 1 + 2j(1−α)|m|, ∀|m| ⩾ 2.

Moreover, on supp(φ), |det(∇2
ξΦ±

t,z,m(ξ))| ≳ 1. By the stationary phase
lemma, we have

|Iz,m(λt)| ≲ 1
|λt| d

2
, |m| ⩽ 2

and
|Iz,m(λt)| ≲ CN

|λt|N (1 + 2j(1−α)|m|)N
, |m| ⩾ 2

for all N ∈ N. Plugging into (C.3), we obtain (C.1).
Replacing e±itDα Pj by e±itDα P̃j , where P̃j is a similar Littlewood–

Paley projector such that P̃jPj = Pj , the same kernel estimate holds for
e±itDα P̃j . Consequently, we have

∥ e±itDα

Pjf∥L∞(Td) ≲
2jd
(

1− α
2

)
|t| d

2
∥Pjf∥L1(Td).
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Note that e±itDα is an isometry on L2(Td), applying the Riesz–Thorin
interpolation theorem, we deduce that for all 2 ⩽ r ⩽ ∞,

∥ e±itDα

Pjf∥Lr(Td) ≲
2jd
(

1− α
2

)(
1− 2

r

)
|t|

d
2

(
1− 2

4

) ∥Pjf∥Lr′ (Td),

and this completes the proof. □

Now we are able to prove Proposition 2.2. The solution u

∂2
t u+ (Dα)2u = F, (u, ∂tu)|t=0 = (u0, u1)(C.4)

can be written as

u(t) = cos(tDα)u0 + sin(tDα)
Dα

u1 +
∫ t

0

sin((t− t′)Dα)
Dα

F (t′) dt′.

It suffices to prove the homogeneous estimate

∥ e±itDα

f∥Lq
t Lr

x(R×Td) ≲ ∥f∥Hγq,r (Td)(C.5)

and the following inhomogeneous estimate∥∥∥∥∫
R

e±i(t−t′)Dα

G(t′)dt′
∥∥∥∥

Lq
t Lr

x(R×Td)
≲ ∥G∥L1

t Hγq,r (R×Td),(C.6)

thanks to the Christ–Kiselev Lemma ([8]).
We perform a standard TT ∗ argument. Fix a sharp admissible pair (q, r),

i.e.
2
q

= d

(
1
2 − 1

r

)
, (q, r, d) ̸= (2,∞, 2),

define

Tj : L2
x −→ Lq

tL
r
x, Tj(f) := e±it⟨∇⟩α

Pjf,(C.7)

T ∗
j : Lq′

t L
r′

x −→ L2
x, T ∗

j G :=
∫

R
e∓it⟨∇⟩α

PjG(t) dt.(C.8)

Using (C.1) and the Hardy–Littlewood–Sobolev inequality, we deduce that∥∥∥∥∫
R

e±i(t−t′)Dα

PjG(t′) dt′
∥∥∥∥

Lq
t Lr

x

≲ 2jd
(

1− α
2

)(
1− 2

r

)
∥PjG∥

Lq′
t Lr′

x
,

Since
∥Tj∥L2

x→Lq
t Lr

x
= ∥T ∗

j ∥
Lq′

t Lr′
x →L2 = ∥TjT ∗

j ∥1/2
Lq′

t Lr′
x →Lq

t Lr
x

,

we deduce further that for any admissible pairs (q1, r1), (q, r),

∥Tj∥L2
x→Lq

t Lr
x
≲ 2jd

(
1− α

2

)(
1
2 − 1

r

)
.
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Therefore, for any admissible pairs (q1, r1), (q, r),

∥TjT ∗
j ∥

L
q′

1
t L

r′
1

x →Lq
t Lr

x

≲ 2jd
(

1− α
2

)(
1− 1

r − 1
r1

)
.

In particular, for q1 = ∞, r1 = 2, we have

∥ e±itDα

Pjf∥Lq
t Lr

x
+
∥∥∥∥∫

R
e±i(t−t′)Dα

PjG(t′) dt′
∥∥∥∥

Lq
t Lr

x

≲ 2jγq,r ∥Pjf∥L2
x

+ 2jγq,r ∥PjG∥L1
t L2

x
.

Taking the l2 norm in j, we obtain that

∥ e±itDα

Pjf∥l2
j

Lq
t Lr

x
+
∥∥∥∥∫

R
e±i(t−t′)Dα

PjG(t′)dt′
∥∥∥∥

l2
j

Lq
t Lr

x

≲ ∥f∥H
γq,r
x

+ ∥G∥L1
t H

γq,r
x

Since 2 ⩽ r < ∞, q ⩾ 2, by the Minkowski inequality and the Littlewood–
Paley square function theorem,

∥F∥Lq
t Lr

x
∼ ∥PjF∥Lq

t Lr
xl2

j
⩽ ∥F∥l2

j
Lq

t Lr
x
,

thus we have proved (C.5) and (C.6). This completes the proof of Proposi-
tion 2.2.

Appendix D. Convergence of the linear coefficient

In this section, we prove Proposition 1.4. Recall that σ̃2
N = N2(1−α)σ2

N .

σ̃2
N −N2(1−α)σ2 = 1

4π2

∑
|k|⩽N

1
1 + |k|2α

− 1
4π2

∫
|ξ|⩽N

1
|ξ|2α

dξ.

In order to prove the convergence of N2(1−α)(a1,N −a1), the key is to show
that:

Lemma D.1. — Assume that α ∈ ( 1
2 , 1), Then

σ2
N = σ2 + b1N

−2(1−α) +O(N−1).
where

b1 = 1
4π2 + 1

4π2

∑
k∈Z2

∫
Ck

(
1k ̸=0

1
1 + |k|2α

− 1
|ξ|2α

)
dξ,

where (Ck)k∈Z2 are unit cubes [k(1), k(1) + 1] × [k(2), k(2) + 1].

Proof. — We denote

N2(1−α)(σ2
N − σ2) = 1

4π2

(
1 + IN

)
,
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where

IN :=
∑

0<|k|⩽N

1
1 + |k|2α

−
∫

|ξ|⩽N

1
|ξ|2α

dξ.(D.1)

We decompose

ZN := Z2 ∩ {k : 0 < |k| ⩽ N} =
8⋃

j=1
Λj , BN := {ξ : |ξ| ⩽ N} =

4⋃
j=1

U j

where

Λ1 := {k = (k(1), k(2)) ∈ ZN : k(1) ⩾ 0, k(2) ⩾ 0},
U1 := {ξ = (ξ(1), ξ(2)) ∈ BN , ξ

(1) > 0, ξ(2) > 0},

Λ2 := {k = (k(1), k(2)) ∈ ZN : k(1) ⩽ 0, k(2) ⩾ 0},
U2 := {ξ = (ξ(1), ξ(2)) ∈ BN : ξ(1) < 0, ξ(2) > 0},

Λ3 := {k = (k(1), k(2)) ∈ ZN : k(1) ⩽ 0, k(2) ⩽ 0},
U3 := {ξ = (ξ(1), ξ(2)) ∈ BN : ξ(1) < 0, ξ(2) < 0},

Λ4 := {k = (k(1), k(2)) ∈ ZN : k(1) ⩾ 0, k(2) ⩽ 0},
U4 := {ξ = (ξ(1), ξ(2)) ∈ BN : ξ(1) > 0, ξ(2) < 0}.

For j = 1, 2, 3, 4, we define

IN,j :=
∑
Λj

1
1 + |k|2α

−
∫

Uj

1
|ξ|2α

dξ.

Then by inclusion and exclusion,

IN =
4∑

j=1
IN,j −

∑
k(1)k(2)=0
0<|k|⩽N

1
1 + |k|2α

.(D.2)

By symmetry, it suffices to derive a formula for IN,1. Fix k = (k(1), k(2)) ∈
Λ1, we denote

Ck := {ξ = (ξ(1), ξ(2)) : k(j) ⩽ ξ(j) ⩽ k(j) + 1, j = 1, 2},

and
C

(1)
0 := {k = (k(1), k(2)) : 0 ⩽ k(1), k(2) ⩽ 1}

the cubic with bottom left vertex k and top right vertex θ(k) := (k(1) +
1, k(2) + 1). We have∫

U1

dξ
|ξ|2α

=
∫

C
(1)
0

dξ
|ξ|2α

+
∑

k∈Λ1

∫
Ck∩BN

dξ
|ξ|2α

.
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Let
Ũ1 := U1 ∪

⋃
k∈Λ1

Ck

Since the number of cubes Ck intersecting with |k| = N is O(N), we have∫
Ũ1\U1

dξ
|ξ|2α

= O(N−(2α−1)).

Thus

IN,1 := −
∫

C
(1)
0

dξ
|ξ|2α

+
∑

k∈Λ1

∫
Ck

(
1

1 + |k|2α
− 1

|ξ|2α

)
dξ +O(N−(2α−1)).

We have similar formulas for IN,2, IN,3, IN,3. Adding them together and
noticing that the lattices on two axes have been added twice, we have

4∑
j=1

IN,j = −
∫

C
(1)
0 ∪C

(2)
0 ∪C

(3)
0 ∪C

(4)
0

dξ
|ξ|2α

+
∑

k∈ZN

∫
Ck

(
1

1 + |k|2α
− 1

|ξ|2α

)
dξ +

∑
k(1)k(2)=0
0<|k|⩽N

1
1 + |k|2α

+O(N−(2α−1)).

Since α > 1
2 , we have∑

k∈ZN

∫
Ck

(
1

1 + |k|2α
− 1

|ξ|2α

)
dξ

=
∑
k ̸=0

∫
Ck

(
1

1 + |k|2α
− 1

|ξ|2α

)
dξ +O(N1−2α),

and ∑
k(1)k(2)=0
0<|k|⩽N

1
1 + |k|2α

= 2
∑

m̸=0,m∈N

1
1 + |m|2α

+O(N1−2α).

We have
4∑

j=1
IN,j =

∑
k∈Z2

∫
Ck

(
1k ̸=0

1
1 + |k|2α

− 1
|ξ|2α

)
dξ

+ 2
∑

0 ̸=m∈Z

1
1 + |m|2α

+O(N1−2α).

Therefore,

IN =
∑

k∈Z2

∫
Ck

(
1k ̸=0

1
1 + |k|2α

− 1
|ξ|2α

)
dξ +O(N1−2α).

This completes the proof. □
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Proof of Proposition 1.4. — By definition,

a1,N − a1 = 1
2

∫ ∞

−∞
V ′′(z)

(
1√

2πσN

e− z2
2σN − 1√

2πσ
e− z2

2σ

)
dz.

By Lemma D.1 and the fact that α > 3
4 , we get

N2(1−α)(σN − σ) = b1

2σ + εN ,

where
εN = O(N−(2α−1)) +O(N−2(1−α)).

we finally obtain that

N2(1−α)(a1,N − a1) = b1

4σ

∫ ∞

−∞
∂σ

(
1√
2πσ

e− z2
2σ

)
V ′′(z)dz + εN .(D.3)

This completes the proof of Proposition 1.4. □
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