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WEAK UNIVERSALITY RESULTS FOR A CLASS OF
NONLINEAR WAVE EQUATIONS

by Chenmin SUN, Nikolay TZVETKOV & Weijun XU (*)

ABSTRACT. — We study the weak universality of the two-dimensional fractional
nonlinear wave equation. For a sequence of Hamiltonians of high-degree potentials
scaling to the fractional @%, we first establish a sufficient and almost necessary
criteria for the convergence of invariant measures to the fractional <I>3. Then we
prove the convergence result for the sequence of associated wave dynamics to the
(renormalized) cubic wave equation. Our constraint on the fractional index is in-
dependent of the degree of the nonlinearity. This extends the result of Gubinelli-
Koch—Oh [Renormalisation of the two-dimensional stochastic nonlinear wave equa-
tions, Trans. Amer. Math. Soc. 370 (2018)] to a situation where we do not have a
local Cauchy theory with highly supercritical nonlinearities.

RiESUME. — Nous étudions I'universalité faible de 1’équation d’onde non linéaire
fractionnaire en dimension deux. Pour une suite d’hamiltoniens de potentiels de
haut degré convergeant vers le modele <I>% fractionnaire, nous établissons d’abord un
critere suffisant et presque nécessaire pour la convergence des mesures invariantes
vers celle du modele <I>‘21 fractionnaire. Ensuite, nous démontrons le résultat de
convergence pour la suite de dynamiques d’ondes associées vers ’équation d’onde
cubique (renormalisée). Notre condition sur I'indice fractionnaire est indépendante
du degré de la non-linéarité. Ceci étend un résultat de Gubinelli-Koch—Oh & une
situation ol nous n’avons pas de théorie de Cauchy locale avec des non-linéarités
sur-critiques.
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1. Introduction
1.1. From microscopic to macroscopic wave dynamics

The aim of this article is to study the macroscopic behaviour of the
weakly interacting waves of the type
@) 2U + |V[2u + NIy V(@) = 0, (t,z) € R x T,
E(Ou) = ¢7 (atﬂ)(07) = ’(/J’
where T% = (R/27NZ)? is the two dimensional torus of side length 2wV,
V' is an even polynomial satisfying certain structural conditions specified
below, and Il is the Fourier projection operator on T% such that

My f(x) = klZ@(fwf)(k) L (Fnh)(k) = ﬁ /T S T dy.

The differential operator |V|” acts on functions on torus of side length N as

Fn(VIT)(k fo)(k) :

Here in the microscopic model, we take 7 = 2a and L = 27 N. The initial
data (Z) and w are two random functions given by

)= 9k ei’C}'Tr, 1%
=g X e =gy 2
where {g.} and {hy} are standard complex Gaussians") with g_; = g&
and h_j = hy, and otherwise independent. This type of initial condition is
natural since the Gaussian measure it induces is invariant under the per-
turbed linear evolution above (with the differential operator | V|2 replaced
by w4= + |V/[>* and without nonlinear interaction).

Remark 1.1. — The initial data is, very roughly speaking, of the type

1 s
AN p(k/N)gr(w)e' ¥
[k|<N

for suitable function p : R? — R. In our case, p(x) = we ) for the initial
position, and p(z) = 1 for the initial velocity. Although natural from the
invariance of the perturbed linear dynamics, we should also note that our
choice is also very restrictive relating to the support of the corresponding
Gibbs measure.

(1) This means Egj, = Eg2 = 0, and E|gy|? = 1.

ANNALES DE L’INSTITUT FOURIER



WEAK UNIVERSALITY FOR WAVE EQUATIONS 3

Note that ;5 has a stationary Gaussian distribution with gN(:c) ~
N(0,0%), where

1 1
2 _
(1.2) IN = yr2N2(—a) Z 1+ [k|2e
[k|<N

1/ L ae 1 ov2a-0)

T 4n? el<1 1§17

o2

Let 02 be defined as above, i be the law of N'(0,02), and

V) (2) = /R V(= + y)fi(dy)

be the average of V under p. Our main assumption on V is the criticality
and positivity of its averaged version (V).

ASSUMPTION 1.2. — V is an even polynomial of degree 2m > 4 with
the form

2m
V(z) = Zajzzj .
3=0

Furthermore, we assume
(1) z =0 is a bifurcation point of (V') in the sense that (V)" (0) = 0.
(2) (V)(z) —(V)(0) > 0 for all z # 0.

The averaged version (V') has the expression
(V)(z) = a2%
3=0

with

1 ; 1 & (2k)! ;
1.3) @; = —E[VE)(N(0,62))] = cay - o2 k=0
(13) @; = 5 [V (N(0,0%))] (2))! & (2% = 2j)! e
Hence, Condition (1) above is equivalent to say that @; = 0. Since the
renormalisation term in the wave dynamics and the measures are constant
multiples of @ N2(=%yy and a; N2(1=%)¢3? respectively, Condition (1)
guarantees that the divergent parts in various terms are cancelled out au-
tomatically, and there is no need to subtract the renormalisation by hand.
With Condition (1), Condition (2) is then equivalent to the following pos-
itivity condition:

m
(1.4) > a2 >0, VzeR.
j=2

TOME 0 (0), FASCICULE 0



4 Chenmin SUN, Nikolay TZVETKOV & Weijun XU

Example 1.3. — If we fix az > 0,...,a,, > 0, we can find a; < 0 such
that our assumptions on V' are satisfied. For example

V(z) = 2% — 450222

satisfies the assumptions. We can also find V' > 0 such that our assumptions
are satisfied.

Our aim is to investigate the influence of the microscopic weak non-linear
interaction to the macroscopic behaviour of u under the above assumption
on V. For T? = (R/27Z)?, define the macroscopic process uy on R x T? by

~N(t,z) = N'7%(N“,Nz), (t,z) € RxT2.
It satisfies the equation
(1.5) dPun +|V|**uy + N TNV (uy /N' =) =0, (t,x) € R x T?
with initial data

(1.6) (un,0un)(0,z)

(¢~ (2), ¥n(2))

1 )
- Z m’ Z hk elk-z ,
2™ \i<w VI |k|2a <N
where Il is the Fourier projector on the unit tori:
Oy f(k) = 1|k|<NJ/C\(k)
(1.7) N .
f(k) = (F1f)(k f dy.

In order for uy to converge to a cublc equatlon, one necessarily sets 6 =
4or — 2 and hence 1 + o — 60 = 3(1 — «).

1.2. The macroscopic model

Fix the two dimensional torus T? = (R/27Z)2. For every N > 0, let [Ty
be the Fourier projection operator on the unit tori introduced in (1.7). For
o € (3,1), let g = p® be the probability measure on D'(T?) (the space
of distributions on T?) with covariance operator (1 + |V[?*)~! and u’ be
the white noise on T?. Equivalently, the Gaussian measures u® and p’ are
induced by the random functions

1 i
T v e

]CEZQ kecZ2

ANNALES DE L’INSTITUT FOURIER



WEAK UNIVERSALITY FOR WAVE EQUATIONS 5

respectively, where {gi }rezz and {hy}rez2 are the same collection of cen-
tered complex Gaussian random variables as before. Since o will be a fixed
parameter throughout the article, we simply write p = p®.

Let un = polly' and p)y = p' o IIy' be the marginals of p and
on frequencies up to N. Hence, the initial data of the macroscopic wave
dynamics (1.5) are distributed according to un®pu'y. Let 3 be the variance
of ¢ under gy, which is invariant under translations and hence 53, does
not depend on the spatial variable z. In fact, a direct computation shows

1 1
(18) &?V = ]E}'LL|1_[N§Z/)|2 = 12 Z T 12a == (0’2 + eI‘I‘N) ‘N2(1704) s
A kEZ2,|k|<KN 1+|k‘ __J“
=:0%,

where 0%, and

1 1
1.9 i —/ —d¢
9 i e 167

are as defined in (1.2), and erry = O(N—20-%)) as N — 4-oc0.
Now, let V' be an even polynomial satisfying Assumption 1.2. For every
N € N, let

(1.10) Vn(p) = N* =9V (o/N17)

and we have
(1.11) Vn(p) = Z ajn N~ EHUm s (015%)
j=1

where Hy(-,0%) is the k-th Hermite polynomial with leading coefficient
1 and variance 0. The coefficients @; y are the (normalised) sizes of Vi
projected onto the Hermite polynomial Hs;(-,0%), and can be explicitly
computed as

1 .
(1.12) ajN = WE[V@])(N(O’U%))} :

7)!
Note that the variance in the above expression is 0% but not o3 since
the latter is balanced by the factor N~(27=H(1=2) For every j, we have
a; N — @ as N — 400, where @; are as given in (1.3). Furthermore, the
following slightly more delicate relation holds.

PROPOSITION 1.4. — Assume that o € (%, 1). There exists an absolute
constant \g € R, such that as N — oo,

a1y = a1 + AN 2179 L O(N~1) + O(N—41-a),

Proof. — See Appendix D. O

TOME 0 (0), FASCICULE 0
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1.3. Wave dynamics

Our first main result concerns the behavior of the macroscopic wave-
dynamics as N — oo. In this part, we always assume that V verifies As-
sumption 1.2 and denote A := 4dy > 0. The theorem is stated as follows.

THEOREM 1.5. — Suppose that o € (%, 1). Let 0 < a — 1 and suppose
that V satisfies Assumption 1.2 with A := 4as > 0. Let uy be the solution of

33’&1\/ + |V|2°‘uN + HNVA/(UN) =0,

with initial data

1 gk(w) ik-x ik-
(un, Orun)|t=0 = — E ( e hp(w) 7.
2T iy \VIH ke

Then both uy and the solution vy of (with A\g € R given in Proposition 1.4)
8t2vN + |V|2(X’UN + 2)\0’[)]\[ + )\HN((UN)?’ — 33?\;’01\[) =0

with the same initial data converge almost surely in the sense of distribution
on R x T2, as N — oo and satisfy

i luy —onlerm),Heo(x2)) = 0, VT > 0.

Remark 1.6. — We have a more detailed convergence statement by de-
composing uy (and also vy) into a random term with low regularity and
a smoother contribution. The latter converges in positive Sobolev norms.
See Propositions 4.1 and 4.2 for precise statements.

The restriction o > % is technical and can hopefully be improved using
recently developed methods ([6, 9, 10]). However, this is not in the objective
of this work. Instead we emphasize that our range of « is independent of the
degree 2m of the potential V. Indeed, the Cauchy problem (1.5) without
the negative powers of N in higher nonlinearities in V' (see (1.11)) is highly
supercritical® . What saves us here is the truncation Iy in frequency
space and the negative power of N in front of the high-power nonlinearity.
The same situation appears in Hairer-Quastel [16] for the KPZ equation
(though in a different setup where the problem is the singularity of the
driving noise instead of the initial data).

Remark 1.7. — The theorem still holds true if the sharp cutoff in the
truncation is replaced by a smoother cutoff with a sufficiently fast decay
smooth function. The constant A in the final statement then will depend
on the actual cutoff function.

(2) For large m, this is even supercritical with respect to the probabilistic scaling, a
notion introduced in [9, 10].

ANNALES DE L’INSTITUT FOURIER



WEAK UNIVERSALITY FOR WAVE EQUATIONS 7

1.4. The Gibbs measures

In order to prove Theorem 1.5, we re-write the macroscopic model (1.5)
as

(1.13) Ofun + (1 + |V uy + Iy (Vi (un) —un) =0,

still with initial data (1.6). We add a mass term in the linear part in order
to control the free evolution of the zero-th Fourier mode, and modified the
nonlinear term to compensate the change. In fact, without the mass term,
the zero-th mode will grow in time under the linear evolution. Let

V) = Vielg) — 3 (¢~ %)

and let vy be the probability measure given by
1 - Va xr
(114) VN(d¢) = ?N e fT2 Vn(¢)d ,UN(d¢) .

The measure vy is well defined as long as a,,, > 0, and vy @ pty is invariant
under the dynamics (1.13). If X := @2 > 0, then the measure

= %e_/\ Jo 8704} [ 6705 g

is also well-defined, where ¢°* denotes the k-th Wick power of ¢ with
respect to the Gaussian structure induced by p. The measure v is known as

v(d¢)

the fractional ¢3 with exponent a. See Section 2.3 for the precise definition.

Remark 1.8. — Note that the measure v has an additional quadratic
term on the exponential with the opposite sign compared to the usual frac-
tional ¢3. This is because we define the Gaussian measure p to have covari-
ance (1 + |V|?*)7L. Indeed, the measure v is the same with the quadratic

|72a

term removed if the reference Gaussian measure has covariance |V and

0-mode being a N(0, 1) random variable independent of all other modes.

Let 1/ be the white noise measure on T2, and define the measures ji, Vx
and v by

g=peu, UN =VUN @ iy, v=veu .
More precisely, writing ¢ = (¢, ¢'), we have

Pn(dd) = vn (dp)uly (Ad) = Zxt e Jr2 WO gyt (dg),
N————

fin (dg)

TOME 0 (0), FASCICULE 0
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and
P(d5) = v(dg)u'(d¢') = 27 e M a2 079 S 07097 gy (agy)
—_————
fi(dg)
where the values of Zy and Z are the same as before. The equation (1.13)
can be written as a Hamiltonian system for iy = (un,dun) as

un o 0 1 66‘7]\[
(1.15) O (atuN> - (—1 0> I(un,duy)’

where the Hamiltonian is given by

EN(fag) = %<<|v‘2afa f>L2 + <gvg>L2) +/I‘2 VN(HNf)dx

For every N, the probability measure Uy is invariant under the above
Hamiltonian dynamics. Theorem 1.10 implies that ¥y ® puxn ® (py)t con-
verges to U/ in the sense that the density with respect to [i converges in
LP(fi) for every p > 1. The measures i and © are supported on

H- =) (T2) .= g~ 0= (T?) x H~'(T?),

=(H"C.

e>0

where

The invariance of vy ® py under the dynamics (1.13) is an essential ingre-
dient in the proof of Theorem 1.5. In addition, convergence of the measures
itself may be of independent interest.

Remark 1.9. — We would like to emphasize that the invariance of vy ®
wh under the dynamics (1.13) is used in two different ways. The first one
is that it gives key a priori bounds for truncated dynamics (for fixed N).
Second, the convergence of the invariant measures to a limiting measure (as
stated in Theorem 1.10 below) and the invariance of the limiting measure
under the limiting dynamics allows us to pass from local to global in time
convergence.

1.5. Convergence of the measures

We now state our result on the convergence of the Gibbs measures. For
convenience, we introduce another measure 7y by

,N(dqb)_yN@MN_ae f VNHN¢ (d(b)

ANNALES DE L’INSTITUT FOURIER
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where the normalisation constant Zp is the same as the one in (1.14). For
every p > 1, define

ZJ(\Z;) — M [e—P sz %(HNﬁb)dﬂ?} )

Then Zy = ZJ(\}). Our first theorem is the following;:

THEOREM 1.10. — Let a € (3,1). Suppose that V verifies Assump-
tion 1.2. Then for every p > 1, we have

sup|log Z%)) | < 400
N

Furthermore, A = @y > 0, and

. P
lim E*le” sz Vi (Il ¢)dz — ei)\ fTZ ¢°4dm+% fTZ ¢°2dm =0
N —oc0

for every p > 1. Hence, Uy converges as N — +oo to the fractional ¢35

measure v in the sense that the densities with respect to u converge in

LP(p).

Remark 1.11. — The restriction o > % is natural in the sense that in

this range, one can define the ¢* measure v by an absolutely continuous
density with respect to the Gaussian measure p. The fourth Wick power
$°* fails to exist under p when o = %, in which case one expects to end up
with a measure (after further renormalisations) that is mutually singular
with respect to p. Similar phenomena were studied in the Hartree-setting

in the recent works [7] and [20].

The next proposition says that (1.4) is actually almost necessary for the
main theorem.

PROPOSITION 1.12. — If there exists § € R such that 27:1 260202 <

0, then there exists ¢ > 0 such that log Zy > ¢N*(1=%) for all N € N. As

a consequence, the densities dd;/i" do not converge in L (y).

1.6. Comparison with parabolic equations and other dispersive
models

This type of weak universality was first studied by Hairer—Quastel ([16])
in deriving the KPZ equation from a large class of microscopic growth
models. It has later been extended in various directions in the setting of
parabolic singular stochastic PDEs ([12, 13, 17, 18, 22]). A key feature
in this type of this problem is that every term in the expansion of the

TOME 0 (0), FASCICULE 0
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nonlinearity has the same size — and hence the constant A of this limiting
equation depends on the whole nonlinearity rather than the naive guess of
the corresponding power only. As far as we know, our Theorem 1.5 is the
first one for dispersive models fitting in this situation.

Technically, one difference between dispersive and parabolic equations
is the lack of L°° based estimates in the dispersive setting. Hence, the
heuristic reasoning that negative powers of N balance out high powers of
singular objects needs more involved justification with the help of dispersive
tools. A second technical difference lies in the globalisation argument. In
the parabolic setting, the global-in-time convergence follows from the global
well-posedness of the limiting equation and stability. However in the current
dispersive setting, even though the limiting equation is globally well-posed,
the stability properties are not good enough here, and we need to make an
essential use of invariant measure to get global convergence.

Note that our techniques can be used to extend the weak universality
result of Gubinelli-Koch—Oh for the 2D stochastic nonlinear wave equation
to the stochastic nonlinear fractional wave equation with space-time white
noise, formally written as

O2u+ V2 + Opu + M = ¢, (t,r) e RT x T?

when a > %. The weak universality result of Gubinelli-Koch—-Oh is a con-
sequence of the almost sure global well-posedness for the two-dimensional
nonlinear wave equation (« = 1) with any order nonlinearity, while for the
fractional wave equation with o < 1, the situation is radically different.

1.7. Notations and conventions

We fix the parameter o € (%, 1) throughout this article. In the Gibbs
measure part, we relax its range to a € (%, 1). For z € R, we write (z) :=
(14 |2|2%)2=, and write

(V)= (1+|V[**)z .

We use the short symbol D := (V) throughout this article (and hence
D = (V)*). The estimates X <Y (X 2 Y) stand for X < CY (X > C'Y)
for some unrelated constants C, C’ > 0. We denote by X ~ Y if X <Y and
X 2 Y. We also write X <. Y to emphasize that the constant depends
only on parameters ¢, .

Space-time norms are frequently used in the article. For a Banach space

X, an interval I C R and ¢q € [1,00], we denote by LIX(I) the space

ANNALES DE L’INSTITUT FOURIER
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L4(I; X). If there is no risk of confusing about the time interval, we will
simply write L7X. Banach spaces X can be Sobolev or Lebesgue spaces for
the spatial variable, such as H*(T4), W*P(T9), LP(T?), etc. Furthermore,
since no local spatial norm will be used, we write X, to stand form X' (T9).

Globally reserved parameters: o € (%, 1), 8:=1-«, so =4a — 3. The
even number 2m € N stands for the degree of the potential V' (z). We may
specify more restrictive ranges of them in different contexts.

For parameters A, B, the symbol A < B means that B > C'A for a very
large constant C, depending on the context.

1.8. Organization of the article

This article is organized as follows. In Section 2, we give some prelimi-
nary lemmas on functional inequalities and stochastic estimates. These will
be used throughout the article. In Section 3, we prove the convergence of
the measures vy to v under Assumption 1.2 on V', and also give evidence
to show that this positivity assumption is also almost necessary for the
convergence result. Section 4 is devoted to the proof of Theorem 1.5, con-
vergence of the wave dynamics to the cubic wave equation. The appendices
collect detailed proofs of some technical lemmas.

2. Preliminaries
2.1. Functional spaces and nonlinear estimates

Let p € C°(R%[0,1]) be a radial functions such that supp(y) C {¢ :

€] < 3}, supp(p) € {€: § < [¢] < 5} For j > 0, define ¢;(€) = (277¢).
Let x : R? — [0, 1] be a radial bump function such that

XE+Y i) =1.
Jj=20
Define the Fourier multiplier
P—lzfgzlema P]:f;1¢]‘7$7j> .

0
The Besov space B;yq(Td) with indices v € R,1 < p,q < oo is defined via
the norm

1By, (Tay = ||2j7\\ij||Lq<Td>||l§~

TOME 0 (0), FASCICULE 0
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In the main part of the article, we use frequently the convention C7 =
B, - For v € R,1 < p < oo, the fractional Sobolev spaces WYP(T?) is
defined via the norm

[ fllw»(zay = [ID7 fll Lo (re)
By Littlewood—Paley’s square-function theorem, when v > 0 and 1 < p <
oo, we hvae

1w eray v 12775 iz | o gy

LEMMA 2.1 (Fractional Leibniz rule). — Let p € (1,+00) and
D1,P2,P1,p2 > 1 such that
1 1 1 1 1

pr p2 1 P2 D

Let B > 0. Then there exists C > 0 depending on all the above parameters
such that

)Y (f)llee < CUKD Fllzo llglpee + 1 f ]l oo

for all f,g € C>(T?).

(V)?4llLs)

Proof. — This is [14, Theorem 1]. O

PROPOSITION 2.2 (General Gagliardo—Nirenberg inequality). — Letp €

(1+,00), B> 0 and 6 € [0,1]. Let p1,p2 > 1 and 1, 82 > 0 be such that
1 0 1-6
= 4+
P Dn b2

Then we have

and =08+ (1—0)B; .

0 —0
1Flwee S WISy srm L 1580 0

for all f € C*°. The proportionality constant depends on all the above
parameters but is independent of f.

Proof. — This is the content of [5, Theorem 1]. O

2.2. Strichartz estimate

Consider the fractional wave equation on R%, with 0 < v < 1:
(2.1) O*u + (D*)*u = F.

We say that (g,r) is admissible, if

2<a(3-1) and# (o)

ANNALES DE L’INSTITUT FOURIER
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and (g, r) is sharp admissible if the equality holds. Denote by

1 1 «
r=d|lz——]——.
T4, (2 r) q

We have the following Strichartz estimate:
PROPOSITION 2.3 ([11]). — Assume that o € (0,1). Let (g, ) be a sharp

admissible pair. For any solution u of (2.1), we have

(2.2) ||U||L§L;([0,T]de)
< Cgrl

(u7 atu)‘tZOHHWT(Td) + C, !T||F||L}qu'rfa([0,T}><Td)’
where the constant Cy , is independent of T' > 0.

Note that when d = 2, if (g, r) is sharp admissible, then ~,, = sza. We
will only make use of the Strichartz space L{ L. for g slightly greater than 2
in this article. Due to the finite propagation speed for the linear wave when
a < 1, the Strichartz estimate is the same as that in R?, which follows
from a standard stationary phase analysis and a 7T argument.In order to
be self-contained, we include a proof of Proposition 2.2 in the appendix.

2.3. Renormalisation and the white-noise functional

First we recall that the Hermite polynomials Hy(z;0) can be defined via
the generating function

F(t,z;0) = efr=30t" — Z — Hy(z;0).
It follows that
k . .
(2.3) Hy(z;50) = (2 ) (27 — D (=0 ) a*=%.

0
When o = 1, we denote by Hy(x)
Hy(z) is given by

Hy(z;1). The relation of Hy(z,0) and

Hy(x;0) = ang<%).

Taking derivatives of the generating function, one deduces easily that

k!
WHI@—J'(IHT)-

Furthermore, by the multiplicative property of the generating function:

0l Hy(w;0) =

F(t,x+y;01+02) = F(t,x;01) - F(t,z;09),

TOME 0 (0), FASCICULE 0
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we have the binomial expansion

k
k

24)  Huetporto) =3 ( l) Hi; 1) Hi (3 02).

1=0
Hermite polynomials can be used to define the Wick-ordered product for
real-valued centered Gaussian random variables. Let z be a real-valued
centered Gaussian random variable with variance v. Then we define its
Wick product as

(2.5) 2°F = Hy(z;v).
From (2.4), we have for any function w,
k
Hy(z +w;v) = ZHI(Z; v)-whl,
1=0

When w represents a deterministic function, sometimes we will also use
(2 +w)°* to represent Hy(z + w;v). For independent real-valued Gaussian
random variables z1,zo generated by (gi)ren Wwith variance vy, v, with
respectively, we have the binomial expansion:

(21 + 22)01C = Hy(z1 + 22511 + 1)

(2.6) = Zk: (I;) Hi(z1;01) Hi—i(22;v2) = zk: (?) 2t 5¢0,

1=0 1=0
In order to estimate the regularity of wick-products, it is convenient to
use the white-noise functional calculus. Let

& (x) = Z gn(w) e
nezd

be the real-valued white noise distribution on T¢, where (gn)nez is a se-
quence of complex-valued independent N (0; 1) Gaussian random variables
on a given probability space (€2, F,P), conditioned to g, = §_n,¥n € Z<.
We define the white-noise functional
Wiy : L*(T%) — L*(Q, F,P)
by
fr=Wiw) = (£,6) 2 (ray = Y F(n)gn(w).

neZd
Note that for any f,h € L2(T?), we have

E[WfWh] = (f h)L?(Td)-

ANNALES DE L’INSTITUT FOURIER
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Moreover, for any real-valued functions f,h € L?(T9) with ||f]zz =
1hllrz =1,

(2-7) E[Hk(Wf)Hm(Wh)} = 5kmk![(fa h)Lz]k-

We refer [21] for a proof. To represent the Wick-product as white noise
functional, we denote

olF(z+y)
NN .
kZ:N v/ 1+ |k|2°‘

Then for

ik-m
0= X v eyl

we have

(28) ¢N(x) :5NW7]N(£C,)) dﬁ\%(‘r) = HI(QSN(:E)? 5?\,) = 5§VHI (WWN(QT,))

Next we recall the Wiener chaos estimate. Let (g, )nen be a sequence
of independent standard Gaussian random variables on a probability space
(Q,F,P). Given k € N (including the 0), we define the space of homo-
geneous Wiener chaos of degree k, Hj., to be the closure in L?(Q,P) of
polynomials [[°°, Hy, (95), where > 7 k, = k. Then we have the Ito—
Wiener decomposition

2(Q, F, P @Hk,

where Fj is the o-algebra generated by (gn)neN-
By the hypercontractivity, we have the following Wiener chaos estimate:

PROPOSITION 2.4. — Assume that X € €D, H;, then for any finite
p=2,

k
[XNzr) < (= 1) 2 | X||L2(0)-
3. Convergence of the Gibbs measure
3.1. A variational formula for the partition function

The main strategy to prove Theorem 1.10 and Proposition 1.12 is the
recently developed variational approach to QFT ([1]). We first give a vari-
ational formula for —log Zy. We adapt the setting in [15].

TOME 0 (0), FASCICULE 0
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Let {Bk(:)}rezz be a collection of standard Brownian motions on the
probability space (2, F,P) such that B, = B_; and otherwise indepen-
dent. Let

X(t)= Y Bx(t)ex,
keZ?
which is the cylindrical Brownian motion on L?(T?) adapted to the filtra-
tion (F;) generated by {By}.

For every N, let Sy be the operator such that

(3.1) SxF) =T tuje

Let Wi (t) .= Sy X(t), and for every N, define the measure Qn by
dQy 1 o Jre Va (W (D)de

P Zy
Here, the integration variable in z is from Wy (1) = Wy (1,-). For ¢t = 1,
we also simply write Wy for Wy (1). Then

LaWp (WN(].)) = U,

and the normalisation constant Z is the same as above.
By the martingale representation theorem, there exists an adapted L?
process u such that

(32) e Jr Ve _dQN _ fRu@axo)-4 [ loliade
N
Re-arranging the terms and taking logarithm, we get

—torzy = [ Va(Wade + [ (w(®).ax0) =5 [ Ju) o,

where we recall the notation Wy = Wiy (1). Now, for the above u, define

X(t) = X(¢t) _/0 u(s)ds .

Then by Girsanov theorem, Xisa Qn Brownian motion. Writing
1
(3.3) Walt) = ShX(t), In(v) =Sy / o(s)ds,
0
we get
— 1 _ 1 !
—log Zy = / Vn (W +IN(u))dx+/ (u(t)7dX(t))+§/ [u(®)]F-dt .
T2 0 0

Note that the second term on the right hand side above is a martingale
under Qu, and hence vanishes under EQY. We have thus arrived at the
following proposition.
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PROPOSITION 3.1. — Let u be the adapted L? process in (3.2). Then
we have the identity

— 1 1t
—log Zy = EQ¥ [/ V(W +Zn(u))dz + 5/ ||u(t)||%2dt} ,
T2 0

where Wy = W (1) = iy X (1), and Lawg,, (Wy) = Law,,(¢x).

The above representation is sufficient for us to prove Theorem 1.10. But
it will be convenient for us to be able to change the “drift” u freely while
keeping the underlying probability space unchanged. For this reason, we
use the following deeper variational formula.

PROPOSITION 3.2 ([2, 24]). — We have

— 1 /L
(34) —log Zy = inf EP |:/2 VN(WN +IN(’U))d.’E + 5/ ||’U(t)||%2dt:| R
T 0

veH,

where the infimum is taken over all predictable processes in L? with respect
to the filtration generated by X.

Before we get into the proof of the main theorem, we first give a prelim-
inary lemma controlling ||Zy (v)|| gz by the space-time L?-norm of v.

LEMMA 3.3. — There exists C' > 0 such that
1
sup [Zw(Dlfre < C [ 1FOIat

for all f € L?([0,1]; L?(T?)).

Proof. — By definition of Zy, we have

— 1 ~
ToF0) = Ywen g5 [ Flebpar.

and hence

I f (k) <

! 1 f 2 —2«a ! iy 2
(k)2 /0 f(t”“)dt’ < (k) /O (¢, k)[2dt .

As a consequence, we have

_ LR 1
27 e = S0 Bt 0P < Y [ (e mPde=C [ 1re)ear
o Jo 0

k

The proof is complete. O

TOME 0 (0), FASCICULE 0
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3.2. Necessity of the positivity condition — proof of
Proposition 1.12

Suppose V and p are such that
> @07t <0
j=2

for some # € R. By continuity, we can assume 6 # 0. Let u = 6 N'~* which
is certainly adapted. Write Uy = Zn(u) = N'~%. By Proposition 3.2, we
have

__ 1 /L
—log Zy < EFP [ VN(Wxn + Un)dz + 5/ u(t)||2Lth} .
T2 0

We will show that for the above drift u, the right hand side above is smaller
than —cN4(1*O‘)Afgr some ¢ > 0.
For the term Vi (Wy + Uy), we have

— s . . 1

VN(WN + UN) = Z 6]‘7NN_(23_4)(1_0‘) (WN + UN)O(QJ) — i(WN + UN)<>2 .
j=2

Expanding the Wick product for each j and re-organising the sum according

to the power of Uy, we get

2m m X
(35) VwWn+Un) =3 > an <2£]> N-i=h(1-0) o2i=Opt

£=0 j=2v £
1
— 5(W;g2 + 2WnUn + Uy),

where U¥; is the (-th power of Uy = Iy (u), and ¢ denotes the Wick product
of W with respect to its own Gaussian structure.

Note that for the terms in the above sum, the pointwise expectation EF
is non-zero only when ¢ = 2j. So for this drift u, we have

E [ Vy(Wy+0N'"%)dz

T2

— 4772 ZE/] NN—(Qj—4)(1—a)(9Nl—a)2j + O(NQ(l—O/))

j=2
< _CN4(1—a)

for some ¢ > 0 (since 6 # 0). For the other term, we have

1
/ u(t) |22t = CN20-0) |
0
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Hence, by the variational formula, we have the bound

—log Zy < —eN* (=)

for all N, which implies that the densities

< o e VN @Ne) g
ZN
in probability with respect to u. But since their L!(x) norm are 1, so it

cannot converge in L'. This completes the proof of Proposition 1.12.

3.3. Proof of Theorem 1.10
3.3.1. The main proposition and upper bound

Recall the renormalised potential Viy and definition of the coefficients
a;n in (1.11) and (1.12). Let

OJ(\}) = (7117NN2(17Q) R CJ(\?) = ((71071\/ - 617N0'J2V)N4(17a).

Writing ¢ = Il ¢ for simplicity, we have

m
Vi(pn) =Y a; y N~ @000 320
j=2
where the Wick product is with respect to the Gaussian structure induced
by p. In other words, we remove the 0-th and 2-nd chaos components from
the polynomial. By standard hyper-contractivity arguments, one has

p

E~ Vy(pn)de — A / ¢*dz| — 0
T2 T2

as N — +o0o. The key ingredient to pass the convergence to the level of
exponential is the following uniform bound.

PROPOSITION 3.4. — For every p > 1, we have

sup E“(e_pr2 ‘iN(qu)dx) <400, E“(e_’\pf-r2 o7datt [ ¢°2dx> < +o0.
NeN

We first show how Theorem 1.10 follows from Proposition 3.4.
Proof of Theorem 1.10. — Note that under p, we have

Vv (on) = Vi (6n) — 563
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so it suffices to prove the corresponding statement with Vi instead of 171/\;
and with the ¢°2 removed in the limiting measure. Since

/T2 Vy(on)dz — )\/ ¢*dx

T2
in probability, and since the exponential function is continuous, we have

o sz VN (¢n)dz . e—>\ fT2 $°*dz

in probability as well. Theorem 1.10 then follows from the convergence in
probability together with the uniform bounds in Proposition 3.4 (with a
larger p). O

We now turn to proving Proposition 3.4. We only need to prove the first
bound, as the second one is the special case with @a ;v = A > 0and @; y =0
for all other j. Also, by replacing @, y with pa; v, the assumption (1.4) is
not affected. Hence we can assume without loss of generality that p = 1.

It suffices to prove a uniform-in-N bound for | log Zx|. Jensen’s inequality
gives

—log Zy = —log E# [e T2 VN(¢N)dI] < E* [ %((bN)dx] =0.

T2
So it remains to prove a lower bound for —log Zx. The rest of the section
will be devoted to that.

3.3.2. Expansion

By the variational formula (3.4), it suffices to prove a lower bound of its
right hand side uniform over N and all L? adapted process w.
Starting from the expansion (3.5) and re-organising the sums, we have

2m—1

—~ 1
(36) VN(WN + UN) = Z leUf(, — §WJ<\>[2 — WnUn
=0

z :7 —(2j—4)(1— 2 [72
+ = aj’NN ( J )( a)va] — 5 N>

where
m

Yni = Z aj’N(QZj)N—@j—él)(l—a) W;@j—f) :
j=2v([§]+1)
and we have separated out the terms with 25 = ¢ in the sum. Note that the
sum in ¢ (in the first term) is up to 2m — 1 since the last one (¢ = 2m) is
separated into the second term in (3.6), so the sum defining Yy, is empty
when ¢ = 2m.
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PROPOSITION 3.5. — If the positivity condition (1.4) holds, then there
exists ¢, C' > 0 such that

> ayNTETHOEIGY Y > (U + N-Em gy ¢
j=2
for all sufficiently large N. As a consequence, we have

. 1/t
1) [ VW + U)o+ g [ futo)lar
T2 0
2m—1

/ (Z yNEUN** X/QWNUN>CI£CC

+ o0l + N-Cn=00-2 gy 27, + [Ux . )
where Uy = Iy (u), and Iy is defined in (3.3).

Proof. — The first claim follows from the positivity assumption (1.4),
the convergence a; y — @; for every j, and that

Uy

Uy <M
+M

for every M > 1. The second claim is a consequence of the first one and
Lemma 3.3. d
Our next aim is to show that for every sufficiently small § > 0, there

exists constant C' = C(d,m) such that

2m1
Wy 2dz| +

T2

< CON (W) +6([Ux s + N~ =90 Uy |35, + Uy e )

(3.8)

‘/ WNUNdSL’

/ Vv Ulyda

where Qn(Wy) is some function depending on suitable (negative) Sobolev
norm of Wy whose expectation is uniformly bounded in N. If (3.8) is true,
then we can combine it with (3.7) and Proposition 3.2 to conclude the lower
bound

—log Zy > —CE(Q(Wy)) > —C

for some C independent of N. Also note that it suffices to show that each
term on the left hand side satisfies the bound. The rest of this section is
devoted to the proof of (3.8).
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3.3.3. The first two terms

The bounds for the first two terms on the left hand side of (3.8) are
straightforward. For the first one, we have

/ WR? da
T2

which is of the form Qn(Wy). For the second one, we have

< IWRlg-20-0- ,

1
<IWnlla-e 1UN e < S1WN -0 + 010N e

/ WNUN dx
T2

which is again of the desired form.

3.3.4. Thecase 0 < /<3

We now turn to the terms Yy ,U%. We first consider the case when
0 < £ < 3. A typical term in Yy for 0 < € < 3 is of the form
N7(2j74)(17a)<WX](2j—€), U1</>

for j = 2,...,m, where (-,-) denotes the L?(T?) inner product.
The term ¢ = 0 corresponds to N~ (2—4(1-a) fWX,@J). It satisfies the

bound
/ o)

for every § > 0. By Lemma B.3, since a € (%, 1), its expectation is uni-

N—(2i—9)(1-a) < NG 0=a) @)

formly bounded in N as long as 8 > 1. Hence, we can take Qn(Wy) =
N=@i=90=e) o@D (L which satisfies the requirements for the
bound (3.8).

For £ =1, it follows from duality and Cauchy—Schwarz that

N @O [y Uy
< NG0B U e
Sl | e N Y

By Lemma B.3, the quantity N_(‘U_g)(l_o‘)EHV[/K,@j*l)||2 _o 1s uniformly
bounded in N as long as 1 Ao > 3(1 — «), which is the case for a € (2,1).
So the desired bound (3.8) is true for £ = 1.
For £ = 2, let 8 > 0 to be specified later, and p,q,q1,q2 € (1,400) be

such that

1 1 1 1 1

-+-=1 and — 4+ —=-.

p gq @ 92 g
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By duality of W~2? and W#9 and then Lemma 2.1, we have
(W2 U2 < IIWR ™ w50 1UZ I ws.a
27—2
SIWAE ™ s llUNlws.an [Un | 222 -

We furthermore choose ¢ sufficiently close to 1 so that ¢; < 2 and ¢ < 4,
and choose 3 € (2(1 — @), a). This is possible as long as o > 2, which is in
the range of our assumption.

Then multiplying both sides by N~ (21=9(1=2) and using Holder to split
the three terms, we get

N-@i-H- a)‘ 2] 2)UN>’
sN*@J*@“*MHW“”‘Q’waap||UNHHu||UNHL4
S GINTACT =) B (U2 U | 5a)

where the proportionality constant does not depend on ¢. By Lemma B.3,
the first term above has finite (uniform-in-N) expectation since 5 > 2(1—a).
Hence, it is of the form of the right hand side of (3.8). The completes the
case { = 2.

For ¢ = 3, by duality and Lemma 2.1, we have

2j—3) 27—3
|<W<>( J— UN>| HWX’( J )”Wiﬁ’l;rg ||U§,||W/s,1+s

25—-3
SR e UND L zn [UN s

where ¢, 8 > 0 are to be specified later. By Proposition 2.2, for § < «a, we
have

5 B 1_,
ION 5 2020 S NN e 1UN 2~ S IIUNllHuIIUNHL4 )

where

B 41+¢)B

(1 =3e)a+(1+¢)B
if 8 < « and ¢ is sufficiently small (depending on «, ), and hence the
second inequality above (relaxing WP to H?) is valid. Plugging it back
into the original term and applying Holder, we get

N-@i-4(1- a)| <>(2J 3) UN>’

da

—(2j— —a 25—3 a—p
560&<N (2j=0)(1=a) | o2 )HW%%) +0(|UN e + 11UN24)-

Again by Lemma B.3, if we choose 8 > 1 — «, then the expectation of
the first term above will be uniformly bounded in IV, and hence satisfies
the form of (3.8). Recall that we have also required 8 < « when applying
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Proposition 2.2 in the previous step. This is possible if 1 — a < «, which is
true as long as @ > 3 (which satisfies our assumption «a € (2,1)).
We have thus established the desired bound for 0 < ¢ < 3.

3.3.5. Thecase 4 < ¢ <2m —1

We now turn to the situation when 4 < ¢ < 2m — 1. The relevant terms
to control here are N’(2j’4)(1"1)<VVX,(2J_€)7 U%) where 4 < £ < 2m—1 and
2j — € > 1. We will prove the following proposition.

PROPOSITION 3.6. — Fix4 < ¢ < 2m—1and j < m such that 2j—¢ > 1.

Let mg = L%J + 1. Then mg < m, and for every 6 > 0, there exists Cs such
that

N—(2i—4)(1-a) | <W1<z[(2j—f)’ U1</>’
< CsQN (W) + 6(||UN e + N-Cmo= 0=y |20 )

where Qn (W) is a positive function depending on certain negative Sobolev
norm of Wy, and its expectation is uniformly bounded in N. The constant
Cs is independent of N.

Proof. — We divide the argument into several steps.
Step 1. — Let 3, > 0 be two parameters whose values will be specified

later. By duality and repeated applications of Lemma 2.1, we have

25— 254
[(WRE0UR)| < IWR TN o sz [UR llwsoase

254 —
Se IWREON o sz NUN lwsoe TN,

e

where p, = s—21+e)mo and it decreases to 5220 — ase — 0. If B < a,

2mo—(1+4¢€)(¢—1) mo—~£+
then by Proposition 2.2, we can further control the quantity ||[Un|/y5.0. by

B 1-58
1UNllwe.ee S NUNIaae 1UN] 2, 5

where ¢. = %, and ¢. decreases to (QW?.T% as ¢ — 0. Hence,
if we choose § such that
2moﬂ
3.9 —_— < 2,
(39) (2mg — )+ 3

and choose ¢ > 0 sufficiently small (depending on 3), then ¢. < 2 and

we can relax [|[Un||we.ae to ||[Un||me. Also relaxing ||W1<$/(2j_€)||w7ﬂvm to
||W]<:,(2jfz) llc-5, we obtain the bound

j—~ i—¢ B — B
(310) (WU S IR o= U e 10N 1 -
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The proportionality constant depends on the parameters a and 8 but is in-
dependent of N. Note that the right hand side as well as the proportionality
constant does not depend on €.

Note that we have previously chosen § < «. But with the assumption
on my, this is implied by the constraint (3.9). Hence the only constraint
for (3.10) to hold is (3.9).

Step 2. — We re-write the bound (3.10) as

N7(2j74)(17a)‘<W§](2j—€), U4l

)
W™ los & (v
S varnae s - NNl e - (N7 U ma) 7

Hence, if we choose v such that

€2moo; _ (omg— 4)(1— ) s — M0 == )1~ )
o — mo&

(3.11) ~-

we can use Holder to separate the three terms in the product above so that

[ v o]

Wo(Qj—e) n
< Cs m + 5(||UNH%(CX + N7(2m074)(1fo‘)||UN||%ZZ9LO)a
c—8
where
B 2moa
K (2mg — ) — (mo — 1)B

Note that the use of Holder and hence the above bound is valid if n > 1,
which is implied by the constraint (3.9).

Step 3. — It then remains to show that for every a € (%7 1), there exists
B satisfying (3.9) such that for « given in (3.11) and

27—4
W s

Ov(Wn) = N@ DT )7

one has

sup E|Qn (W )|" < +o0.
N

This is equivalent to the following two constraints on (5, ):

(1) 2 —4)(1-a)—v=0;
(2) BAL>y— (—4)(1—a).
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We first check the second one. Note that (3.9) implies 8 < a < 1, so the
left hand side 8 A 1 could be replaced by . Routine algebraic calculations
then show that the second constraint above is equivalent to

2(2mop — O)a(l — )
(3.12) T s R

Combing (3.9) and (3.12), we see that a possible choice of 8 exists if
22mg — Oa(l —a)  2mg—¢ N
mg + 2a — 2 mg — 1

which is true as long as o > %
It remains to check the first constraint above. This can be reduced to
(4m0 - 25) - (2j - E)mo o

(3.13) 8> e

Combing it with (3.9), we see that a possible choice of /3 exists if
(4m0 — 26) — (2] — f)mo 2m0 —/
< ;
mo — 2 mo — 1

which holds if 2j — ¢ > 1 and mg = LéJ +1</-—1.

We have thus shown that for « € (%, 1), there exists choice of 8 and ~
as specified above so that all the bounds hold. This completes the proof of
the proposition. O

4. The wave dynamics

Consider the wave dynamics:

1) {afuN+ |V\2“uN+H]XVJ(,(HNuN) =0,
(un, Orun)|t=0 = 1IN ¢,
where
HMZ: 2i Z ﬂeik-m7 Z B (w) eF
™ \ iy VIR bI<N
Denote by

Vi (p) = a1, nN* Ha(p;5%) + W (p),

W) =Y a;nN~ Y Hyi(0;5% ),

j=2
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where we recall § =1 — a. We rewrite the equation (4.1) as
42) fun + (D*)?un + snliyuy + Iy Wi (yuy) =0,
(un, Oty =0 = TN,

where Ky = 2011,NN2ﬁ — 1. Note that for each fixed N, (4.2) is globally
well-posed. Indeed, when writing in Fourier variables, the equation (4.2) is
a finite-dimensional system and its local well-posedness is ensured by the
Cauchy—Lipschitz Theorem. Moreover, the conserved energy

1
E(un(t)) = / (2(|8tuN|2 + HV|O‘UN|2) + VN(HNUN)> dz
T2
is a Lyapunov functional that controls the quantity
||8tuN(t)||2L2(T2)+HuNH%{“(T"’)"’N_(Zm_@ﬁ”u]vH%T?n’"(T’L’)_CN,mHuNH%P(TQ)'

Since
1

2CN,m

lunlZ2¢p2y < Cllun||F2m g2y < N_(Qm_4)ﬂ||uN||%%(T2) + CNmo
we deduce that uy cannot blowup in finite time. We denote by @ (t) the
flow of (4.2), and we recall that 7y is invariant under ® v (¢).

In this section, we will prove Theorem 1.5 with more precise statements:
the well-posedness of the renormalized and the convergence of (4.1). Heuris-
tically, recall from Proposition 1.4 that ky — x € R and

|[kn — K| < CN~(2e-1),

Then formal analysis suggests that as N — oo, (4.2) should converge to
the renormalized cubic wave equation

—

(4.3) OPu+ (D) u + ku + 4au® = 0, (u, O4u)|t=0 = ¢

where

u®® = lim OyHy(yu;oa)
N— 00

is a well-defined object on the support of u. The goal of this section is to
rigorously justify the above convergence.

4.1. More notations

Before presenting the main propositions, we need more notations. Define
the linear propagators S(t) and S’(t) by

> sin(tD*)

S(1)F=cos(tD*)f+ TS 1 S/(0) = ~(D) sin(tD") f+cos(tD%)
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and let S(t) = (S(t),S8'(t)), where we again write = (f, ). For every
¢ € D'(T?) x D'(T?), denote

T .:Tq .::(gandfzzga
Sometimes we will omit the dependence on ¢ in the notation ! for simplicity.
For an integer N € N, denote TN = HNT and TN = HNT
We will frequently use two small parameters ¢, 8y such that
O < e <1
Throughout this section, the symbol € <« 1 always means that

e < 2—100m % 6100~

Recall thatf = 1 — «a, sg = 4a — 3. Since the flow of the wave equation is
vector-valued, we denote by

Moo= HS x H™%, WS = W 5 oo,

For given functions f7f' = (f,f") and I C R, we define for ¢ € R the
norms

I fllyery = ||fHL§°Hv(I) + ||f||Lf+90Lz+%(I)

x

and
I = Wz W e
Note that the norm (2+90, 2+ %) is Strichartz admissible. For the solution
u of
Ou+ (DY)Vu=F, (tz)elxT?

we will use in particular the following inequality

(4.4)  [I(u(®), Opu(®)[ly=r () S l(ulto), Drulto)) s + 1F | L mror—o 1)

provided that s; > 2+5¥ and tg € 1.

2. Well-posedness for the cubic equation

We sketch the almost sure global well-posedness of (4.3) whenever o > g.
The local well-posedness follows the recentering scheme of Bourgain [3],
while the global well-posedness follows the invariant argument of Bour-
gain [3].

Consider the truncated equation

(4.5) 82vn + (D) 2oy +1Iy (kuy +432us3) =0,  (un, pun)|i—o =N .
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Denote by
t o; /
sin((t —¢')D%) ,
= ————dt

T /t e ,
the Duhamel operator starting at time ty, and we decompose the solution
on(t) of (4.5) as vn(t) = Tn(t) + wn(t), then wy(t) solves the integral
equation

wy () = TnJo(k(Ty + wn) + 4a (T v +wy)®?).

The remainder w(t) is pretended to be in a more regular space L{° H? with
s = 89 — €. For ¢ € [2,00), by the large deviation estimate, R-certainly, i.e.

—¢R?

outside a set of u-measure < e , we have

ol
”TN”L‘ZWJZB*E’OO([OJ]) <R, 1=123
By Lemma A.1, for 7 < R™3 < 1,
HHNJO(H(TN +wN) +4&2(TN +U}N)<>3)||L?CH;([O,T]XT2) < ORT% < 17

where we have also used that ||wn ||z ms(j0,7)) < R. Therefore, R-certainly
we have local well-posedness on [0, 7], with a reminder wy € Y*([0,7]) as
well as the convergence wy — w in Y*([0, 7]) for s = 4o — 3 — . To iterate
the local well-posedness (convergence) to a long time interval, we make use
of the invariance of the Gibbs measure

()= exp (= [ w1Io) + 1a150)° ) s (d5).

Though the sign of x may not be positive, due to the defocusing nature
as > 0, Uy — v, the Gibbs measure associated to (4.3). The rest of the
globalization argument is standard (see for example [23]) and we omit the
detail. Furthermore, we have the invariance of 7 := v ® y’ along the flow
&(t) of (4.3). To summarize, the version of well-posedness for the cubic
equation is as follows:

PROPOSITION 4.1. — Let T > 0, @ € ($,1),0 < ¢ < 1, be given.
Assume that and s = sy—e. Then there exists a measurable set ¥ C H—P—¢
with [i(X9) = 1 and a flow map

B(t) = (B(t), (1))
defined on X¢ with the following properties:
(1) u(t) = ®(t)¢ is the unique limit in C([0,T); HP~=(T?)) of the
sequence of smooth solutions vy of (4.5).
(2) D(t)(So) = X for every t € R and the flow property holds for ®(t).
(3) The measure 7 is invariant under the flow ®(t).
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(4) For every ¢ € % the function

(w(t), Brw(t)) = B(t) — T (@)

solves the equation

02w + (D*)?w + kw + 462(T03 + 3T02w +3%w? + w3) =0,
(w(0), 0,w(0)) = (0,0) .
2(00+2)
inC([0, T]; H¥(T2))NL2 L, ® ([0, T]x'T?) in the sense that the
corresponding Duhamel formula holds. Furthermore, the random
object 1(¢) verifies

||T(Qb)Ol”L}O’"W;LB_E’QC([OvT]) < 00, = 1,2,3.

4.3. Convergence of higher order systems

Now we study the dynamical weak universality problem by proving the
following result which leads to Theorem 1.5:

PROPOSITION 4.2. — Let T > 0, € (%, 1),0 <e<kKl. Let s=sy—¢
and s; = s — 2¢. Then there exists a full ji measure set ¥ C H P2,
such that for any ¢ € %, the solutions @i (t) = ®x ()¢ of (4.1) admit a
decomposition iy (t) = T y(t) + Wy(t) and converge in C([0,T); HP~*)
to the solution q;(t)q; of the cubic equation constructed in Proposition 4.1.
Moreover, the nonlinear remainders wy (t) converge in a smoother space:

]\;iinoo lwn (¢) = w(t)|| oo 21 (f0,77) = 0-

The main ingredient to prove the almost sure convergence of (4.2) to (4.5)
in C([0,T); H~#~5(T?)) is a variant of the Bourgain-Bulut type argument
([4]). Briefly, we will use two global information, the first one is the invari-
ance of measures Uy along the truncated flow ®y(¢). This will allow us
to essentially control the L2° norm of the solution ®y(t)¢ by N#*. The
second one is the solution of the cubic equation, thanks to Proposition 4.1.
Technically, since we deal with solutions in the space of negative regularity,
it would be more convenient to work with the nonlinear part of the flow
that leaves in the spaces of positive regularity.

Writing

uN:TN+wNa
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we expand the nonlinearity Kk yIIyuny +InyW) (yuy) as

3 2m—1
3— l
(4.6) HN(TN+1UN)+4Z<Z)CL2 vl T+ Y Ry,
=0 =0
where
U 25)! (i 2j—1—1
(4.7) Ry, = Z LELJ;NN (23 4)ﬁT<]>V<J )

N2j—1—1)

J=2v(| §]+1)
4.3.1. Large deviation estimates

First, we prove the following lemma that allows us to pass from vy
measure to p:

LEMMA 4.3. — For any R > 0 and N € N,
" {¢ | [ vv(iyg) da
T2

Proof. — Since [, Vn(IIx¢)dz is a linear combination of multi-linear
Gaussians of degree smaller than or equal to 2m, by the Wiener-chaos
estimate

e (e[l o] <o o ]

for any p > 2. Using the identity (see (2.7))

1

Vy(Ily¢) dz
T2

Vr(Iln¢) dx
T2

(M) (z) - (M) ()] = 10550 [ 3 g o)

we deduce that

’/ VN(HN¢)d$
T2

2 m
1 = Z @ PN A28

1=1 Kyt Ak =0 j= 1
k| <N

By Lemma A.2 and the fact that o > 3 the quantity

k1+ko+kz+ks=07= 1

LIS

is uniformly bounded in N. This implies that the right hand side of (4.8) is
bounded by Cp™. The desired estimate then follows from the Chebyshev’s
inequality. O
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The following Lemma crucially uses the invariance of the measure vy,
in the spirit of Bourgain—Bulut:

LEMMA 4.4. — Let T > 0,7y > =1—a and 2 < q,r < co. There exist
two positive constants Cr . q.r,CT,~,q,r Such that forall A >1, M < N,

(16 < Imis B (Ol ooy > M)
< Crpygrexp (— (T75 MY AT ar),
Here 71']{/[ = Id — mps and 7 is some smooth cutoff® .

Proof. — In the proof, we denote by (V)™ = (V)™7 @ (V)~7~*, The
notation LIX, will stand for LIX,([0,T]).
Take a parameter A\; > 0 to be fixed later, we have

ﬁ{¢ HﬂiI(I)N(t)(b”ng;‘*v’“ > )‘}

< {8 IO g > X [ ViiTvo)ao <
, .
I
+ g{&: 173788 () Ly e > )\,/ Vi (Iix¢) dz > /\1} :
, ”

II

By Lemma 4.3,

(4.9) I<e ",

To estimate I, we recall that
Lo I Lo
n(dg) = e T (ag)

then
1< ZyeM JN{Q_§: 7B ()l Loy > /\}.

Take ¢; > max{q,r} to be specified, by Chebyshev’s inequality and
Minkowski’s inequality, we have
q1

- - a1

( /H |<§>‘”W<f>w<t)¢)qlﬁmdqs))

ZN e
A4

I<

LIL7

(3) The same statement holds if we replace the smooth cutoff wy; by II;;. Here we state
the lemma with 7ps since Iy is not bounded in LP(T?2), 1 < p < oo.
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By the invariance of Uy along §N(t), we deduce that, for a.e.x € T and
t € [0,T] (see Lemma 7.1 of [23] for a rigorous proof)

[ O @O @ @i = [ 1) @ @ (ad),

e

1< ZyeM T
A

\ [ @ dde )
2B

By Cauchy—Schwarz, the boundedness of Zy, Z;,l and Proposition 3.4, the
above quantity can be controlled by

‘( | P
2 M—(’Y—B)Ch

a1
ard N G
<CTTa e YT

a1 1
CeM T 2
A

Lo

So for any g1 > q,r, A1 < A, we have

CTi \/@]\4(75))‘11 e

I+ e
+ e( \

By optimizing the choice of A1, ¢;, we complete the proof of Lemma 4.4. O

The following Lemma consists of key arguments of the proof of Proposi-
tion 4.2.

LEMMA 4.5. — Let T > 1, e < 1. Let R> 1, N > 1 be large parame-
ters. Assume that ¢ € H~P~¢ satisfies

(410) ||q)N(t)¢||L%OmW;3*E,OO < Ra || TNHL%OmW;ﬁ*E»OC < R7

and

k
1T | p1om oo < NFFOTE,

ol
H TN HL%OMW;lﬁ—zs,% < Ra

o(n—1—1) —4)3—
||TNn HmeW—@—W—?E% < N(n=8 5
h ®

ol ol _&
||TN - T ”mewfzsfza,% g N ;,
t x
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foralll1 <k <2m—1,4<n<2m—1andl € {1,2,3}, where L{ X stands
for L([0,T); X). Moreover, assume that on [0,T], for all 1 <1< 3,

3
ol
(4.11) s | 10m 18- M([OT)+|\<1>
=1

Then for any ﬁ < 81 = 89— 2¢, (1) there exist constants C' = CrmeB,s >
0 and Ky > 0, such that if the parameters R, N satisfy the constraint

RlOOm

elog N )ﬁ

Ko)T 5
(Ko) 2T log K,

< N%, or equivalently, R < (

then

—

-

\
—e)
=
S~—"

yai(jo,7]) S C’ENfi.

Proof. — We write
un(t) = ex(0)6 = T +wn(t), ult) = 8(1)¢ =T+ w(t)
By (4.10), (4.11) and Bernstein, we deduce that

(4.12) lwn ()| Lom poe (0.7 < CNPF2R, - [Jii(t)]

ye(lo,1)) < R.

Step 1: Recursive inequality. — Fix tg € [0, —19] and I, -, = [to, o+
7o), where 7y is a small parameter to be chosen later. Throughout the
proof, the symbol A < B stands for A < C'B for some constant C' that is
independent of parameters R, N, g, tg.

By the Strichartz inequality (4.4), we have

(4.13) |[wn () = D)l yer (1,.) S lwn(to) — w(tO)HHSl
2m—1

(4.14) + [AN Ity r) Z Bn Ity ) +ZZCNJI (Ltg,70)

=0 j=3

(4) Under the constraint o € (97 1), for0< by ek 1, s1> 2+60
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where

3 2
An(Lgm) = A = G217 + 377w+ 3Tw? + Wl poa e
3 3
1N -1

02
TN w7 wHLgH;“‘*atO,TO)

(Ttg,m0)

im0

T = Tl

3 3
oy =l pee, )

+ ||Hﬁ“7HL;?°H:;1 (Irg.rg) T TRIEN = £l|W]| L1921 1, )
+ 7rlEN[UN — B peoriz s, )
By, = HRW.wﬁvHL%H;l,a(Itw), 4<i<2m—1
—(2j— o(2j—1-1)
CN,j,l =N (25 4)B||TN . w§V||L%H;17Q(ItO,TO)’
0<i<3and3<j<m.

From Lemma A.1, we have for sufficiently small € > 0 and ¢ > 1 large
enough,

02
(4.15) [ Tywy — T Wl == 1y 1)

e ||TN — T02 28-2 || ||L°"HSl I
~ Lw T, ) o He (io.mo)

+7'02||TNHL2W 25-2e, E(Io m)” N _wHL?OH:l(I‘O‘O).
(4.16) [ITywh = Tl s ey,
2
Selltw — THLIW—ﬂ 2¢, (It(] TO)H ”L?Hil(ftofo)
1
+7—O2||TN||L3W;B*25,%(IH],TO HwN +w||L?H;1(It0’TO)

X |lwy — w”L,?OHil(Im,TO)

and

(4.17) [Jw}, — w3||LgH;1*‘*(1tO,TO)

1
S5 o = wlle iz g ) 0N 5z 1,y ) + 100 e oy )

TOME 0 (0), FASCICULE 0



36 Chenmin SUN, Nikolay TZVETKOV & Weijun XU

where all the implicit constants are independent of N, R, 7y,ty, but can
depend on m and e. Therefore,

1
(418)  An(Tiors) S D (Tigirs) + 76 P (im) o — wll g 1
+ TolkNn — “|||U7||L§°H;1 (Iig o)

where
Dy Ity ry) = |>\*52,N|HT +31° w+3Tw +w ”LlH‘l Ly ro)

o3 03
+ HTN - T ”L%H;;I*Q(

Ifoﬂ'o)

T =17 eolloge
N L1W —26—e¢, 7(1,50 o) L Hyt (Itg,rg)

2
+ ||TN - THLlW o (It() To)Hw”L?oH;l(Ito‘To)

+ ||HJ]\_/wHLt°°Hi1(ItO,TO)7

FN(Ito,TO ”TN ||L1W 26-¢,1 (1 )
to,70

Tl

tW;ﬁi&%(Ito,ro) (HwN”L?CH;l (Itoﬁo) + Hw”L?oHascl(ItoJo))

+ HwNHigoH;l(Itmm) + ||w||it°°H§1 (It 7o) + 1.

Applying Lemma A.1, Cauchy—Schwarz and the fact that % <2+ %, we
have (here it is important that > 4)

(4.19) Bn,i(Ity.7)

o(25—1-1) l
O - R NP AN

90

x (Ito 1'0)
z+1 <j<m z to,7T0

< B .
&, TO FNT ”wN”LOOH o (Ttg, TO)HwNHL?LiJr%(Im,m)

sup N~(2798) Tj\;%ilil)

4
e N ||L;%Lg°(1t0_,,0)
- <Jsm

N 7'0 y N BHWNHY%(I% )
sup N—@-9)) 15
A

1
< & N_5+2me||wN||§1/sl(It0 )

Lo L2 (11 7o) ||wN||meLoo

where to the last step, we have used (4.12) and the L}°"L%° bound for

+
T?\; Note that here it is crucial to put one wy in the space L2+0°L %
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in order to gain some negative power of N, as putting (4.12) on all wy will
lead to a bound N'¢ that does not converge to zero as N — co.
Similarly,

. 1
(420) CNJJ(Ito,To) Se,m N*(QJ*4)57.02

o(2j—1—1) !
X ” TN HL$W;(37”B72EY%(Ito,q—o) HwN”LtooHil (tg,70)"
Step 2: Bootstrap argument. — We first claim that if for some T} €
(0,7,
(4.21) lwn |ly=: (o, < 2R,

then for R, N large enough, there exist C. > 0 and absolute constant
Ky > 0, such that
(4.22) [ Wn — @y (jo.1]) < CeKa

R5Om N- £ .
Indeed, we decompose [0, T1] into kg intervals of size 7 = 79(R) = R~190™,

and denote by

xi = |[Wn = Wy ()
where Ji, = (k7o, (k + 1)70]. By (4.13), (4.18), (4.19), (4.20), (4.12), we

deduce that
1 . 1
x < Cetyf RP™x, + Coxp—q + C-R37oN~2 + C.1g RPOm y—B+2me

For R large enough, 79 small enough such that
1

1
057'04 RQOm < 5,

we deduce that (provided that € < 8/2m)
1 £
x, < 2Cpxp—1 + Ce1g ROMN~3,
This yields
SN SN 1 50m Ar— £ x 1 50m nT— £
Xp < (200) 0 X + (200) 70 6'51717'02 R N2 K CE(QCO) 70 ,1—77'02 R N7z,

Hence (4.22) follows.

To finish the proof, it suffices to prove the bootstrap assumption (4.21)
up to time T} = T, with slightly smaller upper bound R!? instead of 2R,
More precisely, Let T, < T7 be the largest number such that

lwn [y (o,7.)) < R*

Since for fixed N, wy solves an ODE in the finite-dimensional space, we
deduce that the function

t— [lwnllys1 (0.0
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is continuous, thus T, > 0. On the other hand, if T, < T3, again by conti-
nuity, there exists ¢, € (0,77 — T%), such that

lwnllye (o,r46.) < RO+ 1< 2R".
Therefore, we deduce that (4.22) holds with T} = [0, T\ + d.]. In particular,
lwnllyer (o1 46,7y < R+ Co(Ko)™R ™" N=% < R(1+ C.N~%) < 2R,

provided that N is large enough such that C.N~% < 1. This contradicts
to the definition of T,. So we must have T, = T. The proof of Lemma 4.5
is complete. g
Proof of Proposition 4.2. — First we note that by choosing Ry =
(log N)? for < 1, Lemma 4.5 allows to prove the almost sure convergence
of the dyadic sequence. To prove the convergence of the full sequence, we
first define properly the good data set. For each dyadic number N, let
Ry = (log N)?, My = (log N)4° for Ag > 1,0 < 6 < 1. Define
3 2m—1 2N; o )
B = (V) () AT = TRl et <875
1=0 k=4 N;=

[ TNl [ Liom e < NHBTe,

o(k— l)
I

k—3)5—
LlOmW —(B3-1)p—2¢,1 N( )o—e
Yo, N = {Hq_;N(t)&HL%UmW;ﬁffyoc < Ry, ||TN||L%0mW;/376YOO < RN} ,

€

3
<>l
Y3 N ZZDJ{” promy 1R 1+ ”(I) <([0,7]) >~ RN}’
ﬁ%ﬁl HTNHmeW -1 < Ry,
= o(k— z) _3)8—
=0 k=4 HT L107"W —(3—1)B—2e, l <N(k 3)B—e

(VL)

o ol _
m{nTN—T g sret <N }

25’]\7 = { sup ‘lﬂJMNéN(t)Q_S’HmeWfﬁ*E,OO < ]-} .
N<N1<2M, £

LEMMA 4.6. — There exist C > 0 and 6(¢) > 0 such that for i €
{1,2,3,4,5}, there holds

(S ) < CN 0O,

Proof. — In order not to perturb the main line of argument, we set aside
the proof of this lemma in Appendix B O
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Next, we define
5

=[] T~
j=1

Then by Lemma 4.6, we have
> ASR) < oo
Ne2N

Therefore, by Borel-Cantelli, the set

3 = lim sup Xo;

J—00
has full /i measure, i.e. u(¥X) = 1. To finish the proof, we need to show that
for any ¢ € X, O (t)¢ converges to B(t)¢ in C([0,T]; H; ).
By definition, there exists Ny such that (5 € Xy for all dyadic number
N > Ny. Pick Ny € [N, 2N], not necessarily a dyadic number, our goal is
to compare Wy, and W in L{*H: . We will essentially follow the argument

of the proof of Lemma 4.5, with an additional care that we do not have the
bound

lwn, [ z20m 2o 0,77y < NP2 Ry
in a priori. Nevertheless, the choice of ¥ provides a control
1L
i Wl o a=eroe o,y < 1
Thus by the Sobolev embedding and Bernstein’s inequality,
||wN1||L§oW§B*Ev°° < H7TMN'LUN1 ”L?cw;ﬁffﬁc +1
S Iy wnll gy p-e0e + Mullwn, —wn|peps +1.

By Bernstein again,

o=

(4.23)  flwn, [|zsere Se H7T2N1wN1HL?OWzE,

+3
5 Nlﬁ EHle HL?WI*B*&Oc
S NP Ry + (log N) O NP |wn, — wl| oo o1,
for N large enough.
Now we argue as in the Step 2 in the proof of Lemma 4.5. Assuming first
that for some Ty € (0,7),

(4.24) lwn, llyer o,y < 2RN

holds. Consequently, we have very roughly estimate

“le - U7| Ys1([0,T4]) < 3R11\9
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Thanks to (4.23) and the choice Ry = (log N)?, we deduce that

llwn, ||L;>°Lgo([0,T1]) < NP0,

The same iterative argument yields(by choosing 79 = Rﬁwm)

- - 100m _& _ &
(425) H’LUN1 — w||y51([0,T1]) < CE(K())TRN N7z K CgN 1,

provided that § < 1 such that R(N)'0™ = (log N)!%9m? < ¢(log N).

Following the same bootstrap argument as in Step 2, we deduce
that (4.25) is indeed true up to time 7. This completes the proof of Propo-
sition 4.2.

Appendix A. Nonlinear estimates and convolution
inequalities

LEMMA A.1. — Let o € (8,1) and s € (1 — %,4a — 3). Let ¢ be suffi-

ciently small such that

(A.1) 1—%+2€<s<4a—3—25,304—2>4g.

Then we have the following bounds:
[Foll zr-ca- S I Foll zr-sa-ar-2,
1 o S IE, —o-na-a—2e2 lull
forl=1,2,3.
Proof. — The first inequality is trivial. To prove the second, by duality,

it suffices to show that, for any G € H*° such that ||G||ga-s < 1 and
He L%, we have

(A2) H - (V)02 0 Gy da| < H] 1 [ully--

T2
By Holder and Lemma 2.1, the left hand side of (A.2) is bounded by

N, 2 (09 @), ez G 2 VG
where v = (3 —1)(1 — &) + 2. Using the Sobolev embedding
HO™5(T2) s LTt (T2), H *(T?) — W Tarsry (T2),

l
Hu| JN -}

2
L1+ta—s—2e—v

the two norms of G are controlled by ||G||ge-s < 1. Thanks to the con-
ditions s > 1 — § + 2¢ and 3a — 2 > 4¢, we have #l_v_% < %_s, for
[l =1,2,3, thus by Hélder,

! !
[ p—— S 725
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When I =1, v = 2(1 — «) + 2¢, since 3a— 2 > 4e, by Holder and Sobolev’s
embedding we have

(V)20 2y S V)2 2y

S el

2 2
LIFfa-s—2¢ L1+2(I—a)+2e—s

For I = 2,3, using Lemma 2.1, Holder’s inequality and the constraint (A.1),
we get

vl -1 l
8/ R 1 P i S 1/ P

This completes the proof of Lemma A.1. d

LEMMA A.2. — Let 0 < 11 < 1n2 and m1 + 12 > d. Then there exists
Cy > 0, such that for every ko € Z%:

(1) If ny < d, we have

Z 1 o Co
kezd (kym (k — ko)z = (ko)m+na—d’

(2) If ny =d, then

1 Co log(ko)
2 TR S G

(3) Ifny > d, then

1 Co
Z (kym (k — ko)m < (ko)m "

kezd

4) If @ < n < d, then we have the bound

Z 1 1 < 1
ko (k0 ™~ (Eynn—(n—1)d ’
(k‘1,..<,kn)e(Zd)"< )" (k)" ™ (k)
kit-+kn=Fk

Proof. — The proof follows from elementary calculus. O

Remark A.3. — For (4), we only need 7 > @ for the left hand side
above to be summable, while 7 < d is needed in order for the exponent of
(k) to be —nn + (n — 1)d.

COROLLARY A.4. — Let I € N and 1 < j < I. Then for all a €
(0,1),0 <e < 1andy=1I(1—«)+e, there exists Cy . > 0, such that for
any N < M, we have

!
—2
5 < CoeN72,

1 1
Z <k1+...+kl>27H<k.

N<|k1|yos|kj | <M i=1 V"
[kjtaleeo k| <M
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Proof. — Thanks to the assumption on « and 7, we repeatedly ap-
plied (1) in Lemma A.2 [ — 1 times, we control the desired summation by

Z <k1>72(a+'y7(l71)(17a)) — Z <k1>72(1+s) < N725.

N<[|k1|<M N<|k1|<M

This completes the proof. 0

Appendix B. Large deviation estimates

LEMMA B.1. — Let € be a random process of the form such that for any
s,t € R, &(s,-) and &(t,-) have the same law that is stationary in x € T?2.
Assume that for some v € R, ((V)7§)(t,x) belongs to H;, the space of
Wiener chaos of degree less than [, and moreover

sup E[[[€(, @) [|7 (2] < A2
teR

for some A > 0. Then for any vy; < v, there exist C., 4., Cy,q,r > 0, such
that forall A >1,T>1andq>2,r > 2,

_2 2.2
(B-1)  P[llgllcawzr(or1xm2)) > Al < Cqrgr exXp(—Cyqr T T ATTAT).
Proof. — For any p > q,r, by Chebyshev,

P[”fHLgW}T([O,T]xT?)) > )‘] V Aﬂ E[HgHLqW"’ ([0 T]xT"’)}'
By Minkowski,

<=

<KVt @)l papr oy

Since for fixed ¢,z ((V)7€)(t,x) € Hg; and £(t) is stationary in space and
time, by Proposition 2.4, we deduce that

1 1 1,1
(V) €t @)l g e < CpETs gggE[us(t)niI;J% < Cp2Ti A

[E”f( )”qu“f "([o, T]><T2)]

Therefore,

PllElcawrroaxm) > A € =2

CP_ pFTe AP
By optimizing the choice of p, the proof of Lemma B.1 is now complete. [

LEMMA B.2. — If E be a stationary random distribution on T¢ and
belongs to Wiener chaos of order n. Let {Z(k)}pcze denote its Fourier
coefficients. If there exists v € R and Cy > 0 such that

E[E(k)* < Co(k) >

ANNALES DE L’INSTITUT FOURIER



WEAK UNIVERSALITY FOR WAVE EQUATIONS 43

for every k € Z¢, then for every o > and every q € [1,+00), we have
BIIZ1% . ray + BIEIE - pay < €

where C' depends on q,n,y,0,d and Cy only. In particular, the bound is
uniform in the class of stationary processes in order n that satisfies the
above bound for Fourier coefficients.

Proof. — The statement and proof is essentially identical to [19, Propo-
sition 3.6]. O

LEMMA B.3. — Recall that

law Z 9k ik-x
WN = </€>a (S
keZ2?, |k|<N

is the truncated fractional Gaussian field on T?2. If c > 0,60 > 0 andn € N
satisfy

ocANl>n(l—a)—0>0,
then for every q € [1,+00), there exists C = C(q,n, «,c,0) such that

sup(N B[ W57 [-.) + sup(NVE[WR-.) < C .

As a consequence, the same is true when C~¢ is replaced by WP for
every p > 1.

Proof. — Without loss of generality, we can restrict to the situation
where n(1 —a) — 60 > 0. Also, since W5 belongs to Wiener chaos of order
n, it suffices to prove for ¢ = 2. By explicit computation, we have

EWy k)P =E| Y Wrlk)o-oWnlkn)

byt tkn
=k

> Wt oo Wn(ln)

(SRR

=nl > E[Wx(k)P - E[Wy (ko)
k14 +kn

1
: Tsa 77 e Lk <N Lk, <N -
kl-;kn (k)2 - (k)2 k1] o |
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‘We have

N“2E Wi (k)

Hence, we get

_— 1 1
—26 on < § e
N E‘WN k)] 5 <k1>2a+2—9 <kn>2a+% ’

By (4) of Lemma A.2, if 2(”7;1) <20+ % < 2, we have the bound
— 2
N—ZGE ‘W]%n(k?)‘ 5 <k,>—2(9+1—n(1—a)) — <k>—2+2(n(1—a)—0 )

Note that the above requirement is equivalently to our assumption
O<n(l—a)—0<1.
Now by Lemma B.2, if
o>n(l—a)—0,
the desired bound follows. We have thus completed the proof of the
Lemma B.3. O
Now we provide the proof of Lemma 4.6:

Proof of Lemma 4.6. — From the Sobolev embedding W—5-5% —
W—A=5° and Lemma 4.4, we deduce that there exist C > 0 and 6§ =
d(g) > 0, such that

8
e

(5 N) + (35 ) < Ce™®@.

To estimate (3¢ ) for i =1, 3,4, by Lemma B.1, it suffices to show that
forall k > 4,0<1<3,and N < N; < N, we have the following estimates:

B2 BT TR ] F B[ - 2] S N
B3)  E[TNE ]S 1,

B4)  E[IT¥I75] S NPT,

B5)  E[Tn 12 ensa] Se N2E95<,

Note that (B.3), (B.4), (B.5) are consequences of Lemma B.3, hence it
remains to prove (B.2).
Let M > N and denote by v = [ + €. Note that under the law u,
?\i — T;}\ﬁf is the same as ¢3¢ — ¢3. Denote by

gr(w) ik = ~2 —2

¢N7M = Z ﬁe ' s UN,M =O0OM 7&?\]
N<|k|KM V +| |
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Using the white noise functional representation as in Section 2,

ON () = N Win(a,ys  ONM(T) = ONWy 1)

where

1k (x+-)
=2 T

nn(z,-) = Z L ke,
N<lren V1 Ik

Combining (2.6), we can write

l
[ I
=0t = 3 ()7 H W s (W)
j=1

Using (2.7) and the independence of Wy, _ (x..), Wiy as(a,.), for j € {1,..., 1},
we have

5?\{ ~2(l ])E[HH W (. ))Hl J(WUN,M(xv'))HiI—’Y]

1 1 .
~ 3 G 27H<kj>2a < N7Z

(B, ks IS M, ) j=1
N<|kjqalseos kil | k| <M
o +--r+ kg k=0

~

thanks to Corollary A.4. The proof of Lemma 4.6 is now complete. d

Appendix C. Proof of the Strichartz estimate on T

LEMMA C.1. — Let K]i (t,z —y) be the Schwartz kernel of the operator
etP" P, j > 0. Then for any t # 0,

jd(1-%)
(C.1) sup |KF(t,2)| < <z 2
z€T4 |t‘§

Consequently, for t > 0 and 2 < r < 00,

e 1-4)(1-2)
(C.2) 12" Py fllpriray —IIijHLde),

|t|%(1—%)

where 1’ is such that % + % =1.
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Proof. — The kernel Kji (t, z) takes the form
z) _ Z (pj(k)eit 1+|k\2a+ik-z.
keZd
From the Poisson summation formula, we have
K(t, 2) Z ) eEVIHEN (4 4
meZzZa

(C.3) = gJd Z njfm(t,z).

meZd

jm

Kt 2) 1:/ o(€) eIV IHIEPHiE Y (4m) g¢
R
Consider the phase function

OF, (€)= V27U + €22 + 207 (2 4 m) - €,

then/f n(t2) =1, (2j0‘t),where

Izﬂn(/\t) ::/ @(5) eiAt@f“n(g) de.
Rd
Note that

Vb, (€) = taj?——S

/9—2ja + |€|2o¢

+ 20079 (5 1)

and on supp(yp),

IVedE, | 21+ 270D m|, V|m| > 2

t,z,m

Moreover, on supp(y), |det(V2<I>i

t,z,m

(€))| = 1. By the stationary phase
lemma, we have

|Z.m (AE)] <

, m| <2
|A\t|%

and

Cn
Zem(A)| S - 5

for all N € N. Plugging into (C.3), we obtain (C.1).
Replacing e**P” P; by eFitD" P , where P, is a similar Littlewood—

Im| =2

Paley projector such that P, 7P; = P, the same kernel estimate holds for
etitP” P, Consequently, we have

Qﬂ'd(lf%)

1%

|2 P £ ey < 1Pl (re)-
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Note that e**P” is an isometry on L?(T?), applying the Riesz-Thorin
interpolation theorem, we deduce that for all 2 < r < oo,

gpi(1-3) (1-3)

L (T4) < W”ijHLr'(Td)v

S

” ej:itD‘x ij‘

d
t|2

4

and this completes the proof. O

Now we are able to prove Proposition 2.2. The solution
(C.4) Pu+ (D) u=F, (u,0u)|i—0 = (uo,u1)

can be written as

u(t) = cos(tD)ug + Mm + /t M
0

Do Pa F(t')dt'.

It suffices to prove the homogeneous estimate

(C.5) | " f||L3L;(Rde) S ”f”H”’qu(Td)

and the following inhomogeneous estimate

(C.6) H /R HE=P Gy ar! SNl Ly pvar (Rxme)s

LILT (RXTY)

thanks to the Christ—Kiselev Lemma ([8]).
We perform a standard T7* argument. Fix a sharp admissible pair (g, ),
ie.

2a(3-1)r @ra 2o,
define

©7) L2 LI T(f) = et Py

(C.8) T LD — 12, TrG = /Reww P,G(t)dt.

Using (C.1) and the Hardy-Littlewood—Sobolev inequality, we deduce that

” [ powa] <D 0Dpa,,,,,

LiLy
Since

1/2
1Tillzamneze = 1T i cyie = BTN Ly
we deduce further that for any admissible pairs (¢1,71), (¢,7),

1T lzocgir S 27902033,
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Therefore, for any admissible pairs (q1,71), (¢, 1),
1T < 200(-8) (1-3-2)
IL 1 L‘ILT

In particular, for ¢4 = 00,71 = 2, we have

H e:l:itD” ij”LgL;, + H/ e:l:i(tﬂ:')D‘1 PjG(t/) dat’
R

Lt L,l,
j'Yq,T'
S 2

P fllzz + 2770

P;GllLirs

Taking the {2 norm in j, we obtain that

I oTitD” ij”l?LgL;j + H/Rezl:i(tt’)Da PjG(t/)dt,

IPLILy
S Il gzar + Gl s przar

Since 2 < r < 00,q = 2, by the Minkowski inequality and the Littlewood—
Paley square function theorem,

[ Fllzagr ~ HPjF”L;fL;l? < HFHl?LfL;v

thus we have proved (C.5) and (C.6). This completes the proof of Proposi-
tion 2.2.

Appendix D. Convergence of the linear coefficient

In this section, we prove Proposition 1.4. Recall that 53, = N2(1*a)012\,.
1 1 1
— N2(1-2)52 — / de.
471'2 |]§N 1 + |k|2a 471'2 §‘<N |§|20¢

In order to prove the convergence of N2(1=)(@; y —ay), the key is to show
that:

LEMMA D.1. — Assume that o € (3,1), Then
0% =02+ b N21-9) L o(N ).

_ 1
b= 47r22/ <k¢°1+k|2a |§|2a)d5’

keZ?
where (Cy)pez2 are unit cubes [k, k™ +1] x [£®) k3 +1].

where

Proof. — We denote

N21=9) (03 — 0%) = ﬁ(l +1y),
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where
(D.1) Iy= Y ! / 1 d¢
octien LIRS Jigan &2

We decompose

8
ZN::ZQQ{k:O<|k|<N}:UAj, By ={{:[{| <N} =

j=1

-
S

<
Il
-

where
A1 =

k=Y E?) e Zy kM >0,k2 >0},
U1 = (

W @y e By, eM > 0,6® > 0},

Uy = ¢ @y e By : €W <0,6@ > 0},

A3 =

{

{¢=

Ay = {k= (kD k?) e zZy : kW <0,k® > 0},
{&¢=(

{

Us == {

k=Y ) e zy kM <0,k® <0},
(5(1)75(2)) € By : 5(1) < 0’5(2) < 0},
Ay = {k=(ED k@) e Zy : kD > 0,k2 <0},
Upi={&= (W, ®) e By : ¢ > 0,6 <o}
For j =1,2,3,4, we define

1 1
Iy, = _ — — d¢&.
%= 2 TR [,

Then by inclusion and exclusion,

4
1
D.2 I :5 In,; — E —_—.
(D.2) N= L2 NG 1+ |kf2e
Jj=1 kW E(2) g
0<|k|<N

By symmetry, it suffices to derive a formula for I ;. Fix k = (k(l)7 k(Q)) €
A1, we denote

Cr = {6 = (€D, e®) kD <€D <k 41,5 = 1,2},

and
el = {k = kM, k@) 0 < kD k® < 1}
the cubic with bottom left vertex k and top right vertex 8(k) == (k™) +

1,53 4 1). We have
Z /CkﬂBN |€‘2a

LJﬁéZLmMWMk@
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Let N
Uy =00 |J Gk
keA,
Since the number of cubes C}, intersecting with |k| = N is O(N), we have

[ _opr),
U

7o, 1612
Thus
1
Ing = — / /( )dg+0(N—<2a—1>.
o e t 2 ) i e )

We have similar formulas for Iy 2,In3,In 3. Adding them together and
noticing that the lattices on two axes have been added twice, we have

4
d¢

Z IN’j =~ 2c

= cuc®uc®uc® (¢l

1 1 1
+Z/ (1+|k|2as|2a>d“ > T

k€Zn kMW —o
0<|k|<N

+O( —(2a— 1))

Since o > %, we have

2 /c (1+|kl20‘ - |€I20‘>

k€eZn
1 ) 1-2
/ — d¢ + O(N"—29),
20 20
P <1+|k 5§

1 1
— =2 — L O(N'72%),
Z 1+|k|2a Z ]_-|—|m|2a + ( )

kD@ =g m#0,meN
0<|k|<N

‘We have

1
ZIN’J =2 / ( ‘“¢°1+|k\2a - |£2a)dg

keZ? 1
2 —— + O(N'2%),
+ Z 1+ |m|2a + ( )
0#meZ

and

Therefore,

]' 1-2«
v=2 / (1k¢°1+|k|m - |52a>d“0(N )

keZ?

This completes the proof. O
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Proof of Proposition 1.4. — By definition,

1 [ 1 _ 22 1 L2
a1,]\7 —ay = 5/ VII(Z) (\/2—7.[_0_6 29N _ﬁ 8_2‘7> dz.
— 00 N

By Lemma D.1 and the fact that o > %7 we get

b
N2(1_a)(UN — 0‘) — i + EN,

where
ey = O(N~ =) 4 (N 207,

we finally obtain that

by [ 1 22
(D.3) N2 G, y—a)) = —1/ 0o < e%) V" (2)dz +en.

4o J_ 2o

This completes the proof of Proposition 1.4. g
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