[Sur la non-trivialité du sous-groupe de torsion du noyau de Johnson abélianisé]
Le noyau de Johnson est le sous-groupe du groupe de difféotopie d’une surface fermée orientée qui est engendré par les twists de Dehn le long de courbes simples, fermées et séparantes. L’abélianisation rationnelle du noyau de Johnson a été calculée par Dimca, Hain et Papadima, et une forme plus explicite a ensuite été apportée par Morita, Sakasai et Suzuki. À partir de ces résultats, Nozaki, Sato et Suzuki ont utilisé la théorie des invariants de type fini des -variétés pour démontrer que le sous-groupe de torsion du noyau de Johnson abélianisé est non-trivial.
Dans cet article, nous donnons une démonstration purement 2-dimensionnelle de la non-trivialité de ce sous-groupe de torsion et nous produisons une borne inférieure pour son cardinal. Notre principal outil est l’action du groupe de difféotopie sur l’algèbre de Lie de Malcev du groupe fondamental de la surface. En utilisant les mêmes techniques infinitésimales, nous apportons une autre description, de nature diagrammatique, de l’abélianisation rationnelle du noyau de Johnson, et nous traitons aussi le cas d’une surface orientée avec une composante de bord.
The Johnson kernel is the subgroup of the mapping class group of a closed oriented surface that is generated by Dehn twists along separating simple closed curves. The rational abelianization of the Johnson kernel has been computed by Dimca, Hain and Papadima, and a more explicit form was subsequently provided by Morita, Sakasai and Suzuki. Based on these results, Nozaki, Sato and Suzuki used the theory of finite-type invariants of -manifolds to prove that the torsion subgroup of the abelianized Johnson kernel is non-trivial.
In this paper, we give a purely -dimensional proof of the non-triviality of this torsion subgroup and provide a lower bound for its cardinality. Our main tool is the action of the mapping class group on the Malcev Lie algebra of the fundamental group of the surface. Using the same infinitesimal techniques, we also provide an alternative diagrammatic description of the rational abelianized Johnson kernel, and we include in the results the case of an oriented surface with one boundary component.
Révisé le :
Accepté le :
Première publication :
Keywords: Surface, mapping class group, Torelli group, Johnson kernel, Johnson homomorphisms
Mots-clés : Surface, groupe de difféotopie, groupe de Torelli, noyau de Johnson, homomorphismes de Johnson
Faes, Quentin 1 ; Massuyeau, Gwénaël 2
@unpublished{AIF_0__0_0_A166_0, author = {Faes, Quentin and Massuyeau, Gw\'ena\"el}, title = {On the non-triviality of the torsion subgroup of the abelianized {Johnson} kernel}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3713}, language = {en}, note = {Online first}, }
TY - UNPB AU - Faes, Quentin AU - Massuyeau, Gwénaël TI - On the non-triviality of the torsion subgroup of the abelianized Johnson kernel JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3713 LA - en ID - AIF_0__0_0_A166_0 ER -
Faes, Quentin; Massuyeau, Gwénaël. On the non-triviality of the torsion subgroup of the abelianized Johnson kernel. Annales de l'Institut Fourier, Online first, 51 p.
[1] On the filtration of topological and pro- mapping class groups of punctured Riemann surfaces, J. Math. Soc. Japan, Volume 48 (1996) no. 1, pp. 13-36 | DOI | MR | Zbl
[2] A functorial LMO invariant for Lagrangian cobordisms, Geom. Topol., Volume 12 (2008) no. 2, pp. 1091-1170 | DOI | MR | Zbl
[3] On finite generation of the Johnson filtrations, J. Eur. Math. Soc., Volume 24 (2022) no. 8, pp. 2875-2914 | DOI | MR
[4] Tree homology and a conjecture of Levine, Geom. Topol., Volume 16 (2012) no. 1, pp. 555-600 | DOI | MR | Zbl
[5] Geometric filtrations of string links and homology cylinders, Quantum Topol., Volume 7 (2016) no. 2, pp. 281-328 | DOI | MR | Zbl
[6] The abelianization of the Johnson kernel, J. Eur. Math. Soc., Volume 16 (2014) no. 4, pp. 805-822 | DOI | MR | Zbl
[7] Arithmetic group symmetry and finiteness properties of Torelli groups, Ann. Math., Volume 177 (2013) no. 2, pp. 395-423 | DOI | MR | Zbl
[8] Topology and geometry of cohomology jump loci, Duke Math. J., Volume 148 (2009) no. 3, pp. 405-457 | DOI | MR | Zbl
[9] Homology of free abelian covers. I, Bull. Lond. Math. Soc., Volume 19 (1987) no. 4, pp. 350-352 | DOI | MR | Zbl
[10] On finiteness properties of the Johnson filtrations, Duke Math. J., Volume 167 (2018) no. 9, pp. 1713-1759 | DOI | MR | Zbl
[11] Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, Graphs and patterns in mathematics and theoretical physics (Proceedings of Symposia in Pure Mathematics), Volume 73, American Mathematical Society, 2005, pp. 173-203 | DOI | MR | Zbl
[12] Variations of knotted graphs. The geometric technique of -equivalence, Algebra Anal., Volume 12 (2000) no. 4, pp. 79-125 | MR | Zbl
[13] The Kontsevich integral and Milnor’s invariants, Topology, Volume 39 (2000) no. 6, pp. 1253-1289 | DOI | MR | Zbl
[14] Tree level Lie algebra structures of perturbative invariants, J. Knot Theory Ramifications, Volume 12 (2003) no. 3, pp. 333-345 | DOI | MR | Zbl
[15] Claspers and finite type invariants of links, Geom. Topol., Volume 4 (2000), pp. 1-83 | DOI | MR | Zbl
[16] Symplectic Jacobi diagrams and the Lie algebra of homology cylinders, J. Topol., Volume 2 (2009) no. 3, pp. 527-569 | DOI | MR | Zbl
[17] From mapping class groups to monoids of homology cobordisms: a survey, Handbook of Teichmüller theory. Volume III (IRMA Lectures in Mathematics and Theoretical Physics), Volume 17, European Mathematical Society, 2012, pp. 465-529 | DOI | MR | Zbl
[18] Infinitesimal presentations of the Torelli groups, J. Am. Math. Soc., Volume 10 (1997) no. 3, pp. 597-651 | DOI | MR | Zbl
[19] An abelian quotient of the mapping class group , Math. Ann., Volume 249 (1980) no. 3, pp. 225-242 | DOI | MR | Zbl
[20] Quadratic forms and the Birman-Craggs homomorphisms, Trans. Am. Math. Soc., Volume 261 (1980) no. 1, pp. 235-254 | DOI | MR | Zbl
[21] The structure of the Torelli group. I. A finite set of generators for , Ann. Math., Volume 118 (1983) no. 3, pp. 423-442 | DOI | MR | Zbl
[22] The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves, Topology, Volume 24 (1985) no. 2, pp. 113-126 | DOI | MR | Zbl
[23] The structure of the Torelli group. III. The abelianization of , Topology, Volume 24 (1985) no. 2, pp. 127-144 | DOI | MR | Zbl
[24] The logarithms of Dehn twists, Quantum Topol., Volume 5 (2014) no. 3, pp. 347-423 | DOI | MR | Zbl
[25] Generalized Dehn twists on surfaces and homology cylinders, Algebr. Geom. Topol., Volume 21 (2021) no. 2, pp. 697-754 | DOI | MR | Zbl
[26] Labeled binary planar trees and quasi-Lie algebras, Algebr. Geom. Topol., Volume 6 (2006), pp. 935-948 | DOI | MR | Zbl
[27] Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. Fr., Volume 140 (2012) no. 1, pp. 101-161 | DOI | Numdam | MR | Zbl
[28] Characterization of -equivalence for homology cylinders, J. Knot Theory Ramifications, Volume 12 (2003) no. 4, pp. 493-522 | DOI | MR | Zbl
[29] Morita’s trace maps on the group of homology cobordisms, J. Topol. Anal., Volume 12 (2020) no. 3, pp. 775-818 | DOI | MR | Zbl
[30] Casson’s invariant for homology -spheres and characteristic classes of surface bundles. I, Topology, Volume 28 (1989) no. 3, pp. 305-323 | DOI | MR | Zbl
[31] On the structure of the Torelli group and the Casson invariant, Topology, Volume 30 (1991) no. 4, pp. 603-621 | DOI | MR | Zbl
[32] Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J., Volume 70 (1993) no. 3, pp. 699-726 | DOI | MR | Zbl
[33] The extension of Johnson’s homomorphism from the Torelli group to the mapping class group, Invent. Math., Volume 111 (1993) no. 1, pp. 197-224 | DOI | MR | Zbl
[34] A linear representation of the mapping class group of orientable surfaces and characteristic classes of surface bundles, Topology and Teichmüller spaces (Katinkulta, 1995), World Scientific, 1996, pp. 159-186 | DOI | MR | Zbl
[35] Structure of the mapping class groups of surfaces: a survey and a prospect, Proceedings of the Kirbyfest (Berkeley, CA, 1998) (Geometry and Topology Monographs), Volume 2, Geometry and Topology Publications (1999), pp. 349-406 | DOI | MR | Zbl
[36] Torelli group, Johnson kernel, and invariants of homology spheres, Quantum Topol., Volume 11 (2020) no. 2, pp. 379-410 | DOI | MR | Zbl
[37] Abelian quotients of the -filtration on the homology cylinders via the LMO functor, Geom. Topol., Volume 26 (2022) no. 1, pp. 221-282 | DOI | MR | Zbl
[38] Bieri–Neumann–Strebel–Renz invariants and homology jumping loci, Proc. Lond. Math. Soc., Volume 100 (2010) no. 3, pp. 795-834 | DOI | MR | Zbl
[39] Two theorems on the mapping class group of a surface, Proc. Am. Math. Soc., Volume 68 (1978) no. 3, pp. 347-350 | DOI | MR | Zbl
[40] An infinite presentation of the Torelli group, Geom. Funct. Anal., Volume 19 (2009) no. 2, pp. 591-643 | DOI | MR | Zbl
[41] The Johnson homomorphism and its kernel, J. Reine Angew. Math., Volume 735 (2018), pp. 109-141 | DOI | MR | Zbl
[42] The second Johnson homomorphism and the second rational cohomology of the Johnson kernel, Math. Proc. Camb. Philos. Soc., Volume 143 (2007) no. 3, pp. 627-648 | DOI | MR | Zbl
Cité par Sources :