On the non-triviality of the torsion subgroup of the abelianized Johnson kernel
[Sur la non-trivialité du sous-groupe de torsion du noyau de Johnson abélianisé]
Annales de l'Institut Fourier, Online first, 51 p.

Le noyau de Johnson est le sous-groupe du groupe de difféotopie d’une surface fermée orientée qui est engendré par les twists de Dehn le long de courbes simples, fermées et séparantes. L’abélianisation rationnelle du noyau de Johnson a été calculée par Dimca, Hain et Papadima, et une forme plus explicite a ensuite été apportée par Morita, Sakasai et Suzuki. À partir de ces résultats, Nozaki, Sato et Suzuki ont utilisé la théorie des invariants de type fini des 3-variétés pour démontrer que le sous-groupe de torsion du noyau de Johnson abélianisé est non-trivial.

Dans cet article, nous donnons une démonstration purement 2-dimensionnelle de la non-trivialité de ce sous-groupe de torsion et nous produisons une borne inférieure pour son cardinal. Notre principal outil est l’action du groupe de difféotopie sur l’algèbre de Lie de Malcev du groupe fondamental de la surface. En utilisant les mêmes techniques infinitésimales, nous apportons une autre description, de nature diagrammatique, de l’abélianisation rationnelle du noyau de Johnson, et nous traitons aussi le cas d’une surface orientée avec une composante de bord.

The Johnson kernel is the subgroup of the mapping class group of a closed oriented surface that is generated by Dehn twists along separating simple closed curves. The rational abelianization of the Johnson kernel has been computed by Dimca, Hain and Papadima, and a more explicit form was subsequently provided by Morita, Sakasai and Suzuki. Based on these results, Nozaki, Sato and Suzuki used the theory of finite-type invariants of 3-manifolds to prove that the torsion subgroup of the abelianized Johnson kernel is non-trivial.

In this paper, we give a purely 2-dimensional proof of the non-triviality of this torsion subgroup and provide a lower bound for its cardinality. Our main tool is the action of the mapping class group on the Malcev Lie algebra of the fundamental group of the surface. Using the same infinitesimal techniques, we also provide an alternative diagrammatic description of the rational abelianized Johnson kernel, and we include in the results the case of an oriented surface with one boundary component.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3713
Classification : 57K20, 20F38, 20F34, 20F12, 20F14, 57K16
Keywords: Surface, mapping class group, Torelli group, Johnson kernel, Johnson homomorphisms
Mots-clés : Surface, groupe de difféotopie, groupe de Torelli, noyau de Johnson, homomorphismes de Johnson

Faes, Quentin 1 ; Massuyeau, Gwénaël 2

1 Institute of Mathematics, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich (Switzerland)
2 Université Bourgogne Europe, CNRS IMB UMR 5584 21000 Dijon (France)
@unpublished{AIF_0__0_0_A166_0,
     author = {Faes, Quentin and Massuyeau, Gw\'ena\"el},
     title = {On the non-triviality of the torsion subgroup of the abelianized {Johnson} kernel},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3713},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Faes, Quentin
AU  - Massuyeau, Gwénaël
TI  - On the non-triviality of the torsion subgroup of the abelianized Johnson kernel
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3713
LA  - en
ID  - AIF_0__0_0_A166_0
ER  - 
%0 Unpublished Work
%A Faes, Quentin
%A Massuyeau, Gwénaël
%T On the non-triviality of the torsion subgroup of the abelianized Johnson kernel
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3713
%G en
%F AIF_0__0_0_A166_0
Faes, Quentin; Massuyeau, Gwénaël. On the non-triviality of the torsion subgroup of the abelianized Johnson kernel. Annales de l'Institut Fourier, Online first, 51 p.

[1] Asada, Mamoru On the filtration of topological and pro-l mapping class groups of punctured Riemann surfaces, J. Math. Soc. Japan, Volume 48 (1996) no. 1, pp. 13-36 | DOI | MR | Zbl

[2] Cheptea, Dorin; Habiro, Kazuo; Massuyeau, Gwénaël A functorial LMO invariant for Lagrangian cobordisms, Geom. Topol., Volume 12 (2008) no. 2, pp. 1091-1170 | DOI | MR | Zbl

[3] Church, Thomas; Ershov, Mikhail; Putman, Andrew On finite generation of the Johnson filtrations, J. Eur. Math. Soc., Volume 24 (2022) no. 8, pp. 2875-2914 | DOI | MR

[4] Conant, James; Schneiderman, Robert; Teichner, Peter Tree homology and a conjecture of Levine, Geom. Topol., Volume 16 (2012) no. 1, pp. 555-600 | DOI | MR | Zbl

[5] Conant, James; Schneiderman, Robert; Teichner, Peter Geometric filtrations of string links and homology cylinders, Quantum Topol., Volume 7 (2016) no. 2, pp. 281-328 | DOI | MR | Zbl

[6] Dimca, Alexandru; Hain, Richard; Papadima, Ştefan The abelianization of the Johnson kernel, J. Eur. Math. Soc., Volume 16 (2014) no. 4, pp. 805-822 | DOI | MR | Zbl

[7] Dimca, Alexandru; Papadima, Ştefan Arithmetic group symmetry and finiteness properties of Torelli groups, Ann. Math., Volume 177 (2013) no. 2, pp. 395-423 | DOI | MR | Zbl

[8] Dimca, Alexandru; Papadima, Ştefan; Suciu, Alexander I. Topology and geometry of cohomology jump loci, Duke Math. J., Volume 148 (2009) no. 3, pp. 405-457 | DOI | MR | Zbl

[9] Dwyer, William G.; Fried, David Homology of free abelian covers. I, Bull. Lond. Math. Soc., Volume 19 (1987) no. 4, pp. 350-352 | DOI | MR | Zbl

[10] Ershov, Mikhail; He, Sue On finiteness properties of the Johnson filtrations, Duke Math. J., Volume 167 (2018) no. 9, pp. 1713-1759 | DOI | MR | Zbl

[11] Garoufalidis, Stavros; Levine, Jerome Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, Graphs and patterns in mathematics and theoretical physics (Proceedings of Symposia in Pure Mathematics), Volume 73, American Mathematical Society, 2005, pp. 173-203 | DOI | MR | Zbl

[12] Gusarov, Mikhail N. Variations of knotted graphs. The geometric technique of n-equivalence, Algebra Anal., Volume 12 (2000) no. 4, pp. 79-125 | MR | Zbl

[13] Habegger, Nathan; Masbaum, Gregor The Kontsevich integral and Milnor’s invariants, Topology, Volume 39 (2000) no. 6, pp. 1253-1289 | DOI | MR | Zbl

[14] Habegger, Nathan; Pitsch, Wolfgang Tree level Lie algebra structures of perturbative invariants, J. Knot Theory Ramifications, Volume 12 (2003) no. 3, pp. 333-345 | DOI | MR | Zbl

[15] Habiro, Kazuo Claspers and finite type invariants of links, Geom. Topol., Volume 4 (2000), pp. 1-83 | DOI | MR | Zbl

[16] Habiro, Kazuo; Massuyeau, Gwénaël Symplectic Jacobi diagrams and the Lie algebra of homology cylinders, J. Topol., Volume 2 (2009) no. 3, pp. 527-569 | DOI | MR | Zbl

[17] Habiro, Kazuo; Massuyeau, Gwénaël From mapping class groups to monoids of homology cobordisms: a survey, Handbook of Teichmüller theory. Volume III (IRMA Lectures in Mathematics and Theoretical Physics), Volume 17, European Mathematical Society, 2012, pp. 465-529 | DOI | MR | Zbl

[18] Hain, Richard Infinitesimal presentations of the Torelli groups, J. Am. Math. Soc., Volume 10 (1997) no. 3, pp. 597-651 | DOI | MR | Zbl

[19] Johnson, Dennis An abelian quotient of the mapping class group g , Math. Ann., Volume 249 (1980) no. 3, pp. 225-242 | DOI | MR | Zbl

[20] Johnson, Dennis Quadratic forms and the Birman-Craggs homomorphisms, Trans. Am. Math. Soc., Volume 261 (1980) no. 1, pp. 235-254 | DOI | MR | Zbl

[21] Johnson, Dennis The structure of the Torelli group. I. A finite set of generators for , Ann. Math., Volume 118 (1983) no. 3, pp. 423-442 | DOI | MR | Zbl

[22] Johnson, Dennis The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves, Topology, Volume 24 (1985) no. 2, pp. 113-126 | DOI | MR | Zbl

[23] Johnson, Dennis The structure of the Torelli group. III. The abelianization of , Topology, Volume 24 (1985) no. 2, pp. 127-144 | DOI | MR | Zbl

[24] Kawazumi, Nariya; Kuno, Yusuke The logarithms of Dehn twists, Quantum Topol., Volume 5 (2014) no. 3, pp. 347-423 | DOI | MR | Zbl

[25] Kuno, Yusuke; Massuyeau, Gwénaël Generalized Dehn twists on surfaces and homology cylinders, Algebr. Geom. Topol., Volume 21 (2021) no. 2, pp. 697-754 | DOI | MR | Zbl

[26] Levine, Jerome Labeled binary planar trees and quasi-Lie algebras, Algebr. Geom. Topol., Volume 6 (2006), pp. 935-948 | DOI | MR | Zbl

[27] Massuyeau, Gwénaël Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. Fr., Volume 140 (2012) no. 1, pp. 101-161 | DOI | Numdam | MR | Zbl

[28] Massuyeau, Gwénaël; Meilhan, Jean-Baptiste Characterization of Y 2 -equivalence for homology cylinders, J. Knot Theory Ramifications, Volume 12 (2003) no. 4, pp. 493-522 | DOI | MR | Zbl

[29] Massuyeau, Gwénaël; Sakasai, Takuya Morita’s trace maps on the group of homology cobordisms, J. Topol. Anal., Volume 12 (2020) no. 3, pp. 775-818 | DOI | MR | Zbl

[30] Morita, Shigeyuki Casson’s invariant for homology 3-spheres and characteristic classes of surface bundles. I, Topology, Volume 28 (1989) no. 3, pp. 305-323 | DOI | MR | Zbl

[31] Morita, Shigeyuki On the structure of the Torelli group and the Casson invariant, Topology, Volume 30 (1991) no. 4, pp. 603-621 | DOI | MR | Zbl

[32] Morita, Shigeyuki Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J., Volume 70 (1993) no. 3, pp. 699-726 | DOI | MR | Zbl

[33] Morita, Shigeyuki The extension of Johnson’s homomorphism from the Torelli group to the mapping class group, Invent. Math., Volume 111 (1993) no. 1, pp. 197-224 | DOI | MR | Zbl

[34] Morita, Shigeyuki A linear representation of the mapping class group of orientable surfaces and characteristic classes of surface bundles, Topology and Teichmüller spaces (Katinkulta, 1995), World Scientific, 1996, pp. 159-186 | DOI | MR | Zbl

[35] Morita, Shigeyuki Structure of the mapping class groups of surfaces: a survey and a prospect, Proceedings of the Kirbyfest (Berkeley, CA, 1998) (Geometry and Topology Monographs), Volume 2, Geometry and Topology Publications (1999), pp. 349-406 | DOI | MR | Zbl

[36] Morita, Shigeyuki; Sakasai, Takuya; Suzuki, Masaaki Torelli group, Johnson kernel, and invariants of homology spheres, Quantum Topol., Volume 11 (2020) no. 2, pp. 379-410 | DOI | MR | Zbl

[37] Nozaki, Yuta; Sato, Masatoshi; Suzuki, Masaaki Abelian quotients of the Y-filtration on the homology cylinders via the LMO functor, Geom. Topol., Volume 26 (2022) no. 1, pp. 221-282 | DOI | MR | Zbl

[38] Papadima, Ştefan; Suciu, Alexander I. Bieri–Neumann–Strebel–Renz invariants and homology jumping loci, Proc. Lond. Math. Soc., Volume 100 (2010) no. 3, pp. 795-834 | DOI | MR | Zbl

[39] Powell, Jerome Two theorems on the mapping class group of a surface, Proc. Am. Math. Soc., Volume 68 (1978) no. 3, pp. 347-350 | DOI | MR | Zbl

[40] Putman, Andrew An infinite presentation of the Torelli group, Geom. Funct. Anal., Volume 19 (2009) no. 2, pp. 591-643 | DOI | MR | Zbl

[41] Putman, Andrew The Johnson homomorphism and its kernel, J. Reine Angew. Math., Volume 735 (2018), pp. 109-141 | DOI | MR | Zbl

[42] Sakasai, Takuya The second Johnson homomorphism and the second rational cohomology of the Johnson kernel, Math. Proc. Camb. Philos. Soc., Volume 143 (2007) no. 3, pp. 627-648 | DOI | MR | Zbl

Cité par Sources :