[Échafaudages galoisiens pour les -extensions en caractéristique ]
Soit un corps local de caractéristique de corps résiduel parfait et soit un -groupe fini. Dans cet article nous utilisons la construction de Saltman d’une -extension générique d’anneaux de caractéristique pour construire des -extensions totalement ramifiées qui ont un échafaudage galoisien. Nous spécialisons cette construction pour produire des -extensions telles que l’anneau d’entiers soit libre de rang sur son ordre associé , et des extensions telles que soit un ordre de Hopf dans l’anneau de groupe .
Let be a local field of characteristic with perfect residue field and let be a finite -group. In this paper we use Saltman’s construction of a generic -extension of rings of characteristic to construct totally ramified -extensions that have Galois scaffolds. We specialize this construction to produce -extensions such that the ring of integers is free of rank over its associated order , and extensions such that is a Hopf order in the group ring .
Révisé le :
Accepté le :
Première publication :
Keywords: generic extensions, ramification, Galois module structure, Galois scaffold, Hopf order
Mots-clés : extension générique, ramification, structure du module galoisien, échafaudage galoisien, ordre de Hopf
Elder, G. Griffith 1 ; Keating, Kevin 2
@unpublished{AIF_0__0_0_A168_0, author = {Elder, G. Griffith and Keating, Kevin}, title = {Galois scaffolds for $p$-extensions in characteristic $p$}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3712}, language = {en}, note = {Online first}, }
Elder, G. Griffith; Keating, Kevin. Galois scaffolds for $p$-extensions in characteristic $p$. Annales de l'Institut Fourier, Online first, 27 p.
[1] Local Leopoldt’s problem for ideals in totally ramified -extensions of complete discrete valuation fields, Algebraic number theory and algebraic geometry (Contemporary Mathematics), Volume 300, American Mathematical Society, 2002, pp. 27-57 | DOI | MR | Zbl
[2] Monogenic Hopf orders and associated orders of valuation rings, J. Algebra, Volume 275 (2004) no. 2, pp. 575-599 | DOI | MR | Zbl
[3] Scaffolds and generalized integral Galois module structure, Ann. Inst. Fourier, Volume 68 (2018) no. 3, pp. 965-1010 | DOI | Numdam | MR | Zbl
[4] Sufficient conditions for large Galois scaffolds, J. Number Theory, Volume 182 (2018), pp. 95-130 | DOI | MR | Zbl
[5] Hopf algebras and Galois module theory, Mathematical Surveys and Monographs, 260, American Mathematical Society, 2021, vii+311 pages | DOI | MR
[6] Separable algebras over commutative rings, Lecture Notes in Mathematics, 181, Springer, 1971, iv+157 pages | DOI | MR | Zbl
[7] Galois scaffolds for cyclic -extensions in characteristic , Res. Number Theory, Volume 8 (2022) no. 4, 75, 16 pages | DOI | MR | Zbl
[8] Local fields and their extensions, Translations of Mathematical Monographs, 121, American Mathematical Society, 2002, xii+345 pages (with a foreword by I. R. Shafarevich) | DOI | MR | Zbl
[9] Hopf algebra orders determined by group valuations, J. Algebra, Volume 38 (1976) no. 2, pp. 414-452 | DOI | MR | Zbl
[10] On the jumps in the series of ramifications groups, Bull. Soc. Math. Fr., Suppl., Mém., Volume 22 (1971), pp. 127-133 Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969) | DOI | Numdam | MR | Zbl
[11] The -subgroup of a group, Trans. Am. Math. Soc., Volume 16 (1915) no. 1, pp. 20-26 | DOI | MR | Zbl
[12] Noncrossed product -algebras and Galois -extensions, J. Algebra, Volume 52 (1978) no. 2, pp. 302-314 | DOI | MR | Zbl
[13] Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Hermann, 1962, 243 pages (Actualités Scientifiques et Industrielles, No. 1296) | MR | Zbl
Cité par Sources :