Galois scaffolds for p-extensions in characteristic p
[Échafaudages galoisiens pour les p-extensions en caractéristique p]
Annales de l'Institut Fourier, Online first, 27 p.

Soit K un corps local de caractéristique p>0 de corps résiduel parfait et soit G un p-groupe fini. Dans cet article nous utilisons la construction de Saltman d’une G-extension générique d’anneaux de caractéristique p pour construire des G-extensions L/K totalement ramifiées qui ont un échafaudage galoisien. Nous spécialisons cette construction pour produire des G-extensions L/K telles que l’anneau d’entiers 𝒪 L soit libre de rang 1 sur son ordre associé 𝒜 0 , et des extensions telles que 𝒜 0 soit un ordre de Hopf dans l’anneau de groupe K[G].

Let K be a local field of characteristic p>0 with perfect residue field and let G be a finite p-group. In this paper we use Saltman’s construction of a generic G-extension of rings of characteristic p to construct totally ramified G-extensions L/K that have Galois scaffolds. We specialize this construction to produce G-extensions L/K such that the ring of integers 𝒪 L is free of rank 1 over its associated order 𝒜 0 , and extensions such that 𝒜 0 is a Hopf order in the group ring K[G].

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3712
Classification : 11S15, 11R33, 14L15, 16T05, 11S23
Keywords: generic extensions, ramification, Galois module structure, Galois scaffold, Hopf order
Mots-clés : extension générique, ramification, structure du module galoisien, échafaudage galoisien, ordre de Hopf

Elder, G. Griffith 1 ; Keating, Kevin 2

1 Department of Mathematics University of Nebraska Omaha Omaha, NE 68182 (USA)
2 Department of Mathematics University of Florida Gainesville, FL 32611 (USA)
@unpublished{AIF_0__0_0_A168_0,
     author = {Elder, G. Griffith and Keating, Kevin},
     title = {Galois scaffolds for $p$-extensions in characteristic $p$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3712},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Elder, G. Griffith
AU  - Keating, Kevin
TI  - Galois scaffolds for $p$-extensions in characteristic $p$
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3712
LA  - en
ID  - AIF_0__0_0_A168_0
ER  - 
%0 Unpublished Work
%A Elder, G. Griffith
%A Keating, Kevin
%T Galois scaffolds for $p$-extensions in characteristic $p$
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3712
%G en
%F AIF_0__0_0_A168_0
Elder, G. Griffith; Keating, Kevin. Galois scaffolds for $p$-extensions in characteristic $p$. Annales de l'Institut Fourier, Online first, 27 p.

[1] Bondarko, Mikhail V. Local Leopoldt’s problem for ideals in totally ramified p-extensions of complete discrete valuation fields, Algebraic number theory and algebraic geometry (Contemporary Mathematics), Volume 300, American Mathematical Society, 2002, pp. 27-57 | DOI | MR | Zbl

[2] Byott, Nigel P. Monogenic Hopf orders and associated orders of valuation rings, J. Algebra, Volume 275 (2004) no. 2, pp. 575-599 | DOI | MR | Zbl

[3] Byott, Nigel P.; Childs, Lindsay N.; Elder, G. Griffith Scaffolds and generalized integral Galois module structure, Ann. Inst. Fourier, Volume 68 (2018) no. 3, pp. 965-1010 | DOI | Numdam | MR | Zbl

[4] Byott, Nigel P.; Elder, G. Griffith Sufficient conditions for large Galois scaffolds, J. Number Theory, Volume 182 (2018), pp. 95-130 | DOI | MR | Zbl

[5] Childs, Lindsay N.; Greither, Cornelius; Keating, Kevin; Koch, Alan; Kohl, Timothy; Truman, Paul J.; Underwood, Robert G. Hopf algebras and Galois module theory, Mathematical Surveys and Monographs, 260, American Mathematical Society, 2021, vii+311 pages | DOI | MR

[6] DeMeyer, Frank; Ingraham, Edward Separable algebras over commutative rings, Lecture Notes in Mathematics, 181, Springer, 1971, iv+157 pages | DOI | MR | Zbl

[7] Elder, G. Griffith; Keating, Kevin Galois scaffolds for cyclic p n -extensions in characteristic p, Res. Number Theory, Volume 8 (2022) no. 4, 75, 16 pages | DOI | MR | Zbl

[8] Fesenko, Ivan B.; Vostokov, Sergei V. Local fields and their extensions, Translations of Mathematical Monographs, 121, American Mathematical Society, 2002, xii+345 pages (with a foreword by I. R. Shafarevich) | DOI | MR | Zbl

[9] Larson, Richard Gustavus Hopf algebra orders determined by group valuations, J. Algebra, Volume 38 (1976) no. 2, pp. 414-452 | DOI | MR | Zbl

[10] Maus, Eckart On the jumps in the series of ramifications groups, Bull. Soc. Math. Fr., Suppl., Mém., Volume 22 (1971), pp. 127-133 Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969) | DOI | Numdam | MR | Zbl

[11] Miller, George A. The ϕ-subgroup of a group, Trans. Am. Math. Soc., Volume 16 (1915) no. 1, pp. 20-26 | DOI | MR | Zbl

[12] Saltman, David J. Noncrossed product p-algebras and Galois p-extensions, J. Algebra, Volume 52 (1978) no. 2, pp. 302-314 | DOI | MR | Zbl

[13] Serre, Jean-Pierre Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Hermann, 1962, 243 pages (Actualités Scientifiques et Industrielles, No. 1296) | MR | Zbl

Cité par Sources :