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GALOIS SCAFFOLDS FOR p-EXTENSIONS IN
CHARACTERISTIC p

by G. Griffith ELDER & Kevin KEATING

ABSTRACT. — Let K be a local field of characteristic p > 0 with perfect residue
field and let G be a finite p-group. In this paper we use Saltman’s construction
of a generic G-extension of rings of characteristic p to construct totally ramified
G-extensions L/K that have Galois scaffolds. We specialize this construction to
produce G-extensions L/K such that the ring of integers O is free of rank 1 over
its associated order Ap, and extensions such that Ag is a Hopf order in the group
ring K[G].

RESUME. Soit K un corps local de caractéristique p > 0 de corps résiduel
parfait et soit G un p-groupe fini. Dans cet article nous utilisons la construc-
tion de Saltman d’une G-extension générique d’anneaux de caractéristique p pour
construire des G-extensions L/K totalement ramifiées qui ont un échafaudage ga-
loisien. Nous spécialisons cette construction pour produire des G-extensions L/K
telles que 'anneau d’entiers Op, soit libre de rang 1 sur son ordre associé A, et
des extensions telles que Ag soit un ordre de Hopf dans I’anneau de groupe K[G].

1. Introduction

Let p be prime and let G be a group of order p™. In [12] Saltman con-
structed a Galois ring extension S/R with Galois group G, where S and
R are polynomial rings in n variables over F, = Z/pZ. Saltman’s exten-
sion is generic in the sense that every G-extension of commutative rings of
characteristic p is induced by S/R. In this paper we use a slightly modi-
fied version of Saltman’s construction to answer some existence questions
regarding G-extensions of local fields of characteristic p.

Let K be a local field of characteristic p and let u; < us < -+ < u,, be
positive integers which are relatively prime to p. Maus [10] showed that if

Keywords: generic extensions, ramification, Galois module structure, Galois scaffold,
Hopf order.
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2 G. Griffith ELDER & Kevin KEATING

u; > pu;—1 for 2 < 4 < n then there is a totally ramified Cpr-extension
L/K whose upper ramification breaks are wui,us,...,u,. We use generic
extensions to generalize Maus’s result: given a p-group G and a composition
series for (G, there exists a constant M > 1 that depends only on G and
the composition series, such that if w; > Mwu;_1 for 2 < ¢ < n then there
is a totally ramified G-extension L/K whose upper ramification breaks are
U1, Uz, ..., U, (see Corollary 4.6).

Let K be alocal field with residue characteristic p and let L/ K be a finite
totally ramified Galois extension whose Galois group G = Gal(L/K) is a p-
group. A Galois scaffold for L/ K is a set of data that facilitates computation
of the Galois module structure of the ring of integers O of L and of its
ideals [3]. While it seems clear that for most extensions a Galois scaffold
cannot be constructed, many of the totally ramified Galois p-extensions
L/K for which there is some understanding of the Galois module structure
of O, do in fact admit a Galois scaffold. In Theorem 5.1 we show that if
char(K') = p then for every p-group G there exist G-extensions with Galois
scaffolds. As applications we show that for every p-group G there are G-
extensions L/K such that the ring of integers Of, of L is free of rank 1 over
its associated order 2y (Corollary 5.7), and there are G-extensions such
that 2o is a Hopf order (Corollary 5.8). Hence our constructions produce
an interesting new family of Hopf orders in the group ring K|[G].

Throughout the paper we let K be a local field with perfect residue field;
unless otherwise stated, K has characteristic p. Let K5P be a separable
closure of K. For each finite subextension L/K of KP/K let vy, be the
valuation on K®P normalized so that vy (L*) = Z and let Of, be the ring
of integers of L.

The authors thank Cornelius Greither for pointing them to Saltman’s
work on generic Galois ring extensions.

2. p-filtered groups

In this section we give the definition of p-filtered groups and record some
basic facts about these objects.

DEFINITION 2.1. — A p-filtered group is a pair (G, {G;y}) consisting of
a group G of order p™ and a composition series

{1} = G(n) < G(n—l) <0< G(l) < G(O) =G
for G such that G(;y I G and |G ;| = p"~ for 0 < i < n.

ANNALES DE L’INSTITUT FOURIER



GALOIS SCAFFOLDS IN CHARACTERISTIC p 3

We often denote the p-filtered group (G,{G;}) simply by G. If G is a
p-filtered group then G/G ;) is also a p-filtered group, with subgroups

G)/Giiy < Gi—1)/Gay <+ < Ga)/Guy < Go)/G).-

Let G be a p-filtered group of order p™. Define

The extension G/G ;) of G/G;—
2gz{1<i<n: /G of G/Gq 1)}.

by G(ifl)/G(i) is split

In addition, for 0 < i < nset X4, = {j € Xg : j < i}

For a finite group G we let ®(G) denote the Frattini subgroup of G. Thus
®(G) is the intersection of the maximal proper subgroups of G. Let G and
H be finite groups. We note the following facts, which may be found in [11]:

(1) (G x H) = d(G) x ®(H).
(2) If G is a p-group then ®(G) is the smallest N < G such that G/N
is an elementary abelian p-group (Burnside’s basis theorem).
The rank of the p-group G is defined to be the rank of the elementary
abelian p-group G/®(G). It follows that rank(G) is equal to the cardinality

of any minimal generating set for G. We will need the following elementary
result:

PROPOSITION 2.2. — For 1 <7 < n we have

rank(G/G(i_l)) +1 ifieXg,

rank(G/G») {rank(G/G(il)) ifid S

Proof. — If i € ¥ then since G/G ;) is a p-group and G(;_1)/G ;) is
cyclic of order p we have G/G ;) = (G/G ;1)) x Cp, and hence

(G/G@)/2(G/Gw)) = (G/Gi-1))/P(G/G(i-1))) X Cp.

Therefore rank(G /G ;)) = rank(G/G;—1y) + 1. If i € ¥ let A be a subset
of G such that |A| = rank(G/G;—1)) and {aG;_1) : a € A} generates
G/G(i—1). Then H = (aG(;) : a € A) is a subgroup of G/G;) such that
|H| > |G/G -] = p' =L If |H| = p'~! then HN (G(i—1)/G ) is trivial.
Hence G//G ;) is the product of H and the central subgroup G(;_1)/G ),
which contradicts the assumption i ¢ Xg. Therefore H = G/G;, and
hence rank(G/G;)) = rank(G/G;_1)). O

COROLLARY 2.3. — For 1 < i < n we have rank(G/G(i)) = \ZZC;| In
particular, rank(G) = |Xq|.

TOME 0 (0), FASCICULE 0



4 G. Griffith ELDER & Kevin KEATING

3. Generic G-extensions of commutative rings

Let G be a p-group. In this section we describe a version of Saltman’s con-
struction of a generic G-extension of commutative rings [12]. The generic
G-extension S/R constructed here is somewhat more general than that
given in [12], in that we don’t require the Frattini subgroup of the p-group
G to appear in our filtration of GG. Unlike Saltman, who considers special-
izations of S/R to ring extensions, we only consider field extensions, since
this is the case that we need for our applications.

DEFINITION 3.1. — Let S be a commutative ring with 1, let G be a
finite group of automorphisms of S, and set

R=S%={zxeS:0(x)==xforallo € G}.

Say that S/R is a Galois extension with group G if for every maximal ideal
M C S and every o € G with o # 1 there is s € S with o(s) — s & M.

See [6, p. 81] for alternative characterizations of Galois extensions of
rings. In general, for a ring extension S/R there may exist more than one
group G of automorphisms of S such that R = S¢ and S/R is Galois
with group G. However, if S/R is a Galois extension with group G and
S, R are integral domains then by setting E = Frac(S) and F = Frac(R)
we get a Galois extension of fields E/F such that Gal(E/F) = G. In this
case G is equal to the group of all R-automorphisms of S, so it makes
sense to say that S/R is a Galois extension without specifying a group of
automorphisms of S.

If R is a ring of characteristic p then the simplest nontrivial Galois p-
extensions of R are Artin—Schreier extensions. Saltman gives some proper-
ties of these extensions in Theorem 1.3 of [12]:

PROPOSITION 3.2. — Let R be a ring of characteristic p, let ¢ € R, and
set S = R[X]/(XP — X —¢). Set v =X + (XP — X —¢) and let o be the
unique automorphism of S which fixes R and satisfies o(v) = v+ 1. Then
S/R is a Galois extension with group (o).

We will also use the following fact, which is proved as Corollary 1.3(3)
in Chapter III of [6]:

PROPOSITION 3.3. — Let S/R be a Galois extension of rings with group
G and let T be a commutative R-algebra. Then the action of G on T ®p S
defined by o(t ® s) =t ® o(s) makes T ®p S a Galois extension of T.

ANNALES DE L’INSTITUT FOURIER



GALOIS SCAFFOLDS IN CHARACTERISTIC p 5

Let S be a ring of characteristic p, and let G be a group of automorphisms
of S such that |G| = p™ and S is a Galois extension of the subring R = S¢
fixed by G. In Lemma 1.1 of [12] it is observed that H?(G,S) = 0 for
all ¢ > 1. Let G be a group of order p"t!, let 7 : G — G be an onto
homomorphism, and set H = ker(w). Let v : G — G be a section of .
Then the map ¢ : G x G — H defined by ¢(o,7) = u(o)u(r)u(or)™! is a
2-cocycle. Let x : H — [F,, be an isomorphism; then ¢(o,7) = x(g(o, 7)) is
a 2-cocycle with values in F, C S. Since H?(G,S) = 0 there is a cochain
(So)oec With values in S such that c(o,7) = s, + 0(s;) — s, for all
0,7 € G. Let p(X) = XP — X € F,[X] be the Artin—Schreier polynomial.
Since ¢(o,7) € F), we have p(s,)+0(p(sr)) = @(sor) for all o,7 € G. Thus
(p(s0))oec is a 1-cocycle with values in S. Since H'(G,S) = 0 there is
d € S such that p(s,) = o(d) — d for all o € G.

In Lemma 1.8 of [12], Saltman proved the following facts:

NLEMMA 3.4. — Let S/R be a Galois extension with group G, and let
G, H, d be as above.

(1) View T' = S[X]/(X? — X — d) as an extension of S. The group G
of automorphisms of S extends to a group of automorphisms of T
which is isomorphic to G and makes T/R a Galois extension.

(2) Suppose T' is an extension of S such that T' /R is Galois with group
G and S is the fixed ring of H. Then for some r € R there is an
isomorphism of S-algebras T' = S[X|/(XP — X —d —r).

(3) If S has no nontrivial idempotents and the extension G of G by H
is not split then d & p(S) + R.

Using this lemma, we construct the generic G-extension:

PROPOSITION 3.5. — Let (G,{G;}) be a p-filtered group of order p".
Then for 1 < ¢ < n there are polynomials D; € F,[Y1,...,Y;_1] with the
following properties:

(1) D;=0fori€ Xq, and D; ¢ F,, for i & ¥¢.

(2) For 0 < i < n set R; = Fy[Xq,...,X;], and define Sy, S1,...,5n
recursively by So = F, and S; = S;_1[Y;, X;|/ (Y =Y, — D; — X;)
for 1 < i < n. Then S; = F,[Y1,...,Y;] and S;/R; is a Galois
extension.

(3) For 1 < i < n let m; : Gal(S;/R;) — Gal(S;—1/R;—1) be the ho-
momorphism induced by restriction. Then there are isomorphisms
Ai : Gal(S;/R;) — G/G(;y such that for 1 < i < n the following

TOME 0 (0), FASCICULE 0



6 G. Griffith ELDER & Kevin KEATING

diagram commutes:

Gal(SZ/Rl) L> Gal(Sz,l/RZ,l)

[

G/G(i) _— G/G(i—l)

Proof. — Let 1 < i < n and assume that for 1 < j < i we have
constructed Dj, S, A; satisfying the conditions of the proposition. By
Lemma 3.4(1) there is D; € S;_; such that S;,_1[V;]/(Y? —Y; — D;) is
Galois over R;_1, with Galois group G/G(i). If i € X then the extension
G/Ggy of G/Gi—1y by G(;—1)/G(s) is split, so we may assume D; = 0.
On the other hand, if i ¢ ¥¢ then by Lemma 3.4(3) we get D; ¢ F,,. In
either case it follows from Proposition 3.3 that S;_1[Y;, X;]/ (Y —Y; — D;)
is Galois over R; = R; 1[X;], again with Galois group G/G(;). Since
(c = 1)(D; + X;) = (0 — 1)(D;) for all

o € Gal(S;—1[X;]/R:) = Gal(S;—1/Ri—1),
it follows from Lemma 3.4 (1) that
Si = Si1[Yi, Xi]/ (Y} = Yi — Di — Xi)
is Galois over R;, and there is an isomorphism A; : Gal(S;/R;) — G /Gy
which makes the diagram in (3) commute. O

We now show that S, /R, is a generic G-extension, in the sense that if
F is a field of characteristic p such that F/p(F) is sufficiently large, then
all G-extensions F/F are specializations of S,,/R,,.

THEOREM 3.6. — Let (G,{G;}) be a p-filtered group of order p™ and
set v = rank(G). For 1 < i < n let D; € Fp[Y1,...,Y;_1] be polynomials
satisfying the conditions of Proposition 3.5. Let F be a field of characteristic
p such that dimg, (F/p(F)) > r.

(1) Let ay,...,a, be elements of F such that {a; + p(F) : j € Xg} is
an I, -linearly independent subset of F'//p(F). Define Fy, F1, ..., F,
recursively by Fy = F and F; = F;_1(«;) for 1 < ¢ < n, where
a; € F5P satisfies of — o; = d; + a; with

di = Di(aq,...,a;_1).

Then for 0 < ¢ < n, F;/F is a Galois field extension and there
is an isomorphism pu; : Gal(F;/F) — G/G;. Furthermore, the

ANNALES DE L’INSTITUT FOURIER



GALOIS SCAFFOLDS IN CHARACTERISTIC p 7

isomorphisms p; may be chosen so that for 1 < i < n the following
diagram commutes:

Gal(F,/F) — Gal(Fi_l/F)

(3.1) u{ ul

G/G(i) EE— G/G(i,l).

(2) Conversely, let = Fy C Fy C --- C F,, be a tower of Galois field
extensions of F' such that there is an isomorphism p : Gal(F,,/F) —
G with p(Gal(F, /F;)) = G(;) for 0 < i < n. Then there are a; € F
such that F; = F(ay,...,q;) for 0 < i < n, where a; are defined in
terms of a; as in (1).

Proof.

(1). — For 0 < i < n let S;/R; be the ring extension constructed in
Proposition 3.5. Define ring homomorphisms ; : S; — F; by 4;(Y;) = o
for 1 < j < i. Then ¢;(X;) = a; for 1 < j < 4, so ¥;(R;) C F. Viewing
S;—1 as a subring of S; we get the compatibility conditions ;|s, , = ;1
for 1 < 7 < n. We use induction on ¢. The base case ¢ = 0 is trivial. Let
1 < i < n and assume that the statement holds for ¢ — 1. We claim that
d; + a; € p(F;—1). By the inductive hypothesis F;_1/F is Galois, with
Gal(Fi_1/F) 2 G/G—1). If i € ¥g then G/G;) is a nonsplit extension of
G /G i—1) by G(i—1)/Gs), so the claim follows from Lemma 3.4 (3). Suppose
i € Yg. By Corollary 2.3 we have rank(Gal(F,_;/F)) = |25 !|. Since
{a;+p(F) : j € ¥4} is an Fp-linearly independent subset of F/p(F), F;/F
contains an elementary abelian subextension of rank |X4| = |S5 | + 1.
Hence

rank(Gal(F;/F)) > rank(Gal(F;_1/F)).

It follows that F; # F;_1, so d; + a; = a; & p(F;—1). In both cases we get
[F; : F;_1] = p, and hence [F}; : F] = p’. The map ¢; : S; — F; induces
an onto homomorphism F ®g, S; — F;. Since S; is a free R;-module of
rank p’, this map is an isomorphism. Hence by Proposition 3.3 we see that
F;/F is a Galois extension, with Gal(F;/F) = Gal(S;/R;). Therefore by
Proposition 3.5 (3) there is an isomorphism p; : Gal(F;/F) — G /G ;) which
makes the diagram (3.1) commute.

(2). — We use induction on 4. Note that for 0 < ¢ < n, p induces an
isomorphism p; : Gal(F;/F) — G/G ;). Suppose we have ay,...,a;—1 € F
such that F; 1 = F(Oél, .. .,Oéifl). Set d; = Di(al, - ,Ozifl). Ifi € g
then G/G ;) = (G/G(i—1)) x Cp and d; = 0. Hence there is a; € F' such

TOME 0 (0), FASCICULE 0



8 G. Griffith ELDER & Kevin KEATING

that F; = F;_1(o), with of — a; = a; = d; + a;. Suppose i € Y. Then by
Lemma 3.4(2) there is a; € F such that F; 2 F; 1[Y]/(Y? =Y —d; — a;).
Hence F; = F(aq,...,q;—1,q;), with o; a root of YP =Y — d; — a;. O

Remark 3.7. — Saltman [12, p. 308] states that his results “can be viewed
as a generalization of the theory of Witt vectors”. In particular, he proves
the existence of polynomials D; which satisfy the conditions of Proposi-
tion 3.5 and Theorem 3.6. These polynomials depend only on the p-filtered
group G, and not on the base field F'. In the case where G is a cyclic p-group
one can use Witt addition polynomials to produce D; satisfying Saltman’s
conditions.

4. Ramification breaks in G-extensions

Let K be a local field of characteristic p with perfect residue field and
let (G,{G;}) be a p-filtered group of order p™. Let u1 < upz < --- < u, be
positive integers such that p t u; for 1 < i < n. We wish to show that if this
sequence grows quickly enough then there is a totally ramified G-extension
L/K such that every ramification subgroup of Gal(L/K) is equal to G;
for some ¢ and wuy,us,...,u, are the upper ramification breaks of L/K.

We begin by recalling some basic facts about higher ramification theory;
see Chapter IV of [13] for more information on this topic. Let K be a local
field and let L/ K be a Galois extension. Set G = Gal(L/K) and let Gy be
the inertia subgroup of G. Let 7wy, be a uniformizer for L. We define the
ramification number of o € G to be i(0) = vp(o(7y) — 7)) — 1 if 0 € Gy,
and i(o0) = =1 if 0 € G. (Beware that ig (o) from [13] is not the same as
i(0): instead we have ig(0) = i(o) + 1.) Then i(idy) = +oo, and i(o) is
a nonnegative integer for o € G ~ {idp}. For ¢t € R with ¢ > —1 define
the tth lower ramification subgroup of G to be Gy = {0 € G : i(0) > t}.
Say b > —1 is a lower ramification break of L/K if Gy # Gpy. for all real
e > 0. Thus b is a lower ramification break of L/K if and only if b = i(o)
for some o € G with o # idy.

We define the Hasse-Herbrand function ¢/ : [~1,00) — [~1,00) by

® dt
) = .
O1/k () /o |Go : G|

Then ¢,k is continuous on [—1,00) and differentiable on (—1,00) except
at the lower ramification breaks. Since ¢,k is one-to-one and onto it
has an inverse ¢, /g : [~1,00) — [~1,00). Define the upper ramification
subgroups of G by setting G* = GwL/K(x) for x > —1. Say that v > —1

ANNALES DE L’INSTITUT FOURIER



GALOIS SCAFFOLDS IN CHARACTERISTIC p 9

is an upper ramification break of L/K if G* # G“T¢ for all ¢ > 0. Then
Yk is differentiable except at the upper ramification breaks of L/K,
and u is an upper ramification break of L/K if and only if ¢y x(u) is
a lower ramification break. Let M/K be a Galois subextension of L/K
and set H = Gal(L/M). Then by Herbrand’s theorem [13, IV §3] we get
br/k = dm/k © Prym and Vi g = Y/ © Yy k- Furthermore, we have
(G/H)* = G*H/H for all x > —1. It follows that if u is an upper break of
M/K then w is also an upper break of L/K.

LEMMA 4.1. — Let L/K be a finite Galois extension and let E/K be
a ramified Cp-extension such that E ¢ L. Assume that the unique (upper
and lower) ramification break v of E/K is not an upper ramification break
of L/ K. Then the ramification break of the Cy-extension LE /L is ¢y, (v).

Proof. — Since Ypp/p oY E/k = YrE/L 0V Kk is not differentiable at v,
but 9, is differentiable at v, we deduce that 91,1, is not differentiable
at 1,k (v). Hence 1y, i (v) is the unique upper break of LE/L. O

We will mainly consider totally ramified Galois extensions L/K of degree
p" with the property that for every lower ramification break b we have
|Gy : Gpte| = p. In this case there are n lower breaks by < by < -+ < by
and n upper breaks u; < us < --- < u,. The breaks are related by the
formulas u; = by and w;y1 —u; = p~4(biy1 — b;) for 1 <i <n—1. As a
result we get the following inequalities:

LEMMA 4.2. — Let 1 < ¢ < j < n. Then:

(1) bj — blg pj_l(Uj — ul)
(2) b <P/ luy < Py
Proof.
(1). — If ¢ = j the claim is clear. If ¢ < j then

j—1

j—1
bj—bi =Y (bns1—bn) =Y p"(uns1 —up)
h=i

h=1t

j—1
="ty — plu + Z ("t = p")un
h=i+1

j—1

< pj—luj _pzui + Z (ph—l —ph)ui
h=i+1

=p 7wy — ).

(2). — This follows from (1) by letting 7 = 1. O

TOME 0 (0), FASCICULE 0



10 G. Griffith ELDER & Kevin KEATING

The following well-known fact will often be used without comment (cf.
Proposition 2.5 in [8, III]).

LEMMA 4.3. — Let K be a local field of characteristic p and let L/K
be a ramified C)p-extension. Let s € K be such that L is generated over K
by a root a of XP — X — s. Then the following hold:

(1) The ramification break b of L/ K satisfies b < —vk (s), with equality

if pfok(s).
(2) If b < —vk(s) then there is t € K such that vk (s — p(t)) = —b.

Let G be a p-filtered group of order p”, let ay,...,a, be elements of
K which satisfy the hypotheses of Theorem 3.6 (1), and let K,,/K be the
associated G-extension. In some cases we can compute the ramification
data of K, /K in terms of the valuations v (a1),...,vk(ay):

THEOREM 4.4. — Let (G,{G;)}) be a p-filtered group of order p", and
for 1 < i < nlet D; € Fy[Ya,...,Y,_1] be the polynomials constructed
in Proposition 3.5. Let K be a local field of characteristic p with perfect
residue field. Let u1 < ug < --- < u, be positive integers such that p 1 u;,
and let ay,...,a, be elements of K such that vk (a;) = —u; for 1 <i < n.
As in Theorem 3.6 we define Ky, K1, ..., K, recursively by Ko = K and
K; = K;_1(a;) for 1 < i < n, where «; satisfies of — a; = d; + a; with
d; = Di(a1,...,a;—1). Define by < by < --- < b, recursively by by = uy
and b;y1 —b; = p*(usy1 —u;) for 1 <i < n— 1. If the u; are chosen so that
b; > —plug(d;) for all i ¢ Y then:

(1) K, /K is Galois, and there is an isomorphism u : Gal(K,/K) — G
such that pu(Gal(K, /K;)) = G ;) for 0 <i < n.

(2) K, /K has upper ramification breaks uy, us, ..., u, and lower rami-
fication breaks by, ba, ..., b,. In addition, we have v (a;) = —p~tu;
for0 <7< n.

(3) The ramification subgroups of Gal(K,,/K) are the subgroups of the
form Gal(K, /K;) for 0 <i < n.

Proof. — Since the elements of {u; : i € X} are distinct and relatively
prime to p, the set {a; + p(K) : i € X} is linearly independent over
F,. Let Ky C K; C --- C K,, be the extensions associated to ay,...,an.
Then by Theorem 3.6(1) K,,/K is Galois, and there is an isomorphism
w @ Gal(K,,/K) — G which satisfies condition (1). We use induction on ¢
to show that v (a;) = —p~lu; and K;/K has upper ramification breaks
U1, .., u;. It then follows that |G| = p" i+ |G¥ite| = p"~% and K;/K
has lower ramification breaks by,...,b;. In addition, since Gal(K;/K) =

ANNALES DE L’INSTITUT FOURIER



GALOIS SCAFFOLDS IN CHARACTERISTIC p 11

G/G ;) we get
Giy/Gay = (G/Gi)) " = GGy /Gay,

and hence G*¢ < G(;). Since |G*H¢| = |G;)| = p"" it follows that
Gy = G“iT¢ is a ramification subgroup of G = Gal(K,,/K) for 1 <i < n.
Since p(Gal(K,, /K;)) = G, the n + 1 distinct ramification subgroups of
Gal(K,,/K) are precisely the subgroups Gal(K, /K;) for 0 <i < n.

We have D; = 0, so the upper ramification break of K1 /K is —vk(a1) =
uy, and v (o) = p~lvg(ar) = —p~tuy. Let 2 < i < n and assume the
claim holds for i —1. If ¢ € ¥ then D; = 0 and K(«;)/K is a Cp-extension
with upper ramification break w;. Since K; O K(q;) it follows that w; is
an upper ramification break of K;/K. Hence by induction K;/K has upper

ramification breaks ui,...,u;_1,u;. We also get vi(a;) = p~lok(a;) =

-1
-pP Ui

Suppose i € X, and set d; = D;(aq,...,a;—1) as in Theorem 3.6(1).
By the lower bound on b; and Lemma 4.2(2) we get

vic(ds) > —p 7 = —us = vie(ay).

It follows that vk (d; + a;) = vi(a;) = —u;, and hence that vk (a;) =
—p~tu;. Since p(a;) = d; + a; we can write a; = o) + o, with p(a) =
d; and p(af) = a;. Let K = K,;_1(a}) and K/ = K,;_1(af). We wish
to determine the ramification breaks for the Cp-extensions K;/K,;_; and
K;l/Ki_l.

First consider K!/K;. By Theorem 3.6 (1) we have [K/ : K] = p®. Thus
K] # K,;_, and K]/K,_; is indeed a Cp-extension. Let b, be the ramifica-
tion break of K//K; 1. Then by Lemma 4.3 (1) and the lower bound on b;
we get b, < —p"lug(d;) < b;. By Lemma 4.3(2) there is ¢ € K;_; such
that vk, ,(d; — p(¢')) = —=b, > —b;. Now consider K/ /K;. Since a; € K,
K(a})/K is a Cp-extension with ramification break —vg(a;) = u;. By
Lemma 4.1 the ramification break of K /K, 1 is

Ve, i (Ws) = Yre, i (wim) + 07wy — wi—1) = bi—1 + (b — bi—1) = b;.

Hence by Lemma 4.3(2) there is ¢ € K;_; such that vk, ,(a; — p({")) =
_bi-

We have shown that K/K]'/K,;_; is a (Cp, x Cp)-extension with upper
breaks b; < b;. There are p+1 C)-subextensions of K/K]'/K,;_1, namely K/
and K,_1(aj + saf) for s € F,,. We are interested in the ramification break
for K;/K;_1, which is the s = 1 case. Note that K; = K;_1(a; — ¢/ — "),
with

plai =0 =L") = (di — p(t')) + (a;i — p(£")).
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12 G. Griffith ELDER & Kevin KEATING

Since v, ,(d; — (")) > vk, ,(a; — p(£")) we get

v, ((di = p(€') + (a;i — p(£"))) = vk, _, (a; — p(£")) = —b;.

Since p 1 b;, it follows that the ramification break of K;/K;_; is b;. There-
fore b; is a lower ramification break of K;/K, so ¢k, kx(bi) = u; is an
upper ramification break of K;/K. Using induction we deduce that K;/K
has upper ramification breaks w1, ..., u;_1, u;. O

Theorem 4.4 allows us to construct G-extensions which have certain spec-
ified sequences of upper ramification breaks:

COROLLARY 4.5. — Let (G, {G(»}), K, a;, D;, d;i, Ky, u;, b; be as in
Theorem 4.4, and for i € X let I; denote the total degree of D;. If b; >
p*2lu;_q for all i € Y then the conclusions of Theorem 4.4 hold for
Ko, Kq,...,K,.

Proof. — We prove by induction that vk (d; + a;) = vk(a;) = —u,
v (o) = —p~lu;, and b; > —p'~lvg(d;) for 1 < i < n. This is clear for
1 € X since d; = 0 in this case. Let 2 < ¢ < n with i € Yg and as-
sume the claim holds for 1 < h < i. Then vk (ap) = —p lup > —ptui_q
for 1 < h < 4. Using the assumption b; > p*~2lu;—1 we get v (d;) =
—p~Yu;—q > —p*~ib;, and hence b; > —p'~lvg(d;). Lemma 4.2(2) then
gives v (d;) > —p'~ib; = —u; = vi(a;). Tt follows that vx(d; + a;) =
v (a;), and hence that vg(o;) = —p~lu;. Since we have shown that
the hypotheses of Theorem 4.4 hold, the conclusions of the theorem hold

as well. H

Let K be a local field of characteristic p. Maus [10] showed that for
every sequence of positive integers uq, ..., u, such that pfu; for 1 <i < n
and u;11 > pu; for 1 < ¢ < n — 1 there exists a totally ramified Cpn-
extension L/K whose sequence of upper ramification breaks is uq, ..., uy,.
The following corollary shows that a similar result holds with Cjp» replaced
by an arbitrary p-filtered group.

COROLLARY 4.6. — Let (G,{G;}) be a p-filtered group of order p".
Then there is M > 1, depending only on (G,{G}), with the following
property: let K be a local field of characteristic p and let uy,...,u, be a
sequence of positive integers such that p{w; for 1 < i < n and u;11 > Mu;
for 1 < i < n — 1. Then there exists a totally ramified Galois extension
L/K such that:

(1) Gal(L/K) = G.
(2) The upper ramification breaks of L/K are uy,...,uy,.
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(3) The ramification subgroups of Gal(L/K) = G are the groups G
in the filtration of G.

Proof. —If ¥¢ = {1,2,...,n} set M = 1. Otherwise, we use the nota-
tion of Corollary 4.5 to define

M =max{p2l;: 1<i<n, i¢gXg).

Let wy,...,u, be positive integers such that p t u; for 1 < ¢ < n and
u; > Mu;—q for 2 < ¢ < n. Then w; > wu;_1, and for i € Yo we get
b; > u; > p'~2l;u;_1. Therefore by Corollary 4.5 there is an extension L/K
with the specified properties. (I

It would be interesting to know whether Corollary 4.6 holds with M = p.

5. Scaffolds, Galois module structure, and Hopf orders

Let (G,{G(}) be a p-filtered group and let K be a local field of char-
acteristic p with perfect residue field. A Galois scaffold ({¥;}, {\}) for a
G-extension K, /K consists of ¥; € K[G] for 1 <i < n and A\ € K,, for all
t € Z. These are chosen so that vk, (A\:) =t and ¥;(\;) can be computed
up to a certain “precision” ¢ > 1. Note that if a Galois scaffold ({¥;},{\:})
for K,,/K has precision ¢, and 1 < ¢ < ¢, then it is also correct to say that
({®;},{A+}) has precision ¢’. The existence of a Galois scaffold for K, /K
facilitates the computation of the Galois module structure of O, and its
ideals. For precise definitions and some basic properties of Galois scaffolds
see [3].

In this section we show how the hypotheses of Theorem 4.4 can be
strengthened to guarantee that the G-extension K, /K has a Galois scaf-
fold. This leads to sufficient conditions for Ok, to be free over its associated
order (Corollary 5.7), and sufficient conditions for the associated order of
Ok, to be a Hopf order (Corollary 5.8).

THEOREM 5.1. — Let (G,{G;}) be a p-filtered group of order p™ and
let Dy,...,D, be the polynomials associated to (G,{G;}) by Proposi-
tion 3.5. Let K be a local field of characteristic p with perfect residue field
and let a € K* with p { vi(a). For 1 < i < n let w; € K* and set

1
a; = aw? . Set u; = —vk(a;) and assume that 0 < ug < -+ < Up.

As in Theorem 3.6 we define Ky, K1,..., K, recursively by Ko = K and
K, = K;_1(a;) for 1 < i < n, where «; satisfies of — o; = d; + a; with
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14 G. Griffith ELDER & Kevin KEATING

d; = Di(a1,...,a;—1). Define by < by < --- < b, recursively by by = uy
and b;y1 — b; = p*(ujpy —w;) for 1 <i<n—1.If

(5.1) bi > —p" ok (di) — p"hicy + P uisa,

(52) b; > pnilui_h

for all 2 < i < n with i € Y then the extensions Ko C K1 C --- C K,
satisfy conclusions (1)—(3) of Theorem 4.4, plus the additional condition:

(4) K, /K admits a Galois scaffold with precision

(P ok (dy) + " iy + b — " gy, b — "
¢ = min .
2<i<n, idSq

Furthermore, we have V; € K[G,_;] for 1 <i < n.

Remark 5.2. — The precision ¢ given in the theorem is equal to the
minimum of the gaps in the inequalities (5.1) and (5.2).

Remark 5.3. — If ¥¢ = {1,2,...,n} then G is an elementary abelian
p-group and our scaffold has infinite precision (cf. the characteristic-p case
of Theorem 3.5 in [4]).

Proof of Theorem 5.1. — It follows from (5.1) and Lemma 4.2(2) that
for i ¢ 3 we have

(53) b; > 7pn71UK(di) 7pn7ibi_1 er"*lui_l > 7pn71UK(di).

Hence the extensions Ky C K; C --- C K, satisfy the conclusions of
Theorem 4.4. To prove (4) we use [4], which gives a systematic method for
constructing Galois scaffolds. By our assumptions on a; we have p t u; and
u; = u; (mod p"~') for 1 <4, < n. Thus pt by and b; = b; (mod p™), so
Assumptions 2.2 and 2.6 of [4] are satisfied. To apply Theorem 2.10 of [4]
we must choose 0; € Gal(K,/K;_1) as described in Choice 2.1 of [4], and
X, € K; as described in Choice 2.3 of [4].

As in [7], we begin by constructing Y; € Kj such that vk, (Y;) = —b;
(mod p?). We then obtain X; satisfying Choice 2.3 of [4] by multiplying
Y; by an appropriate element of K*. Set

w1 aq
w2 . Qa9 .
- —
Jd=| .| €K and a=|. | € (K*P).
Wy Q;
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Let ¢ : (K5°P)7 — (K*®°P)J be the map induced by the p-Frobenius on KP
and set

n—j n—2
a; Wl w?
n—j n—2
ay wh wh
(5.4) Y; = : :
5.4 : :
) pn—j o pn—2
;W wh

= det[d, ¢" 7 (@), " TH@), ..., ¢"T(@)].

For 1 <@ < j we have o; € K; and w; € K. Therefore Y; € K.
For 1 < i < jset m; = —vi(w;). As in the proof of Proposition 1 of [7],
we expand in cofactors along the first column to get

(5.5) Y; =tijo1 +tajan + -+t 04,

with ¢;; € K. Since m; < --- < my, the t;; satisfy

(56) VK (tij)
pn—j pnfj#»l pn7j+i72 pn,—j+i—1

-2
_ p"
= VK (wl W, C Wi wi-}-l ...wj )

i—2

= —p" I (mytpma+ -+ p Pmi T im0 my).

It follows that for 2 < i < j we have

vk (tig) — vk (tio1g) = —p" 7 (p' 2

Hence vk (t;j) — vk (tn;) is a telescoping sum for 1 < h < ¢ < j. Therefore
we get

vk (ti) — vi(tn;) = p~7 (bi — bn),
(5.7) j i
’UK(tfj) - UK(t}p;j) S bl - bh.

We claim that for 0 < i < j — 1 we have

-

(5.8)  ¢'(Y,)=det[@+d+---+ ¢ 1(d),o" 7 (D),...,¢" 2 (@)
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The case ¢ = 0 is given by (5.4). Let 0 < i < j — 2 and assume that (5.8)
holds for ¢. Then

¢ HY;) = p(det[d+d+ -+ w Yd), ¢ (@), ..., ¢" 2 (@)])
= det[p(@) + ¢(d) + -+ + ¢'(d), " IHHL@), ..., " (@))]

= det[d@ + ap™ 1 (Q) + J—&- o(d) + - + ¢'(d),
)

¢ TITHN(G), . "I (@)).
Sincen—j+i+1<n—1<n—1+1it follows that
¢ (Y;) = det[@ + d + ¢(d) + -+ + ¢'(d), ¢" T THH@), ..., " T (@)].

Hence (5.8) holds with ¢ replaced by i 4 1.
It follows by induction that (5.8) holds for ¢ = j — 1. Therefore we have

¢ (Y;) = p(det]@ +d+ - + ¢/ 2(d), 6" (@), " T 3(@)])
= det[¢(d) + ¢(d) + -+ + ¢ (d), 9" (@), 6" T ()]

= det[d + ag" (@) + d+ ¢(d) + -+ + ¢/ 1(d),
$"(@),..., 6" (@),

The (i,1) cofactor of (5.9) is tp<, where ¢;; is the (¢,1) cofactor of (5.4).
Since d; = 0 this gives

j -1
J J n—1 J n—1 h
(5.10) YV =t (a1 +aw} )+ (oziJrawf +y dl >
=2 h=0

Using (5.6) we get

(5.9)

n—1 n—1 .
ok (tjad”) = viclawt” ) + pluke (b))
= —by —p"my —p"Trmg — - — " ?m
j n—1
We claim that vK(Y;)J) = vK(tp .awy ). To prove this it suffices to
show that the other terms in (5. 10) all have K-valuation greater than
n—1

v (8] awﬁ7 ).
n—1

n—1
Since vi (o) = p~lok(aw! ) < 0 we have vk (a;) > vi(aw? ) for
1 < i < j. Therefore that it suffices to prove that

1

(5.11)  wr(at” ) <og( el ) (2<i <),
(5.12) (t” aw?” )<UK(tfjdf ) (2<i<j, 0<h<j—1).
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We first observe that (5.11) follows from (5.7):

k(0w ) — ot awt” ) = (o (7)) — vk ()
+ (oxc(aw? ) —vc(al” )
= (b; — b1) + (—u; +u1)
=b; —u; > 0.

We now prove (5.12). By (5.3) we have b; > —p" vk (d;). Since h <n—1
it follows that b; > —p"vg(d;). Hence by (5.7) we get

(tfj df ) — ’UK(tp awl - ) =b; — by + p"ug(d;) + us
=b; +ph11K(di) > 0.
This proves (5.12), so we have
J J n—1

v (YY) = vk (taw) ) = vk (t] ) — by.
Using (5.7) we get

vk, (Y;) = UK(th) bj = vk, (tj;) — bj-
We have t;; # 0 by (5.6), so we may define X; = t;j Y. Then vg, (X;) =

—b;, and since tj; € K we get vg,(Y;) = —b; (mod p?). Since p 1 b; it
follows that Kj = K(X]) = K(YJ)
Now that we have constructed X4,...,X,, we need to choose o; €

Gal(K, /K;—1) for 1 < i < n which satisfy the conditions of Choices 2.1
and 2.3 of [4]. Thus we need to choose o; € Gal(K,,/K;_1) such that ;|
is a generator for Gal(K;/K;_1) = C, and vk, ((o; —1)X; — 1) > 0. To sat-
isfy these conditions it is enough to choose o; € Gal(K,,/K;_1) such that
(s — Da; = 1. We will be imposing additional conditions on o;, namely
that o;(ap) = ap for certain h in the range ¢ < h < n. The purpose of
these extra conditions is to maximize the precision of the scaffold provided
by [4] (see (5.18) below).

Recall from the proof of Theorem 4.4 that K; = Kj_1(ap), where o, =
oy, +aj, aj is aroot of Y? —Y —dp,, and «} is a root of Y —Y — ay. For
h € ¥ we have dj = 0, so we may choose o}, = 0, and hence o) = o).
For 1 <i < nset

A;={ap:i<h<n, heXg}.

Then K;(A;)/K;—1 is an elementary abelian p-extension of rank |A4;| + 1
(see Figure 5.1(a)). Therefore there is p; € Gal(K;(A;)/K;—-1) such that
(pi — Da; = 1 and p;(ap) = ap for all ap € A;. Since K;(4;) C K,
there is 0; € Gal(K,,/K;_1) such that o;|k,(a,) = pi- Then (o; — 1)a; =1
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K;(4;) Ky, —1(ah) Kh—l(a/h/)
Ki Kzfl(Az) thl Kzfl(a;:)
A ol /
Ki—l Kz‘—l
(a) (b)

Figure 5.1. Field diagrams for Theorem 5.1

and o;(ap) = ap for all h € X such that h # 4. It follows that oy,
generates Gal(K;/K;_1), so o; satisfies the conditions of Choice 2.1 of [4].
Since o;(ap) = ap for 1 < h < 4, by (5.5) we get (o; — 1)Y; = t;; and
(o0; — 1)X; = 1. Therefore o; and X; satisfy the conditions of Choice 2.3
of [4].

In order to apply [4] to get a Galois scaffold for K, /K we need to look
more closely at the action of K[G] on K,,. Let 1 < ¢ < j < n. By Theo-
rem 4.4(2) the upper ramification breaks of K;/K are ui,...,u;. There-
fore the lower ramification breaks of K;/K are b1, ...,b;. In particular, the
lower ramification break i(o;|k,) of K;/K associated to oy|k; is b;. Since
P 1 vk, (X;) this implies

(5.13) vk, ((0s — 1)X) = vg; (X)) + b; = b; — bj.
By (5.5) we have
(5.14) (0i — DX, = pij + €5,
with p;; = t;;/t;; and
6y = 0= o+ + B0~ Doy o+ (0= Dy,

Then p;; € K and ¢;; € K;. Furthermore, 1;; = 1, ¢;; = 0, and for
1 <i<j<n we have

(5.15) vk, (€ij) —vk, (piz) =2 min{vr, (tnj(0i —an) 11 < h < jE—vK, ().
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We view p;; as the “main term” and €;; as the “error term” in the decom-
position (5.14) of (o; — 1)X;.
Motivated by Assumption 2.9 of [4] we define

¢o := min{vg, (€;5) — vk, (Kij) —p" w4+ p" b 1 <i < j < n}.
Assume ¢y > 1. Since i < j it follows from Lemma 4.2 (2) that —p"~lu; +

p"~Ib; < 0. Hence the right side of (5.15) is positive for all 1 <i < j < n.
Thus v, (i) < vk, (€i;), so by (5.13) we get

bi — bj = vi; ((0s = 1)X;) = vi; (kij)-

Therefore (5.14) satisfies the conditions of equation (5) of [4]. We can now
apply Theorem 2.10 of [4] which says that K,,/K admits a Galois scaffold
({®;},{\+}) with precision c¢g. The operators ¥; are defined recursively
in Definition 2.7 of [4] using p;; € K and o3 € G,—;). Therefore ¥; €
K[G(n-i)-

It remains to show that ¢y > ¢, where ¢ is the precision given in the state-
ment of the theorem. Using (5.7) we get v, (tn;) — vk, (ti;) = p™ 7 (bp—b;).
Therefore we can rewrite (5.15) as

(5-16) UKn(Eij) — VK, (,uij)

> min{vg, ((0; — Vo) +p" 7 (b, — b;) 10 < h < 5}
Set
(5.17) 1 = min{vg, (o5 — Dan) +p"7bp —p"'u; : 1 <i <h <j<n}.

Then by (5.16) we get ¢g > ¢;. Hence if ¢; > 1 then K,,/K has a Galois
scaffold with precision ¢;. For fixed 1 < ¢ < h < n the expression in (5.17)
is minimized by taking j = n. Hence

¢; = min{vg, ((6; — Dap) + by, —p" tu; 11 <i < h <n}.

Recall that o; was chosen so that (o; — 1)ay, = 0 for all h € Y. Therefore
we have

(5.18) ¢; = min{vg, ((o; — Vap) +bp —p" tu; : 1<i<h<n, h¢ g}
Let 1 < i < h < n with h € Xg. In the proof of Theorem 4.4 we saw
that Kp(o)) = Kp—1(c,,a}) is a (Cp x Cp)-extension of Kj,_1 (see Fig-
ure 5.1(b)). Therefore o} & K},. Let 7, be the (uniquely determined) ele-
ment of Gal(Kp(a))/K;—1(a})) such that 7;4|x, = 03|k, . Since 7, (0))) =
aj we get
(0i = D(on) = (rin = 1)(an) = (Tin — 1)(a)-

TOME 0 (0), FASCICULE 0



20 G. Griffith ELDER & Kevin KEATING

Since «j, is a root of Y? —Y —d},, it follows that (o; —1)(cw,) = (Tin—1)(a,)
is a root of Y? — Y — (0; — 1)d),. We have

vk, (00 = D)dn) = vk, (dn) + bi.
It follows that

vk, (07 — D) = vg, ((Tin — 1))

> min{vg, _, ((o; — 1)dy),0}
> min{vg, _, (dp) + b;,0}
= min{phivi(dh) + b;, 0},

and hence that

(5.19) vk, ((0; — Day,) = min{p”_vi(dh) —l—p”_hbi, 0}.

Set
P ok (dn) + P+ by — p g, by — P
¢o = min )
1<i<h<n, h¢ S
Then ¢; > ¢ by (5.18) and (5.19). Hence if ¢ > 1 then K,,/K has a
Galois scaffold with precision ¢p. Fix 2 < h < n. Using Lemma 4.2(1)

(with j = h — 1) we see that the two expressions in the formula for ¢y are
minimized by taking i = h — 1. Therefore
[Ptk (dn) + p 1+ by — " up, by — P
¢2 = min .
:2<h<n, hd3g

Thus ¢, is equal to the precision ¢ given in the statement of the theorem.
We have ¢ > 1 by assumptions (5.1) and (5.2). It now follows from Theo-
rem 2.10 of [4] that K, /K has a Galois scaffold with precision . O

COROLLARY 5.4. — Let (G,{G)}) be a p-filtered group of order p",
with n > 2. Let D1,..., D, be the polynomials associated to (G,{G;})
by Proposition 3.5, and for i ¢ X let I; be the total degree of D;. Choose

positive integers u; < --- < u, with p { u; and u; = u; (mod p"~1)
for 2 < i < n. Define by < by < --- < b, recursively by by = u; and
biy1 — b = p'(ujry — ;) for 1 < i < n— 1. Assume that uy,...,u, have

been chosen so that
(5.20) bi > p" Pliui—1 — p"bimy + " ui

for all 2 < i < n with i € Y. Then there exists a tower of extensions
K =Ky C Ky C --- C K, satisfying (1)—(3) of Theorem 4.4, plus the
additional condition
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(4) K, /K admits a Galois scaffold with precision
(5.21) ¢ = min{p" b1 —p" i1 4+bi—p" w1 12 < i <nyi € Bg )

Proof. — It follows from the assumptions on uq,...,u, that there are
a,w; € K* such that vK(awfn_l) = —u; for 1 < i < n. Since v (a) = —uy
(mod p"~!) we have p{uvk(a). It follows from (5.20) and Lemma 4.2(2)
that b; > p"~2l;u;_, for all 2 < i < n with i € Y. Hence the proof of
Corollary 4.5 shows that p"~2l;u; 1 > —p" lvg(d;) for all 2 < i < n such
that ¢ ¢ ¥¢q. Therefore (5.1) follows from (5.20). Using Lemma 4.2 (2) we
get p'2lu;—1 > p~2u;_1 > b;_1. Hence (5.2) also follows from (5.20).
Thus Theorem 5.1 gives a tower of extensions K = Ky C K; C --- C K,
satisfying the conditions (1)—(4) given there. The inequalities above also
imply

—p" iy 4+ P i + by — P rui < p" o (d) + p" b
+b; — p" i,
—p" 2Ly 4+ P by + by — " g < b — P .

Therefore the scaffold given by Theorem 5.1 (4) has the precision ¢’ specified
in (5.21). O

Remark 5.5. — Suppose G = Cpn is cyclic. Theorem 2 of [7] gives a
Galois scaffold with precision

¢o = min{b; — p"u;—1 : 2 <i < n},

under the assumption that b; > p™u;_1 for 2 <1 < n. Since G is cyclic we
have ¥ = {1}. Furthermore, by Lemma 4 (a) of [7] we get vk (d;) = —pu,.
As in the proof of Corollary 5.4 we can apply Theorem 5.1 to produce a
Galois scaffold with precision

¢; = min{p" 'bi_1 — p"u; + by — p" w1 : 2 < i < n},

=Ly, 1 for 2 <i < n.

under the assumption that b; > p™u; — p" *b;_1 +p
If n > 1 then the precision ¢; is strictly less than the precision ¢g of [7].
Furthermore, T}}qe_olrem 2 of [7] allows more general choices of a; € K,
namely a; = aw?  +e; for any e; € K such that vk (e;) — vk (a;) satisfies

the lower bound given in Assumption (3.3) of [7].

Remark 5.6. — It follows from Corollary 5.4 that by choosing w1, ..., u,
which grow quickly enough we can make ¢ arbitrarily large.

The scaffolds that we obtain from Theorem 5.1 can be used to get in-
formation about Galois module structure. Let L/K be a Galois extension
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with Galois group G. Recall that the associated order of Oy in K[G] is
defined to be

Ao ={y € K[G] : v(Or) C OL}.

COROLLARY 5.7. — Let (G,{G;)}) be a p-filtered group of order p™ and
let K, /K be a G-extension satisfying the conditions of Theorem 5.1. Let
uy < -+ < uy, be the upper ramification breaks of K, /K and let r(u;) be
the least nonnegative residue of u; modulo p™. Assume that r(uy) | p™ —1
for some 1 < m < n and that the precision ¢ of the scaffold provided
by Theorem 5.1 satisfies ¢ > r(uy). Then Ok, is free over its associated
order 2.

Proof. — Since u; = u; (mod p"~ 1) for 1 < i < n we have b; = b;
(mod p™). Tt follows that r(b,) = r(b1) = r(u1). Since K,,/K has a Galois
scaffold with precision ¢ > r(uy), the corollary follows from Theorem 4.8
of [3]. O

Let K be a local field with residue characteristic p. Let G be a finite
group and let H be an Og-order in K[G|. Say that H is a Hopf order if
H is a Hopf algebra over O with respect to the operations inherited from
the K-Hopf algebra K[G]. Say that the Hopf order H C K|[G] is realizable
if there is a G-extension L/K such that H is equal to the associated order
Ao of O in K[G]. A great deal of effort has gone into constructing and
classifying Hopf orders in K[C}'] and K[Cpn]; see Chapter 12 of [5] for a
summary. The only method known for constructing Hopf orders in K[G] for
an arbitrary p-group G was given by Larson [9]. However, Larson’s group-
theoretic approach does not give a method for finding Hopf orders which
are realizable, and does not give a complete classification of Hopf orders
in K[G] when |G| > p. Therefore it is interesting that in the case where
char(K) = p the scaffolds from Theorem 5.1 can be used to construct
realizable Hopf orders in K[G]. Since these Hopf orders are constructed
using the main result of [4], they are “truncated exponential Hopf orders”
in the sense of [5, §12.9]. Thus one consequence of the following corollary is
that for all p-groups G, truncated exponential Hopf orders exist in K[G].

COROLLARY 5.8. — Let (G,{G(;}) be a p-filtered group of order p"
and let K, /K be a G-extension satisfying the conditions of Theorem 5.1.
Let u; < --- < uy, be the upper ramification breaks of K,,/K and assume
that uy = —1 (mod p™). Assume further that the precision ¢ of the scaffold
provided by Theorem 5.1 satisfies ¢ > p"™ — 1. Then the associated order 2
of Ok, in K[G] is a Hopf order.
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Proof. — It follows from the preceding corollary that Ok, is free over
Ap. The action of K[G] on K, is the regular representation, which is in-
decomposable since char(K) = p. It follows that O, is indecomposable
as an Ok [G]-module. Furthermore, since b; = —1 (mod p™) for 1 < ¢ < n,
the different of L/K is generated by an element of K. Hence by Proposi-
tion 4.5.2 of [1] we deduce that 2y is a Hopf order in K[G]. O

Remark 5.9. — It follows from Remark 5.6 that for every filtered p-group
G there do exist G-extensions K, /K satisfying the hypotheses of Corol-
lary 5.8.

Remark 5.10. — Let K be a local field of characteristic 0 with residue
characteristic p and let G be a finite abelian p-group. Let H C K[G] be a
Hopf order which is a local ring. In Corollary 6.5 of [2], Byott showed that
H is realizable if and only if the Og-dual H* of H is a local ring and a
monogenic Ok-algebra.

6. Dihedral examples

Let G be the dihedral group of order 16. Write G = (o,7) with ¢ a
rotation of order 8 and 7 a reflection. We define a 2-filtration of G by
setting G(O) =G, G(l) = <0’2,T>, G(g) = <O’2>, G(3) = <O’4>, and G(4) = {1}
Then ®(G) = (6%) = G(a), so we have X = {1,2}. Let K be a local field
of characteristic p = 2. We will use the methods we have developed to give
three examples of G-extensions K4 /K with specified properties.

We first construct a generic G-extension of rings using the results of
Section 3. Since X = {1,2} we have D; = Dy = 0. Therefore X;, X5 are
elements of Sy = Fy[Y7, Ys] defined by X; = Y2 — Y] and Xy = Y7 — V5.
To determine D3 we use the procedure outlined in the paragraph following
Proposition 3.3. Set 7 = CTG(Q), T = TG(Q), g = O’G(g), and T = TG(3).
Then (—-1)Y1=1,(6—-1)Y2=0, (7—1)Y1 =0, and (7 —1)Y2 = 1. Let
u: G/G (g — G/G3) be the section of the projection 7 : G/G(3y — G /G 3)
whose image is {1,0,7,07}, and let x be the unique isomorphism from
G(2)/G3) to Fa. Then the 2-cocycle ¢ : (G/G(2)) X (G/G(2)) — F2 defined
by ¢(g,h) = x(u(g)u(h)u(gh)~') represents the class in H*(G/G(q),F2)
which corresponds to the group extension 7 : G/G(3y — G/G(2). We find
that the cochain (Sg)geg/g(z) defined by sy =0, sz = s7 = Y1, and s5= = 1,
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satisfies c(g, h) = sg + g(sn) — sgn for all g, h € G/G(2). We have

p(sp) =0=(1—-1)(X1 (Y1 +Y2)),
p(s7) = X1 = (@ - 1)(X1 (Y1 + Y2)),
p(s7) = X1 = (T - 1)(X1(Y1 + Y2)),
p(sz7) = 0= (o7 — 1)(X1 (Y1 + Y2)).

Therefore we can take

D3 =X1(Y1+Ys) = (Y? = Y1)(Y1 + Ya),
Xo= Y2 Vs~ (V2 - V)(Yi 4 2).

A similar but more complicated computation based on the formulas
c-1)Y1=1(-1)Y,=0,c-1)Ys=Y;, 7—-1)Y1 =0, (7—1)Ye =1,
and (7 — 1)Y3 = Y; gives

Dy = X3Y1 + X{XoYo + XiV1Yo + X1 (Y2 4+ Y1Y3 + YoV + V5)
+ X1 X5(Y1 +Y2) + X3(Y5 + Ya).

We can represent Dy as a polynomial in Y7, Y5, Y3 by expressing X7, X5, X3
in terms of Y7, Y5, Y3 using the formulas given above.

We now use the generic G-extension of rings that we have constructed
to get a family of G-extensions of K. Let ai,as,a3,a4 € K and set u; =
—vg (a;). Assume that 0 < u; < ug < ug < ugq, and that uq, ug, us, ug are
odd. Define bl, bg, b3, b4 by b1 =Ui and bi+1 :bl + 2i(ui+1 - ul) for 1 < ) g 3.
Set Ky = K(a1,a2,as,ay), where the a; are defined recursively by a? —
Q; = dz + a;, with d1 = dQ = 0, dg = Dg(OLl,OéQ), and d4 = D4(a1,a2,a3).
Since u1, us are distinct, positive, and odd, {a1+p(K), as+p(K)} is linearly
independent over F,. Therefore it follows from Theorem 3.6 that K,/K is
a G-extension. By putting additional conditions on a1, as, as, ay we will get
examples of G-extensions which have various interesting properties.

Example 6.1. — To satisfy the hypotheses of Theorem 4.4 we need to
choose a; so that b; > p'~lvg (d;) for i = 3,4. We first choose ay, as so that
0 < uy < ug are odd. This gives by = uq, ba = 2us — uy, and vk (d3) =
—uy — %’U/g. We must choose as so that us is odd and bs = 4us — 2us — uq
is greater than —4vg (ds) = 4uy + 2us. This is equivalent to uz > %ul + us.
Under this assumption we have

1

v (da) 2 min{—ul — JU2 — U3, —%u;),}
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and by = 8uy — 4us — 2us — uq. Therefore it suffices to choose a4 so that uy
satisfies

8uy — 4duz — 2us — uy > max{8uj + 4dug + 8ug, 12uz}.
This is equivalent to
Uy > max{%ul + %uz + %ug, %ul + iug + QU3}.

If these conditions are satisfied then it follows from Theorem 4.4 that K, /K
is a G-extension whose upper ramification breaks are uj, us, us, us. To get
a specific example we let mx be a uniformizer for K and set a1 = 77;(1,
as = 771_(3, asz = w[_f, ag = 77;(11. This gives a G-extension K4 /K with upper
ramification breaks 1,3,5,11 and lower ramification breaks 1,5,13,61.

Example 6.2. — In order to use Theorem 5.1 to get a G-extension K4/K
with a Galois scaffold we write a; = aw? and consider the possibilities for
the ramification data of K,/K. Choose u; = b; = 1. We need ug > u; with
uz = uy (mod 8), so we choose ug = 9. It follows that bo = 1+2(9—1) = 17.
We need ug > ug with ug =1 (mod 8) such that bg = 17+4(u3—9) satisfies

by >8-4 —2.174+8.9 =282,
b3 >8-9="T2.
We choose ug = 33, so bs = 113. Finally, we need uy > wuz with uqy =1
(mod 8) such that by = 113 + 8(uy — 33) satisfies
by > 8 -max{l+3-9+33,3.33} — 113+ 8-33 =547,
by > 8- 33 = 264.

We choose uy = 89, which gives by = 561. This ramification data can be
realized by taking a = 5", w; = 1, wo = T, w3 = 1", and wy = Tx' .
According to Theorem 5.1 and Remark 5.2, these choices give a G-extension

K, /K which has a Galois scaffold with precision
¢ = min{bs — 82,b3 — 72,by — 547,by — 264} = 14.

It then follows from Corollary 5.7 that Ok, is free over its associated or-
der Ap.

Example 6.3. — We wish to use Corollary 5.8 to produce a G-extension
K, /K such that the associated order 2y of O, in K[G] is a Hopf order.
Once again we set a; = aw?. We need to determine ramification data for
K, /K that satisfies the hypotheses of Corollary 5.8. The first requirement
is u3 = —1 (mod 16), so we choose u; = by = 15. We need us > u
with us = —1 (mod 8). We choose us = 23 and hence by = 31. To apply
Corollary 5.8 we need to construct an extension which has a scaffold with
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precision ¢ > 2% — 1 = 15. Therefore we wish to find u3 = —1 (mod 8) such
that b3 = 31 + 4(us — 23) makes the gaps in inequalities (5.1) and (5.2)
greater than or equal to 15 (see Remark 5.2). Hence we require

b3 > 8- 3 —2-31+8-23+ 15 = 349,
bs > 8-23+4 15 =199.
By choosing us = 103 we get bs = 351, which satisfies both inequalities.
Similarly, we need uy > ug with uy = —1 (mod 8) such that by = 351 +
8(ugq — 103) satisfies

by > 8- max{15+ 3 -23+103,3 - 103} — 351 + 8- 103 4 15 = 1724,

by = 8-103 + 15 = 839.

We choose uq = 279, which gives by = 1759. We get a G-extension K/K
with this ramification data by taking a = 71';(15, wp =1, we = 7r;(1, ws =
71';{11, and wy = ﬂ[_(?’?’. Using the definitions of y;; in (5.14) and ¢;; in (5.5)

we get

2
>

1

M12=%7

14
H13 = w}*f(lqwrf()’

_ 1+7T}(0+7r}1§+7rf<4+7r;<6+7r?{6
U= 20090 e + 70 + 78 + 73 + 1)

_ 1—|—7T%(2
M23777r%(0(1+7r%()7

- 1+7r}(1+7r}1é1+7r%<9
S R s s R s Ok
Jag = 1+ g + 7% + 7% + 79 + 792

T (L 7k + 70 + 7+ g + )

Definition 2.7 of [4] gives elements ©; € K[G] which are defined recursively
using the “truncated exponential” XY = 1 + Y(X —1). In our setting
these formulas give O, = 04, O3 = 02@5”3’41, Oy = OG)E;”Q’B‘]@E;M"‘], and
0, = rol 2ol mslglmal For1 <i < 4set M; = (b;+1)/p'. It follows
from equation (34) of [4] that the associated order 2y of Ok, in K[G] is

O,—1 63—-1 6,—-1 67 -1
Q'[O = OK My Ms My M,
T T T T
Os—1 635—-1 65—-1 6; -1
= Ox L R . S S
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By Corollary 5.8 we see that 2y is a Hopf order in K[G].

(1]
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