Quantitative quenched Voronoi percolation and applications
[Percolation de Voronoi quenched quantitative et applications]
Annales de l'Institut Fourier, Online first, 35 p.

Ahlberg, Griffiths, Morris et Tassion ont montré que, asymptotiquement presque sûrement, les probabilités de traversée quenched pour la percolation de Voronoi critique ne dépendaient pas de l’environnement. Dans cet article, nous montrons un résultat analogue pour les événements à j bras. En particulier, nous prouvons que la variance des probabilités quenched d’événements à j bras est au plus de l’ordre du carré de la probabilité annealed. Les deux principales nouvelles difficultés sont que les événements à j bras sont dégénérés et non monotones. Par ailleurs, nous utilisons ces résultats pour montrer qu’il existe ϵ>0 tel que la fonction de percolation annealed vérifie

p>1/2,θ an (p)ϵ(p-1/2) 1-ϵ .

Une des principales motivations de cet article est de fournir des outils permettant de faire une étude spectrale de la percolation de Voronoi.

Ahlberg, Griffiths, Morris and Tassion have proved that, asymptotically almost surely, the quenched crossing probabilities for critical planar Voronoi percolation do not depend on the environment. We prove an analogous result for arm events. In particular, we prove that the variance of the quenched probability of an arm event is at most a constant times the square of the annealed probability. The fact that the arm events are degenerate and non-monotonic add two major difficulties. As an application, we prove that there exists ϵ>0 such that the following holds for the annealed percolation function θ an :

p>1/2,θ an (p)ϵ(p-1/2) 1-ϵ .

One of our motivations is to provide tools for a spectral study of Voronoi percolation.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3710
Classification : 60K35, 60K37
Keywords: Percolation, Random environment, Voronoi tilings, Concentration, Critical Exponents
Mots-clés : Percolation, Environnement aléatoire, Diagrammes de Voronoi, Concentration, Exposants critiques

Vanneuville, Hugo 1

1 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne cedex, France
@unpublished{AIF_0__0_0_A132_0,
     author = {Vanneuville, Hugo},
     title = {Quantitative quenched {Voronoi} percolation and applications},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3710},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Vanneuville, Hugo
TI  - Quantitative quenched Voronoi percolation and applications
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3710
LA  - en
ID  - AIF_0__0_0_A132_0
ER  - 
%0 Unpublished Work
%A Vanneuville, Hugo
%T Quantitative quenched Voronoi percolation and applications
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3710
%G en
%F AIF_0__0_0_A132_0
Vanneuville, Hugo. Quantitative quenched Voronoi percolation and applications. Annales de l'Institut Fourier, Online first, 35 p.

[1] Ahlberg, Daniel; Baldasso, Rangel Noise sensitivity and Voronoi percolation, Electron. J. Probab., Volume 23 (2018), 108, 21 pages | MR | Zbl

[2] Ahlberg, Daniel; Griffiths, Simon; Morris, Robert; Tassion, Vincent Quenched Voronoi percolation, Adv. Math., Volume 286 (2016), pp. 889-911 | DOI | MR | Zbl

[3] Benjamini, Itai; Kalai, Gil; Schramm, Oded Noise sensitivity of Boolean functions and applications to percolation, Publ. Math., Inst. Hautes Étud. Sci., Volume 90 (1999), pp. 5-43 | DOI | Numdam | MR | Zbl

[4] Bollobás, Béla; Riordan, Oliver The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Relat. Fields, Volume 136 (2006) no. 3, pp. 417-468 | DOI | MR | Zbl

[5] Bollobás, Béla; Riordan, Oliver Percolation, Cambridge University Press, 2006, x+323 pages | DOI | MR

[6] Duminil-Copin, Hugo; Raoufi, Aran; Tassion, Vincent Exponential decay of connection probabilities for subcritical Voronoi percolation in d , Probab. Theory Relat. Fields, Volume 173 (2019) no. 1, pp. 479-490 | DOI | MR | Zbl

[7] Garban, Christophe; Pete, Gábor; Schramm, Oded The Fourier spectrum of critical percolation, Acta Math., Volume 205 (2010) no. 1, pp. 19-104 | DOI | MR | Zbl

[8] Grimmett, Geoffrey Percolation, Grundlehren der Mathematischen Wissenschaften, 321, Springer, 1999 | DOI | MR

[9] Joosten, Matthijs Random fractals and scaling limits in percolation, Ph. D. Thesis, Vrije Universiteit Amsterdam (2012) (available at http://hdl.handle.net/1871/32792)

[10] Kesten, Harry Scaling relations for 2D-percolation, Commun. Math. Phys., Volume 109 (1987) no. 1, pp. 109-156 | DOI | MR | Zbl

[11] Kesten, Harry; Zhang, Yu Strict inequalities for some critical exponents in two-dimensional percolation, J. Stat. Phys., Volume 46 (1987) no. 5-6, pp. 1031-1055 | DOI | MR | Zbl

[12] Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin One-arm exponent for critical 2D percolation, Electron. J. Probab., Volume 7 (2002), 2, 13 pages http://www.math.washington.edu/~ejpecp/ejpvol7/paper2.abs.html | MR | Zbl

[13] Nolin, Pierre Near-critical percolation in two dimensions, Electron. J. Probab., Volume 13 (2008) no. 55, pp. 1562-1623 | MR | Zbl

[14] Reimer, David Proof of the van den Berg-Kesten conjecture, Comb. Probab. Comput., Volume 9 (2000) no. 1, pp. 27-32 | DOI | MR | Zbl

[15] Schramm, Oded; Smirnov, Stanislav On the scaling limits of planar percolation, Selected Works of Oded Schramm, Springer, 2011, pp. 1193-1247 (with an appendix by Christophe Garban) | DOI

[16] Schramm, Oded; Steif, Jeffrey E. Quantitative noise sensitivity and exceptional times for percolation, Ann. Math., Volume 171 (2010) no. 2, pp. 619-672 | DOI | MR | Zbl

[17] Smirnov, Stanislav; Werner, Wendelin Critical exponents for two-dimensional percolation, Math. Res. Lett., Volume 8 (2001) no. 5-6, pp. 729-744 | DOI | MR | Zbl

[18] Tassion, Vincent Crossing probabilities for Voronoi percolation, Ann. Probab., Volume 44 (2016) no. 5, pp. 3385-3398 | MR | Zbl

[19] Vanneuville, Hugo Annealed scaling relations for Voronoi percolation, Electron. J. Probab., Volume 24 (2019), 39, 71 pages | MR | Zbl

[20] Vanneuville, Hugo The annealed spectral sample of Voronoi percolation, Ann. Probab., Volume 49 (2021) no. 3, pp. 1554-1606 | MR | Zbl

[21] Werner, Wendelin Lectures on two-dimensional critical percolation, Statistical mechanics. Papers based on the presentations at the IAS/PCMI summer conference, Park City, UT, USA, July 1–21, 2007 (IAS Park City Graduate Summer School), Volume 16, American Mathematical Society; Institute for Advanced Study, 2009, pp. 297-358 | MR | Zbl

Cité par Sources :