[Percolation de Voronoi quenched quantitative et applications]
Ahlberg, Griffiths, Morris et Tassion ont montré que, asymptotiquement presque sûrement, les probabilités de traversée quenched pour la percolation de Voronoi critique ne dépendaient pas de l’environnement. Dans cet article, nous montrons un résultat analogue pour les événements à bras. En particulier, nous prouvons que la variance des probabilités quenched d’événements à bras est au plus de l’ordre du carré de la probabilité annealed. Les deux principales nouvelles difficultés sont que les événements à bras sont dégénérés et non monotones. Par ailleurs, nous utilisons ces résultats pour montrer qu’il existe tel que la fonction de percolation annealed vérifie
Une des principales motivations de cet article est de fournir des outils permettant de faire une étude spectrale de la percolation de Voronoi.
Ahlberg, Griffiths, Morris and Tassion have proved that, asymptotically almost surely, the quenched crossing probabilities for critical planar Voronoi percolation do not depend on the environment. We prove an analogous result for arm events. In particular, we prove that the variance of the quenched probability of an arm event is at most a constant times the square of the annealed probability. The fact that the arm events are degenerate and non-monotonic add two major difficulties. As an application, we prove that there exists such that the following holds for the annealed percolation function :
One of our motivations is to provide tools for a spectral study of Voronoi percolation.
Révisé le :
Accepté le :
Première publication :
Keywords: Percolation, Random environment, Voronoi tilings, Concentration, Critical Exponents
Mots-clés : Percolation, Environnement aléatoire, Diagrammes de Voronoi, Concentration, Exposants critiques
Vanneuville, Hugo 1
@unpublished{AIF_0__0_0_A132_0, author = {Vanneuville, Hugo}, title = {Quantitative quenched {Voronoi} percolation and applications}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3710}, language = {en}, note = {Online first}, }
Vanneuville, Hugo. Quantitative quenched Voronoi percolation and applications. Annales de l'Institut Fourier, Online first, 35 p.
[1] Noise sensitivity and Voronoi percolation, Electron. J. Probab., Volume 23 (2018), 108, 21 pages | MR | Zbl
[2] Quenched Voronoi percolation, Adv. Math., Volume 286 (2016), pp. 889-911 | DOI | MR | Zbl
[3] Noise sensitivity of Boolean functions and applications to percolation, Publ. Math., Inst. Hautes Étud. Sci., Volume 90 (1999), pp. 5-43 | DOI | Numdam | MR | Zbl
[4] The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Relat. Fields, Volume 136 (2006) no. 3, pp. 417-468 | DOI | MR | Zbl
[5] Percolation, Cambridge University Press, 2006, x+323 pages | DOI | MR
[6] Exponential decay of connection probabilities for subcritical Voronoi percolation in , Probab. Theory Relat. Fields, Volume 173 (2019) no. 1, pp. 479-490 | DOI | MR | Zbl
[7] The Fourier spectrum of critical percolation, Acta Math., Volume 205 (2010) no. 1, pp. 19-104 | DOI | MR | Zbl
[8] Percolation, Grundlehren der Mathematischen Wissenschaften, 321, Springer, 1999 | DOI | MR
[9] Random fractals and scaling limits in percolation, Ph. D. Thesis, Vrije Universiteit Amsterdam (2012) (available at http://hdl.handle.net/1871/32792)
[10] Scaling relations for 2D-percolation, Commun. Math. Phys., Volume 109 (1987) no. 1, pp. 109-156 | DOI | MR | Zbl
[11] Strict inequalities for some critical exponents in two-dimensional percolation, J. Stat. Phys., Volume 46 (1987) no. 5-6, pp. 1031-1055 | DOI | MR | Zbl
[12] One-arm exponent for critical 2D percolation, Electron. J. Probab., Volume 7 (2002), 2, 13 pages http://www.math.washington.edu/~ejpecp/ejpvol7/paper2.abs.html | MR | Zbl
[13] Near-critical percolation in two dimensions, Electron. J. Probab., Volume 13 (2008) no. 55, pp. 1562-1623 | MR | Zbl
[14] Proof of the van den Berg-Kesten conjecture, Comb. Probab. Comput., Volume 9 (2000) no. 1, pp. 27-32 | DOI | MR | Zbl
[15] On the scaling limits of planar percolation, Selected Works of Oded Schramm, Springer, 2011, pp. 1193-1247 (with an appendix by Christophe Garban) | DOI
[16] Quantitative noise sensitivity and exceptional times for percolation, Ann. Math., Volume 171 (2010) no. 2, pp. 619-672 | DOI | MR | Zbl
[17] Critical exponents for two-dimensional percolation, Math. Res. Lett., Volume 8 (2001) no. 5-6, pp. 729-744 | DOI | MR | Zbl
[18] Crossing probabilities for Voronoi percolation, Ann. Probab., Volume 44 (2016) no. 5, pp. 3385-3398 | MR | Zbl
[19] Annealed scaling relations for Voronoi percolation, Electron. J. Probab., Volume 24 (2019), 39, 71 pages | MR | Zbl
[20] The annealed spectral sample of Voronoi percolation, Ann. Probab., Volume 49 (2021) no. 3, pp. 1554-1606 | MR | Zbl
[21] Lectures on two-dimensional critical percolation, Statistical mechanics. Papers based on the presentations at the IAS/PCMI summer conference, Park City, UT, USA, July 1–21, 2007 (IAS Park City Graduate Summer School), Volume 16, American Mathematical Society; Institute for Advanced Study, 2009, pp. 297-358 | MR | Zbl
Cité par Sources :