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QUANTITATIVE QUENCHED VORONOI
PERCOLATION AND APPLICATIONS

by Hugo VANNEUVILLE (*)

Abstract. — Ahlberg, Griffiths, Morris and Tassion have proved that, asymp-
totically almost surely, the quenched crossing probabilities for critical planar
Voronoi percolation do not depend on the environment. We prove an analogous
result for arm events. In particular, we prove that the variance of the quenched
probability of an arm event is at most a constant times the square of the annealed
probability. The fact that the arm events are degenerate and non-monotonic add
two major difficulties. As an application, we prove that there exists ϵ > 0 such that
the following holds for the annealed percolation function θan:

∀ p > 1/2, θan(p) ⩾ ϵ(p − 1/2)1−ϵ.

One of our motivations is to provide tools for a spectral study of Voronoi percola-
tion.

Résumé. — Ahlberg, Griffiths, Morris et Tassion ont montré que, asymptotique-
ment presque sûrement, les probabilités de traversée quenched pour la percolation
de Voronoi critique ne dépendaient pas de l’environnement. Dans cet article, nous
montrons un résultat analogue pour les événements à j bras. En particulier, nous
prouvons que la variance des probabilités quenched d’événements à j bras est au
plus de l’ordre du carré de la probabilité annealed. Les deux principales nouvelles
difficultés sont que les événements à j bras sont dégénérés et non monotones. Par
ailleurs, nous utilisons ces résultats pour montrer qu’il existe ϵ > 0 tel que la
fonction de percolation annealed vérifie

∀ p > 1/2, θan(p) ⩾ ϵ(p − 1/2)1−ϵ .

Une des principales motivations de cet article est de fournir des outils permettant
de faire une étude spectrale de la percolation de Voronoi.

Keywords: Percolation, Random environment, Voronoi tilings, Concentration, Critical
Exponents.
2020 Mathematics Subject Classification: 60K35, 60K37.
(*) Supported by the ERC grant Liko No. 676999.
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1. Introduction

1.1. Main results

Planar Voronoi percolation is a percolation model in random environ-
ment defined as follows (for more details, see for instance [4, 5] or the
introduction of [19]):

Let p ∈ [0, 1] and let η be a homogeneous Poisson point process in R2

with intensity 1. For each x ∈ η, let C(x) = {u ∈ R2 : ∀ y ∈ η, ∥x − u∥2 ⩽
∥y−u∥2} be the Voronoi cell of x. We say that x is the center of C(x). Note
that a.s. all the Voronoi cells are bounded convex polygons. Given η, colour
each cell in black with probability p and in white with probability 1 − p,
independently of the other cells. One thus obtains a random colouring of the
plane. We write ω ∈ {−1, 1}η for the corresponding coloured configuration
where 1 means black and −1 means white, and we let Pp be the law of
ω. Let us be more precise about measurability issues. Let Ω′ denote the
set of locally finite subsets of R2 and let Ω =

⋃
η∈Ω′{−1, 1}η. We equip Ω

with the σ-algebra generated by the functions ω ∈ Ω 7→ |ω−1(1) ∩ A| and
ω ∈ Ω 7→ |ω−1(−1) ∩ A| where A spans the Borel subsets of the plane. The
measure Pp is defined on this σ-algebra.

We write {0 ↔ ∞} for the event that there is a black path from 0 to ∞
and we let θan(p) denote the annealed percolation function i.e.

θan(p) = Pp [0 ↔ ∞] .

The critical point of Voronoi percolation is

pc = inf{p : θan(p) > 0} .

Bollobás and Riordan [4] have proved that pc = 1/2. Duminil-Copin, Raoufi
and Tassion [6] have recently given an alternative proof of this result (and
have even proved sharpness of Voronoi percolation in any dimension). The
proof by Bollobás and Riordan highly relies on a “weak” box-crossing prop-
erty. A stronger box-crossing property has then been obtained by Tas-
sion [18], see Theorem 1.2 below.

In the present paper, we are interested in quenched properties. The
quenched probability of an event is the probability of this event condi-
tionally on the environment (i.e. conditionally on η). The annealed proba-
bility is the probability without any conditioning. In [3], Benjamini, Kalai
and Schramm have conjectured that, with high probability, the quenched
crossing probabilities are very close to the annealed crossing probabilities.
Ahlberg, Griffiths, Morris and Tassion have answered positively this con-
jecture in [2], see Theorem 1.3 below. The results from [2] provide very
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QUANTITATIVE QUENCHED VORONOI PERCOLATION 3

useful tools, that were for instance crucial in our work [19] in which we
have proved some scaling relations for Voronoi percolation. In the present
paper, we pursue the work of [2] by proving an analogue of their main theo-
rem for arm events and by making their main result more quantitative. As
consequences of the extension of [2] to arm events, we will prove estimates
on 4-arm events and deduce a strict inequality for θan(p).

Let us state the box-crossing results from [2] and [18].

Definition 1.1.

(i) For any λ1, λ2 > 0, Cross(λ1, λ2) is the event that there is a black
crossing of the rectangle [−λ1, λ1] × [−λ2, λ2] from left to right i.e.
a black continuous path connecting the left side and the right side.

(ii) Given η, Pη
p is the conditional distribution of ω given η i.e. Pη

p =
(pδ1 + (1 − p)δ−1)⊗η. (More rigorously, for any measurable set A ⊆
Ω, Pp[A|η] = Pη

p[A ∩ {−1, 1}η].) More generally, if E is a countable
set, we write PE

p = (pδ1 + (1 − p)δ−1)⊗E .

By duality, P1/2 [Cross(n, n)] = 1/2 (to prove this, one needs to use that
a.s. all the vertices of the Voronoi tiling have degree 3). The following result
is the annealed box-crossing property proved by Tassion:

Theorem 1.2 (Theorem 3 of [18]). — For every λ ∈ (0, +∞), there
exists c = c(λ) ∈ (0, 1) such that, for every R ∈ (0, +∞),

c ⩽ P1/2 [Cross(λR, R)] ⩽ 1 − c .

In [2], the authors prove a quenched box-crossing property in the case
where η is obtained by sampling n independent uniform points in a rectan-
gle. As mentionned in [2] (see also Appendix B of [19]), the proof in the
case where η is a Poisson point process in R2 is essentially the same and
we have the following:

Theorem 1.3 ([2]). — Let λ > 0. There exist an absolute constant
ϵ > 0 and a constant C = C(λ) < +∞ such that, for every R ∈ [1, +∞),

Var
(

Pη
1/2 [Cross(λR, R)]

)
⩽ CR−ϵ .

Main results. In the present paper, we prove an analogue of Theo-
rem 1.3 for arm events. Let us first define these events. Let j ∈ N∗ and
0 ⩽ r ⩽ R. The j-arm event from distance r to distance R is the event that
there exist j paths of alternating colors in the annulus [−R, R]2 \ (−r, r)2

from ∂[−r, r]2 to ∂[−R, R]2 (if j is odd, we ask that there are: (a) j−1 paths
of alternating color, and (b) one additional black path such that there is no
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4 Hugo VANNEUVILLE

Voronoi cell intersected by both this additional path and one of the j − 1
other paths). Let Aj(r, R) denote this event. (If r > R, we let Aj(r, R) be
the sure event.) The annealed probability of Aj(r, R) is denoted by

αan
j,p(r, R) = Pp [Aj(r, R)] .

We will use the simplified notation αan
j,p(R) = αan

j,p(1, R). Our main theorem
is the following:

Theorem 1.4. — Let j ∈ N∗. There exists a constant C = C(j) < +∞
such that, for every r, R ∈ [1, +∞) that satisfy r ⩽ R, we have

(1.1) αan
j,1/2(r, R)2 ⩽ E

[
Pη

1/2 [Aj(r, R)]2
]
⩽ C αan

j,1/2(r, R)2 .

Let also a ∈ (0, 1). There exists a constant C ′ = C ′(j, a) < +∞ such that,
if we assume furthermore that r ⩽ aR, then

(1.2) E
[
Pη

1/2 [Aj(r, R)]2
]

− αan
j,1/2(r, R)2 = Var

(
Pη

1/2 [Aj(r, R)]
)

⩽ C ′ αan
j,1/2(r, R)2 r2 αan

4,1/2(r)2 .

Remark 1.5. — The estimate (1.1) of Theorem 1.4 is a direct conse-
quence of (1.2) and of an estimate on the 4-arm events proved in [19] (see
Proposition 3.2 of the present paper). However, our strategy will be to first
prove (1.1) and then deduce (1.2).

The new difficulties compared to the work [2] are the fact that the arm
events are degenerate and (except for j = 1) non-monotonic. The fact that
the crossing events are monotonic was crucial in [2], especially in Section 2
where the authors prove an Efron–Stein estimate by revealing the position
of the points of η one after the other, and in their final section where
they use the Schramm–Steif randomized algorithm theorem [16] in order
to estimate the sum of squares of influences.(1) To deal with these new
difficulties, we will have to use very precise estimates on the pivotal events.
By doing so, we will also obtain the following more quantitative version of
Theorem 1.3:

(1) Consider the hypercube {−1, 1}n equipped with the uniform probability measure and
let A ⊆ {−1, 1}n. The influence of a coordinate i ∈ {1, . . . , n} is the probability that,
if we change the value of the ith coordinate, then this modifies the Boolean function
1A. The Schramm–Steif theorem is an estimate about the Fourier decomposition of
Boolean functions. This theorem also holds for non-monotonic functions. However, the
connection between the influences and the Fourier spectrum that is used in [2] is only
true for monotonic functions.

ANNALES DE L’INSTITUT FOURIER



QUANTITATIVE QUENCHED VORONOI PERCOLATION 5

Theorem 1.6. — Let λ > 0. There exists a constant C = C(λ) < +∞
such that, for every R ∈ (0, +∞),

(1.3) Var
(

Pη
1/2 [Cross(λR, R)]

)
⩽ CR2 αan

4,1/2(R)2 .

We refer to Subsection 1.4 for some intuitions and ideas of proofs.

Remark 1.7. — An interesting question is whether or not Theorems 1.4
and 1.6 are optimal: Is Theorem 1.4 (respectively Theorem 1.6) still true
with r2−ϵ (respectively R2−ϵ) instead of r2 (respectively R2)? It is likely
that the general martingale estimate Proposition 2.1 is not optimal at all
in the case of crossing (and arm) events.

1.2. An application: Reimer’s inequality and the annealed
percolation function

In this subsection, we explain how one can use (1.1) in order to obtain
some estimates on the annealed probabilities of arm events. We first need to
define the disjoint occurrence of two events. If ω is a coloured configuration,
we write η(ω) for the underlying non-coloured set of points (i.e. η(ω) is such
that ω ∈ {−1, 1}η(ω)). Recall that Ω is the set of all coloured configurations.
If A, B ⊆ Ω are measurable with respect to the coloured configuration ω

restricted to a bounded domain, we write

(1.4) A □ B =
{

ω ∈ Ω :
∃ I1, I2 finite disjoint subsets of η(ω),

ωI1 ⊆ A and ωI2 ⊆ B

}
,

where, for all I ⊆ η(ω),

ωI = {ω′ ∈ {−1, 1}η(ω) : ∀ i ∈ I, ω′
i = ωi}.

By Reimer’s inequality [14] (which generalizes the BK inequality to non-
necessarily monotonic events, see for instance [8, 5]), we have the following
quenched inequality:

Pη
p [A □ B] ⩽ Pη

p [A] Pη
p [B] .

However, the analogous annealed property “Pp [A □ B] ⩽ Pp [A]Pp [B]” is
not true. Indeed, if A depends only on η and satisfies P [A] ∈ (0, 1), then
P [A] = P [A □ A] > P [A]2 (indeed, one can just choose I1 = I2 = ∅ since
for any set I ⊆ η(ω) and any ω′ ∈ ωI , we have η(ω′) = η(ω)). Let us note
that, if A and B are annealed increasing (which means that they are stable
under addition of black points and deletion of white points) and if p = 1/2,
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6 Hugo VANNEUVILLE

then the annealed property P1/2 [A □ B] ⩽ P1/2 [A]P1/2 [B] holds. This is
the annealed BK inequality, see Lemma 3.4 of [2] or [9].

By the above observation, we can expect that the annealed Reimer in-
equality does not hold for the events that highly depend on the environment
η, even up to a constant. On the contrary, the estimate (1.1) - which implies
that the arm events depend little on η - can be used to prove that the arm
events satisfy an annealed Reimer inequality at p = 1/2 up to a constant.
For instance, for every j ∈ N∗ we have

αan
2j+1,1/2(r, R)

= E
[
Pη

1/2 [A1(r, R) □ A2j(r, R)]
]

⩽ E
[
Pη

1/2 [A1(r, R)] Pη
1/2 [A2j(r, R)]

]
by Reimer’s inequality

⩽

√
E
[
Pη

1/2 [A1(r, R)]2
]
E
[
Pη

1/2 [A2j(r, R)]2
]

by Cauchy–Schwarz

⩽ O(1) αan
2j,1/2(r, R)αan

1,1/2(r, R) by (1.1) .

It seems complicated to prove this estimate without relying on (1.1). Actu-
ally, still by relying on (1.1), we will prove in Section 5 that αan

2j+1,1/2(r, R) ⩽
O(1)

(
r
R

)ϵ
αan

2j,1/2(r, R)αan
1,1/2(r, R). This identity will be a key result in or-

der to prove the following strict inequality for the annealed percolation
function, which is analogous to the result obtained by Kesten and Zhang
in [11]:

Theorem 1.8. — There exists a constant ϵ > 0 such that, for every
p > 1/2, we have

θan(p) ⩾ ϵ (p − 1/2)1−ϵ
.

Let us note that the authors of [6] have obtained that θan(p) ⩾ ϵ (p−1/2)
in any dimension. Theorem 1.8 is proved in Section 5. In order to prove this
result, we also rely on the following two annealed scaling relations (analo-
gous to the scaling relations proved by Kesten for Bernoulli percolation on
Z2, see [10]) that we have proved in [19]:

Theorem 1.9 (Theorem 1.11 of [19]). — For every p ∈ (1/2, 3/4], let
Lan(p) denote the annealed correlation length, i.e.

Lan(p) = inf{R ⩾ 1 : Pp [Cross(2R, R)] ⩾ 1 − ϵ0} < +∞ ,

for some fixed sufficiently small ϵ0 (see Subsection 1.3 of [19] for more
details). There exist c = c(ϵ0) ∈ (0, +∞) and C = C(ϵ0) ∈ (0, +∞) such
that, for every p ∈ (1/2, 3/4],

c αan
1,1/2(Lan(p)) ⩽ θan(p) ⩽ C αan

1,1/2(Lan(p))

ANNALES DE L’INSTITUT FOURIER
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and
c

1
p − 1/2 ⩽ Lan(p)2αan

4,1/2(L(p)) ⩽ C
1

p − 1/2 .

1.3. A motivation: noise sensitivity and exceptional times for
Voronoi percolation

One of the main motivations of the present paper (and in particular of
Theorem 1.4) is to provide tools to study the annealed spectral sample of
Voronoi percolation, which is a continuous spectral object that we introduce
and study in [20].

Let us define a dynamical Voronoi percolation process by either resam-
pling each colour of ω at rate 1 or letting the points of η evolve according
to (independent) long range Lévy processes. In the first case, the colours
evolve in time while in the second case the “environment” evolves in time.
By studying the annealed spectral sample, we prove in [20] that in both
dynamical processes a.s. there exist exceptional times, i.e. times with an
unbounded black component.

The present paper can actually be seen as the second of a series of three
papers whose first is [19] (in which we prove the estimates stated in Subsec-
tion 3.1), whose third is [20], and whose final goal is to study the annealed
spectral sample of Voronoi percolation.

Why is the present paper important for the study of annealed spectral
objects? In [7], Garban, Pete and Schramm study the so-called (discrete)
spectral sample. To this purpose, they rely deeply on general spectral in-
equalities that involve the square of the probability of pivotal events. The
analogous spectral inequalities for the annealed spectral sample (see [20])
involve the expectation of the square of the quenched probability of pivotal
events. In the case of percolation, the latter quantity is highly connected
to the quantity E

[
Pη

1/2[A4(r, R)]2
]

that is studied in the present work.
The study of noise sensitivity of Voronoi percolation (which is a notion

intimately related to the question of existence of exceptional times) has
been initiated in [2] and [1].

1.4. Ideas of proof

Notation 1.10. — In the paper, we will only work at the parameter p =
1/2 (the scaling relations of Theorem 1.9 enable us to estimate θ(p) with
p > 1/2 by working at p = 1/2). Hence, we will use the following simplified
notations:

TOME 0 (0), FASCICULE 0



8 Hugo VANNEUVILLE

• P := P1/2, Pη := Pη
1/2 and PE := PE

1/2 ,

• αan
j (r, R) := αan

j,1/2(r, R) .

Also, we will use the following notation:

(1.5) α̃j(r, R) =
√

E
[
Pη [Aj(r, R)]2

]
.

Let us present some ideas of proofs. Let us first explain why we see The-
orem 1.6 as a consequence of (1.1) (although we will also need some further
work about arm events). (Similarly, we see (1.2) as a consequence of (1.1).)
In [2] (see Theorem 2.1 therein), the authors prove a martingale estimate
inspired by the Efron–Stein inequality that implies that the variance of the
quenched probability of a crossing event is bounded by E[

∑
x∈η(Infη

x)2 ],
where Infη

x is the quenched influence, that is, the Pη-probability that chang-
ing the colour of x modifies the indicator function of the crossing event.
In both Bernoulli percolation (see [10, 21, 13]) and Voronoi percolation
(see [19]), it is known that in some sense, if we neglect boundary issues, the
influence is of the same order as the probability of the 4-arm event. More-
over, by (1.1), the quenched probability of the 4-arm event is typically
of the same order as the annealed probability. As a result, the variance
of the quenched probability of a crossing event at scale R is bounded by
CR2αan

4 (R)2. This is exactly Theorem 1.6.
Let us now focus on (1.1) which is the central result of our work. By

Jensen’s inequality, α̃j(r, R) ⩾ αan
j (r, R). Our goal is to prove that the

other inequality is true up to a constant. In order to explain the general
strategy, we need to introduce an annealed and a quenched notions of
pivotal events (that we have used in [19]):

Definition 1.11. — Let A be an event measurable with respect to the
coloured configuration ω and let η be the underlying (non-coloured) point
configuration. Also, let D be a bounded Borel subset of the plane.

• The subset D is said quenched-pivotal for ω and A if there exists
ω′ ∈ {−1, 1}η such that ω and ω′ coincide on η ∩ Dc and 1A(ω′) ̸=
1A(ω). We write Pivq

D(A) for the event that D is quenched-pivotal
for A.

• The subset D is said annealed-pivotal for some Voronoi percola-
tion configuration ω and some event A if both P [A | ω \ D] and
P [¬A | ω \ D] are positive. We write PivD(A) for the event that D

is annealed-pivotal for A.

Note that we have P [Pivq
D(A) \ PivD(A)] = 0 for any A and D as above.

ANNALES DE L’INSTITUT FOURIER
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Let us recall that we want to prove that α̃j(r, R) is of the same order as
αan

j (r, R). Let us first observe that

Var (Pη [Aj(r, R)]) = α̃j(r, R)2 − αan
j (r, R)2 .

As in [2], we will use a martingale method inspired by the Efron–Stein
inequality in order to bound Var (Pη [Aj(r, R)]). The difference with [2] is
that we will prove an estimate that also holds for non-monotonic events.
This estimate is Proposition 2.1 and implies that(2)

Var (Pη [Aj(r, R)]) ⩽
∑

S

E
[
Pη [PivS(Aj(r, R))]2

]
,

where S ranges (for instance) over all the 1 × 1 squares of the grid Z2.
We will then need to estimate the quantities E

[
Pη[PivS(Aj(r, R))]2

]
.

To this purpose, we will rely on several estimates from [19]. In Section 4,
we will use these estimates in order to prove that∑

S

E
[
Pη [PivS(Aj(r, R))]2

]
⩽ O(1)r−ϵ α̃j(r, R)2

for some ϵ > 0. As a result,

α̃j(r, R)2 − αan
j (r, R)2 ⩽ O(1) r−ϵ α̃j(r, R)2

and there exists r0 > 0 such that, if r > r0, then

α̃j(r, R)2 ⩽ 2αan
j (r, R)2 .

We will thus obtain the desired result for r sufficiently large and we will con-
clude that the result holds for every r thanks to the quasi-multiplicativity
property of arm-events (see Proposition 3.1).

Let us end this part on the strategy of proofs by the following remark:
As mentioned above, in order to prove our main results, we will have to
prove estimates on the probabilities of arm events. To this purpose, our
strategy will often consist in: (i) defining a “good” event G(r, R) and then
(ii) using the trivial bound:

αan
j (r, R) ⩽ P [Aj(r, R) | G(r, R)] + P [¬G(r, R)] .

Of course, we will define G(r, R) in such a way that it is easier to study
Aj(r, R) under P [ · | G(r, R)] than under P. The problem here is that we
will have estimates of the kind:

P [¬G(r, R)] ⩽ ε1(r)

(2) When looking at this inequality, the reader may have in mind that the OSSS inequal-
ity can be used to improve similar variance bounds by adding a revealment term. How-
ever, the OSSS inequality is an ℓ1-type inequality, no ℓ2-type OSSS inequality is known,
and it is better for us to lose a revealment term than the square in Pη [PivS(Aj(r, R))]2.

TOME 0 (0), FASCICULE 0



10 Hugo VANNEUVILLE

and

P [Aj(r, R)] ⩽ ε2(R/r)

for some functions ε1 and ε2 that go to 0 at infinity. So this strategy is
not useful at all when R/r is extremely large compared to r. To overcome
this difficulty, our strategy will often be to fix some M ≫ 1, prove es-
timates on quantities of the form αan

j (ρ, ρM) for any ρ ⩾ M , and then
deduce estimates that hold for αan

j (r, R) for any r ⩽ R by using the quasi-
multiplicativity property Proposition 3.1. See in particular the proofs of
Propositions 5.1 and 6.2. Note that this strategy is close to the strategy
from [12] and [17] where the authors compute the arm exponents for criti-
cal percolation on the triangular lattice by estimating the probabilities of
non-degenerate arm events and then deducing the result for all arm-events
by using the quasi-multiplicativity property.

Notation 1.12. — Let us end this section by some general notations that
we will use all along the paper:

• We write BR = [−R, R]2 and we write A(r, R) for the annulus
[−R, R]2 \ (−r, r)2. Also, for every y ∈ R2, we write Br(y) = y + Br

and A(y; r, R) = y + A(r, R).
• A quad Q is a topological rectangle in the plane with two distin-

guished opposite sides. Also, a crossing of Q is a black path in-
cluded in Q that connects the distinguished sides. The event that
Q is crossed is written Cross(Q).

• We use the following notations:
(a) O(1) is a positive bounded function,
(b) Ω(1) is a positive function bounded away from 0 and
(c) if f and g are two non-negative functions, then f ≍ g means

Ω(1)f ⩽ g ⩽ O(1) f .
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2. The martingale method

In this section, we follow the ideas from Section 2 of [2] where the au-
thors use a martingale method inspired by the Efron–Stein inequality. In
particular, they prove a general estimate by discovering the colours of the
points of the Poisson process one after the other. In the present paper, we
will rather discover the boxes of a grid (i.e. at each step we will discover
all the points of the Poisson process that belong to some box). Remember
the definition of pivotal events from Definition 1.11.

Proposition 2.1. — Let ρ > 0, let E ⊆ Ω be a measurable set, and let
(Sρ

m)m∈N be an enumeration of the ρ × ρ squares of the grid ρZ2. Then,

Var (Pη [E]) ⩽
∑
m∈N

E
[
Pη
[
PivSρ

m
(E)
]2]

.

Proof. — The proof is very similar to the proof of Theorem 2.1 in [2].
We use the following notations:

qη = Pη [E] ;

∀ m ∈ N ∪ {−1}, qm = P

[
E

∣∣∣∣∣ η ∩

(
m⋃

k=0
Sρ

k

)]
= E

[
qη

∣∣∣∣∣ η ∩

(
m⋃

k=0
Sρ

k

)]
.

Note that (qm)m is a bounded martingale that converges in L2 to qη. Note
also that q−1 = E [qη]. Hence we have:

Var (qη) = lim
M→+∞

Var
(

M∑
m=0

qm − qm−1

)
=
∑
m∈N

Var (qm − qm−1) .

It is thus sufficient to prove that for all m ∈ N we have

(2.1) Var (qm − qm−1) ⩽ E
[
Pη
[
PivSρ

m
(E)
]2]

.

To this purpose, let η− = η \ Sρ
m, let qη− = Pη− [E] (more rigorously,

qη− = Pη− [{−1, 1}η− ∩ E]),(3) and let us prove the following:

(2.2) Var (qm − qm−1) ⩽ E
[
(qη − qη−

)2
]

.

Proof of (2.2). — We follow the proof of Lemma 2.4 in [2] where the
authors use the conditional variance formula.(4)

(3) Note that Pη− [E] is different from P[E|η−] in general. Under Pη− , there is no point
in Sρ

m.
(4) The conditional variance is defined by Var(X | Y ) = E

[
X2 | Y

]
− E [X | Y ]2 =

E
[
(X − E [X | Y ])2 | Y

]
. The conditional variance formula is Var(X) = Var(E [X | Y ]) +

E [Var(X | Y )].

TOME 0 (0), FASCICULE 0
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Since we have E
[
qm − qm−1

∣∣ η ∩ (
⋃m−1

k=0 Sρ
k)
]

= 0, this formula implies
that:

Var (qm − qm−1) = E

[
Var

(
qm

∣∣∣∣∣ η ∩

(
m−1⋃
k=0

Sρ
k

))]
.

By using the fact that (qη−
,
⋃m−1

k=0 η ∩ Sρ
k) is independent of η ∩ Sρ

m, we
obtain that

E

[
qη−

∣∣∣∣∣ η ∩

(
m−1⋃
k=0

Sρ
k

)]
= E

[
qη−

∣∣∣∣∣ η ∩

(
m⋃

k=0
Sρ

k

)]
,

hence Var
(
qm

∣∣ η ∩ (
⋃m−1

k=0 Sρ
k)
)

equals

Var
(
E

[
qη

∣∣∣∣∣ η ∩

(
m⋃

k=0
Sρ

k

)] ∣∣∣∣∣ η ∩

(
m−1⋃
k=0

Sρ
k

))

= Var
(
E

[
qη

∣∣∣∣∣ η ∩

(
m⋃

k=0
Sρ

k

)]
− E

[
qη−

∣∣∣∣∣ η ∩

(
m−1⋃
k=0

Sρ
k

)] ∣∣∣∣∣ η ∩

(
m−1⋃
k=0

Sρ
k

))

= Var
(
E

[
qη − qη−

∣∣∣∣∣ η ∩

(
m⋃

k=0
Sρ

k

)] ∣∣∣∣∣ η ∩

(
m−1⋃
k=0

Sρ
k

))

⩽ E

E[qη − qη−

∣∣∣∣∣ η ∩

(
m⋃

k=0
Sρ

k

)]2
∣∣∣∣∣∣ η ∩

(
m−1⋃
k=0

Sρ
k

) since Var( · ) ⩽ E[ ·2]

⩽ E

[
(qη − qη−

)2

∣∣∣∣∣ η ∩

(
m−1⋃
k=0

Sρ
k

)]
by Jensen’s inequality .

This ends the proof. □

As a result,
Var(qη) ⩽

∑
m∈N

E
[
(qη − qη−

)2
]

so it is now sufficient to prove that a.s. we have |qη−qη− | ⩽ Pη
[
PivSρ

m
(E)
]
.

To show this, we let ω− = ω \ Sρ
m, and we observe that P-a.s. we have

|1ω−∈E − 1ω∈E | ⩽ 1ω∈PivS
ρ
m

(E).

If we condition on η, then the law of ω− is Pη− . As a result, P-a.s. we have∣∣∣qη − qη−
∣∣∣ =

∣∣∣Pη [E] − Pη−
[E]
∣∣∣

⩽ E [|1ω−∈E − 1ω∈E | | η] ⩽ Pη
[
PivSρ

m
(E)
]

.

This ends the proof. □
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3. First estimates on arm and pivotal events

3.1. Arm-events and pivotal events

As one can see in Proposition 2.1, one way to estimate Var (Pη [Aj(r, R)])
is to find upper bounds for the quantities E

[
Pη[PivS(Aj(r, R))]2

]
. In [19]

(see in particular Appendix D therein), we have proved such upper bounds
in terms of the quantities α̃4( · , · ) and α̃j( · , · ).

Below, we list the results from [19] about the quantities α̃j(r, R) and
αan

j (r, R) that we use in the present paper. Let us first state a polynomial
decay property (see (1.1) and (D.3) in [19]): For every j ∈ N∗, there exists
C = C(j) ∈ [1, +∞) such that, for every 1 ⩽ r ⩽ R < +∞,

(3.1) 1
C

( r

R

)C

⩽ αan
j (r, R) ⩽ α̃j(r, R) ⩽ C

( r

R

)1/C

.

The following quasi-multiplicativity property will be crucial in the present
work.

Proposition 3.1 (Propositions 1.6 and D.1 of [19]). — Let j ∈ N∗.
There exists a constant C = C(j) ∈ [1, +∞) such that, for every 1 ⩽ r1 ⩽
r2 ⩽ r3,

1
C

αan
j (r1, r3) ⩽ αan

j (r1, r2) αan
j (r2, r3) ⩽ C αan

j (r1, r3) .

and
1
C

α̃j(r1, r3) ⩽ α̃j(r1, r2) α̃j(r2, r3) ⩽ C α̃j(r1, r3) .

We have the following estimates on 4-arm events:

Proposition 3.2 (Corollary D.11 of [19]). — There exists ϵ > 0 such
that, for every R ∈ [1, +∞),

αan
4 (R) ⩽ α̃4(R) ⩽ 1

ϵ
R−(1+ϵ) .

We will prove a multiscale version of Proposition 3.2 in Section 6.

Proposition 3.3 (Proposition 1.13 of [19]). — There exists ϵ > 0 such
that, for every 1 ⩽ r ⩽ R < +∞,

α̃4(r, R) ⩾ αan
4 (r, R) ⩾ ϵ

( r

R

)2−ϵ

.

We will improve Proposition 3.3 in Section 5.
Let us write A+

j (r, R) for the j-arm event in the half-plane, whose def-
inition is the same as the definition of Aj(r, R) except that we ask that
the arms live in the (upper, say) half-plane. We also write αan,+

j (r, R) =
P[A+

j (r, R)] and α̃+
j (r, R) =

√
E
[
Pη[A+

j (r, R)]2
]
. We have the following:
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Proposition 3.4 (Proposition 2.7 of [19]). — The computation of the
universal arm exponents holds for annealed Voronoi percolation: Let 1 ⩽
r ⩽ R. Then,

(i) αan,+
2 (r, R) ≍ r/R , hence Ω(1)(r/R) ⩽ α̃+

2 (r, R) ⩽ O(1) (r/R)1/2

by Jensen’s inequality,
(ii) αan,+

3 (r, R) ≍ (r/R)2 , hence Ω(1)(r/R)2 ⩽ α̃+
3 (r, R) ⩽ O(1) r/R ,

(iii) αan
5 (r, R) ≍ (r/R)2 , hence Ω(1)(r/R)2 ⩽ α̃5(r, R) ⩽ O(1) r/R .

Remark 3.5. — Thanks to (1.1) (from Theorem 1.4), we will be able to
deduce from Proposition 3.4 that

(3.2) α̃+
2 (r, R) ≍ r/R, α̃+

3 (r, R) ≍ (r/R)2 and α̃5(r, R) ≍ (r/R)2 .

However, in order to prove (1.1), we will only be able to rely on the weaker
estimates from Proposition 3.4. The reason why we have not managed
to prove (3.2) without relying on (1.1) is that the computation of these
universal exponents uses crucially the translation invariance properties of
the annealed model.

In Appendix D.2 of [19], we have proved upper bounds for the quantities

(3.3) E
[
Pη [PivS(Aj(r, R))]2

]
,

where S is a square included in the annulus A(r, R). Here, we state five
lemmas (that are consequences of the results from [19] or that can be proved
by using methods from [19], see the sketch of proof below) that give upper
bounds for (3.3) when S is respectively in the bulk of A(r, R), near the
outer boundary of this annulus, in the unbounded connected component of
R2 \ A(r, R), near the inner boundary of this annulus, and in the bounded
component of R2 \ A(r, R).

Let y be a point of the plane, let ρ ⩾ 1, let S = Bρ(y), and let r, R be
such that ρ ⩽ r/10 and r ⩽ R/2. Also, let j ∈ N∗.

Lemma 3.6. — Let y, ρ, r, R and S = Bρ(y) be as above. Assume that
S ⊆ A(2r, R/2) and let d ⩾ r be the distance between y and 0. Then,

E
[
Pη [PivS(Aj(r, R))]2

]
⩽ O(1) (α̃j(r, R) α̃4(ρ, d))2

.

If S ∩A(R/2, R) ̸= ∅ then we use the following notations: Let d0 = d0(S)
be the distance between S and the closest side of BR and let y0 be the
orthogonal projection of y on this side. Also, let d1 = d1(S) ⩾ d0 be the
distance between y0 and the closest corner of BR. Write A++

j ( · , · ) for the j-
arm event in the quarter plane and let α̃++

j ( · , · ) :=
√
E
[
Pη[A++

j ( · , · )]2
]
.

We have the following:
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Lemma 3.7. — Let y, ρ, r, R and S = Bρ(y) be as above. Assume that
S ∩ A(R/2, R) ̸= ∅. Remember that ρ ⩽ r/10 and r ⩽ R/2. Then,

E
[
Pη [PivS(Aj(r, R))]2

]
⩽ O(1)

(
α̃j(r, R) α̃++

3 (d1 + ρ, R) α̃+
3 (d0 + ρ, d1) α̃4(ρ, d0)

)2
.

The following lemma roughly says that, if we want to use our bounds to
estimate the sum

(3.4)
∑

S square of the grid 2ρZ2

E
[
Pη [PivS(Aj(r, R))]2

]
,

and if we forget the terms corresponding to the squares S that are in the
unbounded component of R2 \ A(r, R), then this does not change the order
of the estimate. (Here and below, a “square of the grid 2ρZ2” is a unit
square of this grid, i.e. a 2ρ × 2ρ square.) More precisely, given a 2ρ × 2ρ

square S that intersects ∂BR (in particular, such a square satisfies the
hypothesis of Lemma 3.7), we prove that the sum (3.4) restricted to the
(infinite) family of squares S′ of the grid 2ρZ2 that satisfy the property
“S′ does not intersect BR and, among all squares of the grid 2ρZ2 that
intersect ∂BR, S is the closest” is less than or equal to the bound from
Lemma 3.7 for the single square S.

SS

Figure 3.1. A square S and the squares S′ ∈ S from Lemma 3.8 in two
cases.

Lemma 3.8. — Let ρ ⩾ 1 and let r, R be such that ρ ⩽ r/100 and
r ⩽ R/2. Also, let S be a square of the grid 2ρZ2 that intersects ∂BR.
Moreover, let S be the set of all squares S′ of the grid 2ρZ2 that do not
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intersect BR and are such that S is the argmin of dist(S′′, S′) where S′′

ranges over the set of squares of the grid 2ρZ2 that intersect ∂BR. Then,∑
S′∈S

E
[
Pη [PivS′(Aj(r, R))]2

]
⩽ O(1)

(
α̃j(r, R) α̃++

3 (d1 + ρ, R) α̃+
3 (d0 + ρ, d1) α̃4(ρ, d0)

)2
,

where d0 = d0(S) = 0 and d1 = d1(S).

Let us now study the quantity E
[
Pη[PivS(Aj(r, R))]2

]
when S is at

distance less than 2r from 0. If S ∩ A(r, 2r) ̸= ∅, we use the following
notations: Let d0 = d0(S) be the distance between S and the closest side
of Br and let y0 be the orthogonal projection of y on this side. Also, let
d1 = d1(S) be the distance between y0 and the closest corner of Br. Write
A(++)c

j ( · , · ) for the j-arm event in the plane without the quarter plane

and let α̃
(++)c

j ( · , · ) =

√
E
[
Pη
[
A(++)c

j ( · , · )
]2
]
.

Lemma 3.9. — Let y, ρ, r, R and S = Bρ(y) be as above. Assume that
S ∩ A(r, 2r) ̸= ∅. Remember that ρ ⩽ r/10 and r ⩽ R/2. If d1 ⩾ d0, then

E
[
Pη [PivS(Aj(r, R))]2

]
⩽ O(1)

(
α̃j(r, R) α̃

(++)c

3 (d1 + ρ, r) α̃+
3 (d0 + ρ, d1) α̃4(ρ, d0)

)2
.

If we rather have d1 ⩽ d0, then

E
[
Pη [PivS(Aj(r, R))]2

]
⩽ O(1)

(
α̃j(r, R) α̃

(++)c

3 (d0 + ρ, r) α̃4(ρ, d0)
)2

.

Lemma 3.10. — Let ρ ⩾ 1 and let r, R be such that ρ ⩽ r/100 and
r ⩽ R/2. Also, let S be a square of the grid 2ρZ2 that intersects ∂Br.
Moreover, let S be the set of all squares S′ of the grid 2ρZ2 that are
included in Br and are such that S is the argmin of dist(S′′, S) where S′′

spans over the set of squares of the grid 2ρZ2 that intersects ∂Br. Then,∑
S′∈S

E
[
Pη [PivS′(Aj(r, R))]2

]
⩽ O(1)

(
α̃j(r, R) α̃

(++)c

3 (d1 + ρ, r) α̃+
3 (d0 + ρ, d1) α̃4(ρ, d0)

)2
,

where d0 = d0(S) = 0 and d1 = d1(S).

Proof of Lemmas 3.6 to 3.10. — In Section 4.3 of [19], we have proved
analogous estimates for the quantities P [PivS(Aj(1, R)]. Moreover, Lem-
ma D.13 of [19] gives estimates on the quantities E

[
Pη[PivS(Aj(r, R)]2

]
ANNALES DE L’INSTITUT FOURIER
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when S is in the “bulk” of BR. In particular, this lemma implies Lemma 3.6.
The proof of Lemmas 3.7 and 3.9 is very similar except that we have to take
care about boundary issues. The way to adapt the proofs in the case where
S is in the bulk to the case where S is close to the boundary is the same as
in Section 4.3 of [19], so we leave the details to the reader. Similarly, the
way we deduce Lemmas 3.8 and 3.10 from respectively Lemmas 3.7 and 3.9
is the same as for the analogous results from Section 4.3 of [19]. □

3.2. The “good” events

The results from this subsection are not used in the proof of (1.2) from
Theorem 1.4. So the reader who is mainly interested in this result can skip
this subsection.

Since we study a model in random environment, it is important to have
estimates on some “good” events measurable with respect to η. The def-
initions and the estimates that we state in this section are from [19]. We
first define the “dense” events that help us to have spatial independence
properties.

Definition 3.11. — If δ ∈ (0, 1) and D is a bounded Borel subset of
the plane, we write Denseδ(D) for the event that, for every u ∈ D, there
exists x ∈ η ∩ D such that ∥x − u∥2 < δ · diam(D).

Lemma 3.12 (e.g. Lemma 2.11 of [19]). — Let R ⩾ 1 and δ ∈ (0, 1). We
have

P [Denseδ(BR)] ⩾ 1 − O(1) δ−2 exp
(

− (δ · R)2

2

)
.

We will often use the properties of the “dense” events without provid-
ing many details so let us explain here how we will use these events: let
D1, D2 ⊆ R2 be two disjoint sets and let Ai, i ∈ {1, 2} be an event that de-
pends only on the colours of the points in Di (by “points” we mean “point
of the plane” and not “point of η”; for instance, Cross(R, R) depends only
on the colours of the points in [−R, R]2). Moreover, consider two “dense
events” Densei = Denseδi(Di), i ∈ {1, 2} and assume that the distance be-
tween D1 and D2 is larger than δ1 + δ2. Then, A1 ∩ Dense1 is independent
of A2 ∩ Dense2. Moreover, if η ∈ Dense1 ∩ Dense2 then A1 is independent
of A2 under Pη.

We now define some sets of quads and state a result from [19] that roughly
says that, with high probability, the quenched crossing probabilities of all
the quads in these sets are non-negligible. The main tool in the proof of
this result was the quenched box-crossing result of [2].
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Definition 3.13. — Let D be a bounded subset of the plane and let
δ > 0. We denote by Q′

δ(D) the set of all quads Q ⊆ D which are drawn
on the grid (δ diam(D)) · Z2 (i.e. whose sides are included in the edges of
(δ diam(D)) ·Z2 and whose corners are vertices of (δ diam(D)) ·Z2). Also,
we denote by Qδ(D) the set of all quads Q ⊆ D such that there exists a
quad Q′ ∈ Q′

δ(D) satisfying Cross(Q′) ⊆ Cross(Q). Note that these sets
are empty if δ > 1.

Moreover, we let Q̃′
δ(D) ⊆ Q′

δ(D) be the set of all quads Q ⊆ D such
that there exists k ∈ N such that Q is drawn on the grid (2k δ diam(D)) ·Z2

and the length of each side of Q is less than 100 · 2k δ diam(D). Also, we
write Q̃δ(D) for the set of all quads Q ⊆ D such that there exists a quad
Q′ ∈ Q̃′

δ(D) satisfying Cross(Q′) ⊆ Cross(Q).

Thus, Q̃′
δ(D) consists of the quads in D that are “not too long” and

whose opposite sides are “not too close to each other”.

Proposition 3.14 (Proposition 3.2 of [19](5) ). — Let δ, γ ∈ (0, +∞).
There exist an absolute constant C < +∞ and a constant c̃ = c̃(γ) ∈ (0, 1)
that does not depend on δ such that, for every bounded subset of the plane
D that satisfies diam(D) ⩾ δ−2/100, we have

P
[
Q̃BC

γ

δ (D)
]
⩾ 1 − C diam(D)−γ ,

where
Q̃BC

γ

δ (D) =
{

∀ Q ∈ Q̃δ(D), Pη [Cross(Q)] ⩾ c̃(γ)
}

.

(The notation QBC means “Quenched Box Crossings”.)

For every γ > 0, we fix a constant c̃(γ) as in Proposition 3.14.

Remark 3.15. — Note that, by gluing arguments,(6) there exists an ab-
solute constant C1 ∈ (0, +∞) such that, if c = c(δ, γ) := c̃(γ)C1δ−2 , then

Q̃BC
γ

δ (D) ⊆
⋂
k∈N

QBCγ
2kδ

(D) ⊆ QBCγ
δ (D) ,

where

QBCγ
δ (D) = {∀ Q ∈ Qδ(D), Pη [Cross(Q)] ⩾ c(δ, γ)} .

(5) This proposition is stated for δ ∈ (0, 1) but the proof is the same if δ = 1 and the
result is trivial if δ > 1 because the set Q̃δ(D) is empty in this case.
(6) More precisely, we use that if all the (vertical and horizontal) 2δ diam(D)×δ diam(D)
rectangles and all the δ diam(D) × δ diam(D) squares of the grid δ diam(D)Z2 included
in D are crossed, then this is also the case of all the quads Q ∈ Qδ(D).
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For every γ, δ > 0, we fix a constant c(δ, γ) as above (i.e. we fix a constant
C1 as above).

As a result, Proposition 3.14 implies that there exists an absolute con-
stant C < +∞ such that, for every δ, γ ∈ (0, +∞), and every bounded
subset of the plane D satisfying diam(D) ⩾ δ−2/100, we have

P [QBCγ
δ (D)] ⩾ 1 − C diam(D)−γ .

3.3. A quenched quasi-multiplicativity property

The results from this subsection are not used in the proof of (1.2) from
Theorem 1.4. Moreover, they are not used in the proof of Theorem 1.8. So
the reader who is mainly interested in these results can skip this subsection.

In [19], we have proved the quasi-multiplicativity property for the quan-
tities αan

j (r, R) and α̃j(r, R) (see Proposition 3.1 of the present paper). The
proof was rather technical because of the multiple passages from quenched
to annealed estimates. The proof of the following property is much easier.

Proposition 3.16. — For every γ > 0 and every j ∈ {1} ∪ 2N∗, there
exists C = C(γ, j) ∈ [1, +∞) such that, for every r0 ∈ [1, +∞), the fol-
lowing holds with probability larger than 1 − Cr−γ

0 : For every r1, r2, r3 ∈
[r0, +∞) that satisfy r1 ⩽ r2 ⩽ r3, we have

(3.5) 1
C

Pη [Aj(r1, r3)] ⩽ Pη [Aj(r1, r2)] Pη [Aj(r2, r3)]

⩽ C Pη [Aj(r1, r3)] .

Proof. — Fix γ > 0. We write the proof for j = 4 since the proof is the
same for the other even positive integers j and is simpler for j = 1. Let
δ0 ∈ (0, 1/1000), let An(r0) be the annulus A(5n−2r0, 5n+2r0), and consider
the event

(3.6) GPγ
δ0

(r0) =
⋂

n⩾0
Denseδ0 (An(r0)) ∩ Q̃BC

γ

δ0
(An(r0)) .

(Where GP means “Good Point process”.) If we follow the classical proofs
of the quasi-multiplicativity property on non-random lattices, we obtain
that (3.5) holds if η ∈ GPγ

δ0
(r0) with δ0 sufficiently small. Let us be more

precise: let η ∈ GPγ
δ0

(r0) and let us follow Appendix A of [16], where the
quasi-multiplicativity property is proved for bond percolation on Z2 and
site percolation on the triangular lattice. All the independence properties
that are needed in this appendix hold since we work under Pη and since

TOME 0 (0), FASCICULE 0



20 Hugo VANNEUVILLE

η ∈
⋂

n⩾0 Denseδ0/100(An(r0)). There are three steps in the proof from [16]
(which correspond respectively to Lemmas A.2, A.3 and A.4 therein):

(1) In the first step, the authors prove (by using box-crossing argu-
ments) that there exist C < +∞ and ϵ > 0 such that, for every
R ⩾ 1, the probability that there exist two interfaces that cross the
annulus A(R, 2R) and whose endpoints are at distance less than Rδ

from each other is less than Cδϵ. Since η ∈
⋂

n⩾0 Q̃BC
γ

δ0
(An(r0)),

we can use the same box-crossing arguments to prove that this re-
sult holds as soon as R ⩾ r0 and δ ⩾ δ0 and with constants C, ϵ

that depend on γ (note that here it is important that the constant
c̃ from Proposition 3.14 does not depend on δ).

(2) In the second step, the authors of [16] prove that there exists δ > 0
such that, for each δ > 0 and each r, R ⩾ 1 satisfying r ⩽ R/2,
there exists a = a(δ) > 0 such that we have the following: Let
s(r, R) be the minimal distance between the endpoints on ∂BR of
two interfaces that cross A(r, R). If we condition on A4(r, R) ∩
{s(r, R) > δR}, then the probability of A4(r, 4R)∩{s(r, 4R) > δR}
is larger than a. Since η ∈ ∩n⩾0Q̃BC

γ

δ0
(An(r0)) and since(7)

Q̃BC
γ

δ0
(An(r0)) ⊆

⋂
k⩾0

QBCγ
2kδ0

(An(r0)) ,

we can use the same box-crossing arguments as in [16] to prove that
there exists δ > 0 such that, if δ0 ⩽ δ, then this result holds for any
δ ⩾ 100δ0 and any r, R ⩾ 1 such that r ⩽ R/2 and R ⩾ r0 (and
with a constant a = a(δ) that also depends on γ).

Let us be a little more precise about the adaptation of the proof.
Let r, R be such that r ⩽ R/2 and R ⩾ r0 and assume that
A4(r, R) ∩ {s(r, R) ⩾ δR} holds (we keep the same notation as
in the case of Bernoulli percolation). Moreover, let k ∈ N be such
that 2kδ0 ⩽ δ ⩽ 2k+1δ0 and n ∈ N be such that 5n−1r0 ⩽ R ⩽ 5nr0.
Then, we can use the box-crossing estimates (which are given by
QBCγ

2kδ0
(An(r0))) to extend the four arms with probability larger

than some constant a that depends only on δ and γ.
(3) The third step is a combination of the first two steps that relies on

spatial independence. The proof in our case is the same as in [16].
Finally, the quasi-multiplicativity property holds for every r1, r2, r3 ⩾ r0
as soon as η ∈ GPγ

δ0
(r0) for some δ0 sufficiently small, so it only remains

(7) See Remark 3.15.
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to prove that for every δ0 we have

P
[
GPγ

δ0
(r0)

]
⩾ 1 − O(1) r−γ

0 ,

where the constants in the O(1) only depend on δ0 and γ. This is actually
a direct consequence of Lemma 3.12 (or rather of the analogue for annuli
instead of squares, but the proof is the same) and of Proposition 3.14. □

Remark 3.17. — We have stated Proposition 3.16 only for j = 1 and j

even since the proof is less technical in these cases and since we will use
this proposition only for j = 4.

In Section 6, we will need the following quenched estimate whose proof
is roughly the same as that of Proposition 3.16. We first need to introduce
a notation: If Q is a r × r square and α > 0, we let αQ be the square
concentric to Q with side length αr and we let Circδ(Q) be the event that
there is a black circuit in the annulus (1 − δ)Q \ (1 − 2δ)Q and no white
circuit in this annulus. Also, we let Circ∗

δ(Q) be the event that there is a
white circuit in the annulus (1 − δ)Q \ (1 − 2δ)Q and no black circuit in
this annulus.

Lemma 3.18. — Let γ > 0. There exists δ̃ = δ̃(γ) > 0 such that, for
every δ ∈ (0, δ̃], there exist C = C(δ, γ) < +∞, c = c(γ) > 0 and c′ =
c′(δ, γ) > 0 such that, for every r, R ⩾ 1, the following holds: Let Q be a
2r × 2r square included in BR and at distance at least R/3 from the sides
of BR and let x denote the center of Q. Also, let X be the ±1 indicator
function of Cross(R, R). Then, with probability larger than 1 − Cr−γ we
have

(i) Pη
[
Pivq

Q(Cross(R, R))
]
⩾ cPη [A4(x; r, R)] , where A4(x; r, R) is

the 4-arm event translated by x,
(ii) Pη

[
Circδ(Q)

]
⩾ c′ ,

(iii) Eη
[
X
∣∣ Circδ(Q) ∩ Pivq

Q(Cross(R, R))
]

> 1/4 ,
(iv) Eη

[
X
∣∣ Circ∗

δ(Q) ∩ Pivq
Q(Cross(R, R))

]
< −1/4 .

Proof. — Let γ > 0. We write the proof for Q centered at 0 (i.e. x = 0
and Q = Br) to simplify the notations, and we define GPγ

· ( · ) as in (3.6).
Let δ ∈ (0, 1) and let η ∈ GPγ

δ/100(r). Until the last line of the proof,
we work under the probability measure Pη. We first note that Item (ii)
holds for some c′ = c′(δ, γ) because η ∈ GPγ

δ/100(r). Let us now study
the quenched pivotal event. The event Pivq

Q(Cross(R, R)) is the event that
there are: one black path from a cell whose center x ∈ η belongs to Q to the
left side of [−R, R]2, one black path from such a cell to the right side, one
white path from such a cell the top side and one white path from such a
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cell to the bottom side. If we follow the proof of Proposition 3.16 we obtain
that Item (i) holds if δ is less than some constant that depends only on γ.
We even obtain that:

(1) (i) holds but with Pη [A4(x; r, R)] replaced by Pη [A4(x; 2r, R)],
(2) let Q̊ be the union of all Voronoi cells whose center belongs to Q and

let sint(Q̊, R) denote the minimum distance between the endpoints
on the (topological) boundary of Q̊ of two interfaces that cross the
topological annulus [−R, R]2 \ Q̊. There exist C, ϵ > 0 (that depend
on γ) such that, if δ1 ⩾ δ, then Pη[sint(Q̊, R) ⩽ δ1r] ⩽ Cδϵ

1.

By using the above, the fact that sint(Q̊, R) is Pη-independent of
A4(x; 2r, R), and the fact that A4(x; 2r, R) ⊇ Pivq

Q(Cross(R, R)), we
obtain that

Pη
[
sint(Q̊, R) ⩾ δ1r

∣∣∣Pivq
Q(Cross(R, R))

]
⩾ 1 − Cδϵ

1
Pη[A4(x; 2r, R)]

Pη[Pivq
Q(Cross(R, R))] ⩾ 1 − Cδϵ

1/c .

Finally, by classical box-crossing arguments, one can prove that there exist
C ′, ϵ′ > 0 (that depend on γ) such that, if δ1 ⩾ δ, then

Eη
[
X
∣∣∣Circδ(Q) ∩ Pivq

Q(Cross(R, R)) ∩ {sint(Q̊, R) ⩾ δ1r}
]

⩾ 1 − C ′(δ/δ1)ϵ′
.

These two inequalities and the fact that Circδ(Q) is Pη-independent of
Pivq

Q(Cross(R, R)) and of Pivq
Q(Cross(R, R)) ∩ {sint(Q̊, R) ⩾ δ1r} imply

that

Eη
[
X
∣∣∣Circδ(Q) ∩ Pivq

Q(Cross(R, R))
]

⩾ Eη
[
X
∣∣∣Circδ(Q) ∩ Pivq

Q(Cross(R, R)) ∩ {sint(Q̊, R) ⩾ δ1r}
]

× Pη
[
sint(Q̊, R) ⩾ δ1r

∣∣∣Pivq
Q(Cross(R, R))

]
⩾ (1 − C ′(δ/δ1)ϵ′

)(1 − Cδϵ
1/c) .

This implies Item (iii) if δ > 0 is sufficiently small (for instance by choosing
δ1 =

√
δ). The proof of Item (iv) is the same. This ends the proof of the

lemma since, as noted in the proof of Proposition 3.16, P
[
GPγ

δ/100(r)
]
⩾

1 − C ′′r−γ for some C ′′ = C ′′(δ, γ) < +∞. □

ANNALES DE L’INSTITUT FOURIER



QUANTITATIVE QUENCHED VORONOI PERCOLATION 23

4. Proof that αan
j (r, R) ≍ α̃j(r, R)

In this section, we prove (1.1) of Theorem 1.4, i.e. we show that there
exists a constant C = C(j) < +∞ such that, for every 1 ⩽ r ⩽ R < +∞,

αan
j (r, R) ⩽ α̃j(r, R) ⩽ C αan

j (r, R) .

Proof of (1.1) from Theorem 1.4. — Let us first note that, by the quasi-
multiplicativity property and (3.1), it is sufficient to prove the result for r

sufficiently large and r ⩽ R/2. Let j ∈ N∗ and let r0 = r0(j) < +∞ to be
fixed later. We actually prove the following more quantitative result: There
exist h > 0 and C = C(j) < +∞ such that, if r0 is sufficiently large and if
r0 ⩽ r ⩽ R/2, then

(4.1) 0 ⩽ α̃j(r, R)2 − αan
j (r, R)2 ⩽ Cr−hαan

j (r, R)2 .

First note that it is sufficient to prove that there exist h > 0 and C ′ =
C ′(j) < +∞ such that, if r0 is sufficiently large and if r0 ⩽ r ⩽ R/2, then

(4.2) 0 ⩽ α̃j(r, R)2 − αan
j (r, R)2 ⩽ C ′r−hα̃j(r, R)2 .

Indeed, this implies (4.1) with C = 2C ′ if r0 satisfies C ′r−h
0 ⩽ 1/2.

Let us prove (4.2). If we apply Proposition 2.1 to E = Aj(r, R) and
ρ = 2, we obtain that

Var (Pη [Aj(r, R)]) ⩽
∑

S square of the grid 2Z2

E
[
Pη [PivS(Aj(r, R))]2

]
.

Let us use Lemmas 3.6 to 3.10 to estimate the right-hand-side of this in-
equality. We will also need the following three estimates on arm events (see
Propositions 3.2 and 3.4 and (3.1)):

α̃4(ρ) ⩽ O(1) ρ−(1+ϵ) ,(4.3)

α̃++
3 (ρ, ρ′) ⩽ α̃+

3 (ρ, ρ′) ⩽ O(1) ρ

ρ′ ,(4.4)

α̃
(++)c

3 (ρ, ρ′) ⩽ O(1)
(

ρ

ρ′

)ϵ/2
.(4.5)

(The exponent ϵ/2 above is only to simplify the calculations.) We can (and
do) assume that ϵ < 1/2, which will make the calculations easier. Below, we
use several times the quasi-multiplicativity property Proposition 3.1 and
the polynomial decay property (3.1) without mentioning it. Note that a
difference compared to similar calculations for Bernoulli percolation on Z2

or on the triangular lattice is that we do not know that the contribution
of the 3-arm event in the half-plane from scale ρ to scale ρ′ is (ρ/ρ′)2: we
only have the upper bound (4.4).
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By Lemma 3.6, the contribution of the boxes S in A(2r, R/2) is at most
(where 2k has to be thought of as the order of the distance between the
box and 0)

log2(R)∑
k=log2(r)

22k α̃j(r, R)2 α̃4(2k)2 ⩽ O(1) α̃j(r, R)2 r−2ϵ (by (4.3)) .

By Lemma 3.8, we can estimate the contribution of the boxes outside
of BR/2 by summing only on the boxes that intersect A(R/2, R). Next, by
Lemma 3.7, the contribution of such boxes is at most (where 2k has to be
thought of as the order of the distance between the box and ∂BR)

log2(R)∑
k=0

2kR α̃j(r, R)2 α̃4(2k)2 α̃+
3 (2k, R)2

⩽ O(1) α̃j(r, R)2
log2(R)∑

k=0
2kR 2−2k(1+ϵ)

(
2k

R

)2

(by (4.3) and (4.4))

⩽ O(1) α̃j(r, R)2
log2(R)∑

k=0

2k(1−2ϵ)

R

⩽ O(1) α̃j(r, R)2R−2ϵ .

The contribution of the boxes in B2r is a little more difficult to estimate.
By Lemma 3.10, we can estimate the contribution of these boxes by sum-
ming only on the boxes that intersect A(r, 2r). To estimate the contribution
of such boxes, we can use Lemma 3.9 and we obtain the following: (here,
2k has to the thought of as the order of the distance between the box and
∂Br and 2j has to be thought of as the distance between the projection of
the box on ∂Br and the nearest corner of Br)

log2(r)∑
k=0

log2(r)∑
j=k

2k+j α̃j(r, R)2 α̃4(2k)2 α̃+
3 (2k, 2j)2 α̃

(++)c

3 (2j , r)2

+
log2(r)∑

k=0

k∑
j=0

2k+j α̃j(r, R)2 α̃4(2k)2 α̃
(++)c

3 (2k, r)2.

The second sum is of the same order as the first sum restricted to the terms
that satisfy j = k, so it is sufficient to estimate the first sum, which is less
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than or equal to

O(1) α̃j(r, R)2
log2(r)∑

k=0
2k 2−2k(1+ϵ)

log2(r)∑
j=k

2j

(
2k

2j

)2 (2j

r

)ϵ

(by (4.3), (4.4) and (4.5))

⩽ O(1) α̃j(r, R)2r−ϵ

log2(r)∑
k=0

2k 2−2k(1+ϵ)2k(1+ϵ)

= O(1) α̃j(r, R)2r−ϵ

log2(r)∑
k=0

2−kϵ

⩽ O(1) α̃j(r, R)2r−ϵ .

Altogether,

α̃j(r, R)2 − αan
j (r, R)2 = Var (Pη [Aj(r, R)]) ⩽ O(1) α̃j(r, R)2r−ϵ ,

and thus the estimate (4.2) is proved, which ends the proof. □

Remark 4.1. — By exactly the same proof (i.e. by proving analogues of
Lemmas 3.6 to 3.10 for arm events in the half-plane etc.), we obtain (1.1)
of Theorem 1.4 also for the quantities α+

k ( · , · ), α++
k ( · , · ) and α

(++)c

k ( · , · ).

5. Strict inequality for the exponent of the annealed
percolation function

Let us prove Theorem 1.8 by using the scaling relations from [19] and
the estimate (1.1) from Theorem 1.4. The estimate (1.1) will be used to
prove the following:

Proposition 5.1. — There exists ϵ > 0 such that, for every 1 ⩽ r ⩽
R < +∞,

αan
4 (r, R) ⩾ ϵ

1
αan

1 (r, R)

( r

R

)2−ϵ

.

Let us first explain why Proposition 5.1 (with r = 1) and Theorem 1.9
imply Theorem 1.8.

Proof of Theorem 1.8. — By the two scaling relations of Theorem 1.9,
we have

θ(p) 1
p − 1/2 ≍ αan

1 (L(p))L(p)2αan
4 (L(p)) .
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Since we know that L(p) goes to +∞ polynomially fast in 1
p−1/2 as p goes

to 1/2 (see Subsection 1.4 of [19]), it is sufficient to prove that

αan
1 (L(p))L(p)2αan

4 (L(p)) ⩾ Ω(1)L(p)ϵ

for some ϵ > 0; This is given by Proposition 5.1. □

Proof of Proposition 5.1. — We follow Appendix A of [7], where the
analogous result is proved for Bernoulli percolation on Z2 by Beffara. Let
M ⩾ 100 and let ρ ⩾ M . Also, let GP(ρ, M) be defined as follows:

GP(ρ, M)

=
⌊log5(M)⌋−1⋂

k=0
Dense1/100

(
A(5kρ, 10 · 5kρ)

)
∩ QBC3

1/100
(
A(5kρ, 10 · 5kρ)

)
(where the events “Dense” and “QBC” are the events defined in Sub-
section 3.2; GP means “Good Point process”). By Lemma 3.12 and Re-
mark 3.15, we have

P [GP(ρ, M)] ⩾ 1 − O(1) ρ−3 .

If η ∈ GP(ρ, M) and if we follow the beginning of Appendix A of [7] (where
the authors study the winding number of arms), we obtain that (if M is
sufficiently large):

Pη [A5(ρ, Mρ)] ⩽ M−ϵ Pη [A1(ρ, Mρ)] Eη
[
Y 31Y ⩾4

]
,

where Y is the number of interfaces from ∂Bρ to ∂BMρ and where ϵ ∈
(0, 1) depends only on the box-crossing constant c = c(1/100, 3) from Re-
mark 3.15. Indeed, the fact that η ∈ GP(ρ, M) implies that we can apply
the independence arguments and the box-crossing arguments from Appen-
dix A of [7].

Still as in Appendix A of [7], we have Eη
[
Y 31Y ⩾4

]
⩽ C Pη [A4(ρ, Mρ)]

for some C < +∞ that depends only on the constant c = c(1/100, 3) from
Remark 3.15. Indeed, what is used in [7] to prove this estimate is Reimer’s
inequality (that holds for the quenched probability measure Pη) and the
fact that (i) Pη [A1(ρ, Mρ)] ⩽ M−a and (ii) Pη [A4(ρ, Mρ)] ⩾ M−b for
some a, b ∈ (0, +∞). The properties (i) and (ii) follow from classical box-
crossing arguments that we can use since η ∈ GP(ρ, M). Altogether,

αan
5 (ρ, Mρ) = E [Pη [A5(ρ, Mρ)]]

⩽ CM−ϵ E [Pη [A1(ρ, Mρ)] Pη [A4(ρ, Mρ)]] + O(1) ρ−3 .
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If we apply the Cauchy–Schwarz inequality and if we use Proposition 3.4
to estimate the probability of the 5-arm event, we obtain that

M−2 ≍ αan
5 (ρ, Mρ)

⩽ CM−ϵ

√
E
[
Pη [A1(ρ, Mρ)]2

]
E
[
Pη [A4(ρ, Mρ)]2

]
+ O(1) ρ−3

= CM−ϵα̃1(ρ, Mρ)α̃4(ρ, Mρ) + O(1) ρ−3 .

By (1.1) of Theorem 1.4, the quantities αan
j ( · , · ) are of same order as the

quantities α̃j( · , · ); hence, the above implies that there exists ϵ′ > 0 such
that, if M is sufficiently large, then for every ρ ⩾ M ,

M−2 ⩽ M−ϵ′
αan

1 (ρ, Mρ)αan
4 (ρ, Mρ) .

Now, the proof is a direct consequence of the quasi-multiplicativity prop-
erty. □

Remark 5.2. — Note that, if we follow the proof of Proposition 5.1, we
obtain the following for every j ∈ N∗:

αan
2j+1(r, R) ⩽ O(1)

( r

R

)Ω(1)
αan

1 (r, R) αan
2j (r, R) ,

where the constants in O(1) and Ω(1) only depend on j.

6. Other estimates on arm events

The last goal of this paper is to obtain the quantitative estimates (1.2)
from Theorem 1.4 and (1.3) from Theorem 1.6. In order to prove these
results, we need two other estimates on arm events that we prove in this
section. We have (see Section 3 for the notation α

an,(++)c

3 (r, R)):

Lemma 6.1. — Let 1 ⩽ r ⩽ R. Then,

α
an,(++)c

3 (r, R) ⩽ O(1) r

R
.

Proof. — Let N = ⌊R/(4r)⌋ and let Q1 = Br, Q2, . . . , QN be the 2r ×2r

squares defined in Figure 6.1 (note that these squares are included in BR/2).
For every j ∈ {1, . . . , N}, we define the following event: B(r, R; j) is the
event that there exist two paths γ1 and γ2 such that: (i) γ1 is a black path
included in BR from the left side of BR to its right side, (ii) γ2 is a white
path included in BR from ∂Qj to the top side of BR, (iii) γ1 and γ2 do not
intersect the quarter plane {xj + (a, b) : a, b ⩽ 0} where xj is the center
of Qj .
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R R/2

Q1 = Br

Q2
Q3

QN

Qj

Figure 6.1. The 2r × 2r squares Qj and the events B(r, R; j).

Note that the events B(r, R; 1), . . . , B(r, R; N) are pairwise disjoint,
hence

N

inf
j=1

P [B(r, R; j)] ⩽ 1
N

.

As a result, it is sufficient for our purpose to prove that P [B(r, R; j)] ⩾
Ω(1)α(++)c

3 (r, R) where the constants in Ω(1) are absolute constants. For
Bernoulli percolation on Z2 or on the triangular lattice, this comes from
separation of arms results. For Voronoi percolation, we have proved separa-
tion of arm results in [19] and we have deduced for instance that αan

4 (r, R)
is at most some constant times the probability that there exist two black
paths from ∂Br to the left and right sides of BR and two white paths from
∂Br to the top and bottom sides of BR (see Lemma 4.3 therein). Since the
proof that P [B(r, R; j)] ⩾ Ω(1)α(++)c

3 (r, R) is the same, we refer to [19]
and leave the details to the reader (the only difference is that we need to
use Proposition 2.5 of [19] for arm events in the plane without the quarter
plane instead of for arm events in the plane, but the proof is the same). □

To prove the following result, we rely a lot on the quenched properties
from Section 3. The main difficulty (compared to Proposition 3.2) is that
this is a multiscale estimate. See Appendix B of [15] for the proof of this
result for bond percolation on Z2.

Proposition 6.2. — For every ϵ > 0 there exists C = C(ϵ) < +∞ such
that for every 1 ⩽ r ⩽ R we have

αan
4 (r, R) ⩽ C

( r

R

)1−ϵ√
αan

2 (r, R) .

In particular, there exists δ > 0 such that for every 1 ⩽ r ⩽ R we have

αan
4 (r, R) ⩽ 1

δ

( r

R

)1+δ

.
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Proof. — We follow the proof of the analogous result for bond percola-
tion on Z2 by Garban from Appendix B of [15]. To this purpose, we use
both the annealed quasi-multiplicativity property Proposition 3.1 and the
quenched properties from Subsection 3.3. We let M ∈ [100, +∞) to be
fixed later and we consider some ρ ∈ [10M, +∞). Note that, by the an-
nealed quasi-multiplicativity property, it is sufficient to prove that, if M is
sufficiently large, then

(6.1) αan
4 (ρ, ρM) ⩽ O(1) M−1

√
αan

2 (ρ, ρM) .

Let us prove this estimate. To this purpose, we use the following notations:
we let Q1, . . . , QN be the ρ × ρ squares of the grid ρZ2 that are included
in the square BρM and are at distance at least ρM/3 from the sides of this
square. Note that N ≍ M2. We also write X for the ±1 indicator function
of Cross(ρM, ρM). If α ∈ (0, 1), we let αQj denote the square concentric to
Qj with side length αρ. Also for δ ∈ (0, 1), we let Cδ(j) denote the random
variable that equals

• 1 if there is a black circuit in the annulus Aj(δ) := (1 − δ)Qj \
(1 − 2δ)Qj and no white circuit in Aj(δ),

• −1 if there is a white circuit in the annulus Aj(δ) := (1 − δ)Qj \
(1 − 2δ)Qj and no black circuit in Aj(δ),

• 0 otherwise.
Note that Eη [Cδ(j)] = 0 for every j and η. Let γ be some sufficiently
large constant to be fixed later. Write xj for the center of Qj and, for
every x ∈ R2 and every k ∈ N∗, let Ak(x; ·, ·) be the k-arm event Ak( · , · )
translated by x. By Lemma 3.18 (and by the union bound), we can choose
δ sufficiently small so that, with probability at least 1−CM2ρ−γ , for every
j we have

Pη
[
Pivq

Qj
(Cross(ρM, ρM))

]
⩾ cPη [A4(xj ; ρ, ρM)] ,(6.2)

Pη [Cδ(j) = −1] = Pη [Cδ(j) = 1] ⩾ c′ ,(6.3)

Eη
[
X
∣∣∣ {Cδ(j) = 1} ∩ Pivq

Qj
(Cross(ρM, ρM))

]
> 1/4 ,(6.4)

Eη
[
X
∣∣∣ {Cδ(j) = −1} ∩ Pivq

Qj
(Cross(ρM, ρM))

]
< −1/4 ,(6.5)

for some constants C = C(δ, γ), c = c(γ) and c′ = c′(δ, γ). We fix such a
δ. Below, the constants in the O(1)’s and Ω(1)’s may depend on δ and γ.
Next, we define the following event:

Denseδ(ρ, M) =
⋂

Q square of the grid ρZ2 included in BρM

Denseδ/100(Q) .

TOME 0 (0), FASCICULE 0



30 Hugo VANNEUVILLE

By Lemma 3.12, P [Denseδ(ρ, M)] ⩾ 1 − O(1) M2 exp(−Ω(1)ρ2). Now, as-
sume that η ∈ Denseδ(ρ, M) and that η is such that (6.2) to (6.5) hold,
and let us explain how we can follow Appendix B of [15] in order to obtain
that

(6.6)
∑

j

Pη [A4(xj ; ρ, ρM)] ⩽ O(1)
√∑

j

Pη [A2(xj ; 3ρ, ρM/3)] .

Proof of (6.6). — In this proof, we fix some η ∈ Denseδ(ρ, M) that
satisfies (6.2) to (6.5) and we work under the probability measure Pη.

As in Appendix B of [15], we look at the interface that goes from the
cell that contains the top-right corner of BρM to the cell that contains the
bottom-right corner of this square, with black boundary condition on the
right side and white boundary condition on the other sides. Moreover, we
let Yj be the indicator of the event that the distance between the interface
and Qj is at most ρ. Since η ∈ Denseδ(ρ, M), X is independent of Cδ(j)
on {Yj = 0} and Cδ(j) is independent of Yj , hence

Eη [XCδ(j)Yj ] = Eη [XCδ(j)] − Eη
[
XCδ(j)1Yj=0

]
= Eη [XCδ(j)] −

Eη
[
X1Yj=0

]
Eη
[
Cδ(j)1Yj=0

]
Pη [Yj = 0]

= Eη [XCδ(j)] − Eη
[
X1Yj=0

]
Eη [Cδ(j)]

= Eη [XCδ(j)] ,

where the last equality holds because Eη [Cδ(j)] = 0. Next, we observe
that X is independent of Cδ(j) on the event {¬Pivq

Qj
(Cross(ρM, ρM))}

and that Cδ(j) is independent of Pivq
Qj

(Cross(ρM, ρM)). This observation
and the fact that Eη [Cδ(j)] = 0 imply that

Eη [XCδ(j)Yj ] = Eη [XCδ(j)]

= Pη
[
Pivq

Qj
(Cross(ρM, ρM))

]
Eη
[
XCδ(j)

∣∣∣Pivq
Qj

(Cross(ρM, ρM))
]

.

By using once again that Cδ(j) is independent of Pivq
Qj

(Cross(ρM, ρM)),
we obtain that the above equals

Pη
[
Pivq

Qj
(Cross(ρM, ρM))

]
×
(

Eη
[
X
∣∣∣ {Cδ(j) = 1} ∩ Pivq

Qj
(Cross(ρM, ρM))

]
P [Cδ(j) = 1]

− Eη
[
X
∣∣∣ {Cδ(j) = −1} ∩ Pivq

Qj
(Cross(ρM, ρM))

]
P [Cδ(j) = −1]

)
.

By (6.2) to (6.5), this implies that

Eη [XCδ(j)Yj ] ⩾ Ω(1)Pη [A4(xj ; ρ, ρM)] .
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As in [15], one also has

Eη [Cδ(i)YiCδ(j)Yj ] = 0 if i ̸= j .

Indeed, we can let k ∈ {i, j} be such that the interface reaches the ρ-
neighbourhood of Qk before the ρ-neighbourhood of Ql where {l} = {i, j}\
{k}, we can write G for the σ-algebra (on {−1, 1}η; recall that we work
under the probability measure Pη) generated by the colours of the Voronoi
cells visited by the interface until it reaches the ρ-neighbourhood of Ql and
by the colours of the Voronoi cells in Qk, and we can note that Yi, Yj , Cδ(k)
are G-measurable and that Cδ(l) is independent of G. As in [15], we can
then apply the Cauchy–Schwarz inequality to obtain that∑

j

Eη [XCδ(j)Yj ] ⩽ O(1)
√∑

j

Eη [Yj ] .

This ends the proof since Eη [Yj ] ⩽ Pη [A2(xj ; 3ρ, ρM/3)]. □

If we take the expectation of the left and right sides of (6.6), we obtain
that

∑
j

E [Pη [A4(xj ; ρ, ρM)]] ⩽ O(1)E

√∑
j

Pη [A2(xj ; 3ρ, ρM/3)]


+ O(1) M2ρ−γ + O(1) M2 exp(−Ω(1)ρ2) .

By Jensen’s inequality and since ρ ⩾ M , we have∑
j

E [Pη [A4(xj ; ρ, ρM)]] ⩽ O(1)
√∑

j

E [Pη [A2(xj ; 3ρ, ρM/3)]]

+ O(1) M2−γ + O(1) M2 exp(−Ω(1)M2)

i.e. (by translation invariance of the annealed probability measure)

M2αan
4 (ρ, ρM)

⩽ O(1)
(

M
√

αan
2 (3ρ, ρM/3) + M2−γ + M2 exp(−Ω(1)M2)

)
.

Since the probabilities of arm events decay polynomially fast (see (3.1)),
we can choose γ sufficiently large so that for every sufficiently large M we
have O(1) M−γ + O(1) exp(−Ω(1)M2) ⩽ O(1) M−1

√
αan

2 (3ρ, ρM/3). For
these choices of M and γ we obtain

αan
4 (ρ, ρM) ⩽ O(1) M−1

√
αan

2 (3ρ, ρM/3) ⩽ O(1) M−1
√

αan
2 (ρ, ρM) ,
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where the second inequality is a direct consequence of (3.1) and of the
quasi-multiplicativity property. This implies (6.1) and ends the proof of
the proposition. □

7. Quantitative quenched estimates

Let us now prove (1.2) of Theorem 1.4 by using (1.1) and the estimates
from Section 6.

Proof of (1.2) from Theorem 1.4. — The proof is very close to the proof
of (1.1) from Theorem 1.4. The difference is that now we can use that the
quantities α̃k( · , · ) are of the same order as the quantities αan

k ( · , · ). As a
result, we can use Lemmas 3.6 to 3.10 with αan

k ( · , · ) instead of α̃k( · , · ).
The estimates on arm events that we are going to use are the following
(see Propositions 6.2, 3.3 and 3.4 and Lemma 6.1):

(7.1) αan
4 (ρ, ρ′) ⩽ O(1)

(
ρ

ρ′

)1+ϵ

,

(7.2) αan,++
3 (ρ, ρ′) ⩽ αan,+

3 (ρ, ρ′) ≍
(

ρ

ρ′

)2
⩽ O(1) αan

4 (ρ, ρ′)
(

ρ

ρ′

)ϵ

,

(7.3) α
an,(++)c

3 (ρ, ρ′) ⩽ O(1) ρ

ρ′ ,

for some ϵ > 0.
If we apply Proposition 2.1 to E = Aj(r, R) and ρ = 2, we obtain that

Var (Pη [Aj(r, R)]) ⩽
∑

S square of the grid 2Z2

E
[
Pη [PivS(Aj(r, R))]2

]
.

Let us now use Lemmas 3.6 to 3.10 with αan
k ( · , · ) instead of α̃k( · , · ). As in

the proof of (1.1), we use the quasi-multiplicativity property and the poly-
nomial decay property without mentioning it. By the same considerations
as in the proof of (1.1), we obtain that the contribution of the boxes S in
A(2r, R/2) is at most

log2(R)∑
k=log2(r)

22k αan
j (r, R)2 αan

4 (2k)2

⩽ O(1) αan
j (r, R)2 α4(r)2

log2(R)∑
k=log2(r)

22kα4(r, 2k)2

⩽ O(1) αan
j (r, R)2 α4(r)2r2 by (7.1) .
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(Note that, in order to obtain the above estimate, Proposition 3.2 is not
enough and we need the multiscale estimate Proposition 6.2.) The contri-
bution of the boxes outside of BR/2 is at most

log2(R)∑
k=0

2kR αan
j (r, R)2 αan

4 (2k)2 αan,+
3 (2k, R)2

⩽ O(1) αan
j (r, R)2 αan

4 (R)2
log2(R)∑

k=0
2kR

1
αan

4 (2k, R)2 αan,+
3 (2k, R)2

⩽ O(1) αan
j (r, R)2 αan

4 (R)2
log2(R)∑

k=0
2kR

(
2k

R

)2ϵ−4(2k

R

)4

⩽ O(1) αan
j (r, R)2 R2 αan

4 (R)2 .

The contribution of the boxes in B2r is at most

log2(r)∑
k=0

log2(r)∑
j=k

2k+j αan
j (r, R)2 αan

4 (2k)2 αan,+
3 (2k, 2j)2 α

an,(++)c

3 (2j , r)2

⩽ O(1) αan
j (r, R)2

log2(r)∑
k=0

2k

log2(r)∑
j=k

2jαan
4 (2j)2

× αan,+
3 (2k, 2j)2

αan
4 (2k, 2j)2 α

an,(++)c

3 (2j , r)2

⩽ O(1) αan
j (r, R)2

log2(r)∑
k=0

2k

log2(r)∑
j=k

2jαan
4 (2j)2

(
2k

2j

)2ϵ (2j

r

)2

= O(1) r−2αan
j (r, R)2

log2(r)∑
k=0

2k(1+2ϵ)
log2(r)∑

j=k

2j(3−2ϵ)αan
4 (2j)2

The above equals

= O(1) r−2αan
j (r, R)2

log2(r)∑
j=0

2j(3−2ϵ)αan
4 (2j)2

j∑
k=0

2k(1+2ϵ)

⩽ O(1) r−2αan
j (r, R)2

log2(r)∑
j=0

24jαan
4 (2j)2

⩽ O(1) αan
j (r, R)2 r2 αan

4 (r)2 .
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Finally,

Var (Pη [Aj(r, R)]) ⩽ O(1) αan
j (r, R)2 (r2 αan

4 (r)2 + R2 αan
4 (R)2)

⩽ O(1) αan
j (r, R)2 r2 αan

4 (r)2 ,

which ends the proof. □

We end the paper by proving the quantitative quenched estimate Theo-
rem 1.6.

Proof of Theorem 1.6. — If we apply Proposition 2.1 to E =
Cross(λR, R) and ρ = 2 we obtain that

Var (Pη [Cross(λR, R)])

⩽
∑

S square of the grid 2Z2

E
[
Pη [PivS(Cross(λR, R))]2

]
.

By using analogues of Lemmas 3.6, 3.7, 3.8, 3.9 and 3.10 for crossing events
and by using the fact that we know that the quantities α̃k( · , · ) are of the
same order as the quantities αan

k ( · , · ) (i.e. by following the proof of (1.2)),
we obtain that this sum is less than or equal to

O(1) R2 αan
4 (R)2 ,

which ends the proof. □
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