On the Kawamata–Viehweg vanishing theorem for log Calabi–Yau surfaces in large characteristic
[Sur le théorème d’annulation de Kawamata–Viehweg pour les surfaces log Calabi–Yau en grande caractéristique]
Annales de l'Institut Fourier, Online first, 19 p.

Nous démontrons le théorème d’annulation de Kawamata–Viehweg pour une surface log Calabi–Yau (X,B) sur un corps algébriquement clos de grande caractéristique, lorsque B a des coefficients standards.

We prove that the Kawamata–Viehweg vanishing theorem holds for a log Calabi–Yau surface (X,B) over an algebraically closed field of large characteristic when B has standard coefficients.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3709
Classification : 14F17, 14E30, 14D15
Keywords: Kawamata–Viehweg vanishing, log Calabi–Yau surfaces, liftability to the ring of Witt vectors, positive characteristic
Mots-clés : annulation de Kawamata–Viehweg, surfaces log Calabi–Yau, relèvements à l’anneau des vecteurs de Witt, caractéristique positive

Kawakami, Tatsuro 1

1 Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)
@unpublished{AIF_0__0_0_A154_0,
     author = {Kawakami, Tatsuro},
     title = {On the {Kawamata{\textendash}Viehweg} vanishing theorem for log {Calabi{\textendash}Yau} surfaces in large characteristic},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3709},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Kawakami, Tatsuro
TI  - On the Kawamata–Viehweg vanishing theorem for log Calabi–Yau surfaces in large characteristic
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3709
LA  - en
ID  - AIF_0__0_0_A154_0
ER  - 
%0 Unpublished Work
%A Kawakami, Tatsuro
%T On the Kawamata–Viehweg vanishing theorem for log Calabi–Yau surfaces in large characteristic
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3709
%G en
%F AIF_0__0_0_A154_0
Kawakami, Tatsuro. On the Kawamata–Viehweg vanishing theorem for log Calabi–Yau surfaces in large characteristic. Annales de l'Institut Fourier, Online first, 19 p.

[1] Arvidsson, Emelie; Bernasconi, Fabio; Lacini, Justin On the Kawamata–Viehweg vanishing theorem for log del Pezzo surfaces in positive characteristic, Compos. Math., Volume 158 (2022) no. 4, pp. 750-763 | DOI | MR | Zbl

[2] Bădescu, Lucian Algebraic surfaces, Universitext, Springer, 2001 (translated from the 1981 Romanian original by Vladimir Maşek and revised by the author) | DOI | MR | Zbl

[3] Bernasconi, Fabio; Brivio, Iacopo; Kawakami, Tatsuro; Witaszek, Jakub Lifting globally F-split surfaces to characteristic zero, J. Reine Angew. Math., Volume 816 (2024), pp. 47-89 | DOI | MR | Zbl

[4] Bernasconi, Fabio; Kollár, János Vanishing theorems for three-folds in characteristic p>5, Int. Math. Res. Not. (2023) no. 4, pp. 2846-2866 | DOI | MR | Zbl

[5] Cascini, Paolo; Tanaka, Hiromu Smooth rational surfaces violating Kawamata–Viehweg vanishing, Eur. J. Math., Volume 4 (2018) no. 1, pp. 162-176 | DOI | MR | Zbl

[6] Cascini, Paolo; Tanaka, Hiromu; Witaszek, Jakub On log del Pezzo surfaces in large characteristic, Compos. Math., Volume 153 (2017) no. 4, pp. 820-850 | DOI | MR | Zbl

[7] Di Cerbo, Gabriele; Svaldi, Roberto Birational boundedness of low-dimensional elliptic Calabi–Yau varieties with a section, Compos. Math., Volume 157 (2021) no. 8, pp. 1766-1806 | DOI | MR | Zbl

[8] Hacon, Christopher; Witaszek, Jakub On the rationality of Kawamata log terminal singularities in positive characteristic, Algebr. Geom., Volume 6 (2019) no. 5, pp. 516-529 | DOI | MR | Zbl

[9] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | Zbl

[10] Kawakami, Tatsuro Bogomolov–Sommese vanishing and liftability for surface pairs in positive characteristic, Adv. Math., Volume 409 (2022), 108640 | DOI | MR | Zbl

[11] Kawakami, Tatsuro; Takamatsu, Teppei; Tanaka, Hiromu; Witaszek, Jakub; Yobuko, Fuetaro; Yoshikawa, Shou Quasi-F-splittings in birational geometry (2022) to appear in Annales Scientifiques de l’École Normale Supérieure (4) | arXiv

[12] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI | MR | Zbl

[13] Lacini, Justin On rank one log del Pezzo surfaces in characteristic different from two and three, Adv. Math., Volume 442 (2024), 109568 | DOI | MR | Zbl

[14] Liu, Qing Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (translated from the French by Reinie Erné, Oxford Science Publications) | Numdam | MR | Zbl

[15] Witaszek, Jakub Effective bounds on singular surfaces in positive characteristic, Mich. Math. J., Volume 66 (2017) no. 2, pp. 367-388 | DOI | MR | Zbl

Cité par Sources :