[Sur le théorème d’annulation de Kawamata–Viehweg pour les surfaces log Calabi–Yau en grande caractéristique]
Nous démontrons le théorème d’annulation de Kawamata–Viehweg pour une surface log Calabi–Yau sur un corps algébriquement clos de grande caractéristique, lorsque a des coefficients standards.
We prove that the Kawamata–Viehweg vanishing theorem holds for a log Calabi–Yau surface over an algebraically closed field of large characteristic when has standard coefficients.
Révisé le :
Accepté le :
Première publication :
Keywords: Kawamata–Viehweg vanishing, log Calabi–Yau surfaces, liftability to the ring of Witt vectors, positive characteristic
Mots-clés : annulation de Kawamata–Viehweg, surfaces log Calabi–Yau, relèvements à l’anneau des vecteurs de Witt, caractéristique positive
Kawakami, Tatsuro 1
@unpublished{AIF_0__0_0_A154_0, author = {Kawakami, Tatsuro}, title = {On the {Kawamata{\textendash}Viehweg} vanishing theorem for log {Calabi{\textendash}Yau} surfaces in large characteristic}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3709}, language = {en}, note = {Online first}, }
TY - UNPB AU - Kawakami, Tatsuro TI - On the Kawamata–Viehweg vanishing theorem for log Calabi–Yau surfaces in large characteristic JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3709 LA - en ID - AIF_0__0_0_A154_0 ER -
Kawakami, Tatsuro. On the Kawamata–Viehweg vanishing theorem for log Calabi–Yau surfaces in large characteristic. Annales de l'Institut Fourier, Online first, 19 p.
[1] On the Kawamata–Viehweg vanishing theorem for log del Pezzo surfaces in positive characteristic, Compos. Math., Volume 158 (2022) no. 4, pp. 750-763 | DOI | MR | Zbl
[2] Algebraic surfaces, Universitext, Springer, 2001 (translated from the 1981 Romanian original by Vladimir Maşek and revised by the author) | DOI | MR | Zbl
[3] Lifting globally -split surfaces to characteristic zero, J. Reine Angew. Math., Volume 816 (2024), pp. 47-89 | DOI | MR | Zbl
[4] Vanishing theorems for three-folds in characteristic , Int. Math. Res. Not. (2023) no. 4, pp. 2846-2866 | DOI | MR | Zbl
[5] Smooth rational surfaces violating Kawamata–Viehweg vanishing, Eur. J. Math., Volume 4 (2018) no. 1, pp. 162-176 | DOI | MR | Zbl
[6] On log del Pezzo surfaces in large characteristic, Compos. Math., Volume 153 (2017) no. 4, pp. 820-850 | DOI | MR | Zbl
[7] Birational boundedness of low-dimensional elliptic Calabi–Yau varieties with a section, Compos. Math., Volume 157 (2021) no. 8, pp. 1766-1806 | DOI | MR | Zbl
[8] On the rationality of Kawamata log terminal singularities in positive characteristic, Algebr. Geom., Volume 6 (2019) no. 5, pp. 516-529 | DOI | MR | Zbl
[9] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | Zbl
[10] Bogomolov–Sommese vanishing and liftability for surface pairs in positive characteristic, Adv. Math., Volume 409 (2022), 108640 | DOI | MR | Zbl
[11] Quasi--splittings in birational geometry (2022) to appear in Annales Scientifiques de l’École Normale Supérieure (4) | arXiv
[12] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI | MR | Zbl
[13] On rank one log del Pezzo surfaces in characteristic different from two and three, Adv. Math., Volume 442 (2024), 109568 | DOI | MR | Zbl
[14] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (translated from the French by Reinie Erné, Oxford Science Publications) | Numdam | MR | Zbl
[15] Effective bounds on singular surfaces in positive characteristic, Mich. Math. J., Volume 66 (2017) no. 2, pp. 367-388 | DOI | MR | Zbl
Cité par Sources :