[Dynamique des 2-solitons instables en forte interaction pour les équations de Korteweg-de Vries généralisées]
On considère l’équation de Korteweg-de Vries généralisée , où est une fonction impaire de classe . Sous certaines hypothèses sur , cette équation possède des solutions de type onde progressive, c’est-à-dire , pour tout dans un certain intervalle . On étudie les paires de solitons pures dans le cas de la même vitesse limite, autrement dit les solutions globales telles que
L’existence de telles solutions est connue pour avec et . On décrit le comportement dynamique de toute solution vérifiant , sous l’hypothèse que soit linéairement instable (ce qui correspond à si ). On montre que dans ce cas le signe dans est “”, ce qui correspond à l’interaction attractive. On montre également que la distance entre les solitons vaut pour un certain .
We consider the generalized Korteweg-de Vries equation , where is an odd function of class . Under some assumptions on , this equation admits solitary waves, that is solutions of the form , for in some range . We study pure two-solitons in the case of the same limit speed, in other words global solutions such that
Existence of such solutions is known for with and . We describe the dynamical behavior of any solution satisfying under the assumption that is linearly unstable (which corresponds to for power nonlinearities). We prove that in this case the sign in is necessarily “”, which corresponds to an attractive interaction. We also prove that the distance between the solitons equals for some .
Révisé le :
Accepté le :
Première publication :
Mots-clés : multi-soliton, large-time asymptotics, strong interaction
Jendrej, Jacek 1
@unpublished{AIF_0__0_0_A139_0, author = {Jendrej, Jacek}, title = {Dynamics of strongly interacting unstable two-solitons for generalized {Korteweg-de} {Vries} equations}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3708}, language = {en}, note = {Online first}, }
TY - UNPB AU - Jendrej, Jacek TI - Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3708 LA - en ID - AIF_0__0_0_A139_0 ER -
Jendrej, Jacek. Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations. Annales de l'Institut Fourier, Online first, 61 p.
[1] Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, 3, Springer, 2006 | DOI | MR | Zbl
[2] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983), pp. 313-345 | DOI | MR | Zbl
[3] Stability and instability of solitary waves of Korteweg–de Vries type, Proc. R. Soc. Lond., Ser. A, Volume 411 (1987), pp. 395-412 | MR | Zbl
[4] Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., Volume 85 (1982) no. 4, pp. 549-561 | DOI | MR | Zbl
[5] Construction and characterization of solutions converging to solitons for supercritical gKdV equations, Differ. Integral Equ., Volume 23 (2010) no. 5–6, pp. 513-568 | MR | Zbl
[6] Multi-soliton solutions for the supercritical gKdV equations, Commun. Partial Differ. Equations, Volume 36 (2011) no. 3, pp. 380-419 | DOI | MR | Zbl
[7] Construction of multi-soliton solutions for the -supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 273-302 | DOI | MR | Zbl
[8] The emergence of solitons of the Korteweg–de Vries equation from arbitrary initial conditions, Math. Methods Appl. Sci., Volume 5 (1983), pp. 97-116 | DOI | MR | Zbl
[9] A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line, Ann. PDE, Volume 4 (2018) no. 7 | MR | Zbl
[10] Interactions of solitons in nonintegrable systems: direct perturbation method and applications, Physica D, Volume 3 (1981) no. 1–2, pp. 428-438 | DOI | Zbl
[11] Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., Volume 74 (1987) no. 1, pp. 160-197 | DOI | MR | Zbl
[12] Effective dynamics of magnetic vortices, Adv. Math., Volume 199 (2006) no. 2, pp. 448-498 | DOI | MR | Zbl
[13] Construction of two-bubble solutions for the energy-critical NLS, Anal. PDE, Volume 10 (2017) no. 8, pp. 1923-1959 | DOI | MR | Zbl
[14] Construction of two-bubble solutions for energy-critical wave equations, Am. J. Math., Volume 141 (2019) no. 1, pp. 55-118 | DOI | MR | Zbl
[15] Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line, Duke Math. J., Volume 171 (2022) no. 18, pp. 3643-3705 | MR | Zbl
[16] Two bubble dynamics for threshold solutions to the wave maps equation, Invent. Math., Volume 213 (2018) no. 3, pp. 1249-1325 | DOI | MR | Zbl
[17] On the (generalized) Korteweg–de Vries equation, Duke Math. J., Volume 59 (1989), pp. 585-610 | MR | Zbl
[18] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527-620 | DOI | MR | Zbl
[19] Asymptotic -soliton-like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Am. J. Math., Volume 127 (2005) no. 5, pp. 1103-1140 | DOI | MR | Zbl
[20] Asymptotic stability of solitons for the subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 219-254 | DOI | MR | Zbl
[21] Asymptotic stability of solitons of the gKdV equations with a general nonlinearity, Math. Ann., Volume 341 (2008), pp. 391-427 | DOI | MR | Zbl
[22] Blow up for the critical gKdV equation I: Dynamics near the soliton, Acta Math., Volume 212 (2014) no. 1, pp. 59-140 | DOI | MR | Zbl
[23] Blow up for the critical gKdV equation II: Minimal mass dynamics, J. Eur. Math. Soc., Volume 17 (2015), pp. 1855-1925 | DOI | MR | Zbl
[24] Blow up for the critical gKdV equation III: Exotic regimes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume XIV (2015), pp. 575-631 | MR | Zbl
[25] Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002), pp. 347-373 | DOI | MR | Zbl
[26] Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 3, pp. 701-737 | DOI | Zbl
[27] Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, Volume 30 (2017) no. 12, p. 4614 | DOI | MR | Zbl
[28] Existence of multi-solitary waves with logarithmic relative distances for the NLS equation, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 1, pp. 13-58 | DOI | MR | Zbl
[29] Eigenvalues, and instabilities of solitary waves, Philos. Trans. R. Soc. Lond., Ser. A, Volume 340 (1992) no. 1656, pp. 47-94 | MR | Zbl
[30] Existence and uniqueness of minimal mass blow up solutions to an inhomogeneous -critical NLS, J. Am. Math. Soc., Volume 24 (2011) no. 2, pp. 471-546 | DOI | MR | Zbl
[31] An Introduction to Measure Theory, Graduate Studies in Mathematics, 126, American Mathematical Society, 2011 | MR | Zbl
[32] Multiple-pole solutions of modified Korteweg–de Vries equation, J. Phys. Soc. Japan, Volume 51 (1982), pp. 2029-2035 | DOI | MR
[33] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985), pp. 472-491 | DOI | MR | Zbl
[34] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986) no. 1, pp. 51-67 | DOI | MR | Zbl
Cité par Sources :