Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations
[Dynamique des 2-solitons instables en forte interaction pour les équations de Korteweg-de Vries généralisées]
Annales de l'Institut Fourier, Online first, 61 p.

On considère l’équation de Korteweg-de Vries généralisée t u=- x ( x 2 u+f(u)), où f est une fonction impaire de classe C 3 . Sous certaines hypothèses sur f, cette équation possède des solutions de type onde progressive, c’est-à-dire u(t,x)=Q v (x-vt-x 0 ), pour tout v dans un certain intervalle (0,v * ). On étudie les paires de solitons pures dans le cas de la même vitesse limite, autrement dit les solutions globales u(t) telles que

*lim t u(t)-(Q v (·-x 1 (t))±Q v (·-x 2 (t))) H 1 =0,lim t x 2 (t)-x 1 (t)=.

L’existence de telles solutions est connue pour f(u)=|u| p-1 u avec p{5} et p>2. On décrit le comportement dynamique de toute solution vérifiant (*), sous l’hypothèse que Q v soit linéairement instable (ce qui correspond à p>5 si f(u)=|u| p-1 u). On montre que dans ce cas le signe dans (*) est “+”, ce qui correspond à l’interaction attractive. On montre également que la distance x 2 (t)-x 1 (t) entre les solitons vaut 2 vlog(κt)+o(1) pour un certain κ=κ(v)>0.

We consider the generalized Korteweg-de Vries equation t u=- x ( x 2 u+f(u)), where f is an odd function of class C 3 . Under some assumptions on f, this equation admits solitary waves, that is solutions of the form u(t,x)=Q v (x-vt-x 0 ), for v in some range (0,v * ). We study pure two-solitons in the case of the same limit speed, in other words global solutions u(t) such that

*lim t u(t)-(Q v (·-x 1 (t))±Q v (·-x 2 (t))) H 1 =0,lim t x 2 (t)-x 1 (t)=.

Existence of such solutions is known for f(u)=|u| p-1 u with p{5} and p>2. We describe the dynamical behavior of any solution satisfying (*) under the assumption that Q v is linearly unstable (which corresponds to p>5 for power nonlinearities). We prove that in this case the sign in (*) is necessarily “+”, which corresponds to an attractive interaction. We also prove that the distance x 2 (t)-x 1 (t) between the solitons equals 2 vlog(κt)+o(1) for some κ=κ(v)>0.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3708
Classification : 35Q53, 35B40, 37K40
Mots-clés : multi-soliton, large-time asymptotics, strong interaction

Jendrej, Jacek 1

1 CNRS and Université Sorbonne Paris Nord LAGA, UMR 7539, 99 av J.-B. Clément 93430 Villetaneuse, France
@unpublished{AIF_0__0_0_A139_0,
     author = {Jendrej, Jacek},
     title = {Dynamics of strongly interacting unstable two-solitons for generalized {Korteweg-de} {Vries} equations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3708},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Jendrej, Jacek
TI  - Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3708
LA  - en
ID  - AIF_0__0_0_A139_0
ER  - 
%0 Unpublished Work
%A Jendrej, Jacek
%T Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3708
%G en
%F AIF_0__0_0_A139_0
Jendrej, Jacek. Dynamics of strongly interacting unstable two-solitons for generalized Korteweg-de Vries equations. Annales de l'Institut Fourier, Online first, 61 p.

[1] Arnold, Vladimir I.; Kozlov, Valery V.; Neishtadt, Anatoly I. Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, 3, Springer, 2006 | DOI | MR | Zbl

[2] Berestycki, Henri; Lions, Pierre-Louis Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983), pp. 313-345 | DOI | MR | Zbl

[3] Bona, Jerry L.; Souganidis, Panagiotis E.; Strauss, Walter Stability and instability of solitary waves of Korteweg–de Vries type, Proc. R. Soc. Lond., Ser. A, Volume 411 (1987), pp. 395-412 | MR | Zbl

[4] Cazenave, Thierry; Lions, Pierre-Louis Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., Volume 85 (1982) no. 4, pp. 549-561 | DOI | MR | Zbl

[5] Combet, Vianney Construction and characterization of solutions converging to solitons for supercritical gKdV equations, Differ. Integral Equ., Volume 23 (2010) no. 5–6, pp. 513-568 | MR | Zbl

[6] Combet, Vianney Multi-soliton solutions for the supercritical gKdV equations, Commun. Partial Differ. Equations, Volume 36 (2011) no. 3, pp. 380-419 | DOI | MR | Zbl

[7] Côte, Raphaël; Martel, Yvan; Merle, Frank Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 273-302 | DOI | MR | Zbl

[8] Eckhaus, Wiktor; Schuur, Peter C. The emergence of solitons of the Korteweg–de Vries equation from arbitrary initial conditions, Math. Methods Appl. Sci., Volume 5 (1983), pp. 97-116 | DOI | MR | Zbl

[9] Gérard, Patrick; Lenzmann, Enno; Pocovnicu, Oana; Raphaël, Pierre A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line, Ann. PDE, Volume 4 (2018) no. 7 | MR | Zbl

[10] Gorshkov, Konstantin A.; Ostrovsky, Lev A. Interactions of solitons in nonintegrable systems: direct perturbation method and applications, Physica D, Volume 3 (1981) no. 1–2, pp. 428-438 | DOI | Zbl

[11] Grillakis, Manoussos; Shatah, Jalal; Strauss, Walter Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., Volume 74 (1987) no. 1, pp. 160-197 | DOI | MR | Zbl

[12] Gustafson, Stephen; Sigal, Israel M. Effective dynamics of magnetic vortices, Adv. Math., Volume 199 (2006) no. 2, pp. 448-498 | DOI | MR | Zbl

[13] Jendrej, Jacek Construction of two-bubble solutions for the energy-critical NLS, Anal. PDE, Volume 10 (2017) no. 8, pp. 1923-1959 | DOI | MR | Zbl

[14] Jendrej, Jacek Construction of two-bubble solutions for energy-critical wave equations, Am. J. Math., Volume 141 (2019) no. 1, pp. 55-118 | DOI | MR | Zbl

[15] Jendrej, Jacek; Kowalczyk, Michał; Lawrie, Andrew Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line, Duke Math. J., Volume 171 (2022) no. 18, pp. 3643-3705 | MR | Zbl

[16] Jendrej, Jacek; Lawrie, Andrew Two bubble dynamics for threshold solutions to the wave maps equation, Invent. Math., Volume 213 (2018) no. 3, pp. 1249-1325 | DOI | MR | Zbl

[17] Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis On the (generalized) Korteweg–de Vries equation, Duke Math. J., Volume 59 (1989), pp. 585-610 | MR | Zbl

[18] Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527-620 | DOI | MR | Zbl

[19] Martel, Yvan Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Am. J. Math., Volume 127 (2005) no. 5, pp. 1103-1140 | DOI | MR | Zbl

[20] Martel, Yvan; Merle, Frank Asymptotic stability of solitons for the subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 219-254 | DOI | MR | Zbl

[21] Martel, Yvan; Merle, Frank Asymptotic stability of solitons of the gKdV equations with a general nonlinearity, Math. Ann., Volume 341 (2008), pp. 391-427 | DOI | MR | Zbl

[22] Martel, Yvan; Merle, Frank; Raphaël, Pierre Blow up for the critical gKdV equation I: Dynamics near the soliton, Acta Math., Volume 212 (2014) no. 1, pp. 59-140 | DOI | MR | Zbl

[23] Martel, Yvan; Merle, Frank; Raphaël, Pierre Blow up for the critical gKdV equation II: Minimal mass dynamics, J. Eur. Math. Soc., Volume 17 (2015), pp. 1855-1925 | DOI | MR | Zbl

[24] Martel, Yvan; Merle, Frank; Raphaël, Pierre Blow up for the critical gKdV equation III: Exotic regimes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume XIV (2015), pp. 575-631 | MR | Zbl

[25] Martel, Yvan; Merle, Frank; Tsai, T.-P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002), pp. 347-373 | DOI | MR | Zbl

[26] Martel, Yvan; Raphaël, Pierre Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 3, pp. 701-737 | DOI | Zbl

[27] Nguyen, Tien Vinh Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, Volume 30 (2017) no. 12, p. 4614 | DOI | MR | Zbl

[28] Nguyen, Tien Vinh Existence of multi-solitary waves with logarithmic relative distances for the NLS equation, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 1, pp. 13-58 | DOI | MR | Zbl

[29] Pego, Robert L.; Weinstein, Michael I. Eigenvalues, and instabilities of solitary waves, Philos. Trans. R. Soc. Lond., Ser. A, Volume 340 (1992) no. 1656, pp. 47-94 | MR | Zbl

[30] Raphaël, Pierre; Szeftel, Jeremie Existence and uniqueness of minimal mass blow up solutions to an inhomogeneous L 2 -critical NLS, J. Am. Math. Soc., Volume 24 (2011) no. 2, pp. 471-546 | DOI | MR | Zbl

[31] Tao, Terence An Introduction to Measure Theory, Graduate Studies in Mathematics, 126, American Mathematical Society, 2011 | MR | Zbl

[32] Wadati, Miki; Ohkuma, Kenji Multiple-pole solutions of modified Korteweg–de Vries equation, J. Phys. Soc. Japan, Volume 51 (1982), pp. 2029-2035 | DOI | MR

[33] Weinstein, Michael I. Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985), pp. 472-491 | DOI | MR | Zbl

[34] Weinstein, Michael I. Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986) no. 1, pp. 51-67 | DOI | MR | Zbl

Cité par Sources :