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DYNAMICS OF STRONGLY INTERACTING
UNSTABLE TWO-SOLITONS FOR GENERALIZED

KORTEWEG-DE VRIES EQUATIONS

by Jacek JENDREJ (*)

Abstract. — We consider the generalized Korteweg-de Vries equation ∂tu =
−∂x(∂2

xu + f(u)), where f is an odd function of class C3. Under some assumptions
on f , this equation admits solitary waves, that is solutions of the form u(t, x) =
Qv(x − vt − x0), for v in some range (0, v∗). We study pure two-solitons in the case
of the same limit speed, in other words global solutions u(t) such that
(∗) lim

t→∞
∥u(t)−(Qv( · −x1(t))±Qv( · −x2(t)))∥H1 = 0, lim

t→∞
x2(t)−x1(t) = ∞.

Existence of such solutions is known for f(u) = |u|p−1u with p ∈ Z \ {5} and
p > 2. We describe the dynamical behavior of any solution satisfying (∗) under
the assumption that Qv is linearly unstable (which corresponds to p > 5 for power
nonlinearities). We prove that in this case the sign in (∗) is necessarily “+”, which
corresponds to an attractive interaction. We also prove that the distance x2(t) −
x1(t) between the solitons equals 2√

v
log(κt) + o(1) for some κ = κ(v) > 0.

Résumé. — On considère l’équation de Korteweg-de Vries généralisée ∂tu =
−∂x(∂2

xu + f(u)), où f est une fonction impaire de classe C3. Sous certaines hypo-
thèses sur f , cette équation possède des solutions de type onde progressive, c’est-
à-dire u(t, x) = Qv(x − vt − x0), pour tout v dans un certain intervalle (0, v∗). On
étudie les paires de solitons pures dans le cas de la même vitesse limite, autrement
dit les solutions globales u(t) telles que
(∗) lim

t→∞
∥u(t)−(Qv( · −x1(t))±Qv( · −x2(t)))∥H1 = 0, lim

t→∞
x2(t)−x1(t) = ∞.

L’existence de telles solutions est connue pour f(u) = |u|p−1u avec p ∈ Z \ {5}
et p > 2. On décrit le comportement dynamique de toute solution vérifiant (∗),
sous l’hypothèse que Qv soit linéairement instable (ce qui correspond à p > 5
si f(u) = |u|p−1u). On montre que dans ce cas le signe dans (∗) est “+”, ce
qui correspond à l’interaction attractive. On montre également que la distance
x2(t)−x1(t) entre les solitons vaut 2√

v
log(κt)+o(1) pour un certain κ = κ(v) > 0.

Keywords: multi-soliton, large-time asymptotics, strong interaction.
2010 Mathematics Subject Classification: 35Q53, 35B40, 37K40.
(*) I was supported by the ANR-18-CE40-0028 project ESSED. Part of this work was
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1. Introduction

1.1. Setting of the problem

We consider the generalized Korteweg-de Vries equation

(gKdV)
{
∂tu(t, x) = −∂x

(
∂2
xu(t, x) + f(u(t, x))

)
,

u(0, x) = u0(x), u0 ∈ H1(R).

For f(u) = u2 we obtain the classical KdV equation and for f(u) = u3

the mKdV equation. Both equations are completely integrable. Thus, for
these two models, at least in principle, the dynamical behavior of solu-
tions can be fully understood, see for instance [8]. We are interested in
describing some aspects of the dynamical behavior of solutions for other
nonlinearities f .

In this paper, we assume that f is a non-trivial odd function of class
C3 such that f(0) = f ′(0) = 0 and f(u) is convex for u ⩾ 0. Local well-
posedness in H1(R) of the Cauchy problem was established by Kenig, Ponce
and Vega [17, 18]. Moreover, if the final time of existence is finite, then the
solution is unbounded in H1.

For u0 ∈ H1(R) we define the following quantities:

M(u0) :=
∫
R
u0(x)2 dx (momentum),(1.1)

E(u0) :=
∫
R

[1
2(∂xu0(x))2 − F (u0(x))

]
dx (energy),(1.2)

where F (u) :=
∫ u

0 f(u′) du′. We say thatH1(R) is the energy space, because
it is the largest functional space whose elements have finite energy and
finite momentum. The functionals M and E are conservation laws: if u(t)
solves (gKdV), then M(u(t)) = M(u0) and E(u(t)) = E(u0) for all t
belonging to the maximal time interval of existence.

It is known, see Proposition 2.1 below, that for v > 0 the equation

(1.3) −∂2
xw(x) − f(w(x)) + vw(x) = 0, w ∈ H1(R)

has a unique positive even solution w(x) = Qv(x) if and only if v < v∗ :=
limu→∞ f(u)/u. It is easy to see that for any v ∈ (0, v∗) and x0 ∈ R the
function u(t, x) = Qv(x− vt−x0) is a solution of (gKdV). These solutions
are called solitons or travelling waves. We call v the velocity of the soliton.

We denote

(1.4) Q̃v := ∂vQv, v ∈ (0, v∗)

ANNALES DE L’INSTITUT FOURIER
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(we will justify later, in Lemma 2.6, that this derivative is well defined). By
classical results, Qv is orbitally (with respect to translations) stable if and
only if

∫
RQvQ̃v dx > 0, see [3, 4, 11, 34]. Pego and Weinstein [29] proved

that if
∫
RQvQ̃v dx < 0, then Qv is linearly unstable. The corresponding

unstable manifold was constructed by Combet [5], giving another proof of
instability in this case. For power nonlinearities f(u) = |u|p−1u, we have∫
RQvQ̃v dx > 0 if and only if p < 5 (L2-subcritical case) and

∫
RQvQ̃v dx <

0 if and only if p > 5 (L2-supercritical case).
Martel and Merle [20, 21] proved that solitons are asymptotically stable

in a suitable sense.
We say that u(t) is a multi-soliton as t → ∞ if there exist K ∈ Z>0,

σk ∈ {−1, 1}, vk ∈ (0, v∗) and continuous functions xk(t) for k ∈ {1, . . . ,K}
such that vk+1 ⩾ vk, limt→∞ xk+1(t) − xk(t) = ∞ and

(1.5) u(t) ≃
K∑
k=1

σkQvk
( · − xk(t)) as t → ∞,

where the meaning of “≃” can depend on the context. We say that u(t) is
a pure multi-soliton as t → ∞ if

(1.6) lim
t→∞

∥∥∥u(t) −
K∑
k=1

σkQvk
( · − xk(t))

∥∥∥
H1

= 0.

In the case v1 < v2 < . . . < vK , stability and asymptotic stability of
multi-solitons was proved by Martel, Merle and Tsai [25]. Also for v1 <

. . . < vK , pure multi-solitons were completely classified by Martel [19] and
Combet [6].

1.2. Formal prediction of multi-soliton dynamics

Consider a solution which is close to a superposition of a finite number
of solitons:

(1.7) u(t) ≃
K∑
k=1

σkQvk(t)( · −xk(t)), xk+1(t) −xk(t) ≫ 1, σk ∈ {−1, 1}.

One natural way to predict the dynamical behavior of the parameters xk(t)
and vk(t) is to consider the motion with constraints, see [1, Chapter 1.5].

We equip the space of real-valued functions on R with the symplec-
tic form ω(v, w) :=

∫
R v∂

−1
x w dx, where ∂−1

x w(x) := 1
2
(∫ x

−∞ w(y) dy −∫∞
x
w(y) dy

)
. The Hamiltonian vector field corresponding to the energy

functional E is given by XE(u) = −∂x(∂2
xu + f(u)), which is the right

TOME 0 (0), FASCICULE 0
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hand side of (gKdV). We now restrict our Hamiltonian system to the 2K-
dimensional manifold

(1.8) M :=
{

K∑
k=1

σkQvk
( · − xk) : xk+1 − xk ≫ 1, vk ∈ (0, v∗)

}
.

Let us stress that in general M is not invariant under the flow. Denote
x := (x1, . . . , xK) and v := (v1, . . . , vK). Then (x,v) is a natural system of
coordinates on M. The basis of the tangent space T(x,v)M induced by these
coordinates is given by ∂xk

= −σk∂xQvk
( · − xk) and ∂vk

= σkQ̃vk
( · − xk).

Let

(1.9)
(
A(x,v) C(x,v)

−C(x,v) B(x,v)

)
=
(

(ajk)Kj,k=1 (cjk)Kj,k=1
(−cjk)Kj,k=1 (bjk)Kj,k=1

)
be the matrix of the symplectic form in this basis, in other words for j, k ∈
{1, . . . ,K} we have

ajk = ω(∂xj
, ∂xk

) = σjσk

∫
R
∂xQvj

(x− xj)Qvk
(x− xk) dx,(1.10)

cjk = ω(∂xj
, ∂vk

) = σjσk

∫
R
Qvj

(x− xj)Q̃vk
(x− xk) dx,(1.11)

bjk = ω(∂vj , ∂vk
) = σjσk

∫
R
Q̃vj (x− xj)∂−1

x Q̃vk
(x− xk) dx.(1.12)

Note that if
∫
RQvk

Q̃vk
dx = 0 for some k ∈ {1, . . . ,K}, then C(x,v) and(

A(x,v) C(x,v)
−C(x,v) B(x,v)

)
become singular as the separation between the solitons

tends to infinity. This corresponds to the delicate L2-critical regime studied
for instance in [22, 23, 24], which will not be considered in this paper. We
denote Vcrit ⊂ (0, v∗) the set of v ∈ (0, v∗) such that

∫
RQvQ̃v dx = 0. This

is a closed set.
The Hamiltonian is the restriction E|M. Slightly abusing the notation,

we write

(1.13) E(x,v) := E

(
K∑
k=1

σkQvk
( · − xk)

)
.

The function E(x,v) is sometimes called the reduced Hamiltonian. The
motion with constraints is given by the equation

(1.14)
(
x′

v′

)
=
(
X(x,v)
V (x,v)

)
:=
(
A(x,v) C(x,v)

−C(x,v) B(x,v)

)−1(
∂xE(x,v)
∂vE(x,v)

)
.

Two problems seem natural.

Problem 1.1. — Study the solutions of the reduced equation (1.14).

ANNALES DE L’INSTITUT FOURIER
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Problem 1.2. — Is the dynamical behavior of (pure) multi-soliton so-
lutions to (gKdV) correctly described by equation (1.14)?

It turns out that if 0 < v∞
1 < . . . < v∞

K < v∗ and v∞
k /∈ Vcrit for k ∈

{1, . . . ,K}, then one can easily classify all the solutions to (1.14) such that
vk(t) → v∞

k and xk+1(t) − xk(t) → ∞ as t → ∞, see Proposition A.6. Also
for distinct limit velocities, Problem 1.2 was solved in the works [6, 19, 25]
mentioned above.

Without the assumption that the limit velocities are distinct, the situ-
ation is only partially understood. Existence of 2-solitons and 3-solitons
with asymptotically equal velocities was first observed for the mKdV equa-
tion by Wadati and Ohkuma [32]. For any power nonlinearity except for
the critical case, such 2-solitons were constructed by Nguyen [27]. We call
this case the strong interaction regime because, as we will see, interactions
between the solitons play an essential role in determining the asymptotic
behavior of the solution.

We are not aware of any systematic treatment of equation (1.14), we
note though that the equation itself appears for instance in [10]. Providing
a full answer to Problem 1.1 might be of independent interest, in view of
the fact that an analogous formal reduction argument can be carried out
in the study of multi-solitons for various other models, most likely leading
to a reduced system similar to (1.14).

1.3. Statements of the results

In this paper, we only consider the case K = 2. We hope to treat the
general case in the future. Concerning Problem 1.1, we have the following
result.

Proposition 1.3. — Let σ1, σ2 ∈ {−1, 1} and let v∞ ∈ (0, v∗)\Vcrit. If

(1.15) σ1σ2 =
{

−1 in the case
∫
RQv∞Q̃v∞ dx > 0,

1 in the case
∫
RQv∞Q̃v∞ dx < 0,

then (1.14) has a solution (x(t),v(t)) = (x1(t), x2(t), v1(t), v2(t)) such that

(1.16) lim
t→∞

tβ
(∣∣x1(t) − v∞t+ (v∞)− 1

2 log(κt)
∣∣

+
∣∣x2(t) − v∞t− (v∞)− 1

2 log(κt)
∣∣) = 0

TOME 0 (0), FASCICULE 0
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and

(1.17) lim
t→∞

tβ+1(∣∣v1(t) − v∞ + (v∞)− 1
2 t−1∣∣

+
∣∣v2(t) − v∞ − (v∞)− 1

2 t−1∣∣) = 0,

for some β > 0, where κ = κ(v∞) > 0 is an explicit constant. In particular,

(1.18)
lim
t→∞

v1(t) = lim
t→∞

v2(t) = v∞,

lim
t→∞

x2(t) − x1(t) = +∞.

If (x♯,v♯) is any solution of (1.14) satisfying (1.18), then there exist
unique t∞, x∞ ∈ R such that (x♯(t),v♯(t)) = (x(t− t∞) + x∞,v(t− t∞)).

Finally, if (1.15) is not satisfied, then there are no solutions of (1.14)
satisfying (1.18).

We give a proof (skipping the most routine computations) in Appendix A.
Our main result is a partial positive answer to Problem 1.2 in the case

of the same limit velocity v∞
1 = v∞

2 =: v∞.

Theorem 1.4. — Let v∞ ∈ (0, v∗) be such that

(1.19)
∫
R
Qv∞(x)Q̃v∞(x) dx < 0

and let u : [T0,∞) → H1(R) be a solution of (gKdV) satisfying

(1.20) lim
t→∞

∥∥u(t) −Qv∞
(

· − x1(t)
)

− σQv∞
(

· − x2(t)
)∥∥
H1 = 0,

where σ ∈ {−1, 1} and x1, x2 : [T0,∞) → R are continuous functions such
that

(1.21) lim
t→∞

x2(t) − x1(t) = +∞.

Then σ = 1 and

(1.22) lim
t→∞

x2(t) − x1(t) − 2√
v∞

log(κt) = 0,

where κ = κ(v∞) > 0.

Remark 1.5. — We were unable to treat the stable case
∫
RQv∞(x) ×

Q̃v∞(x) dx > 0. The distance between the solitons for the solutions con-
structed in [27] is given by (1.22) both in the unstable and stable case.
However, in the stable case it remains an open problem to prove that this
is the only possible separation.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.6. — One natural refinement of Theorem 1.4 would be to ob-
tain a complete classification of all the solutions satisfying (1.20). The
set of solutions obtained in Proposition 1.3 is a two-dimensional manifold,
hence, taking into account that the linearisation around each of the two
solitons has one stable direction, we conjecture that all the solutions sat-
isfying (1.20) form a four-dimensional manifold. For kink-antikink pairs, a
uniqueness result of this kind was obtained in [15].

Remark 1.7. — The assumption f ∈ C3 is mainly to ensure local well-
posedness. We expect that f ∈ C1,γ for some γ > 0 would suffice to justify
our computations.

Remark 1.8. — The problem considered here is quite similar to the work
of Gustafson and Sigal [12] on multi-vortices in the Higgs model. Our
proof, based mainly on exploiting the Hamiltonian structure of the equa-
tion combined with the modulation method (see below), also bears some
resemblance to the approach adopted in [12]. One important difference is
that while we consider pure multi-solitons and control them for all positive
times, in [12] non-pure multi-vortices are controlled on a large but finite
time interval.

Remark 1.9. — Constructions of strongly interacting pure two-solitons
or two-bubbles for models which are not completely integrable can be found
in [13, 14, 26, 27, 28], see also [9] for a construction of a slightly different
type.

1.4. Main elements of the proof

The key ingredient of the proof is the so-called modulation method. We
study solutions which are close (in the energy space) to a superposition of
two translated copies of the soliton Q. Hence, it is natural to decompose

(1.23) u(t) = σ1Q( · − x1(t)) + σ2Q( · − x2(t)) + η(t),

where x1(t) and x2(t) are the centers of the two solitons (we address below
the question of how exactly x1(t) and x2(t) are chosen) and η(t) is the
error term. The only a priori information is that x2(t) − x1(t) → ∞ and
∥η(t)∥H1 → 0 as t → ∞. The idea of the modulation method is to derive
some differential inequalities on the modulation parameters x1(t) and x2(t).
These inequalities are traditionally called modulation equations. Since it is
hard to obtain any precise information about η(t), preferably η(t) should
not appear in the formulas.

TOME 0 (0), FASCICULE 0



8 Jacek JENDREJ

Guided by the intuition explained in Section 1.2, we expect that we
should define two auxiliary parameters playing the role of the momenta, in
order to obtain a system close to (1.14). These parameters pk(t), defined
by formula (4.33) below, are related to the projections of the error term
on null directions of the adjoint of the linearization of the flow around our
two-soliton. This choice makes linear terms disappear when we compute
the time derivative of these momenta. It turns out that one can define
parameters, which we call qk(t), related to the positions of the two solitons,
whose time derivatives are essentially the momenta pk(t), see (4.35).

The only way of estimating the error term we could think of is to use
coercivity properties of the conservation laws. It seems to us that this can
only be achieved in the case

〈
Qv∞ , Q̃v∞

〉
< 0, which is precisely the obstacle

preventing us from treating the case
〈
Qv∞ , Q̃v∞

〉
> 0. In the favorable case,

we obtain essentially that ∥η∥2
H1 is bounded by the size of the interaction

between the solitons. Thus, in order to have useful bounds on derivatives
of the momenta, we have to absorb somehow the main quadratic terms,
which is why pk(t) contains a correction term, quadratic in η. A similar
idea was used in [16] and (in a different context of minimal-mass blow-up)
in the earlier work of Raphaël and Szeftel [30].

Note that an alternative way, perhaps more natural in view of Section 1.2,
would be to decompose

(1.24) u(t) = σ1Qv1(t)( · − x1(t)) + σ2Qv2(t)( · − x2(t)) + η(t),

with η(t) satisfying four orthogonality conditions. We have not tried to
carry out the computation following this approach.

The paper is organized as follows. In Section 2, we study the stationary
equation (1.3). In Section 3, we study variational properties of the conserved
quantities in a neighborhood of a two-soliton. In Section 4, we define the
modulation parameters and derive bounds on their derivatives. In Section 5,
we finish the proof of Theorem 1.4. Appendix A, independent of the main
text, is devoted to the ODE (1.14).
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1.6. Notation

We denote L2 := L2(R), H1 := H1(R), L∞ := L∞(R), etc. All the
functions are real-valued. The L2 scalar product is denoted ⟨w1, w2⟩ :=∫
R w1(x)w2(x) dx. We use the same notation for the distributional pairing.

In the integrals, we often omit the variable and write
∫
R w dx instead of∫

R w(x) dx, etc.
For a nonlinear functional Φ : H1 → R we denote DΦ : H1 → H−1 its

Fréchet derivative. If DΦ(w) = 0, we denote D2Φ(w) ∈ H−1 ⊗ H−1 the
second derivative (Hessian).

Even if w(x) is a function of one variable x, we often write ∂xw(x) instead
of w′(x) to denote the derivative. The prime notation is only used for the
time derivative of a function of one variable t and for the derivative of
the nonlinearity f . For w ∈ L1(R) we denote ∂−1

x w(x) := 1
2
(∫ x

−∞ w dy −∫∞
x
w dy

)
. It follows that if

∫
R w dx = 0, then ∂−1

x w(x) =
∫ x

−∞ w dy.
For two functions a and b, we write a ≲ b if a ⩽ Cb for some constant

C > 0, a ≳ b if a ⩾ cb for some constant c > 0, and a ∼ b if a/b converges
to 1. We use the symbol a ≃ b to denote equality “up to negligible terms”.
It will be specified in each case which terms are considered as negligible.

2. Analysis of the stationary equation

In this preliminary section, we study equation (1.3). Many arguments
are well-known and included mainly for the convenience of the reader.

2.1. Existence and asymptotic behavior of Qv and Q̃v

Proposition 2.1. — Let v∗ := limu→∞ f(u)/u. For v > 0 the following
conditions are equivalent.

(a) v ∈ (0, v∗).
(b) Equation (1.3) has a nontrivial solution w ∈ H1.
(c) Equation (1.3) has a unique positive even solution w = Qv and

Qv(0) is the unique positive zero of s 7→ v
2s

2 − F (s). All the other
solutions are obtained from Qv by translations and sign change.

Remark 2.2. — The limit defining v∗ exists because our assumptions on
f imply that the function u 7→ f(u)/u is increasing.

TOME 0 (0), FASCICULE 0
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Proof. — This is an easy consequence of [2, Section 6], where it was
proved that (b) and (c) are both equivalent to the following condition:
there exists s0 the smallest positive zero of s 7→ v

2s
2 −F (s) and s0 satisfies

vs0 − f(s0) < 0.
Our assumptions on f imply f(u) < u

s f(s) for all 0 < u < s. Integrating
for u ∈ (0, s) we obtain

(2.1) sf(s) − 2F (s) > 0, for all s > 0.

Consider the function

(2.2) F̃ (s) := 2F (s)
s2 , F̃ (0) := 0.

From (2.1) we get F̃ ′(s) > 0, so F̃ : [0,∞) → [0,∞) is an increasing
continuous function. Clearly lims→∞ F̃ (s) = v∗. This shows that s 7→ v

2s
2−

F (s) has a positive zero s0 if and only if v ∈ (0, v∗) and that s0 is unique.
The condition vs0 − f(s0) < 0 is automatic, as is seen from (2.1). □

For v ∈ (0, v∗), we denote Lv := −∂2
x − f ′(Qv) + v the linearization of

the left hand side of (1.3) around w = Qv.

Lemma 2.3. — For all v ∈ (0, v∗), Qv ∈ C5 and Lv∂xQv = 0. Moreover,
there exists k0 = k0(v) > 0 such that for j ∈ {0, 1, 2, . . .} the function Qv
satisfies Q(j)

v (x) ∼ (−
√
v)jk0e−

√
vx as x → +∞ and Q

(j)
v (x) ∼ k0

√
v
je

√
vx

as x → −∞.

Remark 2.4. — The constant κ in Theorem 1.4 turns out to be κ :=
k0(v∞)

√
2(v∞)3/2

−⟨Qv∞ ,Q̃v∞ ⟩
.

Proof of Lemma 2.3. — Let v ∈ (0, v∗) and let s0 > 0 be such that
v
2s

2
0−F (s0) = 0. Regularity of Qv follows from the equation. Differentiating

−∂2
xQv( · − x0) − f(Qv( · − x0)) + vQv( · − x0) = 0 with respect to x0 we

get Lv∂xQv = 0.
In order to determine the asymptotic behavior of Qv, we recall how to

solve (1.3). We observe that (1.3) implies 1
2 (∂xQv)2 + F (Qv) − v

2Q
2
v = 0,

hence

(2.3) ∂xQv(x) = ±
√
vQ2

v − 2F (Qv), for all x ∈ R.

Since Q′
v(0) = 0 and Q′′

v(0) = vs0 − f(s0) < 0, for small positive x the sign
in (2.3) is “−”. We also have vs2 − 2F (s) > 0 for all 0 < s < s0, hence
by a straightforward continuity argument, Qv is decreasing for x > 0 and
∂xQv(x) = −

√
vQ2

v − 2F (Qv) for all x ⩾ 0. After separation of variables,
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for all 0 < x1 < x < ∞ we obtain

(2.4)
∫ Qv(x1)

Qv(x)

((
s2 − 2F (s)

v

)− 1
2 − 1

s

)
ds =

√
v(x− x1) + log Qv(x)

Qv(x1) .

Taking the limit x1 → 0, we have

(2.5) e
√
vxQv(x) = s0 exp

(∫ s0

Qv(x)

((
s2 − 2F (s)

v

)− 1
2 − 1

s

)
ds
)
.

Since Qv ∈ H1(R) implies limx→∞ Qv(x) = 0, taking the limit x → ∞
yields

(2.6) lim
x→∞

e
√
vxQv(x) = s0 exp

(∫ s0

0

((
s2 − 2F (s)

v

)− 1
2 − 1

s

)
ds
)

∈ (0,∞).

Integrability near s = s0 follows from vs0 − f(s0) < 0 and integrability
near s = 0 from F (s) ≲ s3.

Once the asymptotic behavior of Qv is known, the estimates for the
derivatives follow from the differential equation. □

Remark 2.5. — We see from (2.3) that ∂xQv(x) = −
√
vQ2

v − 2F (Qv) >
−

√
vQv(x) for all x > 0, so in fact we have

(2.7) Qv(x) ⩽ k0e−
√
vx, for all x > 0.

Formula (2.6) implies (by standard arguments) that k0(v) is continuous
with respect to v. Thus we can conclude that for any 0 < v1 < v2 < v∗
there exists C0 > 0 such that

(2.8) Qv(x) ⩽ C0e−√
v1x, for all x > 0, v ∈ [v1, v2],

and similarly for ∂jxQv.
Again from (2.3), we have |∂xQv +

√
vQv| ≲ e−2

√
vx for x > 0, which

implies |Qv(x) − k0e−
√
vx| ≲ e−2

√
vx, and similarly for derivatives. This

estimate can be also made uniform in v, as above.

Lemma 2.6. — For all v ∈ (0, v∗), the function Q̃v := ∂vQv is well-
defined as a classical partial derivative. Moreover, Q̃v ∈ C4, |Q̃v(x)| ≲
|x|e−

√
v|x| as |x| → ∞ and LvQ̃v = −Qv.

Proof. — The function F̃ (s) defined in (2.2) is C4 for s > 0. Thus
Qv(0) = s0 = F̃−1(v) is C4 on (0, v∗). By smooth dependence on ini-
tial conditions of solutions of ordinary equations, Qv(x) is of class C3 as
a function of 2 variables (x, v). Differentiating −∂2

xQv − f(Qv) + vQv = 0
with respect to v we obtain Lv∂vQv = −Qv.

Denote ϕv(x) := ∂xQv(x) and ψv(x) the solution of Lvψv = 0 with
initial conditions ψv(0) = 1

f(s0)−vs0
and dψv

dx (0) = 0. Then (ϕv, ψv) is a

TOME 0 (0), FASCICULE 0
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fundamental system of solutions for the operator Lv, with the Wronskian
equal to 1. We set

(2.9) Q̃v(x) := −ϕv(x)
∫ x

0
ψv(y)Qv(y) dy + 1

2ψv(x)Qv(x)2.

For the moment, it is not clear that Q̃v = ∂vQv, but we will prove that
this is indeed the case.

By standard ODE theory, ψv(x) is continuous in both variables, of class
C4 in x, and |ψv(x)| ≲ e

√
v|x|. Thus (2.9) yields Q̃v ∈ C4 and, using

Lemma 2.3, |Q̃v(x)| ≲ |x|e−
√
v|x|. The fact that LvQ̃v = −Qv is a routine

computation. Hence ∂vQv and Q̃v satisfy the same differential equation.
Moreover, Q̃v(0) = s2

0
2(f(s0)−vs0) = ∂vQv(0), where the last equality follows

by differentiating v
2 (Qv(0))2 − F (Qv(0)) = 0 with respect to v. Since both

Q̃v and ∂vQv are even functions, we obtain Q̃v = ∂vQv. □

Remark 2.7. — We note that one can obtain “semi-explicit”
formulas for ∥Qv∥2

L2 and ⟨Qv, Q̃v⟩. Using the fact that ∂xQv(x) =
−
√
vQv(x)2 − 2F (Qv(x)) for x > 0 and changing the variable we find

(2.10) ∥Qv∥2
L2 = 2

∫ s0

0

s2 ds√
vs2 − 2F (s)

.

One can find a similar (but more complicated) formula for ⟨Qv, Q̃v⟩ by
carefully differentiating the formula above (taking into account the singular
behavior near s = s0). Alternatively, one can use (2.9) and then change the
variable to s = Qv(x).

2.2. Spectral properties of Lv

All the results contained in this section are proved in [7] in the case
f(u) = u2m+1. Since the specific form of the nonlinearity is used in proofs
given there, for reader’s convenience we provide alternative proofs, but of
course some steps are the same as in [7].

Without loss of generality, we take v = 1 (the general case follows by
rescaling). We denote Q := Q1, Q̃ := Q̃1 and L := L1. From Lemmas 2.3
and 2.6 we have

(2.11) L(∂xQ) = 0, L(Q̃) = −Q.

We assume ⟨Q, Q̃⟩ < 0.

Proposition 2.8. — The operator L is self-adjoint with domainH2(R),
has one simple negative eigenvalue and kerL = span(∂xQ).
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Proof. — This is a standard consequence of the Sturm-Liouville theory
and the fact that ∂xQ has exactly one zero. □

Proposition 2.9. — There exist exponentially decaying C4 functions
Y−,Y+ and ν > 0 such that

∂x(LY−) = −νY−, ∂x(LY+) = νY+,(2.12)
Y+(x) = Y−(−x),(2.13)

∥Y−∥L2 = ∥Y+∥L2 = 1,(2.14) ∫
R

Y− =
∫
R

Y+ = 0,(2.15)

⟨Y−, LY−⟩ = ⟨Y+, LY+⟩ = 0,(2.16)
⟨Y−, LY+⟩ = ⟨Y+, LY−⟩ ≠ 0,(2.17)

Y−,Y+, ∂xQ are linearly independent.(2.18)

Proof. — Existence of Y− satisfying (2.12) is proved in [29]. It is easy to
check that if ∂x(LY−) = −νY−, then Y+(x) := Y−(−x) satisfies ∂x(LY+) =
νY+. We obtain (2.14) by normalizing. Integrating (2.12) we get (2.15).
Using again (2.12) we get

(2.19) ⟨Y−, LY−⟩ = − 1
ν

⟨∂xLY−, LY−⟩ = 0,

and similarly ⟨Y+, LY+⟩ = 0.
In order to prove (2.18), we first check that Y− and Y+ are linearly inde-

pendent. Indeed, suppose that a−Y− + a+Y+ = 0. Applying the operator
∂xL to both sides and using (2.12) we get a−Y− −a+Y+ = 0, which implies
a− = a+ = 0.

Now suppose that ∂xQ = a−Y− + a+Y+. Again, applying ∂xL to both
sides and using the fact that L∂xQ = 0, we obtain a−Y− − a+Y+ = 0.
Since Y− and Y+ are linearly independent, it follows that a− = a+ = 0.

It remains to prove (2.17). Suppose that ⟨Y−, LY+⟩ = 0. Let v = a−Y−+
a+Y+ + b∂xQ ∈ span(Y−,Y+, ∂xQ). We have

(2.20) ⟨v, Lv⟩ = ⟨a−Y− + a+Y+ + b∂xQ, a
−LY− + a+LY+⟩

= (a−)2⟨Y−, LY−⟩ + (a+)2⟨Y+, LY+⟩

+ 2a−a+⟨Y−, LY+⟩ + b⟨L∂xQ, a−Y− + a+Y+⟩
= 0.

Since Y−, Y+ and ∂xQ are linearly independent, this is in contradiction
with Proposition 2.8 (by the min-max theorem for self-adjoint
operators). □
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Proposition 2.10. — There exist exponentially decaying C5 functions
α−, α+ such that

L(∂xα−) = να−, L(∂xα+) = −να+,(2.21)
⟨α−,Y−⟩ = ⟨α+,Y+⟩ = 1,(2.22)
⟨α−,Y+⟩ = ⟨α+,Y−⟩ = 0,(2.23)

⟨α−, ∂xQ⟩ = ⟨α+, ∂xQ⟩ = 0.(2.24)

Proof. — Set α̃− :=
∫ x

−∞ Y+ and α̃+ :=
∫ x

−∞ Y−. Using (2.12) we have

(2.25) L(∂xα̃−) = LY+ = ν

∫ x

−∞
Y+ = να̃−,

and analogously L(∂xα̃+) = −να̃+.
Next, we compute

(2.26) ⟨α̃−,Y+⟩ = 1
ν

⟨α̃−, ∂xLY+⟩ = − 1
ν

⟨Y+, LY+⟩ = 0,

where in the last step we use (2.16). Similarly, using (2.16) and (2.17) we
obtain ⟨α̃+,Y−⟩ = 0, ⟨α̃−,Y−⟩ ≠ 0 and ⟨α̃+,Y+⟩ ≠ 0. We set α− :=
⟨α̃−,Y−⟩−1α̃− and α+ := ⟨α̃+,Y+⟩−1α̃+.

Finally, (2.24) follows from (2.21) and L∂xQ = 0. □

Lemma 2.11. — If ⟨α−, v⟩ = ⟨α+, v⟩ = 0 and ⟨v, Lv⟩ ⩽ 0, then v ∈
span(∂xQ).

Proof. — Let v be such that

(2.27) ⟨α−, v⟩ = ⟨α+, v⟩ = 0, v /∈ span(∂xQ) and ⟨v, Lv⟩ ⩽ 0.

Consider the space Σ := span(Y+, ∂xQ, v). First, we prove that dim(Σ) =
3. Indeed, if v = aY+ + b∂xQ, then

(2.28) 0 = ⟨α+, v⟩ = a⟨α+,Y+⟩ + b⟨α+, ∂xQ⟩ = a,

which contradicts the assumption v /∈ span(∂xQ).
Let w = aY+ + b∂xQ+ cv ∈ Σ. We have

(2.29) ⟨w,Lw⟩ = ⟨aY+ + b∂xQ+ cv, aLY+ + cLv⟩

= 2ac⟨LY+, v⟩ + c2⟨v, Lv⟩.

We see from (2.25) that LY+ ∈ span(α−), so that ⟨LY+, v⟩ = 0. Thus
⟨w,Lw⟩ = c2⟨v, Lv⟩ ⩽ 0. Since dim(Σ) = 3, this contradicts Proposition 2.8
and finishes the proof. □

ANNALES DE L’INSTITUT FOURIER



DYNAMICS OF STRONGLY INTERACTING TWO-SOLITONS 15

Remark 2.12. — Note that from the second part of the proof above
we can obtain the following fact: if ⟨α−, v⟩ = 0 and ⟨v, Lv⟩ ⩽ 0, then
v ∈ span(Y+, ∂xQ). Similarly, if ⟨α+, v⟩ = 0 and ⟨v, Lv⟩ ⩽ 0, then v ∈
span(Y−, ∂xQ). In particular, either of the conditions ⟨α−, v⟩ = 0, ⟨α+, v⟩ =
0 implies ⟨v, Lv⟩ ⩾ 0.

Proposition 2.13. — There exists λ0 > 0 such that for all v ∈ H1

(2.30) ⟨v, Lv⟩ ⩾ λ0∥v∥2
H1 − 1

λ0

(
⟨α−, v⟩2 + ⟨α+, v⟩2 + ⟨∂xQ, v⟩2).

Proof. — By the definition of L we have

(2.31) ⟨v, Lv⟩ = ∥v∥2
H1 −

∫
R
f ′(Q)v2 dx,

so we can rewrite (2.30) as

(2.32) ⟨v, Lv⟩ ⩾ λ0

1 − λ0

∫
R
f ′(Q)v2 dx

− 1
λ0(1 − λ0)

(
⟨α−, v⟩2 + ⟨α+, v⟩2 + ⟨∂xQ, v⟩2).

If (2.32) does not hold for any λ0 > 0, then there exists a sequence (vn) ∈
H1 such that ∫

R
f ′(Q)v2

n dx = 1,(2.33)

⟨vn, Lvn⟩ ⩽ 1
n

− n
(
⟨α−, vn⟩2 + ⟨α+, vn⟩2 + ⟨∂xQ, vn⟩2).(2.34)

We see from (2.31) that (vn) is bounded in H1, hence it has a subse-
quence weakly converging to v ∈ H1. By standard arguments, we obtain∫
R f

′(Q)v2 dx = 1, ⟨v, Lv⟩ ⩽ 0 and ⟨α−, v⟩ = ⟨α+, v⟩ = ⟨∂xQ, v⟩ = 0. In
particular, Lemma 2.11 yields v = 0, which is impossible. □

We also need a localized version of the last coercivity result.

Lemma 2.14. — There exists λ0 > 0 such that the following is true. For
any c > 0 there exists ρ > 0 such that for all v ∈ H1

(2.35) (1 − λ0)
∫ ρ

−ρ

(
(∂xv)2 + v2)dx−

∫
R
f ′(Q)v2 dx

⩾ −c∥v∥2
H1 − 1

λ0

(
⟨α−, v⟩2 + ⟨α+, v⟩2 + ⟨∂xQ, v⟩2).

Proof. — Let χ be a cut-off function supported in [−1, 1], χ(x) = 1 for
x ∈

[
− 1

2 ,
1
2
]

and let ρ ≫ 1. Let ṽ := χ
( ·
ρ

)
v. By the Chain Rule,

(2.36) ∂xṽ = 1
ρ
∂xχ

( ·
ρ

)
v + χ

( ·
ρ

)
∂xv,
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which implies

(2.37)
∣∣∣∥∂xṽ∥L2 −

∥∥∥χ( ·
ρ

)
∂xv
∥∥∥
L2

∣∣∣ ≲ 1
ρ

∥v∥L2 ≪ ∥v∥H1 .

Let γ := (1 − λ0)χ
( ·
ρ

)2. Applying Proposition 2.13 to the function ṽ we
obtain

(2.38)
∫
R
γ
(
(∂xv)2 + v2)dx ⩾ (1 − λ0)

∫
R

(
(∂xṽ)2 + ṽ2) dx− c

4∥v∥2
H1

⩾
∫
R
f ′(Q)ṽ2 dx− 1

λ0

(
⟨α−, ṽ⟩2 + ⟨α+, ṽ⟩2 + ⟨∂xQ, ṽ⟩2)− c

4∥v∥2
H1 .

We have

(2.39) |⟨α−, v⟩2 − ⟨α−, ṽ⟩2| = |⟨α−, (1 − χ( · /ρ))v⟩⟨α−, (1 + χ( · /ρ))v⟩|

≲ ∥v∥L2 |⟨(1 − χ( · /ρ))α−, v⟩|.

But ∥(1 − χ( · /ρ))α−∥L2 can be made arbitrarily small by taking ρ large
enough, so we can ensure that

(2.40) |⟨α−, v⟩2 − ⟨α−, ṽ⟩2| ⩽ cλ0

6 ∥v∥2
L2 ⩽

cλ0

6 ∥v∥2
H1 ,

and analogously for similar terms involving α+ and ∂xQ. Thus (2.38) im-
plies

(2.41)
∫
R
γ
(
(∂xv)2 + v2)dx ⩾

∫
R
f ′(Q)ṽ2 dx

− 1
λ0

(
⟨α−, v⟩2 + ⟨α+, v⟩2 + ⟨∂xQ, v⟩2)− 3c

4 ∥v∥2
H1 .

Finally, we have

(2.42)
∣∣∣∣∫

R
f ′(Q)v2 dx−

∫
R
f ′(Q)ṽ2 dx

∣∣∣∣ =
∫
R
f ′(Q)(1 − χ( · /ρ)2)v2 dx

⩽ ∥f ′(Q)(1 − χ( · /ρ)2)∥L∞∥v∥2
L2 .

By taking ρ large enough, we can ensure that the last term is ⩽ c
4 ∥v∥2

H1 ,
so that (2.41) yields the conclusion. □

3. Coercivity near a two-soliton

Following Weinstein [33], we will make an extensive use of the following
functional:

(3.1) H(u) := E(u) + 1
2M(u), for u ∈ H1(R).
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We are interested in coercivity properties of H(u), for u close to a sum of
two translated copies of Q.

In the next lemma, we gather some easy facts which will be frequently
used to bound various interaction terms. We skip the standard proof.

Lemma 3.1. — Fix M > 0. For all u, v ∈ R such that |u| + |v| ⩽M the
following inequalities hold:

|f(u+ v) − f(u)| ≲ |v|,(3.2)
|f(u+ v) − f(u) − f(v)| ≲ |uv|,(3.3)

|f(u+ v) − f(u) − f ′(u)v| ≲ v2,(3.4)

|F (u+ v) − F (u) − f(u)v| ≲ v2,(3.5) ∣∣∣F (u+ v) − F (u) − f(u)v − 1
2f

′(u)v2
∣∣∣ ≲ |v|3,(3.6)

with constants depending on M .

Lemma 3.2. — Fix σ ∈ {−1, 1}. There exist constants δ, λ0, L0 > 0
such that if y2 − y1 ⩾ L0 and ∥U − (Q( · − y1) + σQ( · − y2))∥L∞ ⩽ δ, then
for all ε ∈ H1

(3.7) ⟨ε,D2H(U)ε⟩

⩾ λ0∥ε∥2
H1 − 1

λ0

(
⟨α−( · − y1), ε⟩2 + ⟨α+( · − y1), ε⟩2 + ⟨∂xQ( · − y1), ε⟩2

+ ⟨α−( · − y2), ε⟩2 + ⟨α+( · − y2), ε⟩2 + ⟨∂xQ( · − y2), ε⟩2).
Proof. — Without loss of generality we can assume that y1 = 0 and

y2 = y ⩾ L0. Consider the operator Ty defined by the formula

(3.8) Ty := −∂2
x − f ′(Q) − f ′(Q( · − y)) + 1.

We have D2H(U) = −∂2
x − f ′(U) + 1, hence

(3.9) ⟨ε,D2H(U)ε⟩ − ⟨ε, Tyε⟩ = −
∫
R

(
f ′(U) − f ′(Q) − f ′(Q( · − y))

)
ε2 dx.

Let c > 0. Since f ′ is locally Lipschitz, we have

(3.10) ∥f ′(U) − f ′(Q+ σQ( · − y))∥L∞ ⩽
c

2 ,

provided that we take δ small enough. Considering separately the regions
x ⩽ y

2 and x ⩾ y
2 one can check that

(3.11) ∥f ′(Q+ σQ( · − y)) − f ′(Q) − f ′(Q( · − y))∥L∞ ⩽
c

2 ,

if L0 is sufficiently large. From (3.9), (3.10) and (3.11) we obtain

(3.12) |⟨ε,D2H(U)ε⟩ − ⟨ε, Tyε⟩| ⩽ c∥ε∥2
L2 , ∀ ε ∈ H1.

TOME 0 (0), FASCICULE 0



18 Jacek JENDREJ

Since c is arbitrary, it suffices to prove (3.7) with D2H(U) replaced by Ty.
From Lemma 2.14 we have

(3.13) (1 − λ0)
∫ ρ

−ρ

(
(∂xε)2 + ε2) dx−

∫
R
f ′(Q)ε2 dx

⩾ −c∥ε∥2
H1 − 1

λ0

(
⟨α−, ε⟩2 + ⟨α+, ε⟩2 + ⟨∂xQ, ε⟩2)

and

(3.14) (1 − λ0)
∫ y+ρ

y−ρ

(
(∂xε)2 + ε2) dx−

∫
R
f ′(Q( · − y))ε2 dx

⩾ −c∥ε∥2
H1 − 1

λ0

(
⟨α−( · − y), ε⟩2 + ⟨α+( · − y), ε⟩2 + ⟨∂xQ( · − y), ε⟩2).

Now, if y ⩾ 2ρ, then it suffices to take the sum of (3.13) and (3.14), and
add λ0∥ε∥2

H1 to both sides. □

Lemma 3.3. — Let k0 = k0(1) be the constant from Lemma 2.3. Then

(3.15) H(Q( · − y1) + σQ( · − y2)) = 2H(Q) − σ(2k2
0 + o(1))e−(y2−y1),

where o(1) tends to 0 as y2 − y1 → +∞.

Proof. — We introduce the following notation, which we will often use
later:

(3.16) R1(x) := Q(x− y1), R2(x) := Q(x− y2).

We also denote

(3.17) m := y1+y2

2 , m1 := y1+m
2 = 3y1+y2

4 , m2 := m+y2

2 = y1+3y2

4 .

We have

(3.18) H(R1 + σR2)

=
∫
R

(1
2(∂xR1 + σ∂xR2)2 + 1

2(R1 + σR2)2 − F (R1 + σR2)
)

dx

= 2H(Q)

+
∫
R

(
σ∂xR1∂xR2+σR1R2−

(
F (R1+σR2)−F (R1)−F (R2)

))
dx.
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In order to compute the main term of the last integral, we consider sepa-
rately x ⩽ m and x ⩾ m. Integrating by parts and using (1.3), we get

(3.19)
∫ m

−∞

(
σ∂xR1∂xR2 + σR1R2) dx

= σ∂xR1(m)R2(m) +
∫ m

−∞
σf(R1)R2 dx.

Since |F (u)| ≪ |u|2 for |u| small, Lemma 2.3 easily implies∣∣∣∣∫ m

−∞
F (R2) dx

∣∣∣∣ ≪ e−(y2−y1).

Together with (3.19), this yields

(3.20)
∫ m

−∞

(
σ∂xR1∂xR2 +σR1R2 −

(
F (R1+σR2)−F (R1)−F (R2)

))
dx

≃ σ∂xR1(m)R2(m) −
∫ m

−∞

(
F (R1 + σR2) − F (R1) − σf(R1)R2

)
dx

(where in this proof “≃” always means “up to terms of order ≪ e−(y2−y1)”).
From (3.6) we obtain

(3.21)
∫ m

−∞

(
F (R1 + σR2) − F (R1) − σf(R1)R2

)
dx

≃ 1
2

∫ m

−∞
f ′(R1)R2

2 dx

= 1
2

∫ m1

−∞
f ′(R1)R2

2 dx+ 1
2

∫ m

m1

f ′(R1)R2
2 dx.

By Lemma 2.3, the first integral is ≲ e− 3
2 (y2−y1) ≪ e−(y2−y1). The second

integral is also ≪ e−(y2−y1), because |f ′(R1)| ≪ 1 for x ⩾ m1. Taking this
into account, we get from (3.20)

(3.22)
∫ m

−∞

(
σ∂xR1∂xR2 +σR1R2 −

(
F (R1+σR2)−F (R1)−F (R2)

))
dx

≃ σ∂xR1(m)R2(m) ≃ −σk2
0e−(y2−y1),

where the last step follows from Lemma 2.3.
A similar computation yields

(3.23)
∫ ∞

m

(
σ∂xR1∂xR2 +σR1R2 −

(
F (R1+σR2)−F (R1)−F (R2)

))
dx

≃ −σ∂xR2(m)R1(m) ≃ −σk2
0e−(y2−y1).

The conclusion directly follows from (3.18), (3.22) and (3.23). □
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Proposition 3.4. — There exist δ, L0, C0 > 0 such that if H(Q( · −
y1) + σQ( · − y2) + ε) = 2H(Q), ∥ε∥H1 ⩽ δ and y2 − y1 ⩾ L0, then

• in the case σ = −1,

(3.24) ∥ε∥2
H1 + e−(y2−y1)

⩽ C0

(
⟨α−( · − y1), ε⟩2 + ⟨α+( · − y1), ε⟩2 + ⟨∂xQ( · − y1), ε⟩2

+ ⟨α−( · − y2), ε⟩2 + ⟨α+( · − y2), ε⟩2 + ⟨∂xQ( · − y2), ε⟩2
)
.

• in the case σ = 1,

(3.25) ∥ε∥2
H1

⩽ C0

(
e−(y2−y1) +⟨α−( · − y1), ε⟩2 +⟨α+( · − y1), ε⟩2 +⟨∂xQ( · − y1), ε⟩2

+⟨α−( · − y2), ε⟩2 +⟨α+( · − y2), ε⟩2 +⟨∂xQ( · − y2), ε⟩2
)
.

Proof. — Denote R1 := Q( · − y1), R2 := Q( · − y2) and U := R1 + σR2.
We have the Taylor expansion

(3.26) H(U + ε) = H(U) + ⟨DH(U), ε⟩ + 1
2 ⟨ε,D2H(U)ε⟩ +O(∥ε∥3

H1).

Indeed, from the definition of H we obtain

(3.27) H(U + ε) −
(
H(U) + ⟨DH(U), ε⟩ + 1

2 ⟨ε,D2H(U)ε⟩
)

= −
∫
R

(
F (U + ε) − F (U) − f(U)ε− 1

2f
′(U)ε2

)
dx.

Now (3.6) yields

(3.28)
∣∣∣∣H(U + ε) −

(
H(U) + ⟨DH(U), ε⟩ + 1

2 ⟨ε,D2H(U)ε⟩
)∣∣∣∣

≲
∫
R

|ε|3 dx = ∥ε∥3
L3 ≲ ∥ε∥3

H1 .

Replacing H(U) in (3.26) by the formula given in Lemma 3.3 and using
the assumption H(U + ε) = 2H(Q), we get

(3.29) − 2σk2
0e−(y2−y1) + ⟨DH(U), ε⟩ + 1

2 ⟨ε,D2H(U)ε⟩

= o
(
e−(y2−y1) + ∥ε∥2

H1

)
.

We now show that

(3.30) |⟨DH(U), ε⟩| ≪ e−(y2−y1) + ∥ε∥2
H1 .
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By the Cauchy–Schwarz inequality, it suffices to check that

(3.31) ∥f(R1 + σR2) − f(R1) − σf(R2)∥L2 ≪ e− 1
2 (y2−y1).

This proof is similar to the computations in Lemma 3.3. For x ⩽ m we
have

(3.32)
∣∣f(R1 + σR2) − f(R1) − σf(R2) − σf ′(R1)R2

∣∣ ≲ R2
2,

and ∥R2
2∥L2(x⩽m) ≲ e−(y2−y1) ≪ e− 1

2 (y2−y1). Considering separately x ⩽

m1 andm1 ⩽ x⩽m, it is easy to see that ∥f ′(R1)R2∥L2(x⩽m) ≪ e− 1
2 (y2−y1).

Thus

(3.33) ∥f(R1 + σR2) − f(R1) − σf(R2)∥L2(x⩽m) ≪ e− 1
2 (y2−y1),

and a similar argument yields the same estimate for x ⩾ m. This
proves (3.31).

From (3.29) and (3.30) we have

(3.34) 1
2 ⟨ε,D2H(U)ε⟩ − 2σk2

0e−(y2−y1) = o
(
e−(y2−y1) + ∥ε∥2

H1

)
,

so (3.7) yields the conclusion, both for σ = 1 and σ = −1. □

4. Modulation near a two-soliton

This section is the heart of our proof. We show here how a good choice
of modulation parameters allows to identify the interaction force in the
modulation equations.

4.1. Definition of the position parameters

We consider a solution which is close to a two-soliton on some time
interval (with velocities of both solitons close to 1):

(4.1) u(t, x+ t) = Q(x− y1(t)) + σQ(x− y2(t)) + ε(t, x),

where y2(t) − y1(t) ≫ 1 and ∥ε(t)∥H1 ≪ 1. We also set σ1 = 1 and σ2 = σ.
Note the simple relation between yk and the parameters xk used in the
Introduction: yk(t) = xk(t) − t.

Given y1(t) and y2(t), we denote Rk(t, x) := Q(x− yk(t)) for k ∈ {1, 2}.
Note that ∂xRk(t, x) = ∂xQ(x − yk(t)). By the Chain Rule, we also have
∂tRk(t) = −y′

k(t)∂xRk(t) and ∂t∂xRk(t) = −y′
k(t)∂2

xRk(t). The values of
y1(t) and y2(t) are chosen as follows.
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Lemma 4.1. — There exist δ, L0, C0 > 0 such that if L ⩾ L0 and

(4.2) inf
x2−x1⩾L

∥u(t) −Q( · − x1) − σQ( · − x2)∥H1 = δ̃ < δ,

for all t ∈ [T1, T2],

then for t ∈ [T1, T2] there exist unique y1(t), y2(t) such that ε(t, x) :=
u(t, x+ t) −R1(t, x) − σR2(t, x) satisfies

y2(t) − y1(t) ⩾ L0 − 1,(4.3)
∥ε(t)∥H1 < C0δ,(4.4)

⟨∂xR1(t), ε(t)⟩ = ⟨∂xR2(t), ε(t)⟩ = 0.(4.5)

These functions satisfy y2(t) − y1(t) ⩾ L − 1 and ∥ε(t)∥H1 ⩽ C0δ̃ for
t ∈ [T1, T2]. Moreover, y1(t) and y2(t) are of class C1 and

(4.6) |y′
1(t)| + |y′

2(t)| ⩽ C0∥ε(t)∥H1 + c0e− 1
2 (y2(t)−y1(t)),

where c0 > 0 can be made arbitrarily small by taking L0 large enough.

Proof. — Existence and uniqueness of y1(t) and y2(t) is a standard appli-
cation of the Implicit Function Theorem and we skip it, see for example [12,
Proposition 3].

In order to prove (4.6), we need the evolution equation of ε(t). Differen-
tiating (4.1) in time we obtain

(4.7) ∂tu(t, x+ t) + ∂xu(t, x+ t)
= −y′

1(t)∂xR1(t, x) − σy′
2(t)∂xR2(t, x) + ∂tε(t, x).

From (gKdV) we have

(4.8) ∂tu(t, x+ t) + ∂xu(t, x+ t)

= ∂x
(
−∂2

xu(t, x+ t) − f(u(t, x+ t)) + u(t, x+ t)
)
.

Using again (4.1), we obtain that the right hand side is

(4.9) ∂x
(
−∂2

xR1 − σ∂2
xR2 − ∂2

xε− f(R1 + σR2 + ε) +R1 + σR2 + ε
)
,

which, using ∂2
xQ+ f(Q) = Q, is equal to

(4.10) ∂x
(
−∂2

xε− f(R1 + σR2 + ε) + f(R1) + σf(R2) + ε
)
.

Combining this with (4.7) we get

(4.11) ∂tε = y′
1∂xR1 + σy′

2∂xR2

+ ∂x
(
−∂2

xε− f(R1 + σR2 + ε) + f(R1) + σf(R2) + ε
)
.
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From (4.5) and (4.11), we have, for k ∈ {1, 2},

(4.12) 0 = d
dt ⟨∂xRk(t), ε(t)⟩ = −y′

k(t)⟨∂2
xRk(t), ε(t)⟩ + ⟨∂xRk(t), ∂tε(t)⟩

= −y′
k(t)⟨∂2

xRk(t), ε(t)⟩
+
〈
∂xRk, y

′
1∂xR1 + σy′

2∂xR2

+ ∂x
(
−∂2

xε− f(R1 + σR2 + ε) + f(R1) + σf(R2) + ε
)〉
.

We obtain the following linear system for y′
1 and y′

2:

(4.13)
(
M11 M12
M21 M22

)(
y′

1
y′

2

)
=
(
B1
B2

)
,

where

M11 = ⟨∂xR1, ∂xR1⟩ − ⟨∂2
xR1, ε⟩,(4.14)

M12 = σ⟨∂xR1, ∂xR2⟩,(4.15)
M21 = ⟨∂xR2, ∂xR1⟩,(4.16)

M22 = σ⟨∂xR2, ∂xR2⟩ − ⟨∂2
xR2, ε⟩,(4.17)

B1 =
〈
∂xR1, ∂x

(
∂2
xε+ f(R1 +σR2 +ε) − f(R1) −σf(R2) − ε

)〉
,(4.18)

B2 =
〈
∂xR2, ∂x

(
∂2
xε+ f(R1 +σR2 +ε) − f(R1) −σf(R2) − ε

)〉
.(4.19)

The diagonal terms are of size ∼ 1, whereas the off-diagonal terms are small
when L0 is large. Moreover, (3.2) and (3.31) imply |B1|+ |B2| ⩽ C̃0∥ε∥H1 +
c̃0e− 1

2 (y2−y1), where c̃0 is small when L0 is large, so we get (4.6). □

The orthogonality condition (4.5) was not chosen very carefully. In fact,
we could just as well use a different one. For this reason, y′

k(t) is not suf-
ficiently well controlled. To remedy this, we will now introduce a different
parameter qk(t), such that |qk(t) − yk(t)| ≪ 1, but q′

k(t) behaves better.
We set

(4.20) Z(x) := χ
(x
ρ

)∫ x

0
Q̃(y) dy,

where χ is a cut-off function supported in [−2, 2], χ(x) = 1 for x ∈ [−1, 1]
and ρ ≫ 1. Note that

(4.21)
∫
R
∂xQ(x)

(∫ x

0
Q̃(y) dy

)
dx = −

∫
R
Q(x)Q̃(x) dx > 0,

where in the last step we use (1.19).
Since ρ is large, the triangle inequality yields

(4.22) ⟨Z, ∂xQ⟩ > 0.
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We write Zk(t, x) := Z(x− yk(t)) for k ∈ {1, 2}. Note that ∂tZk(t, x) =
−y′

k(t)∂xZk(t, x).

Lemma 4.2. — For any c > 0 there exists ρ0 > 0 such that if ρ ⩾ ρ0,
then

(4.23) ∥L(∂xZ) +Q∥L2 ⩽ c.

Proof. — We compute L(∂xZ) applying the Product Rule:

∂xZ(x) = 1
ρ
∂xχ

(x
ρ

)∫ x

0
Q̃(y) dy + χ

(x
ρ

)
Q̃(x),(4.24)

∂2
xZ(x) = 1

ρ2 ∂
2
xχ
(x
ρ

)∫ x

0
Q̃(y) dy

+ 2
ρ
∂xχ

(x
ρ

)
Q̃(x) + χ

(x
ρ

)
∂xQ̃(x),

(4.25)

∂3
xZ(x) = 1

ρ3 ∂
3
xχ
(x
ρ

)∫ x

0
Q̃(y) dy + 3

ρ2 ∂
2
xχ
(x
ρ

)
Q̃(x)

+ 3
ρ
∂xχ

(x
ρ

)
∂xQ̃(x) + χ

(x
ρ

)
∂2
xQ̃(x).

(4.26)

We claim that

∥∂xZ − Q̃∥L2 + ∥∂3
xZ − ∂2

xQ̃∥L2 ≲
√

1/ρ.(4.27)

In order to see this, note that the functions x 7→
∫ x

0 Q̃(y) dy, Q̃, ∂xQ̃,
∂2
xQ̃, ∂xχ, ∂2

xχ and ∂3
xχ are bounded. Moreover, ∂xχ(·/ρ), ∂2

xχ(·/ρ) and
∂3
xχ(·/ρ) are supported on an interval of length ≲ ρ. Therefore, in the

formulas (4.24), (4.25) and (4.26), all the terms containing derivatives of
χ are functions with L∞ norms ≲ 1/ρ and with supports of measure ≲ ρ.
The L2 norm of such a function is ≲

√
1/ρ.

To finish the proof of (4.27), it suffices to notice that

(4.28)
∥∥(1 − χ( · /ρ)

)
Q̃
∥∥
L2 +

∥∥(1 − χ( · /ρ)
)
∂2
xQ̃
∥∥
L2 ≲

√
1/ρ.

In fact, by Lemma 2.3, the right hand side could even be replaced by an
exponentially decaying function.

The function f ′(Q) is bounded, so (4.27) implies ∥f(Q)(∂xZ − Q̃)∥L2 ≲√
1/ρ. Using (2.11), we obtain

(4.29) ∥L(∂xZ) +Q∥L2

= ∥L(∂xZ) − LQ̃∥L2

= ∥−(∂3
xZ − ∂2

xQ̃) − f ′(Q)(∂xZ − Q̃) + (∂xZ − Q̃)∥L2

≲
√

1/ρ. □
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For k ∈ {1, 2} we define

(4.30) qk(t) := yk(t) + σk
⟨Zk(t), ε(t)⟩

⟨Q, Q̃⟩
.

By the Cauchy–Schwarz inequality, for fixed ρ > 0 we have |qk(t)−yk(t)| →
0 as ∥ε(t)∥L2 → 0.

Let ψ ∈ C∞(R) be a decreasing function such that ψ(x) = 1 for x ⩽ 1
3

and ψ(x) = 0 for x ⩾ 2
3 . We set

ϕ1(t, x) := ψ

(
x− y1(t)

y2(t) − y1(t)

)
,(4.31)

ϕ2(t, x) := 1 − ϕ1(t, x).(4.32)

Finally, for k ∈ {1, 2} we define

(4.33) pk(t) := ⟨σkRk(t), ε(t)⟩ + 1
2

∫
R
ϕk(t)ε(t)2 dx.

Again, by the Cauchy–Schwarz inequality, we have pk(t) → 0 as ∥ε(t)∥L2 →
0. Note that pk(t) is related to the momentum localized around each soliton.
As expected, p1(t) and p2(t) will play the role of the momentum in the
reduced finite-dimensional dynamical system.

Our first goal is to relate qk(t) and pk(t).

Lemma 4.3. — For any c > 0 and ρ > 0 there exists δ > 0 such that if

(4.34) e−(y2(t)−y1(t)) + ∥ε(t)∥2
H1 ⩽ δ,

then

(4.35)
∣∣q′
k(t) − ⟨Q, Q̃⟩−1pk(t)

∣∣ ⩽ c
√

e−(y2(t)−y1(t)) + ∥ε(t)∥2
H1 .

Remark 4.4. — Condition (1.19) implies that, up to the error term, q′
k

and pk have opposite signs.

Proof of Lemma 4.3. — We only check (4.35) for k = 1, the proof for
k = 2 being almost the same. From (4.11), we have

(4.36) d
dt ⟨Z1(t), ε(t)⟩

= −y′
1(t)⟨∂xZ1(t), ε(t)⟩ + ⟨Z1(t), ∂tε(t)⟩

= −y′
1⟨∂xZ1, ε⟩ +

〈
Z1, y

′
1∂xR1 + σy′

2∂xR2

+ ∂x
(
−∂2

xε− f(R1 + σR2 + ε) + f(R1) + σf(R2) + ε
)〉
.
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By (4.6), we have |y′
1⟨∂xZ1, ε⟩| ≲ ∥ε∥2

H1 +e−(y2(t)−y1(t)), which is negligible.
Consider the second line in the formula (4.36) above. From (4.27), it is clear
that for δ small enough we have

(4.37)
∣∣⟨Z1, ∂xR1⟩+⟨Q, Q̃⟩

∣∣ =
∣∣⟨Q, Q̃⟩−⟨R1, ∂xZ1⟩

∣∣ =
∣∣⟨Q, Q̃−∂xZ⟩

∣∣ ⩽ c,

so (4.6) yields

(4.38)
∣∣⟨Z1, y

′
1∂xR1⟩ + ⟨Q, Q̃⟩y′

1
∣∣ ⩽ c

√
e−(y2−y1) + ∥ε∥2

H1 .

Similarly, we have |⟨Z1, ∂xR2⟩| ⩽ c, which yields

(4.39)
∣∣⟨Z1, y

′
2∂xR2⟩

∣∣ ⩽ c
√

e−(y2−y1) + ∥ε∥2
H1 .

Finally, we claim that

(4.40)
∣∣〈Z1, ∂x

(
−∂2

xε−f(R1 +σR2 +ε)+f(R1)+σf(R2)+ε
)〉

−⟨R1, ε⟩
∣∣

⩽ c
√

e−(y2−y1) + ∥ε∥2
H1 .

Let L1 := −∂2
x − f ′(R1) + 1, which is obtained by conjugating L with a

translation of the variable x by y1. Integrating by parts, we see that (4.40)
is equivalent to

(4.41)
∣∣⟨∂xZ1, L1ε−f(R1+σR2+ε)+f(R1)+f ′(R1)ε+σf(R2)⟩+⟨R1, ε⟩

∣∣
⩽ c
√

e−(y2−y1) + ∥ε∥2
H1 .

By Lemma 4.2 we have

(4.42)
∣∣⟨∂xZ1, L1ε⟩ + ⟨R1, ε⟩

∣∣ =
∣∣⟨L1(∂xZ1) +R1, ε⟩

∣∣
⩽ ∥L1(∂xZ1) +R1∥L2∥ε∥L2 ⩽ c∥ε∥L2 .

In order to finish the proof of (4.40), we need to check that

(4.43)
∣∣⟨∂xZ1, f(R1 + σR2 + ε) − f(R1) − f ′(R1)ε− σf(R2)⟩

∣∣
⩽ c
√

e−(y2−y1) + ∥ε∥2
H1 .

We restrict to x ∈ [y1 − 2ρ, y1 + 2ρ], because ∂xZ1(x) = 0 for x /∈ [y1 −
2ρ, y1+2ρ]. Thus R2 ≲ e2ρe−(y2−y1) is small when δ is small. By the triangle
inequality, (3.2) and (3.4), we have

(4.44) |f(R1 + σR2 + ε) − f(R1) − f ′(R1)ε− σf(R2)|
⩽ |f(R1 + σR2 + ε) − f(R1 + ε)|

+ |f(R1 + ε) − f(R1) − f ′(R1)ε| + |f(R2)|

≲ R2 + ε2.
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Now (4.43) follows from the boundedness of ∂xZ1, since∫ y1+2ρ

y1−2ρ
R2 dx ≲ ρ e2ρe−(y2−y1) ≪ e− 1

2 (y2−y1),(4.45) ∫ y1+2ρ

y1−2ρ
ε2 dx ≲ ∥ε∥2

L2 ≪ ∥ε∥H1 .(4.46)

This finishes the proof of (4.40).
Putting together (4.36), (4.38), (4.39) and (4.40), we have

(4.47)
∣∣∣∣ d
dt ⟨Z1, ε⟩ + ⟨Q, Q̃⟩y′

1 − ⟨R1, ε⟩
∣∣∣∣ ⩽ c

√
e−(y2−y1) + ∥ε∥2

H1 ,

which, by the definition of q1, yields

(4.48) |q′
1 − ⟨Q, Q̃⟩−1⟨R1, ε⟩| ⩽ c

√
e−(y2−y1) + ∥ε∥2

H1 .

The definition of pk, see (4.33), implies

(4.49) |p1 − ⟨R1, ε⟩| ≲ ∥ε∥2
L2 ⩽ c

√
e−(y2−y1) + ∥ε∥2

H1 ,

so the triangle inequality yields (4.35). □

4.2. Computation of the interaction force

Our second goal is to compute p′
k(t) (at least the main term). We call

the second term in the definition of pk(t) the correction term. In order to
treat the derivative of the correction term, we will need the following easy
fact.

Lemma 4.5. — For any M > 0 there exists a constant C > 0 such that
for any functions ϕ, R and ε such that ∥R∥H1 ⩽M , ∥ϕ∥L∞ + ∥∂xϕ∥L∞ <

+∞ and ∥ε∥H1 ⩽ 1 the following inequality is true:

(4.50)
∣∣∣∣∫

R
ϕ∂xε

(
f(R+ ε) − f(R)

)
dx

+
∫
R
ϕ∂xR

(
f(R+ ε) − f(R) − f ′(R)ε

)
dx
∣∣∣∣ ⩽ C∥∂xϕ∥L∞∥ε∥2

H1 .

Proof. — The assumption ∥ϕ∥L∞ < +∞ is only used to ensure that both
integrals on the left hand side are well defined. By the standard approxi-
mation procedure, we can assume that ε,R ∈ C∞

0 (R).
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Rearranging the terms, we obtain

(4.51)
∫
R
ϕ
(
∂xε
(
f(R+ε)−f(R)

)
+∂xR

(
f(R+ε)−f(R)−f ′(R)ε

))
dx

=
∫
R
ϕ
(
∂x(R+ε)f(R+ε)−∂xRf(R)−

(
∂xεf(R)+ε ∂xRf

′(R)
))

dx

=
∫
R
ϕ∂x

(
F (R+ ε) − F (R) − f(R)ε

)
dx.

Integrating by parts and invoking (3.5) finishes the proof. □

In the next lemma, we compute what will turn out to be the main inter-
action terms.

Lemma 4.6. — For any c > 0 there exists δ > 0 such that if e−(y2−y1) ⩽
δ, then

(4.52)
∣∣⟨∂xR1, f(R1 + σR2) − f(R1) − σf(R2)⟩ + σ2k2

0e
−(y2−y1)∣∣
⩽ c e−(y2−y1)

and

(4.53)
∣∣⟨∂xR2, f(R1 + σR2) − f(R1) − σf(R2)⟩ − 2k2

0e
−(y2−y1)∣∣

⩽ c e−(y2−y1).

Proof. — We only prove (4.52). Substituting −x + y1 + y2 for x swaps
R1 and R2, so we obtain the identity

(4.54) ⟨∂xR2, f(R1 + σR2) − f(R1) − σf(R2)⟩
= −σ⟨∂xR1, f(R1 + σR2) − f(R1) − σf(R2)⟩,

and (4.53) follows from (4.52).
Let m := y1+y2

2 . We claim that

(4.55)
∣∣∣∣⟨∂xR1, f(R1 +σR2)−f(R1)−σf(R2)⟩−σ

∫ m

−∞
R2f

′(R1)∂xR1 dx
∣∣∣∣

≪ e−(y2−y1).
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Let m1 := y1+m
2 = 3y1+y2

4 and m2 := m+y2
2 = y1+3y2

4 . Bound (4.55) will
follow from the triangle inequality once we check that∫ m1

−∞
|∂xR1||f(R1 + σR2) − f(R1) − σf(R2) − σf ′(R1)R2| dx

≪ e−(y2−y1),

(4.56)

∫ m

m1

|∂xR1||f(R1 + σR2) − f(R1) − σf(R2) − σf ′(R1)R2| dx

≪ e−(y2−y1),

(4.57)

∫ m2

m

|∂xR1||f(R1 + σR2) − f(R1) − σf(R2)| dx ≪ e−(y2−y1),(4.58) ∫ +∞

m2

|∂xR1||f(R1 + σR2) − f(R1) − σf(R2)| dx ≪ e−(y2−y1).(4.59)

For x ⩽ m1 we have

(4.60) |f(R1 + σR2) − f(R1) − σf(R2) − σf ′(R1)R2|

≲ |R2|2 ≲
(
e−(y2−m1))2

≲ e− 3
2 (y2−y1) ≪ e−(y2−y1),

and (4.56) follows since ∥∂xR1∥L1 = ∥∂xQ∥L1 < +∞.
For m1 ⩽ x ⩽ m we have, similarly,

(4.61) |f(R1 + σR2) − f(R1) − σf(R2) − σf ′(R1)R2|

≲ |R2|2 ≲
(
e−(y2−m))2

≲ e−(y2−y1),

and, by Lemma 2.3, |∂xR1| ≲ e−(m1−y1) ≲ e− 1
4 (y2−y1). Thus

(4.62)
∫ m

m1

|∂xR1||f(R1 + σR2) − f(R1) − σf(R2) − σf ′(R1)R2| dx

≲ (m−m1)e− 5
4 (y2−y1) ≲ (y2 − y1)e− 5

4 (y2−y1) ≪ e−(y2−y1).

For m ⩽ x ⩽ m2, using (3.3) we have

(4.63) |f(R1 + σR2) − f(R1) − σf(R2)| ≲ R1R2.

Lemma 2.3 yields |∂xR1| + R1 ≲ e−(m−y1) ≲ e− 1
2 (y2−y1) and R2 ≲

e−(y2−m2) ≲ e− 1
4 (y2−y1), thus |∂xR1|R1R2 ≲ e− 5

4 (y2−y1). Integrating be-
tween m and m2 yields (4.58).

Finally, for x ⩾ m2, we use again (4.63). From Lemma 2.3 we have
|∂xR1| + R1 ≲ e−(m2−y1) ≲ e− 3

4 (y2−y1), so |∂xR1|R1 ≲ e− 3
2 (y2−y1). Since

∥R2∥L1 = ∥Q∥L1 < +∞, we obtain

(4.64)
∫ +∞

m2

|∂xR1|R1R2 dx ≲ e− 3
2 (y2−y1) ≪ e−(y2−y1),
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and (4.59) follows.
This finishes the proof of (4.55). It remains to compute

(4.65)
∫ m

−∞
R2f

′(R1)∂xR1 dx =
∫ m

−∞
∂x
(
f(R1)

)
R2 dx

=
∫ m

−∞
∂x
(
R1 − ∂2

xR1
)
R2 dx,

where in the last step we have used (1.3). Integrating by parts, we get

(4.66)
∫ m

−∞
∂x
(
∂2
xR1

)
R2 dx

= ∂2
xR1(m)R2(m) −

∫ m

−∞
∂2
xR1∂xR2 dx

= ∂2
xR1(m)R2(m) − ∂xR1(m)∂xR2(m) +

∫ m

−∞
∂xR1∂

2
xR2 dx.

Thus

(4.67)
∫ m

−∞
∂x
(
R1 − ∂2

xR1
)
R2 dx

= ∂xR1(m)∂xR2(m) − ∂2
xR1(m)R2(m) +

∫ m

−∞
f(R2)∂xR1 dx,

where in the last step we use −∂2
xR2 +R2 = f(R2). Dividing into x ⩽ m1

and x ⩾ m1, and using |f(u)| ≲ u2, we see that
∣∣∫m

−∞ f(R2)∂xR1 dx
∣∣≪

e−(y2−y1), hence the last term is negligible. From Lemma 2.3, we have

∂xR1(m) = −(k0 + o(1))e−(m−y1) = −(k0 + o(1))e− y2−y1
2 ,(4.68)

∂2
xR1(m) = (k0 + o(1))e−(m−y1) = (k0 + o(1))e− y2−y1

2 ,(4.69)

R2(m) = (k0 + o(1))e−(y2−m) = (k0 + o(1))e− y2−y1
2 ,(4.70)

∂xR2(m) = (k0 + o(1))e−(y2−m) = (k0 + o(1))e− y2−y1
2 .(4.71)

This yields

(4.72) ∂xR1(m)∂xR2(m) − ∂2
xR1(m)R2(m) = −(2k2

0 + o(1))e−(y2−y1),

which finishes the proof of (4.52). □

We are ready to compute p′
1(t) and p′

2(t), where p1(t) and p2(t) are
defined by (4.33).

Lemma 4.7. — For any c > 0 there exists δ > 0 such that if

(4.73) e−(y2(t)−y1(t)) + ∥ε(t)∥2
H1 ⩽ δ,
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then ∣∣p′
1(t) + σ2k2

0e−(y2(t)−y1(t))∣∣ ⩽ c
(
e−(y2(t)−y1(t)) + ∥ε(t)∥2

H1

)
,(4.74) ∣∣p′

2(t) − σ2k2
0e−(y2(t)−y1(t))∣∣ ⩽ c

(
e−(y2(t)−y1(t)) + ∥ε(t)∥2

H1

)
,(4.75)

where k0 is the constant from Lemma 2.3.

Proof. — We will only prove (4.74), because (4.75) is obtained analo-
gously. We will discard terms which are much smaller (as δ → 0) than
e−(y2−y1) + ∥ε∥2

H1 . In the sequel, we call such terms “negligible” and the
sign ≃ always means “up to terms ≪ e−(y2−y1) + ∥ε∥2

H1”.
Without loss of generality we can assume that ε ∈ C1(I,H3), where I is

some open interval containing t (by a standard approximation procedure
using local well-posedness of the equation).

We differentiate the first term of p1(t) using (4.11):

(4.76) d
dt ⟨R1, ε⟩ = −y′

1⟨∂xR1, ε⟩ + y′
1⟨R1, ∂xR1⟩ + σy′

2⟨R1, ∂xR2⟩

+
〈
R1, ∂x

(
−∂2

xε− f(R1 + σR2 + ε) + f(R1) + σf(R2) + ε
)〉
.

Since ⟨R1, ∂xR1⟩ = 0 and L1(∂xR1) = 0, we obtain

(4.77) d
dt ⟨R1, ε⟩ = −y′

1⟨∂xR1, ε⟩ + σy′
2⟨R1, ∂xR2⟩

+ ⟨∂xR1, f(R1 + σR2 + ε) − f(R1) − f ′(R1)ε− σf(R2)⟩.

We claim that the second term of the right hand side is negligible. This
follows from Lemma 2.3, (4.6) and the elementary inequality:

(4.78)
∫
R

e−|x−y1|e−|x−y2| dx ≲ (y2 − y1)e−(y2−y1),

which can be obtained by computing the left hand side separately for x ⩽
y1, y1 ⩽ x ⩽ y2 and x ⩾ y2. We obtain

(4.79) d
dt ⟨R1, ε⟩ ≃ −y′

1⟨∂xR1, ε⟩

+⟨∂xR1, f(R1 +σR2 +ε)−f(R1)−f ′(R1)ε−σf(R2)⟩.

Now we compute the derivative of the correction term. We have

(4.80) 1
2

d
dt

∫
R
ϕ1 ε

2 dx = 1
2

∫
R
∂tϕ1 ε

2 dx+
∫
R
ϕ1 ε ∂tεdx.
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For the definition of ϕ1, see (4.31). By the Chain Rule, we have

(4.81) ∂tϕ1(t, x) = −y′
1(t)(y2(t) − y1(t)) − (x− y1(t))(y′

2(t) − y′
1(t))

(y2(t) − y1(t))2

× ψ′
(

x− y1(t)
y2(t) − y1(t)

)
.

If x ⩽ y1(t) or x ⩾ y2(t), then the right hand side equals 0. If y1(t) ⩽ x ⩽
y2(t), then we get

(4.82) |∂tϕ1(t, x)| ≲ |y′
1(t)| + |y′

2(t)|
y2(t) − y1(t) ,

so (4.6) yields

(4.83)
∣∣∣∣∫

R
∂tϕ1 ε

2 dx
∣∣∣∣ ≪ e−(y2−y1) + ∥ε∥2

H1 .

We now consider the second term of the right hand side in (4.80). Us-
ing (4.11) we find

(4.84)
∫
R
ϕ1 ε ∂tεdx

= y′
1

∫
R
ϕ1 ε ∂xR1 dx+ σy′

2

∫
R
ϕ1 ε ∂xR2 dx

+
∫
ϕ1 ε ∂x

(
−∂2

xε−f(R1 +σR2 +ε)+f(R1)+σf(R2)+ε
)

dx

= (I) + (II ) + (III ).

Recall that ϕ1(t, x) = 0 for x ⩾ y1(t)+2y2(t)
3 , whereas for x ⩽ y1(t)+2y2(t)

3
Lemma 2.3 yields |∂xR2| ≲ e−(y2−x), so

(4.85)
∫
R
ϕ2

1(∂xR2)2 dx ≲
∫ y1+2y2

3

−∞
e−2(y2−x) dx ≲ e− 2

3 (y2−y1).

Applying (4.6) and the Cauchy–Schwarz inequality, we obtain the bound

(4.86) |(II )| ≲
(
∥ε∥H1 + e−(y2−y1))e− 1

3 (y2−y1)∥ε∥L2 ≪ e−(y2−y1) + ∥ε∥2
H1 .

In the same way, one can show that

(4.87)
∣∣∣∣y′

1

∫
R
ϕ2 ε ∂xR1 dx

∣∣∣∣ ≪ e−(y2−y1) + ∥ε∥2
H1

or, equivalently,

(4.88)
∣∣(I) − y′

1⟨∂xR1, ε⟩
∣∣ ≪ e−(y2−y1) + ∥ε∥2

H1 .

This implies that (I) cancels with the first term of the right hand side
in (4.79).
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Finally, we consider (III ). We claim that∣∣∣∣∫
R
ϕ1 ε ∂xεdx

∣∣∣∣ ≪ e−(y2−y1) + ∥ε∥2
H1 ,(4.89) ∣∣∣∣∫

R
ϕ1 ε ∂

3
xεdx

∣∣∣∣ ≪ e−(y2−y1) + ∥ε∥2
H1 ,(4.90)

and

(4.91)
∣∣∣∣∫

R
ϕ1 ε ∂x

(
f(R1 + σR2) − f(R1) − σf(R2)

)
dx
∣∣∣∣

≪ e−(y2−y1) + ∥ε∥2
H1 ,

which will imply

(4.92)
∣∣∣∣(III ) +

∫
R
ϕ1 ε ∂x

(
f(R1 + σR2 + ε) − f(R1 + σR2)

)
dx
∣∣∣∣

≪ e−(y2−y1) + ∥ε∥2
H1 .

Let us assume (4.92) and finish the proof. From (3.2) we have |f(R1 +
σR2 + ε) − f(R1 + σR2)| ≲ |ε|. Since ∥∂xϕ1∥L∞ ≲ 1

y2−y1
≪ 1, we have

(4.93)
∣∣∣∣∫

R
∂xϕ1 ε

(
f(R1 + σR2 + ε) − f(R1 + σR2)

)
dx
∣∣∣∣ ≪ ∥ε∥2

L2 .

Bound (4.92) and integration by parts yield

(4.94)
∣∣∣∣(III ) −

∫
R
ϕ1 ∂xε

(
f(R1 + σR2 + ε) − f(R1 + σR2)

)
dx
∣∣∣∣

≪ e−(y2−y1) + ∥ε∥2
H1 .

We apply Lemma 4.5 with R = R1 + σR2 and ϕ = ϕ1(t, ·). We obtain

(4.95)
∣∣∣∣(III ) +

∫
R
ϕ1 ∂x(R1 + σR2)

(
f(R1 + σR2 + ε)

− f(R1 + σR2) − f ′(R1 + σR2)ε
)

dx
∣∣∣∣ ≪ e−(y2−y1) + ∥ε∥2

H1 .

From (3.4) we have |f(R1 +σR2 +ε)−f(R1 +σR2)−f ′(R1 +σR2)ε| ≲ ε2.
From the proof of (4.86) we see that ∥ϕ1 ∂xR2∥L∞ ≲ e− 1

3 (y2−y1) ≪ 1, hence
in the integral above we can replace ϕ1 ∂x(R1 +σR2) by ϕ1 ∂xR1. Similarly,
we have the bound ∥(1 − ϕ1) ∂xR1∥L∞ = ∥ϕ2 ∂xR1∥L∞ ≲ e− 1

3 (y2−y1) ≪ 1,
which allows to replace ϕ1 ∂xR1 by ∂xR1. After all these operations we get

(4.96)
∣∣(III )+⟨∂xR1, f(R1 +σR2 +ε)−f(R1 +σR2)−f ′(R1 +σR2)ε⟩

∣∣
≪ e−(y2−y1) + ∥ε∥2

H1 .
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When we combine (4.80), (4.83), (4.84), (4.86), (4.88) and (4.96), we find

(4.97) 1
2

d
dt

∫
R
ϕ1ε

2 dx ≃ y′
1⟨∂xR1, ε⟩ − ⟨∂xR1, f(R1 + σR2 + ε)

− f(R1 + σR2) − f ′(R1 + σR2)ε⟩.

Together with (4.79) and the definition of p1, this yields

(4.98) p′
1 ≃

〈
∂xR1, f(R1 + σR2) − f(R1)

− σf(R2) +
(
f ′(R1 + σR2) − f ′(R1)

)
ε
〉
.

Subtracting (4.52), we get

(4.99) p′
1 + σ2k2

0e−(y2−y1) ≃
〈
∂xR1,

(
f ′(R1 + σR2) − f ′(R1)

)
ε
〉
.

Since f ′ is locally Lipschitz, we have |f ′(R1 + σR2) − f ′(R1)| ≲ R2 ≲
e−|·−y2|. We also have |∂xR1| ≲ e−|·−y1|. Thus, by the Cauchy–Schwarz
inequality,

(4.100)
〈
∂xR1,

(
f ′(R1 + σR2) − f ′(R1)

)
ε
〉2

≲
∫
R

e−2|x−y1|e−2|x−y2| dx
∫
R
ε2 dx ≪

(
e−(y2−y1) + ∥ε∥2

H1

)2
,

where in the last step we use the fact that

(4.101)
∫
R

e−2|x−y1|e−2|x−y2| dx ≲ (y2 − y1)e−2(y2−y1) ≪ e−(y2−y1),

see (4.78). This finishes the proof of (4.74), provided that we can show
that (4.89), (4.90) and (4.91) hold.

Bound (4.89) follows from

(4.102)
∫
R
ϕ1 ε ∂xεdx = 1

2

∫
R
ϕ1 ∂x(ε2) dx = −1

2

∫
R
∂xϕ1 ε

2 dx,

because ∥∂xϕ1∥L∞ ≲ (y2 − y1)−1 ≪ 1. The proof of (4.90) is similar, but
we need to integrate by parts many times:

(4.103)
∫
R
ϕ1 ε ∂

3
xεdx

= −
∫
R
∂xϕ1 ε ∂

2
xεdx−

∫
R
ϕ1 ∂xε ∂

2
xεdx

=
∫
R
∂2
xϕ1 ε ∂xεdx+

∫
R
∂xϕ1(∂xε)2 dx− 1

2

∫
R
ϕ1∂x

(
(∂xε)2)dx

= −1
2

∫
R
∂3
xϕ1 ε

2 dx+ 3
2

∫
R
∂xϕ1 (∂xε)2 dx,

and we see that both terms are negligible.
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In order to prove (4.91), it suffices to check that

(4.104) ∥f(R1 + σR2) − f(R1) − σf(R2)∥L2 ≪ e− 1
2 (y2−y1)

and integrate by parts. From (3.3) we have

(4.105) |f(R1 + σR2) − f(R1) − σf(R2)| ≲ R1R2 ≲ e−|·−y1|e−|·−y2|,

and (4.104) follows from (4.78). □

4.3. Stable and unstable directions

We also need to control the linear stable and unstable directions. We
define

(4.106) α−
k (t, x) := α−(x− yk(t)), α+

k (t, x) := α+(x− yk(t)), k ∈ {1, 2}

(see Proposition 2.10 for the definition of α− and α+) and

(4.107) a−
k (t) := ⟨α−

k (t), ε(t)⟩, a+
k (t) := ⟨α+

k (t), ε(t)⟩, k ∈ {1, 2}.

Lemma 4.8. — For any c > 0 there exists δ > 0 such that if

(4.108) e−(y2(t)−y1(t)) + ∥ε(t)∥2
H1 ⩽ δ,

then ∣∣∣∣ d
dta

−
k (t) + νa−

k (t)
∣∣∣∣ ⩽ c

√
e−(y2(t)−y1(t)) + ∥ε(t)∥2

H1 , k ∈ {1, 2},(4.109) ∣∣∣∣ d
dta

+
k (t) − νa+

k (t)
∣∣∣∣ ⩽ c

√
e−(y2(t)−y1(t)) + ∥ε(t)∥2

H1 , k ∈ {1, 2},(4.110)

where ν is defined in Proposition 2.9.

Proof. — We will only prove (4.109) for k = 1, because the computation
for (4.110) or for k = 2 is almost the same. In this proof, we say that
a real number is “negligible” if its absolute value is much smaller than√

e−(y2(t)−y1(t)) + ∥ε(t)∥2
H1 for δ sufficiently small. We have

(4.111) d
dta

−
1 = −y′

1⟨∂xα−
1 , ε⟩ + ⟨α−

1 , ∂tε⟩.

Bound (4.6) implies that the first term is negligible and we can forget
about it. Like in the proof of Lemma 4.3, we compute the second term
using (4.11):

(4.112) ⟨α−
1 , ∂tε⟩ =

〈
α−

1 , y
′
1∂xR1 + y′

2∂xR2

+ ∂x
(
−∂2

xε− f(R1 + σR2 + ε) + f(R1) + σf(R2) + ε
)〉
.
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We have ⟨α−
1 , ∂xR1⟩ = ⟨α−, ∂xQ⟩ = 0. Moreover, the exponential decay

of α− and (4.6) yield |y′
2⟨α−

1 , ∂xR2⟩| = |y′
2| |⟨α−, ∂xQ( · − (y2 − y1))⟩| ≪√

e−(y2(t)−y1(t)) + ∥ε(t)∥2
H1 . Hence, up to negligible terms, we have

(4.113) d
dta

−
1

≃
〈
α−

1 , ∂x
(
−∂2

xε− f(R1 + σR2 + ε) + f(R1) + σf(R2) + ε
)〉

≃ −
〈
∂xα

−
1 , L1ε−f(R1 +σR2 +ε)+f(R1)+f ′(R1)ε+σf(R2)

〉
,

where L1 := −∂2
x− f ′(R1) + 1. We have L1(∂xα−

1 ) = να−
1 , see (2.21). Thus

(4.114) −⟨∂xα−
1 , L1ε⟩ = −⟨L1(∂xα−

1 ), ε⟩ = −ν⟨α−
1 , ε⟩ = −νa−

1 ,

and we only need to check that

(4.115)
∣∣〈∂xα−

1 , f(R1 + σR2 + ε) − f(R1) − f ′(R1)ε− σf(R2)
〉∣∣

⩽ c
√

e−(y2(t)−y1(t)) + ∥ε(t)∥2
H1 .

The triangle inequality and Lemma 3.1 yield

(4.116) |f(R1 + σR2 + ε) − f(R1) − f ′(R1)ε− σf(R2)|
⩽ |f(R1 + σR2) − f(R1) − σf(R2)|

+ |f(R1 + σR2 + ε) − f(R1 + σR2) − f ′(R1 + σR2)ε|
+ |(f ′(R1 + σR2) − f ′(R1))ε|

≲ R1R2 + ε2 +R2|ε|,

so we obtain, by the Cauchy–Schwarz inequality,

(4.117)
∣∣〈∂xα−

1 , f(R1 + σR2 + ε) − f(R1) − f ′(R1)ε− σf(R2)
〉∣∣

≲ ∥R1R2∥L2 + ∥ε∥2
L2 + ∥α−

1 R2∥L2∥ε∥L2

(we have used the fact that α− ∈ L2 ∩L∞). The first term is negligible, see
the proof of (4.104). The second term is clearly negligible. The third term
is negligible because

∥α−
1 R2∥L2 = ∥α−Q( · − (y2 − y1))∥L2 ⩽ c

if y2 − y1 is large enough (both α− and Q are exponentially decaying func-
tions). □
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5. Dynamics of the reduced system

In this section we complete the proof of Theorem 1.4. We always assume
that u : [T0,∞) → H1 is a solution of (gKdV) satisfying (1.20) and (1.21)
with v∞ = 1 (for the sake of simplicity). Thus, for t ⩾ T0, we have well-
defined modulation parameters yk(t) and the error term ε(t) such that
limt→∞ y2(t) − y1(t) = ∞ and limt→∞ ∥ε(t)∥H1 = 0.

Given ρ ⩾ ρ0 ≫ 1, we define qk(t) by (4.30). Then ∥ε(t)∥H1 → 0 implies

(5.1) lim
t→∞

(
(q2(t) − q1(t)) − (y2(t) − y1(t))

)
= 0.

In particular, the estimates from Section 4 remain true if e−(y2(t)−y1(t)) is
replaced by e−(q2(t)−q1(t)).

Proposition 5.1. — The sign σ equals 1 and there exist C0 > 0 (in-
dependent of ρ) and t0 ⩾ T0 (which might depend on ρ) such that for all
t ⩾ t0

(5.2) ∥ε(t)∥2
H1 ⩽ C0 sup

τ⩾t
e−(q2(τ)−q1(τ)).

Eventually, we will prove that q2 − q1 is an increasing function, so sup
in (5.2) is not really necessary. We need two lemmas.

Lemma 5.2. — For any c > 0 and t0 ⩾ T0 there exists t1 ⩾ t0 such that

(5.3) a−
1 (t1)2 + a−

2 (t1)2 ⩽ c
(
e−(q2(t1)−q1(t1)) + ∥ε(t1)∥2

H1

)
.

Proof. — Suppose the conclusion is false. Then for all t ⩾ t0 we have

(5.4) N1(t) := a−
1 (t)2 + a−

2 (t)2 ⩾ c
(
e−(q2(t)−q1(t)) + ∥ε(t)∥2

H1

)
.

By Lemma 4.8, if we take T0 large enough, then

(5.5)
∣∣N ′

1(t) + 2νN1(t)
∣∣ ⩽ cν

(
e−(q2(t)−q1(t)) + ∥ε(t)∥2

H1

)
⩽ νN1(t),

where in the last step we use (5.4). In particular, N ′
1(t) ⩽ −νN1(t) for all

t ⩾ t0, which implies

(5.6) N1(t) ⩽ e−ν(t−t0)N1(t0), for all t ⩾ t0.

Applying again (5.4), we deduce that q2(t) − q1(t) ≳ t as t → ∞, which is
impossible because |q′

1(t)| + |q′
2(t)| → 0 as t → ∞. □

Lemma 5.3. — There exists C0 > 0 (independent of ρ) with the follow-
ing property. For any c0 > 0 there is t0 ⩾ T0 such that for all t ⩾ t0

a+
1 (t)2 + a+

2 (t)2 ⩽ c0 sup
τ⩾t

(
e−(q2(τ)−q1(τ)) + a−

1 (τ)2 + a−
2 (τ)2),(5.7)

∥ε(t)∥2
H1 ⩽ C0 sup

τ⩾t

(
e−(q2(τ)−q1(τ)) + a−

1 (τ)2 + a−
2 (τ)2).(5.8)
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Proof. — Let t ⩾ t0 and let t1 ⩾ t be such that

(5.9) e−(q2(t1)−q1(t1)) + ∥ε(t1)∥2
H1 = sup

τ⩾t

(
e−(q2(τ)−q1(τ)) + ∥ε(τ)∥2

H1

)
.

We first prove that for any c > 0, if t0 is chosen large enough, then

(5.10) a+
1 (t1)2 + a+

2 (t1)2 ⩽ c
(
e−(q2(t1)−q1(t1)) + ∥ε(t1)∥2

H1

)
.

For t ⩾ T0, denote N2(t) := a+
1 (t)2 + a+

2 (t)2. Suppose that (5.10) does
not hold and let t2 := max{τ : N2(τ) ⩾ N2(t1)}. Note that t2 ∈ [t1,∞),
because limτ→∞ N2(τ) = 0 and N2(t1) > 0. We have N ′

2(t2) ⩽ 0 and

(5.11) N2(t2) ⩾ N2(t1) ⩾ c
(
e−(q2(t1)−q1(t1)) + ∥ε(t1)∥2

H1

)
⩾ c
(
e−(q2(t2)−q1(t2)) + ∥ε(t2)∥2

H1

)
,

where the last inequality follows from (5.9). This implies

(5.12) −N ′
2(t2) + 2νN2(t2) ⩾ 2νc

(
e−(q2(t2)−q1(t2)) + ∥ε(t2)∥2

H1

)
,

which contradicts Lemma 4.8 if t0 is large enough.
From Proposition 3.4 we know that

(5.13) e−(q2(t1)−q1(t1)) + ∥ε(t1)∥2
H1

⩽
C0

2
(
e−(q2(t1)−q1(t1)) + a+

1 (t1)2 + a+
2 (t1)2 + a−

1 (t1)2 + a−
2 (t1)2).

Setting c = 1
C0

in (5.10), we obtain

(5.14) e−(q2(t1)−q1(t1)) + ∥ε(t1)∥2
H1

⩽ C0
(
e−(q2(t1)−q1(t1)) + a−

1 (t1)2 + a−
2 (t1)2),

which implies (5.8).
We prove (5.7) by contradiction. Set

(5.15) t3 := sup
{
τ > t : N2(τ) > c0

(
e−(q2(t1)−q1(t1))+a−

1 (t1)2+a−
2 (t1)2)}.

Since N2(τ) → 0 as τ → ∞, t3 is well-defined and t3 ∈ (t,∞). Moreover,
we would have N ′

2(t3) ⩽ 0 and, using the definition of t1 and (5.14),

(5.16) e−(q2(t3)−q1(t3)) + ∥ε(t3)∥2
H1

⩽ e−(q2(t1)−q1(t1)) + ∥ε(t1)∥2
H1

⩽ C0
(
e−(q2(t1)−q1(t1)) + a−

1 (t1)2 + a−
2 (t1)2).

Therefore,

(5.17) N2(t3) = c0
(
e−(q2(t1)−q1(t1)) + a−

1 (t1)2 + a−
2 (t1)2)

⩾
c0

C0

(
e−(q2(t3)−q1(t3)) + ∥ε(t3)∥2

H1

)
.
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Hence, we get

(5.18) −N ′
2(t3) + 2νN2(t3) ⩾ 2ν c0

C0

(
e−(q2(t3)−q1(t3)) + ∥ε(t3)∥2

H1

)
,

which contradicts Lemma 4.8 if t0 is large enough. □

Proof of Proposition 5.1. — Let c0 > 0. In Lemma 5.2, let c = c0
2(C0+1) ,

where C0 is the constant from Lemma 5.3. We obtain that there exists t1
arbitrarily large such that

(5.19) N1(t1) ⩽ c0

2(C0 + 1)
(
(C0 + 1) sup

τ⩾t1
e−(q2(τ)−q1(τ)) + C0 sup

τ⩾t1
N1(τ)

)
(the meaning of N1(t) is the same as in the proof of Lemma 5.2). Let

(5.20) N3(t) := e−(q2(t)−q1(t)), Ñ3(t) := sup
τ⩾t

N3(τ) = sup
τ⩾t

e−(q2(τ)−q1(τ)).

We will show that for all t ⩾ t1 we have

(5.21) Ñ1(t) := sup
τ⩾t

N1(τ) ⩽ c0Ñ3(t).

In view of Lemma 5.3, this will finish the proof of (5.2).
By the rising sun lemma, see [31, Lemma 1.6.17], for all t except for

a countable set, the function Ñ3 is either constant, or equal to N3 in a
neighborhood of t. In particular, for all t except a countable set, Ñ3 is
differentiable and

(5.22) |Ñ ′
3(t)| ⩽ (|q′

1(t)| + |q′
2(t)|)e−(q2(t)−q1(t))

≪ e−(q2(t)−q1(t)) = N3(t) ⩽ Ñ3(t) as t → ∞.

We claim that if t is sufficiently large and N1(t) = Ñ1(t), then

(5.23) N1(t) ⩾ c0Ñ3(t) ⇒ N ′
1(t) ⩽ −νN1(t).

Indeed, Lemma 5.3 yields

(5.24) ∥ε(t)∥2
H1 ⩽ C0

(
Ñ1(t) + Ñ3(t)

)
⩽ C0(1 + c−1

0 )N1(t).

By Lemma 4.8, for any c > 0 and t sufficiently large we have

(5.25) |N ′
1(t) + 2νN1(t)| ⩽ c

(
∥ε(t)∥2

H1 +N3(t)
)

⩽ c(C0(1 + c−1
0 ) + c−1

0 )N1(t),

and it suffices to take c ⩽ ν
C0(1+c−1

0 )+c−1
0

.

Suppose that (5.21) does not hold, and let t2 > t1 be such that Ñ1(t2) >
c0Ñ3(t2). Without loss of generality, we can assume that Ñ1(t2) = N1(t2)
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(it suffices to replace t2 by sup
{
τ ⩾ t2 : N1(τ) = N1(t2)

}
). Let

(5.26) t3 := min
{
t ∈ [t1, t2] : N ′

1(τ) ⩽ −ν

2N1(τ) for all τ ∈ [t, t2]
}
.

By (5.23) and continuity, t3 < t2. Suppose that t3 > t1. By (5.22), we
can assume that Ñ ′

3(t) ⩾ −ν
4 Ñ3(t) for almost all t ∈ [t3, t2] (provided

that t1 was chosen sufficiently large). Since N1(t2) > c0Ñ3(t2), this im-
plies N1(t3) > c0Ñ3(t3). The function N1(t) is decreasing for t ∈ [t3, t2],
so N1(t3) = Ñ1(t3). Thus (5.23) yields N ′

1(t3) ⩽ −νN1(t3), which is in
contradiction with the definition of t3. This proves that t3 = t1.

In particular, we have shown thatN1(t1) = Ñ1(t1) andN1(t1)> c0Ñ3(t1).
This contradicts (5.19), so (5.21) has to hold.

It remains to prove that σ = 1. Suppose that σ = −1. Proposition 3.4
yields

(5.27) e−(q2(t)−q1(t)) ≲ a+
1 (t)2 +a+

2 (t)2 +a−
1 (t)2 +a−

2 (t)2, for all t ⩾ T0.

Take t1 sufficiently large such that

(5.28) e−(q2(t1)−q1(t1)) = sup
τ⩾t1

(
e−(q2(τ)−q1(τ))).

Then (5.7) and (5.27) yield

(5.29) e−(q2(t1)−q1(t1)) ≲ a−
1 (t1)2 + a−

2 (t1)2,

which contradicts (5.21) if c0 is small enough. □

Lemma 5.4. — There exists t0 ⩾ T0 such that q2(t)− q1(t) is increasing
for t ⩾ t0.

Proof. — Set q(t) := q2(t) − q1(t). Let t1 ⩾ t0, where t0 is large (chosen
later in the proof). We need to show that for all t > t1 we have q(t) > q(t1).
Suppose this is not the case, and let

(5.30) t2 := sup
{
t : q(t) = inf

τ⩾t1
q(τ)

}
.

Then t2 > t1, q(t2) = infτ⩽t2 q(τ) and q′(t2) = 0.
Let p(t) := p2(t) − p1(t), q0 := q(t2), t3 := inf{t ⩾ t2 : q(t) = q0 + 1}.

Since limt→∞ q(t) = +∞, t3 is finite. We will show that the modulation
equations imply

(5.31) z(t3) ⩽ q0 + 1
2 ,

which is a contradiction.
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Let t ∈ [t2, t3]. By Proposition 5.1 we have ∥ε(t)∥2
H1 ≲ e−q0 , thus (4.74)

and (4.75) yield, for some C > 0,

(5.32) p′(t) ⩾ (4k2
0 − 2c)e−q(t) − 2cCe−q0

⩾ (4k2
0 − 2c)e−(q0+1) − 2cCe−q0 ⩾ k2

0e−q0 , for all t ∈ [t2, t3].

Since q′(t2) = 0, (4.35) yields p(t2) ⩾ −c e− q0
2 . Integrating (5.32), we get

(5.33) p(t) ⩾ −c e− q0
2 + k2

0(t− t2)e−q0 , for all t ∈ [t2, t3].

Using (4.35) again we obtain

(5.34) −⟨Q, Q̃⟩q′(t) ⩽ −k2
0(t− t2)e−q0 + c e− q0

2 , for all t ∈ [t2, t3].

We now integrate for t between t2 and t3:

(5.35) −⟨Q, Q̃⟩
(
q(t3) − q(t2)

)
⩽
∫ t3

t2

(
−k2

0(t− t2)e−q0 + c e− q0
2
)

dt

= −1
2k

2
0e−q0(t3 − t2)2 + c e− q0

2 (t3 − t2) ⩽ c2

2k2
0
,

so that (5.31) follows if we take c small enough. □

We have the following immediate consequence of Proposition 5.1 and
Lemma 5.4.

Corollary 5.5. — There exist C0 > 0 and t0 ⩾ T0 such that for all
t ⩾ t0

(5.36) ∥ε(t)∥2
H1 ⩽ C0e−(q2(t)−q1(t)).

Proposition 5.6. — Let c > 0. There exist ρ > 0 and t0 ⩾ T0 with the
following property. Let q(t) := q2(t) − q1(t) and p(t) := p2(t) −p1(t), where
qk(t) and pk(t) are the modulation parameters defined in Section 4. Then
for all t ⩾ t0 the following inequalities are true:∣∣q′(t) − ⟨Q, Q̃⟩−1p(t)

∣∣ ⩽ c e− q(t)
2 ,(5.37) ∣∣p′(t) − 4k2

0e−q(t)∣∣ ⩽ c e−q(t).(5.38)

Proof. — Subtracting (4.35) for k = 1 and k = 2 we get

(5.39)
∣∣q′(t) − ⟨Q, Q̃⟩−1p(t)

∣∣ ⩽ c
√

e−q(t) + ∥ε∥2
H1 ⩽ c e− q(t)

2 ,

where the last inequality follows from Corollary 5.5.
We already know from Proposition 5.1 that σ = 1. Subtracting (4.74)

and (4.75) and using Corollary 5.5, we obtain (5.38). □
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Remark 5.7. — An important feature of the system of differential in-
equalities (5.37), (5.38) is that it does not involve the error term ε(t). Thus
the study of the dynamical behavior of the solution u(t) to (gKdV) is re-
duced to the study of a two-dimensional system of differential inequalities.
As we will see below, these inequalities determine the dynamics of the
parameters q(t) and p(t), at least at the main order.

Proof of Theorem 1.4. — Let r(t) := p(t) − 2κ⟨Q, Q̃⟩e− q(t)
2 for t ⩾ T0,

where κ is defined in Remark 2.4. Since p1(t) → 0, p2(t) → 0 and q(t) → ∞
as t → ∞, we first note that r(t) → 0 as t → ∞.

By (5.37) and (5.38), we have

(5.40) r′(t) = p′(t) + κ⟨Q, Q̃⟩q′(t)e− q(t)
2

= 4k2
0e−q(t) + κp(t)e− q(t)

2 +O(c e−q(t))

= κe− q(t)
2
(
p(t) − 2κ⟨Q, Q̃⟩e− q(t)

2
)

+O(c e−q(t))

= κe− q(t)
2 r(t) +O(c e−q(t)),

where we have used the fact that −2κ2⟨Q, Q̃⟩ = 4k2
0 in order to pass from

the first to the second line. We now show that for any c0 there exists t0 ⩾ T0
such that

(5.41) |r(t)| ⩽ c0e− q(t)
2 , for all t ⩾ t0.

Suppose (5.41) fails, so there exists t1 arbitrarily large such that |r(t1)| >
c0e− q(t1)

2 . Assume r(t1) > 0 (the case r(t1) < 0 is similar). Let t2 :=
sup
{
t : r(t) = c0e− q(t1)

2
}

. We have t2 ∈ (t1,∞) and r′(t2) ⩽ 0. Since q(t)
is increasing, we have r(t2) ⩾ c0e− q(t2)

2 . Thus (5.40) yields r′(t2) > 0, a
contradiction.

From (5.41) and (5.37) we deduce that for any c0 > 0 and t0 large enough
we have

(5.42)
∣∣q′(t) − 2κe− q(t)

2
∣∣ ⩽ c0

2 e− q(t)
2 ⇐⇒

∣∣(e q(t)
2
)′ − κ

∣∣ ⩽ c0

4 ,

which implies, after integrating,

(5.43) (κ− c0)t ⩽ e
q(t)

2 ⩽ (κ+ c0)t,

equivalently

(5.44) 2 log t+ 2 log(κ− c0) ⩽ q(t) ⩽ 2 log t+ 2 log(κ+ c0),

for t large enough. Since c0 is arbitrary, this proves (1.22). □
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Appendix A. Reduced dynamics

In this section we prove some facts about the reduced equation for mod-
ulation parameters (1.14). Of course E(x,v) is a conservation law for this
system. Maybe not suprisingly,

(A.1) M(x,v) := M

(
K∑
k=1

σkQvk
( · − xk)

)
is also a conservation law. Indeed, the Hamiltonian vector field correspond-
ing to M is the generator of space translations, which leave E(x,v) invari-
ant.

A.1. General lemmas

We recall some facts from the theory of ordinary differential equations.
Given t0, a Euclidean space E and β > 0, we denote Nβ(t0;E) the space

of continuous functions f : [t0,∞) → E such that

(A.2) ∥f∥Nβ(t0;E) := sup
t⩾t0

eβt|f(t)|E < +∞.

If t0 and E are known from the context, we write Nβ instead of Nβ(t0;E).
Given x0 ∈E and ρ > 0, we denote BE(x0; ρ) := {x ∈E : |x−x0|E ⩽ ρ}

and BE(ρ) := BE(0; ρ). If E is known from the context, we skip the
subscript.

Lemma A.1. — If T ∈ Rd×d is a matrix having no eigenvalues whose
real part is smaller than −λ ∈ R, then for any β > λ and t0 ∈ R the system

(A.3) x′(t) = Tx(t) + f(t)

defines a bounded linear operator S : Nβ(t0;Rd) → Nβ(t0;Rd), f 7→ x =
Sf , whose norm depends on T and β.

Proof. — Without loss of generality, we can assume λ = 0. Indeed, it
suffices to set T̃ := T + λ, x̃(t) := eλtx(t) and f̃(t) := eλtf(t), so that
∥x̃∥Nβ−λ

= ∥x∥Nβ
and ∥f̃∥Nβ−λ

= ∥f∥Nβ
.

The solutions of (A.3) are given by the Duhamel formula:

(A.4) x(t) = e(t−t0)Tx(t0) +
∫ t

t0

e(t−s)Tf(s) ds, for all t ⩾ t0.

Applying e−(t−t0)T to both sides, we get

(A.5) x(t0) = e−(t−t0)Tx(t) −
∫ t

t0

e−(s−t0)Tf(s) ds, for all t ⩾ t0.
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By the Jordan decomposition, there exists C̃ > 0, depending on T , such
that

(A.6) ∥e−tT ∥Rd→Rd ⩽ C̃(1 + td−1), for all t ⩾ 0.

Hence, if f ∈ Nβ(t0;Rd) and x ∈ Nβ(t0;Rd), we can pass to the limit
t → ∞ in (A.5) and obtain

(A.7) x(t0) = −
∫ ∞

t0

e−(s−t0)Tf(s) ds.

Plugging this into (A.4), we have

(A.8) x(t) = −
∫ ∞

t0

e−(s−t)Tf(s) ds+
∫ t

t0

e(t−s)Tf(s) ds

= −
∫ ∞

t

e−(s−t)Tf(s) ds,

which is a continuous function. Using again (A.6), we compute

(A.9) |x(t)| ⩽ C̃

∫ ∞

t

(
1 + (s− t)d−1)|f(s)| ds

⩽ C̃∥f∥Nβ

∫ ∞

t

(
1 + (s− t)d−1)e−βs ds

= C̃e−βt∥f∥Nβ

∫ ∞

0

(
1 + sd−1)e−βs ds

⩽ C(β−1 + β−d)e−βt∥f∥Nβ
,

with C depending only on T . □

Proposition A.2. — Let T ∈ Rd×d be a matrix having no eigenvalues
with a negative real part. For any β > 0 there exists c0 > 0 such that the
following is true. Let t0 ∈ R, η > 0 and f : [t0,∞) × BRd(η) → Rd be
a continuous function satisfying

|f(t, 0)| ⩽ e−βt, for all t ⩾ t0,(A.10)

|f(t,x♯) − f(t,x)| ⩽ c0|x♯ − x|, for all t ⩾ t0 and |x|, |x♯| ⩽ η.(A.11)

There exist t1 ⩾ t0 and xs ∈ Nβ(t1;Rd) such that

(A.12) x′
s(t) = Txs(t) + f(t,xs(t)), for all t ⩾ t1.

If t2 ∈ R and x♯s ∈ Nβ(t2;Rd) solves (A.12) for all t ⩾ t2, then x♯s(t) = xs(t)
for all t ⩾ max(t1, t2).

Proof. — Given x : [t1,∞) → Rd continuous and such that ∥x∥L∞ ⩽ η,
we denote f(x) the function t 7→ f(t,x(t)). The system (A.12) is equiv-
alent to the fixed point problem xs = Sf(xs), where S is the operator
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from Lemma A.1. We now check that for any ρ large enough and t1 ∈ R
large enough (depending on ρ), x 7→ Sf(x) is a contraction on the ball
in Nβ(t1;Rd) of center 0 and radius ρ, which by the Contraction Principle
will finish the proof.

Fix ρ > 0 and let ∥x∥Nβ(t1) ⩽ ρ. If t1 is large enough, then the last bound
implies in particular ∥x∥L∞ ⩽ η, hence f(x) is a well-defined continuous
function. Using (A.10) and (A.11), we have

(A.13) |f(t,x(t))| ⩽ e−βt(1 + c0ρ) =⇒ ∥f(x)∥Nβ(t1) ⩽ 1 + c0ρ.

By Lemma A.1, if c0 is small enough and ρ large enough, then
∥Sf(x)∥Nβ

⩽ ρ.
Now, let x♯ be another function satisfying ∥x♯∥Nβ(t1) ⩽ ρ. Using (A.11),

we have

(A.14) |f(t,x♯(t)) − f(t,x(t))| ⩽ c0|x♯(t) − x(t)|,

hence

(A.15) ∥f(x♯) − f(x)∥Nβ(t1) ⩽ c0∥x♯ − x∥Nβ(t1).

By Lemma A.1, if c0 is small enough, then ∥Sf(x♯) − Sf(x)∥Nβ
⩽

1
2 ∥x♯ − x∥Nβ

. □

Lemma A.3. — Let T ∈ Rd×d be a matrix with exactly one negative
eigenvalue −λ and all the other eigenvalues having a non-negative real part.
Denote Ys an eigenvector of T corresponding to the eigenvalue −λ and αs
the eigenvector of T ∗, the transpose of T , corresponding to the eigenvalue
−λ, normalised so that αs · Ys = 1. Let t0 ∈ R and β ∈ (0, λ). For any
f ∈ Nβ(t0;Rd) the system

(A.16) x′(t) = Tx(t) + f(t)

has a unique solution x ∈ Nβ(t0;Rd) such that αs ·x(t0) = 0. The mapping
f 7→ x = Spf is a bounded linear operator Nβ(t0;Rd) → Nβ(t0;Rd) whose
norm depends on T and β.

If x,x♯ ∈ Nβ(t0;Rd) are two solutions of (A.16), then there exists a ∈ R
such that x♯(t) − x(t) = ae−λtYs for all t ⩾ t0.

Remark A.4. — We denote the solution operator Sp to indicate that
it yields a particular solution of (A.16), chosen in an arbitrary and non-
canonical way.

Proof of Lemma A.3. — The solutions of (A.16) are given by the
Duhamel formula:

(A.17) x(t) = e(t−t0)Tx(t0) +
∫ t

t0

e(t−s)Tf(s) ds, for all t ⩾ t0.
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Let Xu := {x ∈ Rd : αs · x = 0} and let Tu : Xu → Xu be the
restriction of T to Xu. Let x(t) = a(t)Ys + xu(t) with xu(t) ∈ Xu and
f(t) = b(t)Ys+fu(t) with fu(t) ∈ Xu. Taking the inner product of (A.17)
with αs, we obtain

(A.18) a(t) = e−λ(t−t0)a(t0) +
∫ t

t0

e−λ(t−s)b(s) ds =
∫ t

t0

e−λ(t−s)b(s) ds,

where the last equality follows since we require αs · x(t0) = 0. Taking the
difference of (A.17) and (A.18) multiplied by Ys, we obtain

(A.19) xu(t) = e(t−t0)Tuxu(t0) +
∫ t

t0

e(t−s)Tufu(s) ds, for all t ⩾ t0.

Applying e−(t−t0)Tu to both sides, we get

(A.20) xu(t0) = e−(t−t0)Tuxu(t) −
∫ t

t0

e−(s−t0)Tufu(s) ds, for all t ⩾ t0.

By the Jordan decomposition, there exists C1 > 0, depending on T , such
that

(A.21) ∥e−tTu∥Xu→Xu ⩽ C1(1 + td−2), for all t ⩾ 0.

Hence, if f ∈ Nβ(t0;Rd) and x ∈ Nβ(t0;Rd), we can pass to the limit
t → ∞ in (A.20) and obtain

(A.22) xu(t0) = −
∫ ∞

t0

e−(s−t0)Tufu(s) ds.

Plugging this into (A.19), we have

(A.23) xu(t) = −
∫ ∞

t0

e−(s−t)Tufu(s) ds+
∫ t

t0

e(t−s)Tufu(s) ds

= −
∫ ∞

t

e−(s−t)Tufu(s) ds,

which, together with (A.18), uniquely determines a continuous function
x(t). We have

(A.24) |a(t)| ⩽ C2∥f∥Nβ

∫ t

t0

e−λ(t−s)e−βs ds

= C2e−βt∥f∥Nβ

∫ t

t0

e−(λ−β)(t−s) ds

⩽ C2e−βt∥f∥Nβ

∫ ∞

0
e−(λ−β)s ds ⩽ C3e−βt∥f∥Nβ

,
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where C2 depends on T , and C3 depends on T and β. Finally,

(A.25) |xu(t)| ⩽ C4

∫ ∞

t

(
1 + (s− t)d−2)|f(s)| ds

⩽ C4∥f∥Nβ

∫ ∞

t

(
1 + (s− t)d−2)e−βs ds

= C4e−βt∥f∥Nβ

∫ ∞

0

(
1 + sd−2)e−βs ds ⩽ C5e−βt∥f∥Nβ

,

where C4 depends on T , and C5 depends on T and β.
If x♯ and x both belong toNβ(t0;Rd) and solve (A.16), then z := x♯−x ∈

Nβ(t0;Rd) solves z′(t) = Tz(t) for all t ⩾ t0, hence the Jordan decompo-
sition yields z(t) = ae−λtYs for some a ∈ R. □

The following version of the Stable Manifold Theorem for non-auton-
omous systems will be useful.

Proposition A.5. — Let T ∈ Rd×d be a matrix with exactly one neg-
ative eigenvalue −λ and all the other eigenvalues having a non-negative
real part. Denote Ys an eigenvector of T corresponding to the eigenvalue
−λ. Let t0 ∈ R, β, γ, η > 0 and f : [t0,∞) ×BRd(η) → Rd be a continuous
function satisfying

|f(t, 0)| ⩽ e−βt, for all t⩾ t0,(A.26)

|f(t,x♯)−f(t,x)| ⩽ e−γt|x♯−x|, for all t⩾ t0 and |x|, |x♯|⩽ η.(A.27)

There exists a family {xa ∈ Nβ(τa;Rd) : a ∈ R} having the following
properties:

• for all a ∈ R, x = xa solves for all t ⩾ τa the equation

(A.28) x′(t) = Tx(t) + f(t,x(t)),

• for all a, a♯ ∈ R and ν < λ + γ, xa♯ − xa − (a♯ − a) exp(−λ ·)Ys ∈
Nν(max(τa, τa♯);Rd),

• if t1 ∈ R and x ∈ Nβ(t1;Rd) solves (A.28) for all t ⩾ t1, then there
exists a ∈ R such that x(t) = xa(t) for all t ⩾ max(t1, τa).

Proof. — By exactly the same computation as in the proof of Proposi-
tion A.2, we obtain that for any ρ large enough and τ0 ∈ R large enough (de-
pending on ρ), x 7→ Spf(x), where Sp is the operator defined in Lemma A.3,
is a contraction on the ball inNβ(τ0;Rd) of center 0 and radius ρ. We denote
x0 ∈ Nβ(τ0;Rd) its unique fixed point.

Setting x = x0 + y, we rewrite (A.28) as

(A.29) y′(t) = Ty(t) +
[
f(t,x0(t) + y(t)) − f(t,x0(t))

]
.
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Let ν ∈ (λ, λ+γ). We first show that if y ∈ Nβ(t1;Rd) solves (A.29) for all
t ⩾ t1, then there exists a ∈ R such that y − a exp(−λ ·)Ys ∈ Nν(t1;Rd).

Indeed, if y ∈ Nβ(t1;Rd), then (A.27) implies f(x0 + y) − f(x0) ∈
Nβ+γ(t1;Rd), thus Lemma A.3 yields y ∈ N

β̃
(t1;Rd) for any β̃ < min(β +

γ, λ). Repeating a finite number of times, we obtain y ∈ Nν−γ(t1;Rd),
which, again using (A.27), implies f(x0 +y) − f(x0) ∈ Nν(t1;Rd). Hence,

(A.30) S(f(x0 + y) − f(x0)) ∈ Nν(t1;Rd),

where S is the operator defined in Lemma A.1. But z := y − S(f(x0 +
y) − f(x0)) satisfies the homogeneous equation z′(t) = Tz(t), yielding
z(t) = ae−λtYs for some a ∈ R.

Now, we prove that for every a ∈ R there exists a unique solution ya
of (A.29) such that ya − a exp(−λ ·)Ys ∈ Nν(t1;Rd) for some t1 ∈ R.
Writing ya(t) = a exp(−λt)Ys + z(t), (A.29) becomes

(A.31) z′(t) = Tz(t) +
[
f(t,x0(t) + a exp(−λt)Ys + z(t)) − f(t,x0(t))

]
.

Since f(x0 + a exp(−λ ·)Ys + z) − f(x0) ∈ Nν(t1;Rd) and ν > λ, the last
equation is equivalent to

(A.32) z = S
(
f(x0 + a exp(−λ ·)Ys + z) − f(x0)

)
.

By a similar computation as in the proof of Proposition A.2, if ρ is large
enough (depending on a), then the right hand side defines a contraction on
the ball in Nν(t1;Rd) of center 0 and radius ρ for t1 large enough.

This proves existence and uniqueness of z, and thus of ya. We set xa :=
x0 + ya. □

A.2. Distinct limit speeds

For given x(t) = (x1(t), . . . , xK(t)) we denote

(A.33) L(t) := min
1⩽k<K

(xk+1(t) − xk(t)).

We also denote

(A.34)
(
X(x,v)
V (x,v)

)
:=
(
A(x,v) C(x,v)

−C(x,v) B(x,v)

)−1(
∂xE(x,v)
∂vE(x,v)

)
the right hand side of (1.14).

Proposition A.6. — Let v∞ = (v∞
1 , . . . , v∞

K ) ∈ ((0, v∗) \ Vcrit)K be
such that v∞

1 < . . . < v∞
K and let (x(t),v(t)) be a global solution to (1.14)
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such that limt→∞ vk(t) = v∞
k and limt→∞ L(t) = ∞. Then there exist

x∞
1 , . . . , x

∞
K ∈ R and β > 0 such that, for k ∈ {1, . . . ,K},

(A.35) |xk(t) − (v∞
k t+ x∞

k )| ⩽ e−βt, |vk(t) − v∞
k | ⩽ e−βt,

for t sufficiently large.

Moreover, for any x∞
1 , . . . , x

∞
K ∈ R there exists a unique solution to (1.14)

satisfying (A.35).

In this section and the next one, β denotes a positive number which can
change a finite number of times in the course of the proof. This is why we
do not distinguish for example between ≲ e−βt and ⩽ e−βt.

We need the following bounds on (X,V ).

Lemma A.7. — Let I be a compact interval ⊂ (0, v∗) \ Vcrit. There
exist β, L0 > 0 such that for all (x,v) and (y,w) with v,w ∈ IK and
L := min1⩽k<K(xk+1 − xk) ⩾ L0 the following bounds are true:∣∣X(x,v) − v

∣∣+
∣∣V (x,v)

∣∣ ⩽ e−βL,(A.36)
|X(x,v) −X(y,w) − (v −w)| + |V (x,v) − V (y,w)|

⩽ e−βL(|x− y| + |v −w|
)
.

(A.37)

Proof. — Using the Chain Rule and Lemma 3.1, one obtains

(A.38)

∣∣∣∣∣E(x,v) −
K∑
k=1

E
(
Qvk

)∣∣∣∣∣+

∣∣∣∣∣∇
(
E(x,v) −

K∑
k=1

E
(
Qvk

))∣∣∣∣∣
+

∣∣∣∣∣∇2

(
E(x,v) −

K∑
k=1

E
(
Qvk

))∣∣∣∣∣ ⩽ e−βL

for some β > 0 and L large enough, where “∇” is the gradient in R2K .
Alternatively, we can write:

(A.39) |∂xE(x,v)| + |∂vE(x,v) +D(x,v)v| + |∂2
xE(x,v)|

+ |∂x∂vE(x,v)| + |∂2
vE(x,v) + ∂v(D(x,v)v)| ⩽ e−βL,

where D(x,v) is the diagonal K × K matrix with entries ⟨Qvk
, Q̃vk

⟩ (we
are using here the fact that DE(Qv) = −vQv). Similarly, we have

(A.40) |A(x,v)| + |∇A(x,v)|

+ |C(x,v) −D(x,v)| + |∇(C(x,v) −D(x,v))| ⩽ e−βL.
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From the equality

(A.41)
(
A(x,v) C(x,v)

−C(x,v) B(x,v)

)(
X(x,v)
V (x,v)

)
=
(
∂xE(x,v)
∂vE(x,v)

)
and the estimates above we obtain

(A.42)
(

0 D(x,v)
−D(x,v) B(x,v)

)(
X(x,v)
V (x,v)

)
=
(

0
−D(x,v)v

)
+O(e−βL),

which easily implies (A.36).
Similarly, differentiating (A.41) with respect to x and using ∂xD(x,v) =

0 we get

(A.43)
(

0 0
0 ∂xB(x,v)

)(
X(x,v)
V (x,v)

)
+
(

0 D(x,v)
−D(x,v) B(x,v)

)(
∂xX(x,v)
∂xV (x,v)

)
= O(e−βL),

which yields

(A.44) |∂xX(x,v)| + |∂xV (x,v)| ≲ e−βL.

Differentiating (A.41) with respect to v we get

(A.45)
(

0 ∂vD

−∂vD ∂vB

)(
X

V

)
+
(

0 D

−D B

)(
∂vX

∂vV

)
=
(

0
−∂v(Dv)

)
+O(e−βL),

which yields

(A.46) |∂vX − Id| + |∂vV | ≲ e−βL.

Now (A.37) follows from (A.44) and (A.46), perhaps with smaller β. □

Proof of Proposition A.6. — First we prove (A.35), then we will prove
the uniqueness part. Let δ := min1⩽k<K(v∞

k+1 − v∞
k ) > 0. Since we assume

L(t) → ∞, Lemma A.7 implies |x′
k(t) − vk(t)| ≲ δ

3 for t large enough.
We also assume vk(t) → v∞

k , thus x′
k+1(t) − x′

k(t) ⩾ δ
2 for t large, which

implies L(t) ⩾ δ
3 t for t large. Applying again Lemma A.7, we obtain that

there exists β > 0 such that

(A.47) |x′
k(t) − vk(t)| ⩽ e−2βt, |v′

k| ⩽ e−2βt, for t large,

which yields (A.35).
Given x∞, we define (x̃(t), ṽ(t)) by

(A.48)
x̃(t) := x(t) −

(
v∞t+ x∞),

ṽ(t) := v(t) − v∞.
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Then (x(t),v(t)) solves (1.14) if and only if (x̃(t), ṽ(t)) solves

(A.49)
(
x̃′(t)
ṽ′(t)

)
= T

(
x̃(t)
ṽ(t)

)
+
(
X̃(t, x̃(t), ṽ(t))
Ṽ (t, x̃(t), ṽ(t))

)
,

where

(A.50)

T :=
(

0 Id
0 0

)
,

X̃(t, x̃, ṽ) := X(v∞t+ x∞ + x̃,v∞ + ṽ) − (v∞ + ṽ),

Ṽ (t, x̃, ṽ) := V (v∞t+ x∞ + x̃,v∞ + ṽ).
From Lemma A.7 we obtain that there exists β > 0 such that for t large
enough and |x̃| + |ṽ| + |ỹ| + |w̃| ⩽ 1 we have

|X̃(t, x̃, ṽ)| + |Ṽ (t, x̃, ṽ)| ⩽ e−βt,(A.51)

|X̃(t, x̃, ṽ) − X̃(t, ỹ, w̃)| + |Ṽ (t, x̃, ṽ) − Ṽ (t, ỹ, w̃)|

⩽ e−βt(|x̃− ỹ| + |ṽ − w̃|).
(A.52)

From (A.35), we obtain that if (x(t),v(t)) solves (1.14), then |x̃(t)| +
|ṽ(t)| ⩽ e−βt for t large. Since T has no eigenvalues with a negative real
part, invoking Proposition A.2 finishes the proof. □

A.3. Two-solitons with the same limit speed

We proceed to the proof of Proposition 1.3. By rescaling the space vari-
able we can assume v∞ = 1. The functional H(x,v) := E(x,v)+ 1

2M(x,v)
plays an important role in our analysis. It is a conservation law for (1.14).

Until the end of this section, we denote L := x2 −x1 and L(t) := x2(t) −
x1(t). We abbreviate 1 := (1, 1) and ι := (−1, 1).

Lemma A.8. — There exist numbers δ, L0, C0 > 0 such that if |v−1| ⩽
δ and L ⩾ L0, then

(A.53) |v − 1|2 ⩽ C0(|H(x,v) − 2H(Q)| + e−L).

Remark A.9. — In this section, the conservation law H is used only to
obtain the bound (A.77) in the proof of Proposition 1.3 below. In the
proof of Theorem 1.4, the functional H is crucially used to obtain bounds
on the error term ε(t). The reason why we were unable to treat the case∫
RQ(x)Q̃(x) dx > 0 in Theorem 1.4 is that in this situation the terms

∥ε∥2
H1 and |v − 1|2 come with opposite signs in the expansion of H, so we

could not obtain any useful estimate for either of them.
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Proof of Lemma A.8. — As in the proof of Proposition 3.4, denote
R1 := Q( · − x1), R2 := Q( · − x2), U := σ1R1 + σ2R2. Let ε := σ1Qv1( · −
x1) + σ2Qv2( · − x2) − U . Then

(A.54) ∥ε− (σ1(v1 − 1)Q̃( · − x1) + σ2(v2 − 1)Q̃( · − x2))∥H1 ≲ |v − 1|2.

We have the crucial non-degeneracy

(A.55) ⟨Q̃,D2H(Q)Q̃⟩ = ⟨Q̃, LQ̃⟩ = ⟨Q̃,−Q⟩ ≠ 0.

Combining this with similar estimates as in the proof of Lemma 3.2, we
obtain

(A.56) |⟨ε,D2H(U)ε⟩| ≳ |v − 1|2.

We also have |H(U) − 2H(Q)| ≲ e−L and |⟨DH(U), ε⟩| ≪ e−L + |v− 1|2,
see (3.15) and (3.30). The conclusion follows from the Taylor expansion
(3.26). □

We need a more precise estimate of the right hand side of (1.14) than
the one provided by Lemma A.7.

Lemma A.10. — Assume 1 ∈ (0, v∗) \ Vcrit. There exist β, δ > 0 such
that for all (x,v) and (y,w) with |v − 1| + |w − 1| + |x − y| ⩽ δ the
following bounds hold for L := x2 − x1 large enough:∣∣X(x,v) − v

∣∣ ⩽ e−( 1
2 +β)L,(A.57) ∣∣V (x,v) − ϕ(x)

∣∣ ⩽ e−(1+β)L + |v − 1|e−( 1
2 +β)L,(A.58) ∣∣X(x,v)−X(y,w)−(v−w)

∣∣ ⩽ e−( 1
2 +β)L|x−y|+e−βL|v−w|,(A.59) ∣∣V (x,v) − V (y,w) − (ϕ(x) − ϕ(y))
∣∣

⩽
(
e−(1+β)L + |v − 1|e−( 1

2 +β)L)|x− y| + e−( 1
2 +β)L|v −w|,

(A.60)

with ϕ(x) :=
(
σκ2e−L,−σκ2e−L), where σ := −sgn

(
⟨Q, Q̃⟩σ1σ2

)
and κ is

a constant.

Proof. — Denote ψ(x) := ισ1σ2
∫
R(∂xQ( · − x1))Q( · − x2) dx. We claim

that

|∂xE(x,v) − ⟨Q, Q̃⟩ϕ(x) +ψ(x)| ⩽ e−(1+β)L + |v − 1|e−( 1
2 +β)L,(A.61)

|∂vE(x,v) +D(x,v)v| ⩽ e−( 1
2 +β)L,(A.62)

|A(x,v)| + |C(x,v) −D(x,v)| ⩽ e−( 1
2 +β)L,(A.63)

|A(x,v)v +ψ(x)| ⩽ e−(1+β)L + |v − 1|e−( 1
2 +β)L.(A.64)
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Bounds (A.62), (A.63) and (A.64) follow from the fact that |v− 1| is small
(β could be any number < 1

2 − δ, see Remark 2.5). The proof of the first
bound, the details of which we skip, is similar to the proof of Lemma 4.6.

Consider the matrix

(A.65)
(
G(x,v) K(x,v)

−K(x,v) J(x,v)

)
:=
(
A(x,v) C(x,v)

−C(x,v) B(x,v)

)−1

=
((

0 D

−D B

)
+
(

A C −D

−C +D 0

))−1

.

By the standard asymptotic expansion for the matrix inverse we have(
G K

−K J

)
=
(

0 D

−D B

)−1

−
(

0 D

−D B

)−1(
A C −D

−C +D 0

)(
0 D

−D B

)−1

+O(e−(1+β)L).

Since
( 0 D

−D B

)−1 =
(
D−1BD−1 −D−1

D−1 0

)
= O(1), we obtain

(A.66) K = −D−1 +O(e−( 1
2 +β)L), J = D−1AD−1 +O(e−(1+β)L).

We have X = G∂xE+K∂vE, so (A.61), (A.62) and (A.66) yield |X−v| ⩽
e−( 1

2 +β)L.
Next, we have

(A.67) V = −K∂xE + J∂vE

= −D−1(−⟨Q, Q̃⟩ϕ+ψ) −D−1AD−1Dv

+O(e−(1+β)L + |v − 1|e−( 1
2 +β)L).

Since |D−1⟨Q, Q̃⟩ − Id| ≲ |v − 1| + e−( 1
2 +β)L, it follows from (A.64) that

(A.68) |V − ϕ| ≲ e−(1+β)L + |v − 1|e−( 1
2 +β)L.

In order to bound the derivatives of X and V , we need the following
estimates:

|∂2
xE(x,v)−⟨Q,Q̃⟩∂xϕ(x)+∂xψ(x)| ⩽ e−(1+β)L+ |v−1|e−( 1

2 +β)L,(A.69)

|∂x∂vE(x,v)| ⩽ e−( 1
2 +β)L,(A.70)

|∂xA(x,v)v + ∂xψ(x)| ⩽ e−(1+β)L+ |v−1|e−( 1
2 +β)L,(A.71)

|∂vA(x,v)| ⩽ e−( 1
2 +β)L,(A.72)

|∂xC(x,v)| ⩽ e−( 1
2 +β)L.(A.73)

We skip the proof. Note that we are simply claiming that bounds (A.61),
(A.62), (A.63) and (A.64) still hold after differentiating the terms on the
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left hand side. Hence the proof amounts to repeating the computations
for (A.61), (A.62), (A.63) and (A.64), and checking that each discarded
term has negligible partial derivatives.

By the Chain Rule, we have

(A.74)
(
∂xX

∂xV

)
=
(
G K

−K J

)(
∂2

xE

∂x∂vE

)
−
(
G K

−K J

)(
∂xA ∂xC

−∂xC ∂xB

)(
X

V

)
.

We know already that |V | ≲ e−( 1
2 +β)L, which, together with (A.66)–(A.74),

leads to |∂xX| ≲ e−( 1
2 +β)L.

Consider now ∂xV . From (A.74) we have

(A.75) ∂xV = −K∂2
xE +K(∂xA)X +O(e−(1+β)L + |v − 1|e−( 1

2 +β)L)

(all the other terms resulting from the matrix multiplication are negligible).
Using again (A.66), (A.69), (A.71) and |X − v| ≲ e−( 1

2 +β)L, this yields
|∂xV − ∂xϕ| ⩽ e−(1+β)L + |v − 1|e−( 1

2 +β)L.
Similarly, we have

(A.76)
(
∂vX

∂vV

)
=
(
G K

−K J

)(
∂x∂vE

∂2
vE

)
−
(
G K

−K J

)(
∂vA ∂vC

−∂vC ∂vB

)(
X

V

)
.

As for ∂vX, (A.46) is already enough. Regarding ∂vV , we check all the
terms resulting from the matrix multiplication and we see that they are all
of size ≲ e−( 1

2 +β)L. We skip this routine computation. □

Proof of Proposition 1.3. — Let (x(t),v(t)) be a solution of (1.14) such
that (1.18) holds, with v∞ = 1. Since H is a conservation law, we have
H(x(t),v(t)) = 2H(Q) for all t. By Lemma A.8 we obtain

(A.77) |v(t) − 1| ≲ e− 1
2L(t), for all t large enough.

Denote v(t) := v2(t) − v1(t). Directly from Lemma A.10 and (A.77) we
obtain the differential inequalities

(A.78) |L′(t) − v(t)| ⩽ e−( 1
2 +β)L(t),

∣∣∣v′(t) + 2σκ2e−L(t)
∣∣∣ ⩽ e−(1+β)L(t).

Suppose that σ = −1. Since we assume limt→∞ v(t) = 0, the second in-
equality above yields

(A.79) v(t) ⩽ −c0

∫ ∞

t

e−L(s) ds, for some c0 > 0 and t large enough.

Let l := lim supt→∞
L(t)
log t . Note that (A.79) implies l ⩾ 1.

From (A.79) we have v(t) < 0 for all t large enough, hence (A.78) yields
L′(t) < e−( 1

2 +β)L(t) for all t large enough. We can integrate this inequality
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and obtain in particular

(A.80) l ⩽
1

1
2 + β

.

Let ε ∈ (0, l). We claim that there exists a sequence tn → ∞ such that

(A.81) L(tn) ⩾ (l − ε) log(tn) and L′(tn) ⩾ 0.

Indeed, by the definition of lim sup there exists a sequence τn → ∞ such
that L(τn) ⩾ (l − ε) log(τn). It suffices to take tn the smallest time such
that L(tn) ⩾ (l − ε) log(τn).

Using (A.78), (A.79) and (A.81) we get

(A.82) c0

∫ ∞

tn

e−L(s) ds ⩽ e−( 1
2 +β)L(tn) ⩽ t

−( 1
2 +β)(l−ε)

n .

If tn is large enough, then L(s) ⩽ (l + ε) log s for s ⩾ tn. This implies

(A.83) c0

∫ ∞

tn

e−L(s) ds ⩾ c0

∫ ∞

tn

s−l−ε ds = c0

l + ε− 1 t
−(l+ε−1)
n .

Making tn → ∞ in (A.82) and (A.83), we obtain l+ ε− 1 ⩾ ( 1
2 +β)(l− ε),

thus l > 1
1
2 −β −

3
2 +β
1
2 −β ε, which contradicts (A.80) if ε is sufficiently small.

This shows that σ = 1.
Our next objective is to prove that there exists β > 0 such that if

(x(t),v(t)) is a solution of (1.14), then

(A.84)
|x(t) − (t1 + x∞1 + log(κt)ι)| ≲ t−β ,

|v(t) − (1 + t−1ι)| ≲ t−(1+β),

for some x∞ ∈ R.
We claim that L(t) is increasing for t large enough. Let t0 be large (chosen

later) and t1 ⩾ t0. We need to show that for all t > t1 we have L(t) > L(t1).
Suppose this is not the case, and let

(A.85) t2 := sup
{
t : L(t) = inf

τ⩾t1
L(τ)

}
.

Then t2 > t1, L(t2) = infτ⩾t2 L(τ) and L′(t2) = 0.
Let L0 := L(t2), t3 := inf{t ⩾ t2 : L(t) = L0 + 1}. Since limt→∞ L(t) =

∞, t3 is finite. We will show that (A.78) implies

(A.86) L(t3) ⩽ L0 + 1
2 ,

which is a contradiction.
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We have, for t0 and thus L0 large enough, and for all t ∈ [t2, t3],

(A.87) v′(t) ⩽ (−2κ2 + e−βL0)e−L(t)

⩽ −3
2κ

2e−L(t) ⩽ −3
2κ

2e−L0−1 ⩽ −κ2

2 e−L0 .

Since L′(t2) = 0, (A.78) yields v(t2) ⩽ e−( 1
2 +β)L0 . Integrating (A.87), we

get

(A.88) v(t) ⩽ e−( 1
2 +β)L0 − κ2

2 e−L0(t− t2), for all t ∈ [t2, t3].

Using (A.78) again we obtain

(A.89) L′(t) ⩽ 2e−( 1
2 +β)L0 − κ2

2 e−L0(t− t2), for all t ∈ [t2, t3].

We now integrate for t between t2 and t3:

(A.90) L(t3) − L(t2) ⩽
∫ t3

t2

(
2e−( 1

2 +β)L0 − κ2

2 e−L0(t− t2)
)

dt

= 2e−( 1
2 +β)L0(t3 − t2) − κ2

4 e−L0(t3 − t2)2

⩽
4
κ2 e−2βL0 ,

so that (A.86) follows if L0 is large enough. This shows that L(t) is increas-
ing for t large enough.

Let r(t) := v(t) − 2κe−L(t)/2. Note that limt→∞ r(t) = 0. Using (A.78),
we obtain

(A.91) r′(t) = κe−L(t)/2r(t) +O(e−(1+β)L(t)).

This implies

(A.92) |r(t)| ≲ e−( 1
2 +β)L(t), for t large enough.

Indeed, suppose r(τn) ⩾ C0e−( 1
2 +β)L(τn) for any large constant C0 > 0

and a sequence τn → ∞. Let tn be the largest time such that r(tn) =
C0e−( 1

2 +β)L(τn). Since L(t) is increasing for large t, we have r(tn) ⩾
C0e−( 1

2 +β)L(tn). But also r′(tn) ⩽ 0. This contradicts (A.91) if C0 is large
enough. The case r(τn) ⩽ −C0e−( 1

2 +β)L(τn) is similar.
From (A.78) and (A.92) we deduce

(A.93) |L′(t) − 2κe−L(t)/2| ≲ e−( 1
2 +β)L(t)

⇐⇒
∣∣(eL(t)/2)′ − κ

∣∣ ≲ e−βL(t) ≪ 1.
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Integrating, we obtain L(t) = 2 log t+O(1). We can reinsert this to (A.93),
integrate, and obtain the more precise bound

(A.94) |L(t) − 2 log(κt)| ≲ t−2β .

This implies |κ2e−L(t) − t−2| ≲ t−2−2β . Thus Lemma A.10 and (A.77) yield

(A.95) |v′
1(t) − t−2| ≲ t−2−2β , |x′

1(t) − v1| ≲ t−1−2β .

Since we assume limt→∞ v1(t) = 1, the first inequality above yields |v1(t)−
(1 − 1/t)| ≲ t−(1+2β). Now the second inequality yields |x1(t) − (t+ x∞

1 −
log(κt))| ≲ t−2β for some x∞

1 ∈ R. Analogously, we obtain |v2(t) − (1 +
1/t)| ≲ t−(1+2β) and |x2(t)−(t+x∞

2 +log(κt))| ≲ t−2β . Since L(t) = x2(t)−
x1(t), (A.94) yields x∞

1 = x∞
2 = x∞. This finishes the proof of (A.84).

We proceed to the proof of existence and uniqueness. We introduce the
new “time” variable s by t = κ−1es. Given x∞ ∈ R, we define (x̃(s), ṽ(s)) by

(A.96)
x̃(s) := x(κ−1es) −

(
κ−1es1 + x∞1 + sι

)
,

ṽ(s) := κ−1es
(
v(κ−1es) − (1 + κe−sι)

)
.

We have

(A.97)

x̃′(s) = κ−1esx′(κ−1es) −
(
κ−1es1 + ι

)
,

ṽ′(s) = κ−2e2sv′(κ−1es) + κ−1esv(κ−1es) − κ−1es1

= κ−2e2sv′(κ−1es) + ṽ(s) + ι.

Set

(A.98)

X̃(s, x̃, ṽ) := κ−1esX(κ−1es1+x∞1+sι+ x̃,1+κe−sι+κe−sṽ)

−(κ−1es1+ι)− ṽ,

Ṽ (s, x̃, ṽ) := κ−2e2sV (κ−1es1+x∞1+sι+ x̃,1+κe−sι+κe−sṽ)
+ι−(x̃2 − x̃1)ι,

so that

(A.99)

X̃(s, x̃(s), ṽ(s)) = κ−1esX(x(κ−1es),v(κ−1es))

− (κ−1es1 + ι) − ṽ(s),

Ṽ (s, x̃(s), ṽ(s)) = κ−2e2sV (x(κ−1es),v(κ−1es))
+ ι− (x̃2(s) − x̃1(s))ι.

We obtain that (x(t),v(t)) solves (1.14) if and only if (x̃(s), ṽ(s)) solves

(A.100)
(
x̃′(s)
ṽ′(s)

)
= T

(
x̃(s)
ṽ(s)

)
+
(
X̃(s, x̃(s), ṽ(s))
Ṽ (s, x̃(s), ṽ(s))

)
,
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where

(A.101) T

(
x̃

ṽ

)
:=
(

ṽ

ṽ + (x̃2 − x̃1)ι

)
⇐⇒ T :=


0 0 1 0
0 0 0 1
1 −1 1 0

−1 1 0 1

 .

Note that the lower left quarter of the matrix T is related to the lin-
earisation of ϕ(x). The matrix T has eigenvalues −1, 0, 1, 2, and Ys :=
(−1, 1, 1,−1) = (ι,−ι) satisfies TYs = −Ys.

Observe that L(t) ∼ 2s from (A.94). Thus, from Lemma A.10 we obtain
that there exists β > 0 such that for s large enough and |x̃|+|ṽ|+|ỹ|+|w̃| ⩽
1 we have

|X̃(s, x̃, ṽ)| + |Ṽ (s, x̃, ṽ)| ≲ e−βs + |x̃|2,(A.102)

|X̃(s, x̃, ṽ) − X̃(s, ỹ, w̃)| + |Ṽ (s, x̃, ṽ) − Ṽ (s, ỹ, w̃)|

≲ (e−βs + |x̃| + |ỹ|)(|x̃− ỹ| + |ṽ − w̃|).
(A.103)

From (A.84), we obtain that if (x(t),v(t)) solves (1.14), then |x̃(s)| +
|ṽ(s)| ⩽ e−βs for s large. Let {(x̃a, ṽa) : a ∈ R} be the family of expo-
nentially decaying solutions given by Proposition A.5. Let (x,v) be the
solution of (1.14) corresponding to (x̃0, ṽ0) through (A.96), in other words

(A.104)
x(t) = x̃0

(
log(κt)

)
+ t1 + x∞1 + log(κt)ι,

v(t) = t−1ṽ0
(
log(κt)

)
+ 1 + t−1ι.

Let t∞ ∈ R and define (x♯,v♯) by

(A.105) (x♯(t),v♯(t)) := (x(t− t∞) + t∞1,v(t− t∞)),

which is also a solution of (1.14) for t large enough. Let (x̃♯, ṽ♯) be defined
by (A.96) with (x,v) replaced by (x♯,v♯). We thus have

(A.106) x̃♯(s) = x♯(κ−1es) − (κ−1es1 + x∞1 + sι)

= x(κ−1es − t∞) −
(
(κ−1es − t∞)1 + x∞1 + sι

)
= x̃0

(
log(es − κt∞)

)
+
(
log(es − κt∞) − s

)
ι

= x̃0
(
s+ log(1 − κt∞e−s)

)
+ log(1 − κt∞e−s)ι
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and

(A.107) ṽ♯(s) = κ−1es
(
v♯(κ−1es) − (1 + κe−sι)

)
= κ−1es

(
v(κ−1es − t∞) − (1 + κe−sι)

)
= κ−1es

(
(κ−1es − t∞)−1ṽ0

(
log(es − κt∞)

)
+
(
(κ−1es − t∞)−1 − κe−s)ι)

= (1 − κt∞e−s)−1ṽ0
(
s+ log(1 − κt∞e−s)

)
+
(
(1 − κt∞e−s)−1 − 1

)
ι.

Since |x̃′
0(s)| ≲ e−βs for all s large enough, we have

∣∣x̃0
(
s + log(1 −

κt∞e−s)
)

− x̃0(s)
∣∣ ≲ e−(1+β)s, thus

(A.108) x̃♯(s) − x̃0(s) = −κt∞e−sι+O(e−(1+β)s).

Similarly,

(A.109) ṽ♯(s) − ṽ0(s) = κt∞e−sι+O(e−(1+β)s).

Proposition A.5 yields (x̃♯, ṽ♯) = (x̃a, ṽa) with a := −κt∞, in particular
there is a one-to-one correspondence between t∞ and a. □
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