[Prolongement des fonctions qui disparaissent sur une partie du bord]
Soit ouvert et une partie fermée du bord. Sous des hypothèses faibles sur , nous construisons un opérateur de prolongement borné pour l’espace Sobolev , , ce qui est le sous-espace de composé des fonctions qui disparaissent sur dans un sens approprié. Au contraire des travaux précédents, notre construction est globale et ne se sert pas d’arguments de localisation, ce qui nous permet de travailler avec une condition de régularité exacte pour l’interface entre et . Aussi, nous fournissons des estimations homogènes et locales pour cet opérateur de prolongement. En plus, nous traitons le cas de fonctions Lipschitz disparaissant sur .
Let be open and be a closed part of its boundary. Under very mild assumptions on , we construct a bounded Sobolev extension operator for the Sobolev space , , which consists of all functions in that vanish in a suitable sense on . In contrast to earlier work, this construction is global and does not use a localization argument, which allows to work with a boundary regularity that is sharp at the interface dividing and . Moreover, we provide homogeneous and local estimates for the extension operator. Also, we treat the case of Lipschitz function spaces with a vanishing trace condition on .
Révisé le :
Accepté le :
Première publication :
Keywords: Sobolev extension operators, mixed boundary value problems, $(\varepsilon , \delta )$-domains
Mots-clés : Opérateur de prolongement pour des espaces Sobolev, conditions aux limites mixtes, $(\varepsilon , \delta )$-domaines
Bechtel, Sebastian 1 ; Brown, Russell M. 2 ; Haller, Robert 3 ; Tolksdorf, Patrick 4
@unpublished{AIF_0__0_0_A161_0, author = {Bechtel, Sebastian and Brown, Russell M. and Haller, Robert and Tolksdorf, Patrick}, title = {Extendability of functions with partially vanishing trace}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3707}, language = {en}, note = {Online first}, }
TY - UNPB AU - Bechtel, Sebastian AU - Brown, Russell M. AU - Haller, Robert AU - Tolksdorf, Patrick TI - Extendability of functions with partially vanishing trace JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3707 LA - en ID - AIF_0__0_0_A161_0 ER -
%0 Unpublished Work %A Bechtel, Sebastian %A Brown, Russell M. %A Haller, Robert %A Tolksdorf, Patrick %T Extendability of functions with partially vanishing trace %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3707 %G en %F AIF_0__0_0_A161_0
Bechtel, Sebastian; Brown, Russell M.; Haller, Robert; Tolksdorf, Patrick. Extendability of functions with partially vanishing trace. Annales de l'Institut Fourier, Online first, 49 p.
[1] Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften, 314, Springer, 1996, xii+366 pages | DOI | MR | Zbl
[2] The square root problem for second-order, divergence form operators with mixed boundary conditions on , J. Evol. Equ., Volume 15 (2015) no. 1, pp. 165-208 | DOI | MR | Zbl
[3] Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets, J. Fourier Anal. Appl., Volume 25 (2019) no. 5, pp. 2733-2781 | DOI | MR | Zbl
[4] Extending Sobolev functions with partially vanishing traces from locally -domains and applications to mixed boundary problems, J. Funct. Anal., Volume 266 (2014) no. 7, pp. 4314-4421 | DOI | MR | Zbl
[5] Lebesgue spaces of differentiable functions and distributions (Proc. Sympos. Pure Math.), Volume IV, American Mathematical Society, 1961, pp. 33-49 | Zbl
[6] Extension theorems on weighted Sobolev spaces and some applications, Can. J. Math., Volume 58 (2006) no. 3, pp. 492-528 | DOI | MR | Zbl
[7] On Kato’s conjecture and mixed boundary conditions, Sierke Verlag, 2016 | Zbl
[8] -estimates for the square root of elliptic systems with mixed boundary conditions, J. Differ. Equations, Volume 265 (2018) no. 4, pp. 1279-1323 | DOI | MR | Zbl
[9] Hardy’s inequality for functions vanishing on a part of the boundary, Potential Anal., Volume 43 (2015) no. 1, pp. 49-78 | DOI | MR | Zbl
[10] The Kato square root problem for mixed boundary conditions, J. Funct. Anal., Volume 267 (2014) no. 5, pp. 1419-1461 | DOI | MR | Zbl
[11] Characterizations of Sobolev functions that vanish on a part of the boundary, Discrete Contin. Dyn. Syst., Ser. S, Volume 10 (2017) no. 4, pp. 729-743 | DOI | MR | Zbl
[12] On the -theory for second-order elliptic operators in divergence form with complex coefficients, J. Evol. Equ., Volume 21 (2021) no. 4, pp. 3963-4003 | DOI | MR | Zbl
[13] Hölder estimates for second-order operators on domains with rough boundary, Adv. Differ. Equ., Volume 20 (2015) no. 3-4, pp. 299-360 | MR | Zbl
[14] Measure theory and fine properties of functions, Textbooks in Mathematics, CRC Press, 2015, xiv+299 pages | DOI | MR | Zbl
[15] Uniform domains and the quasihyperbolic metric, J. Anal. Math., Volume 36 (1979), pp. 50-74 | DOI | MR | Zbl
[16] Quasiconformally homogeneous domains, J. Anal. Math., Volume 30 (1976), pp. 172-199 | DOI | MR | Zbl
[17] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages | DOI | Zbl
[18] Elliptic and parabolic regularity for second-order divergence operators with mixed boundary conditions, Math. Methods Appl. Sci., Volume 39 (2016) no. 17, pp. 5007-5026 | DOI | MR | Zbl
[19] Conformal capacity and the quasihyperbolic metric, Indiana Univ. Math. J., Volume 45 (1996) no. 2, pp. 333-359 | DOI | MR | Zbl
[20] Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., Volume 147 (1981) no. 1-2, pp. 71-88 | DOI | MR | Zbl
[21] Degree-independent Sobolev extension on locally uniform domains, J. Funct. Anal., Volume 235 (2006) no. 2, pp. 619-665 | DOI | MR | Zbl
[22] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970, xiv+290 pages | MR | Zbl
[23] Heat kernel for the elliptic system of linear elasticity with boundary conditions, J. Differ. Equations, Volume 257 (2014) no. 7, pp. 2485-2519 | DOI | MR | Zbl
[24] -sectoriality of higher-order elliptic systems on general bounded domains, J. Evol. Equ., Volume 18 (2018) no. 2, pp. 323-349 | DOI | MR | Zbl
Cité par Sources :