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EXTENDABILITY OF FUNCTIONS WITH PARTIALLY
VANISHING TRACE

by Sebastian BECHTEL, Russell M. BROWN,
Robert HALLER & Patrick TOLKSDORF (*)

Abstract. — Let Ω ⊆ Rd be open and D ⊆ ∂Ω be a closed part of its boundary.
Under very mild assumptions on Ω, we construct a bounded Sobolev extension
operator for the Sobolev space Wk,p

D (Ω), 1 ⩽ p < ∞, which consists of all functions
in Wk,p(Ω) that vanish in a suitable sense on D. In contrast to earlier work, this
construction is global and does not use a localization argument, which allows to
work with a boundary regularity that is sharp at the interface dividing D and
∂Ω \ D. Moreover, we provide homogeneous and local estimates for the extension
operator. Also, we treat the case of Lipschitz function spaces with a vanishing trace
condition on D.

Résumé. — Soit Ω ⊆ Rd ouvert et D ⊆ ∂Ω une partie fermée du bord. Sous des
hypothèses faibles sur Ω, nous construisons un opérateur de prolongement borné
pour l’espace Sobolev Wk,p

D (Ω), 1 ⩽ p < ∞, ce qui est le sous-espace de Wk,p(Ω)
composé des fonctions qui disparaissent sur D dans un sens approprié. Au contraire
des travaux précédents, notre construction est globale et ne se sert pas d’arguments
de localisation, ce qui nous permet de travailler avec une condition de régularité
exacte pour l’interface entre D et ∂Ω \ D. Aussi, nous fournissons des estimations
homogènes et locales pour cet opérateur de prolongement. En plus, nous traitons
le cas de fonctions Lipschitz disparaissant sur D.

1. Introduction

Sobolev spaces Wk,p
D (Ω) that contain functions that only vanish on a

portionD of the boundary of some given open set Ω ⊆ Rd play an important
role in the study of the mixed problem for second-order elliptic operators,

Keywords: Sobolev extension operators, mixed boundary value problems, (ε, δ)-domains.
2020 Mathematics Subject Classification: 46E35, 35J58, 46A22.
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see for example [2, 4, 8, 9, 10, 11, 12, 13, 18, 23, 24]. In the study of these
spaces, an extension operator is a crucial tool.

Early contributions to the history of Sobolev extension operators include
the works of Stein [22, pp. 180–192] and Calderón [5] on Lipschitz domains
as well as the seminal paper of Jones [20] on (ε, δ)-domains. The latter
mentioned work was later refined by Chua [6] and Rogers [21]. Even though
all these constructions aim at the full Sobolev space W1,p(Ω), they restrict
to bounded extension operators on the space with vanishing trace on D

and the extensions preserve the trace condition on D if a mild regularity
assumption is imposed, see [3, Lemma 3.4].

All these constructions rely on regularity assumptions for the full bound-
ary of the underlying set. However, if we consider a (relatively) interior
point of D, then it is possible to extend the function by zero around that
point, so that a relaxation on the boundary regularity is feasible. This effect
was exploited using localization techniques by several authors, see Brew-
ster, Mitrea, Mitrea, and Mitrea [4] for a very mature incarnation of this
idea using local (ε, δ)-charts, and [18] for a version using Lipschitz mani-
folds. We will present both frameworks in detail in Section 3 and show that
they are included in our setup.

One drawback of this method is that the regularity assumption for the
Neumann boundary part ∂Ω \D has to hold not merely on this boundary
portion but in a neighbourhood of it, which in particular contains interior
points of D. This forbids all kinds of cusps that are arbitrarily close to the
interface between the Dirichlet and the Neumann boundary part.

In this work, we will introduce an (ε, δ)-condition that is adapted to the
Dirichlet condition on D. To be more precise, we also connect nearby points
in Ω by ε-cigars, but these are with respect to the Neumann boundary part
∂Ω\D and not the full boundary ∂Ω, which means that ε-cigars may “leave”
the domain across the Dirichlet part D to some extent that is measured by a
quasi-hyperbolic distance condition. This allows to have certain inward and
outward cusps arbitrarily close to the interface between the Dirichlet and
Neumann parts, see Example 3.5 for an illustrative example. However, there
are types of cusps that are particularly nasty and which are excluded from
our setting by the aforementioned quasihyperbolic distance condition. In
Example 3.7 we show that in these kinds of configurations there cannot exist
a bounded extension operator, which emphasizes that it is indeed necessary
that we have incorporated some further restriction in our setup. A detailed
description of our geometric framework will be given in Assumption 2.1.

ANNALES DE L’INSTITUT FOURIER
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Next, we give a precise definition of what we mean by the term extension
operator, followed by our main result.

Definition 1.1. — Call a linear mapping E defined on L1
loc(Ω) into the

measurable functions on Rd an extension operator if it satisfies Ef(x) =
f(x) for almost every x ∈ Ω and for all f ∈ L1

loc(Ω). Here, we mean by
L1

loc(Ω) the space of all measurable functions on Ω that are integrable on
all bounded measurable subsets of Ω.

Theorem 1.2. — Let Ω ⊆ Rd be open and let D ⊆ ∂Ω be closed.
Assume that Ω and D are subject to Assumption 2.1. Moreover, fix an
integer k ⩾ 0. Then there exists an extension operator E such that for all
1 ⩽ p < ∞ and 0 ⩽ ℓ ⩽ k one has that E restricts to a bounded mapping
from Wℓ,p

D (Ω) to Wℓ,p
D (Rd). The operator norms of E only depend on d, p,

K, k, ε, δ, and λ.

In addition, we will present some further improvements for the first-order
case in Theorem 9.3 and Corollary 9.5 which include the case of Lipschitz
spaces and an enlargement of admissible geometries, as well as local and
homogeneous estimates in Theorem 10.2.

Outline of the article

First of all, we will present our geometric setting in Section 2 and will
also give precise definitions for the relevant function spaces. A comparison
with existing results and several examples and counterexamples are given
in Section 3.

Then, we dive into the construction of the extension operator. Sections 4
and 5 are all about cubes. In there, we will define collections of exterior and
interior cubes coming from two different Whitney decompositions, and will
explain how an exterior cube can be reflected “at the Neumann boundary”
to obtain an associated interior cube. In contrast to Jones, not all small
cubes in the Whitney decomposition of Ω are exterior cubes. The treat-
ment of Whitney cubes which are “almost” exterior cubes are the central
deviation from Jones construction and are thus the heart of the matter in
this article. These two sections are highly technical.

Eventually, we come to the actual crafting of the extension operator for
Theorem 1.2 in Section 6. This section also contains results on (adapted)
polynomials which are needed to define the extension operator via “reflec-
tion”. The proof of Theorem 1.2 will be completed in Section 8. Before

TOME 0 (0), FASCICULE 0
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that, we introduce an approximation scheme that yields more regular test
functions for Wk,p

D (Ω) in Section 7. This additional regularity is crucial for
Proposition 8.1.

Finally, we present some additional first-order theory in Section 9, fol-
lowed by some short observations on locality and homogeneity in Section 10
which build on an observation made in Remark 6.12.

Notation

Throughout this article, the dimension d ⩾ 2 of the underlying Euclidean
space Rd is fixed. Open balls around x ∈ Rd of radius r > 0 are denoted by
B(x, r) and for the corresponding closed ball we write B(x, r). The closure
and complement of a set A ⊆ Rd are denoted by A and Ac. The Euclidean
norm of a complex vector as well as the Lebesgue measure of a measurable
set in Rd are denoted by | · |. If not otherwise mentioned, cubes are closed
and with sides parallel to the axes. We write Pm for the set of polynomials
on Rd of degree at most m. The vector ∇mf := (∂βf)|β|=m is introduced for
an m-times (weakly) differentiable function. The letters α and β are always
supposed the mean multi-indices, possibly subject to further constraints.
The distance of two sets A,B ⊆ Rd is denoted by d(A,B) and in the case
A = {x} the distance is abbreviated by d(x,B). For A ⊆ Rd and t > 0 put
Nt(A) := {x ∈ Rd : d(x,A) < t}. The diameter of an arbitrary subset of
Rd is denoted by diam(·). Finally, we follow the standard conventions that
the infimum over the empty set is ∞ and that 1/∞ = 0.

Acknowledgements

We would like to thank Juha Lehrbäck for drawing our attention towards
the notion of quasihyperbolic distances.

2. Geometry and Function Spaces

2.1. Geometry

Let Ξ ⊆ Rd be open. For two points x, y ∈ Ξ their quasihyperbolic
distance, first introduced by Gehring and Palka [16], is given by

kΞ(x, y) := inf
γ

∫
γ

1
d(z, ∂Ξ) |dz|,

ANNALES DE L’INSTITUT FOURIER
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where the infimum is taken over all rectifiable curves γ in Ξ joining x with
y. Notice that its value might be ∞. This is the case if there is no path
connecting x with y in Ξ. The function kΞ is called the quasihyperbolic
metric. If Ξ′ ⊆ Ξ define

kΞ(x,Ξ′) := inf{kΞ(x, y) : y ∈ Ξ′} (x ∈ Ξ).

To construct the Sobolev extension operator in Theorem 1.2, we will rely
on the following geometric assumption.

Assumption 2.1. — Let Ω ⊆ Rd be open, D ⊆ ∂Ω be closed, and define
Γ := ∂Ω \ D. We assume that there exist ε ∈ (0, 1], δ ∈ (0,∞] and K > 0
such that for all points x, y ∈ Ω with |x − y| < δ there exists a rectifiable
curve γ that joins x and y and takes values in Ξ := Rd \ Γ and satisfies

length(γ) ⩽ ε−1|x− y|,(LC)

d(z,Γ) ⩾ ε
|x− z||y − z|

|x− y|
(z ∈ γ),(CC-Γ)

kΞ(z,Ω) ⩽ K (z ∈ γ).(QHD)

Furthermore, assume that there exists λ > 0 such that, for each connected
component Ωm of Ω, there holds

∂Ωm ∩ Γ ̸= ∅ =⇒ diam(Ωm) ⩾ λδ.(DC)

Remark 2.2. — Let (Ξm)m denote the connected components of Ξ. From
d(z, ∂Ξm) = d(z, ∂Ξ) for z ∈ Ξm follows directly that kΞ(x, y) = kΞm

(x, y)
holds for all x, y ∈ Ξm. Note that ∂Ξ = Γ since Γ ⊆ ∂Ω contains no
interior points. Moreover, for x ∈ Ξm and y ∈ Ξn with m ̸= n one has
kΞ(x, y) = ∞ since there is no connecting path between those points. Fi-
nally, kRd(x, y) = 0 holds for all x, y ∈ Rd by the convention 1/∞ = 0.

Remarks 2.3.
(1) Consider the pure Dirichlet case D = ∂Ω. Then the curves are al-

lowed to take values in all of Rd. In particular, we may connect
points by a straight line, so that (LC) is clearly satisfied. Condi-
tion (CC-Γ) is void and also (QHD) is trivially fulfilled, see Re-
mark 2.2. Moreover, the diameter condition is always fulfilled since
there are no connected components that intersect Γ. Consequently,
if D = ∂Ω, then Assumption 2.1 is fulfilled for any open set Ω.

(2) Consider the pure Neumann caseD = ∅ and fix ε, δ. The curve γ can
only connect points in the same connected component of Ω. Thus,
Ω is the union of at most countably many (ε, δ)-domains, whose
pairwise distance is at least δ and whose diameters stay uniformly

TOME 0 (0), FASCICULE 0
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away from zero. In particular, if δ = ∞, then Ω is connected and
unbounded.

(3) A similar condition on the diameter of connected components was
introduced in [4, Section 2] in order to transfer Jones’ construction
of the Sobolev extension operator in [20] to disconnected sets. In
the situation of Assumption 2.1 the positivity of the radius only en-
sures that the connected components of Ω whose boundaries have
a common point with Γ do not become arbitrarily small. This is
because our construction is global and not using a localization pro-
cedure. We will present a thorough comparison with the geometry
from [4] in Section 3.

2.2. Function spaces

Write Wk,p(Ω) for the vector space of all Lp(Ω) functions that have weak
derivatives up to the non-negative integer order k and which are again in
Lp(Ω). Equip Wk,p(Ω) with the usual norm. Note that by Rademacher’s
theorem W1,∞(Rd) coincides with the space Lip(Rd) of Lipschitz contin-
uous functions. A particular consequence is that (locally) Lipschitz con-
tinuous functions are weakly differentiable. We will exploit this fact in
Section 8. Note that on domains a mild geometric assumption is needed
to ensure that W1,∞(Ω) coincides with Lip(Ω). This can be observed by
considering Ω = B(0, 1) \ [0, 1) as a counterexample.

Definition 2.4. — Let Ω ⊆ Rd be open and let D ⊆ Ω be closed.
Define the space of smooth functions on Ω which vanish in a neighborhood
of D by

C∞
D (Ω) :=

{
f ∈ C∞(Ω): d(supp(f), D) > 0

}
.

Using this space of test functions, we define Sobolev functions vanishing
on D. Note that we exclude the endpoint case p = ∞ in that definition.
However, in the case k = 1, we will work with a related space in Section 9.

Definition 2.5. — Let Ω ⊆ Rd be open and let D ⊆ Ω be closed. For
a non-negative integer k and p ∈ [1,∞) define the Sobolev space Wk,p

D (Ω)
as the closure of C∞

D (Ω) ∩ Wk,p(Ω) in Wk,p(Ω).

In Section 7 we will see that even the space C∞
D (Rd)∩Wk,p(Ω) is dense in

Wk,p
D (Ω) as long as we assume the geometry from Assumption 2.1; In fact,

we will approximate by compactly supported C∞
D (Rd) functions, which are

therefore in particular in Wk,p(Ω).

ANNALES DE L’INSTITUT FOURIER
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3. Comparison with other results and examples

This section is devoted to comparing our result with existing results. The
most general geometric setup to construct a Sobolev extension operator for
the spaces W1,p

D (Ω) was considered in the work of Brewster, Mitrea, Mitrea,
and Mitrea [4, Theorem 1.3, Definition 3.4] and reads as follows.

Assumption 3.1. — Let Ω ⊆ Rd be an open, non-empty, and proper
subset of Rd, D ⊆ ∂Ω be closed, and let Γ := ∂Ω \D. Let ε, δ > 0 be fixed.
Assume there exist r0 > 0 and an at most countable family {Oj}j of open
subsets of Rd satisfying

(1) {Oj}j is locally finite and has bounded overlap,
(2) for all j there exists an (ε, δ)-domain Uj ⊆ Rd with connected

components all of diameter at least r0 and satisfying Oj ∩ Ω =
Oj ∩ Uj ,

(3) there exists r ∈ (0,∞] such that for all x ∈ Γ there exists j for
which B(x, r) ⊆ Oj .

Here, an open set Uj is called an (ε, δ)-domain if there exist ε, δ > 0 such
that for all x, y ∈ Uj there exists a rectifiable curve γ that joins x and y,
takes its values in Uj , and satisfies (LC) and (CC-Γ) with respect to ∂Uj

instead of Γ. Also note that (LC) enforces ε ∈ (0, 1].

Proposition 3.2. — Assumption 3.1 implies Assumption 2.1.

Proof. — Let ε, δ, r, and r0 be the quantities from Assumption 3.1. We
have to show the quantitative connectedness condition contained in (LC),
(CC-Γ), and (QHD) as well as the diameter condition (DC) for connected
components touching Γ. For the rest of the proof, references to (2) and (3)
refer to the respective items in Assumption 3.1.

To establish (LC), (CC-Γ), and (QHD), let x, y ∈ Ω and define κ := r/8
and Vκ := {x ∈ Rd : d(x,Γ) ⩽ κ}. We proceed by distinguishing two cases.

Case 1: x, y ∈ Vκ with |x − y| < min(δ, εr/8). — Fix x0 ∈ Γ ⊆ ∂Ω
such that d(x,Γ) = |x − x0|. Then x, y ∈ B(x0, r/4) and by (3) we get
B(x0, r) ⊆ Oj for some j. Using this and (2) we furthermore get x, y ∈
B(x0, r) ∩ Ω = B(x0, r) ∩Uj . Notice that this gives in particular x0 ∈ ∂Uj .
Next, let γ denote the (ε, δ)-path subject to (LC) and (CC-Γ) that connects
x and y in Uj . For z ∈ γ we have by (LC)

|x0 − z| ⩽ |x0 − x| + |x− z| ⩽ κ+ length(γ) ⩽ r

8 + |x− y|
ε

<
r

4 .

TOME 0 (0), FASCICULE 0
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Thus, γ takes its values in B(x0, r/4)∩Uj = B(x0, r/4)∩Ω ⊆ Ξ. This shows
that γ is an admissible path for Assumption 2.1, and of course (LC) stays
valid. We also conclude

d(z, ∂Ω) = d
(
z,B(x0, r/2) ∩ ∂Ω

)
= d

(
z,B(x0, r/2) ∩ ∂Uj

)
= d(z, ∂Uj),

and thus, taking (CC-Γ) with respect to ∂Uj into account, we derive

d(z,Γ) ⩾ d(z, ∂Ω) = d(z, ∂Uj) ⩾ ε
|x− y||y − z|

|x− y|
,

which is (CC-Γ) with respect to Γ. Finally, since γ takes its values in Ω, it
satisfies (QHD) with K = 0.

Case 2: x ∈ V c
κ and |x − y| < κ/2 (the case with y ∈ V c

κ works
symmetrically). — Write γ for the straight line that connects x with y

in Rd. Then (LC) is clearly fulfilled and for (CC-Γ) we estimate with z ∈ γ

using max(|x− z|, |y − z|) ⩽ |x− y| ⩽ κ/2 that

ε
|x− z||y − z|

|x− y|
<
κ

2 < d(x,Γ) − length(γ) ⩽ d(z,Γ).

In particular, γ takes its values in Ξ.
To control the quasihyperbolic distance of a point z ∈ γ to Ω with

respect to Ξ, we estimate kΞ(z, x) using the line segment that connects
x ∈ Ω with z. Then the integrand in the definition of the quasihyperbolic
distance is bounded by 2/κ and the length of the path is at most κ/2.
Hence, kΞ(z,Ω) ⩽ 1, which gives (QHD).

Therefore, conditions (LC), (CC-Γ), and (QHD) are satisfied for all x, y ∈
Ω as long as |x−y| < min(δ, εr/8, κ/2) =: δ′, which concludes the first part
of this proof.

To show the diameter condition, let Ωm be a connected component of Ω
with ∂Ωm ∩ Γ ̸= ∅. Fix some x0 in this intersection. We show diam(Ωm) ⩾
min(r/2, r0). This implies in particular that diam(Ωm) ⩾ λδ′ for some suit-
able λ since δ′ is finite. Suppose diam(Ωm) < r/2. Then Ωm ⊆ B(x0, r/2).
According to (3), we have B(x0, r) ⊆ Oj for some j. Taking also (2) into
account, we get on the one hand that Ωm ⊆ Uj , and on the other hand
that points in Uj close to Ωm belong to Ω. We draw two conclusions: First,
Ωm is an open and connected subset of Uj . Second, if there were a con-
tinuous path in Uj connecting a point from Uj \ Ωm with one in Ωm, that
path would eventually run in Ω and therefore Ωm wouldn’t be maximally
connected in Ω, leading to a contradiction. So in total, Ωm is a connected
component of Uj and hence diam(Ωm) ⩾ r0. □

ANNALES DE L’INSTITUT FOURIER
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A common geometric setup which is used in many works dealing with
mixed Dirichlet/Neumann boundary conditions, see for example [2, 8, 9,
10, 12, 13, 23, 24], requires Lipschitz charts around points on the closure
of Γ and is presented in the following assumption.

Assumption 3.3. — Let Ω ⊆ Rd be a bounded open set and D ⊆ ∂Ω be
closed. Assume that around each point x ∈ Γ there exists a neighborhood
Ox of x and a bi-Lipschitz homeomorphism Φx : Ox → (−1, 1)d such
that Φx(x) = 0, Φx(Ox ∩ Ω) = (−1, 1)d−1 × (0, 1), and Φx(Ox ∩ ∂Ω) =
(−1, 1)d−1 × {0}.

Proposition 3.4. — Assumption 3.3 implies Assumption 3.1.

Proof. — By [7, Lemma 2.2.20], for any x ∈ Γ the set Ux := Ox ∩Ω is an
(ε, δ)-domain. Here, ε and δ do only depend on d and the Lipschitz constant.
The compactness of Γ implies that there exist finitely many x1, . . . , xm ∈ Γ
such that Γ ⊆

⋃m
j=1 Oxj . Define Oj := Oxj and Uj := Uxj for j = 1, . . . ,m.

Due to the finiteness of the family {Uj}m
j=1, the constants ε and δ can be

chosen to be uniform in j. Finally, if r > 0 is the Lebesgue number of the
covering {Oj}m

j=1, then for all x0 ∈ Γ there exists 1 ⩽ j ⩽ m such that
B(x0, r) ⊆ Oj . Thus, all requirements in Assumption 3.1 are fulfilled. □

Next, we give an example of a two-dimensional domain that satisfies
Assumption 2.1 but not Assumption 3.1. We further show that, within this
configuration, the geometry described in Assumption 2.1 is in some sense
optimal.

Example 3.5. — Let θ ∈ (0, π) and let Sθ ⊆ R2 denote the open sector
symmetric around the positive x-axis with opening angle 2θ. Let Ω ⊆ R2

be any domain satisfying

Ω ∩ Sθ = {(x, y) ∈ Sθ : y < 0},

and define

D := ∂Ω ∩
[
R2 \ Sθ

]
and Γ := ∂Ω \D = (0,∞) × {0}.

Essentially, this means that inside the sector Sθ the domain Ω looks like the
lower half-space and the half-space boundary that lies inside Sθ is Γ. In the
complement of the sector Sθ, Ω could be any open set and the boundary
of Ω in the complement of Sθ is defined to be D. See Figure 3.1 for an
example of such a configuration.

To verify that such a domain fulfills the geometric setup described in
Assumption 2.1, consider first the set

∆θ := (R2 \ Sθ) ∪ {(x, y) ∈ R2 : y < 0},

TOME 0 (0), FASCICULE 0
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θ

y

x

Sθ

Γ
D

Ω

Figure 3.1. A generic picture of a domain described in Example 3.5.

which is an (ε, δ)-domain for some values ε, δ > 0. Since Ω ⊆ ∆θ and
Γ ⊆ ∂∆θ, the (ε, δ)-paths with respect to ∆θ for points in Ω satisfy (LC)
and (CC-Γ). Hence, to conclude the example, we only have to show that
there exists K > 0 such that for all z ∈ ∆θ and with Ξ = R2 \ Γ it holds

kΞ(z,Ω) ⩽ K.(3.1)

Since the paths obtained above take their values only in ∆θ this will estab-
lish the remaining condition (QHD). Notice that since Sθ ∩ {(x, y) ∈ R2 :
y < 0} ⊆ Ω it suffices to show that there exists K > 0 such that for all
z ∈ ∆θ it holds

kΞ(z,Sθ ∩ {(x, y) ∈ R2 : y < 0}) ⩽ K.

We only describe one particular case in detail, the remaining cases are
similar and left to the interested reader. Assume that θ < π/2 and pick
z = (v, w) ∈ ∆θ with v ⩾ 0 and w > 0. Choose (x, y) ∈ ∂Sθ such that
y := −w and let γ := γ1 + γ2 + γ3 with

γ1 : [0, 1] −→ R2, t 7−→ (x, y) + t(y − x, 0),

γ2 : [0, 1] −→ R2, t 7−→ (y, y) + t(0, w − y),

γ3 : [0, 1] −→ R2, t 7−→ (y, w) + t(v − y, 0).

ANNALES DE L’INSTITUT FOURIER



EXTENDABILITY OF FUNCTIONS WITH PARTIAL ZERO TRACE 11

This construction is depicted in Figure 3.2. The path γ then connects (x, y)
to (v, w) and

kΞ((x, y), (v, w)) ⩽
∫ 1

0

|y − x|
|y|

dt+
∫ 1

0

|w − y|
|y|

dt+
∫ 1

0

|v − y|
w

dt

= 4 + x+ v

w
.

Notice that x = w/ tan(θ) and that v ⩽ w/ tan(θ), so that

kΞ((x, y), (v, w)) ⩽ 2
(

2 + 1
tan(θ)

)
.

In the remaining cases v < 0 and w ⩾ 0, v < 0 and w < 0, or v ⩾ 0 and
w < 0 the quasihyperbolic distance to Ω will even be smaller. This proves
the validity of (3.1) and thus, since Ω is connected and hence (DC) is void,
that Ω fulfills Assumption 2.1.

θ

y

x

Sθ

Γ

b
(v, w)

b
(x, y)γ1

γ2

γ3

Figure 3.2. A path connecting (v, w) and (x, y) that is ‘short’ with
respect to the quasihyperbolic distance.

Remark 3.6. — Notice that the geometric setup in Assumption 3.1 im-
poses boundary regularity in a neighborhood of Γ, while in the situation
described in Example 3.5 the portion D of ∂Ω can be arbitrarily irregular
as long as it stays outside of Sθ.

We conclude this section by giving examples of domains where the bound-
ary portion D fails to remain outside of a sector Sθ and show that the
W1,p

D -extension property fails for these types of domains. These examples
show that interior cusps that lie directly on the interface separating D and
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Γ destroy the W1,p
D -extension property. The same happens with “interior

cusps at infinity”, that is to say, if D and Γ approach each other at infinity
at a certain rate.

Example 3.7 (Interior boundary cusp at zero). — Let α ∈ (1,∞) and
consider

Ω := R2 \ {(x, y) ∈ R2 : x ⩾ 0 and − xα ⩽ y ⩽ 0}.

Define D and Γ via

D := {(x, y) ∈ R2 : x ⩾ 0 and − xα = y} and Γ := (0,∞) × {0}.

To prove that the W1,p
D -extension property fails, let 1 < p < ∞ and 0 <

r < ∞. Let fr be a smooth function that is supported in

Qr := {(x, y) ∈ R2 : r/2 ⩽ x ⩽ 2r and 0 ⩽ y ⩽ r},

satisfies 0 ⩽ fr ⩽ 1, and is identically 1 on

Rr := {(x, y) ∈ R2 : 3r/4 ⩽ x ⩽ 3r/2 and 0 ⩽ y ⩽ r/2}.

Moreover, let fr be such that ∥∇fr∥L∞ ≲ r−1. In this case

∥fr∥p
W1,p(Ω) ≲ (r2 + r2−p).(3.2)

Next, employ the fundamental theorem of calculus and a density argument
to conclude that for all F ∈ W1,p(Rd) it holds∫ 3r/2

3r/4
F (x, 0) dx−

∫ 3r/2

3r/4
F (x,−xα) dx =

∫ 3r/2

3r/4

∫ 0

−xα

∂yF (x, y) dy dx.

If there exists a bounded extension operator E : W1,p
D (Ω) → W1,p

D (R2),
put F := Efr and conclude that the second integral on the left-hand side
vanishes since Efr ∈ W1,p

D (R2). Using further that by construction the
trace of Efr onto the set (3r/4, 3r/2) × {0} is identically 1, one concludes

3r
4 ⩽

∫ 3r
2

3r
4

∫ 0

−xα

|∂yEfr(x, y)| dy dx ≲ r(α+1)/p′
∥Efr∥W1,p(R2).

Here, p′ denotes the Hölder-conjugate exponent to p. Dividing by r and
using that E is bounded delivers together with (3.2) the relation

1 ≲ r(α+1)/p′−1(r2/p + r2/p−1),(3.3)

which results for r → 0 in the condition
α+ 1
p′ + 2

p
− 2 ⩽ 0 ⇐⇒ α ⩽ 1.

This is a contradiction since α is assumed to be in (1,∞). Thus, there
cannot be a bounded extension operator E : W1,p

D (Ω) → W1,p
D (R2).
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Example 3.8 (Interior boundary cusp at infinity). — Let α ∈ (0,∞) and
consider

Ω := {(x, y) ∈ R2 : either y > 0 or x > 0 and y < −x−α}.

Define D and Γ via

D := {(x, y) ∈ R2 : x > 0 and − x−α = y} and Γ := R × {0}.

The proof that in this situation there does not exists a bounded extension
operator E from W1,p

D (Ω) to W1,p
D (R2) for any p ∈ (1,∞) is similar to

Example 3.7 and we omit the details.

4. Whitney decompositions and the quasihyperbolic
distance

In this section, we introduce the Whitney decomposition of an open sub-
set of Rd and show how condition (QHD) relates to properties of Whitney
cubes. A cube Q ⊆ Rd is always closed and is said to be dyadic if there
exists k ∈ Z such that Q coincides with a cube of the mesh determined by
the lattice 2−kZd. Two cubes are said to touch if a face of one cube is com-
pletely contained in a face of the other cube, and they are said to intersect
if their intersection is non-empty. The sidelength of a cube is denoted by
ℓ(Q). For a number α > 0 the dilation of Q about its center by the factor
α is denoted by αQ.

Let F ⊆ Rd be a non-empty closed set. Then, by [22, Theorem VI.1
and following propositions] there exists a collection of cubes {Qj}j∈N with
pairwise disjoint interiors such that

(i)
⋃

j∈NQj = Rd \ F ,
(ii) diam(Qj) ⩽ d(Qj , F ) ⩽ 4 diam(Qj) for all j ∈ N,
(iii) the cubes {Qj}j∈N are dyadic,
(iv) 1

4 diam(Qj) ⩽ diam(Qk) ⩽ 4 diam(Qj) if Qj ∩Qk ̸= ∅,
(v) each cube has at most 12d intersecting cubes.

The collection {Qj}j∈N are called Whitney cubes and will be denoted by
W(F ). In connection with Whitney cubes, the letters (i)–(v) refer always to
the above properties. We say that a collection of cubes Q1, . . . , Qm ∈ W(F )
is a touching chain if Qj and Qj+1 are touching cubes and that it is an
intersecting chain if Qj ∩Qj+1 ̸= ∅ for all j = 1, . . . ,m− 1. The length of
a chain is the number m.
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Let us mention that for a cube Q ∈ W(F ) and x ∈ Q we have

diam(Q) ⩾ 1
5 d(x, F ).(4.1)

This follows from

4 diam(Q) ⩾ d(Q,F ) ⩾ d(x, F ) − diam(Q),

and will be used freely in the rest of this article.
The following lemma translates (QHD) to the existence of intersecting

chains of uniformly bounded length. Notice that if (Ξm)m∈I denotes the
connected components of the set Ξ = Rd \ Γ, Gehring and Osgood [15,
Lemma 1] proved that for any two points x, y ∈ Ξm there exists a quasi-
hyperbolic geodesic γx,y with endpoints x and y, that is, a curve with
endpoints x and y satisfying

kΞ(x, y) =
∫

γx,y

1
d(z, ∂Ξ) |dz|.

Trivially, if Ξ = Rd, then any path connecting x and y is a quasihyperbolic
geodesic.

Lemma 4.1. — Fix k > 0. There exists a constant N = N(d, k) ∈ N
such that for all x, y ∈ Ξ with kΞ(x, y) ⩽ k there exists an intersecting
chain Q1, . . . , Qm ∈ W(Γ) with x ∈ Q1 and y ∈ Qm and m ⩽ N .

Conversely, if for x, y ∈ Ξ there exists an intersecting chain connecting x
and y of length less than N ∈ N, then there exists a constant k = k(N) > 0
such that kΞ(x, y) ⩽ k.

Proof. — Notice that kΞ(x, y) < ∞ implies that x and y lie in the same
connected component of Ξ. Assume first that

|x− y| ⩽ 1
10

√
d

min{d(x,Γ),d(y,Γ)}.(4.2)

Let Qx, Qy ∈ W(Γ) with x ∈ Qx and y ∈ Qy, and let Q̃x denote the region
occupied by Qx and all its intersecting Whitney cubes and similarly let Q̃y

denote its counterpart for Qy. Then by (iv)

d(x, Q̃c
x) ⩾ 1

4
√
d

diam(Qx) and d(y, Q̃c
y) ⩾ 1

4
√
d

diam(Qy).

This combined with (4.2) yields

d(x, Q̃c
x) ⩾ 1

4
√
d

diam(Qx) ⩾ 1
2 |x− y|.
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By symmetry, the same is valid for y instead of x. Consequently, Q̃x and Q̃y

have a common point and thus, x and y can be connected by an intersecting
chain of length at most 4.

Now, let

|x− y| > 1
10

√
d

min{d(x,Γ),d(y,Γ)}.

Assume without loss of generality that d(x,Γ) ⩽ d(y,Γ). Fix a quasihyper-
bolic geodesic γx,y that connects x with y (see the discussion before this
proof). Then Herron and Koskela [19, Proposition 2.2] ensures the exis-
tence of points y0 := x, y1, . . . , yℓ ∈ Rd \ Γ such that γx,y is contained in
the closure of

⋃ℓ
i=0 Bi, where Bi := B(yi, ri) with ri := d(yi,Γ)/(10

√
d),

and such that

ℓ ⩽ 20
√
d kΞ(x, y).(4.3)

Next, we estimate the number of Whitney cubes that cover each of these
balls. Denote the number of Whitney cubes that cover Bi by Wi. Let Q ∈
W(Γ) be such that Q ∩Bi ̸= ∅. Then,

diam(Q) ⩾ 1
4 d(Q,Γ) ⩾ 1

4 [d(yi,Γ) − ri − diam(Q)],

so that by definition of ri

diam(Q) ⩾ (10
√
d− 1) d(yi,Γ)

50
√
d

.

Moreover,

diam(Q) ⩽ d(Q,Γ) ⩽ d(Bi ∩Q,Γ) ⩽ d(yi,Γ) + ri =
[
1 + 1

10
√
d

]
d(yi,Γ).

Consequently,

Wi

[
(10

√
d− 1) d(yi,Γ)

50d

]d

⩽
∑

Q∈W(Γ)
Q∩Bi ̸=∅

|Q| ⩽
∣∣∣B(yi,

[
1 + 1

5
√
d

]
d(yi,Γ)

)∣∣∣,
what proves that Wi is controlled by a constant depending only on d.
We conclude by (4.3) and by the bound on each Wi that there exists an
intersecting chain connecting x and y of length bounded by a constant
depending only on d and k.

For the other direction, let Q1, . . . , Qm be an intersecting chain that
connects x with y and with m ⩽ N . Thus, by definition Qj ∩Qj+1 ̸= ∅. Let
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γ be a path connecting x and y which is constructed by linearly connecting
a point in Qj−1∩Qj with a point in Qj ∩Qj+1. Thus, employing (ii) delivers

kΞ(x, y) ⩽
m∑

j=1

∫
γ∩Qj

1
d(Qj ,Γ) |dz| ⩽

m∑
j=1

diam(Qj)
diam(Qj) = m. □

5. Cubes and chains

In this section, we describe how to “reflect” cubes at Γ if Ω is subject
to Assumption 2.1 and establish some natural properties of theses “re-
flections”. This is an adaption of an argument of Jones presented in [20].
Throughout, assume in Sections 5 and 6 that Ω is an open set subject to
Assumption 2.1 which satisfies Ω ̸= Rd. (When Ω is dense in Rd, Theo-
rem 1.2 follows in a trivial way. The details will be presented separately in
the proof of the theorem). Recall that we assume diam(Ωm) ⩾ λδ, where
(Ωm)m are the connected components of Ω whose boundary hits Γ. This
is in contrast to [20] where Jones assumes without loss of generality (by
scaling) that the domain has radius at least 1 and that δ is at most 1.
However, this has the disadvantage that homogeneous estimates will only
be achievable on small scales even if δ = ∞ and the domain is unbounded.
We will comment on this topic later on in Remark 6.12.

Lemma 5.1. — We have |Γ| = 0.

Proof. — Fix x0 ∈ Γ and y ∈ Ω with |x0 − y| < δ
2 . Let Q be any cube in

Rd centered in x0 with l(Q) ⩽ 1
2 |x0 −y|. We will show that [Rd \Γ]∩Q has

Lebesgue measure comparable to that ofQ. Let x ∈ Ω with |x−x0| ⩽ 1
8 l(Q).

Then, we have

|x− y| ⩾ 15
8 l(Q) and |x− y| ⩽ 17

16 |x0 − y|.(5.1)

Let γ be a path connecting x and y subject to Assumption 2.1 (note that
|x − y| < δ is either void if δ = ∞ or otherwise it follows from the second
inequality in (5.1)). By virtue of (5.1), the intermediate value theorem
implies that there exists z ∈ γ with |x− z| = 1

8 l(Q). This point lies in 1
2Q

by construction. Moreover, (CC-Γ) together with |y− z| ⩾ |x− y| − |x− z|
implies

d(z,Γ) ⩾ εl(Q)
8

|x− y| − |x− z|
|x− y|

⩾
εl(Q)

8 (1 − l(Q)
8|x− y|

) ⩾ 7ε
60 l(Q).
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Thus, lim supl(Q)→0
|[Rd\Γ]∩Q|

|Q| > 0, where the lim sup is taken over all cubes
centered at x0. Since χRd\Γ(x0) = 0 and χRd\Γ ∈ L1

loc(Rd) Lebesgue’s
differentiation theorem implies |Γ| = 0. □

To proceed, we define two families of cubes. The family of interior cubes
is given by

Wi := {Q ∈ W(Γ) : Q ∩ Ω ̸= ∅}.

These interior cubes will be the reflections of exterior cubes We. To define
We we use numbers A > 0 and B > 2 whose values are to be fixed during
this section and define

We := {Q ∈ W(Ω) : diam(Q) ⩽ Aδ and d(Q,Γ) < B d(Q, ∂Ω \ Γ)}.

Remark 5.2. — First, the collection We is empty if and only if D = ∂Ω.
Indeed, if D = ∂Ω then the second condition in the definition We can never
be fulfilled. To the contrary, if Γ is non-empty, then, using the relative
openness of Γ, one can fix a ball centered in Γ that does not intersect
D, and small cubes inside this ball will satisfy both conditions. Second, if
D ̸= ∂Ω, then for a cube Q ∈ We we have

d(Q,Ω) = min{d(Q,Γ),d(Q, ∂Ω \ Γ)} ⩾ B−1 d(Q,Γ)

what implies that for all Q ∈ We it holds

d(Q,Ω) ⩽ d(Q,Γ) ⩽ B d(Q,Ω).(5.2)

Thus, the diameter of Q is comparable to its distance to Γ.

For the rest of this section, we assume that Γ ̸= ∅. Before we present how
to ‘reflect’ cubes, we prove a technical lemma that, given an exterior cube
Q ∈ We, allows us to find a connected component of Ω whose boundary
intersects Γ and which is not too far away from Q.

Lemma 5.3. — Let Q ∈ We. Then there exists a connected component
Ωm of Ω with Γ ∩ ∂Ωm ̸= ∅ and x ∈ Ωm with

d(x,Q) ⩽ 5B diam(Q).

Proof. — By (ii) and Remark 5.2, there exists x′ ∈ Γ such that d(x′, Q) ⩽
4B diam(Q). Since x′ ∈ Γ there is x′′ ∈ Γ with d(x′′, Q) ⩽ 9

2B diam(Q).
Denote the at most countable family of connected components of Ω whose

boundary has a non-empty intersection with Γ by {Ωm}m and the con-
nected components whose boundary has an empty intersection with Γ by
{Υm}m.
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If there is Ωm with x′′ ∈ ∂Ωm, then the proof is finished. If not, pick
a sequence (xn)n in Ω that converges to x′′ ∈ Γ ⊆ ∂Ω. If almost all xn

are contained in the union of the Ωm, this concludes the proof as well.
Otherwise, choose a subsequence (again denoted by xn) for which there
are indices mn such that xn ∈ Υmn . Furthermore, x′′ ∈ Υc

m for all m
since Γ ∩ ∂Υm = ∅. Now, by connecting x′′ and xn by a straight line, the
intermediate value theorem implies the existence of a point x′

n ∈ ∂Υmn with

|x′′ − x′
n| ⩽ |x′′ − xn|.

Passing to the limit n → ∞ yields x′′ ∈ D by the closedness of D and thus
a contradiction. □

The following lemma assigns to every cube in We a “reflected” cube in
Wi. For the rest of Sections 5 and 6 we will reserve the letter N to denote
the constant N appearing in Lemma 4.1 applied with k = 2K, where K is
the number from Assumption 2.1. Notice that N solely depends on d and
K. For the rest of this paper we make the following agreement.

Agreement 5.4. — If X and Y are two quantities and if there exists a
constant C depending only on d, p, K, λ, and ε such that X ⩽ CY holds,
then we will write X ≲ Y or Y ≳ X. If both Y

C ⩽ X ⩽ CY holds, then we
will write X ≃ Y .

Lemma 5.5. — There exist constants C1 = C1(N, ε) > 0 and C2 =
C2(λ) > 0 such that if AB ⩽ C1 and B ⩾ C2, then for every Q ∈ We there
exists a cube R ∈ Wi satisfying

diam(Q) ⩽ diam(R) ≲ (1 +B + (AB)−1) diam(Q)(5.3)

and

d(R,Q) ≲ (1 +B + (AB)−1) diam(Q).(5.4)

Proof. — Fix Q ∈ We and recall that diam(Q) ⩽ Aδ by definition of We

and B > 2. By Lemma 5.3 there exists a connected component Ωm of Ω
with Γ ∩ ∂Ωm ̸= ∅ and x ∈ Ωm with d(x,Q) ⩽ 5B diam(Q). We introduce
the additional lower bound B ⩾ 3/λ, which is only needed in the case
δ < ∞ but we choose B always that large for good measure.

So, in the case δ < ∞, since (AB)−1 diam(Q) ⩽ δB−1 < min(δ, λδ/2) ⩽
min(δ, diam(Ωm)/2) according to (DC), we find y ∈ Ωm satisfying

|x− y| = (AB)−1 diam(Q) and |x− y| < δ.(5.5)

If δ = ∞, then Ωm is unbounded, so we again find y ∈ Ωm satisfying the
first condition whereas the second becomes void for Assumption 2.1.
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Hence, let γ be a path provided by Assumption 2.1 connecting x and
y, and let z ∈ γ with |x − z| = 1

2 |x − y|. Estimate by virtue of (CC-Γ)
and (5.5)

d(z,Γ) ⩾ ε

2 |y − z| ⩾ ε

2
(
|x− y| − |x− z|

)
= ε

4(AB)−1 diam(Q).(5.6)

By Assumption 2.1 we have kΞ(z,Ω) ⩽ K, hence there exists z′ ∈ Ω with
kΞ(z, z′) ⩽ 2K. Thus, by Lemma 4.1 there exists an intersecting chain
Q1, . . . , Qm ∈ W(Γ) with Qm ∩ Ω ̸= ∅, z ∈ Q1, and m ⩽ N . Choose the
reflected cube as R := Qm. Using (ii) and (iv) one gets

4 diam(R) ⩾ d(R,Γ)

⩾ d(z,Γ) −
m∑

j=1
diam(Qj)

⩾ d(z,Γ) −
m∑

j=1
4m−j diam(R).

Thus, by (5.6) and m ⩽ N

11 + 4N

3 diam(R) ⩾ ε

4(AB)−1 diam(Q).

Consequently, there exists C = C(N, ε) > 0 such that AB ⩽ C implies
diam(Q) ⩽ diam(R).

In order to control diam(R) by diam(Q), employ (ii), (iv), and the tri-
angle inequality to deduce

41−m diam(R) ⩽ diam(Q1) ⩽ d(z,Γ) ⩽ d(z,Q) + diam(Q) + d(Q,Γ).

The right-hand side is estimated by the triangle inequality, followed by (5.2)
and (ii), the choice |x− z| = 1

2 |x− y| combined with (5.5), and d(x,Q) ⩽
5B diam(Q), yielding

d(z,Q) + diam(Q) + d(Q,Γ) ⩽ |z − x| + d(x,Q) + diam(Q) +B d(Q,Ω)

⩽ ((2AB)−1 + 1 + 9B) diam(Q).

Taking into account that d(z,R) ⩽ diam(R)(4m − 1)/3 (estimate the sizes
of the cubes in the connecting chain using a geometric sum), the distance
from R to Q is estimated similarly, yielding

d(R,Q) ⩽ |x− z| + d(z,R) + d(x,Q)

⩽ ((2AB)−1 + 5B) diam(Q) + 4m − 1
3 diam(R).

Together with the previous estimate, this concludes the proof. □
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For the rest of this article, we fix the notation that if Q ∈ We and R ∈ Wi

is the cube constructed in Lemma 5.5, then R is denoted by R = Q∗ and
Q∗ is called the reflected cube of Q. The next lemma gives a bound on the
distance of reflected cubes of two intersecting cubes. Its proof is a direct
consequence of Lemma 5.5 and (iv), and is thus omitted.

Lemma 5.6. — If Q1, Q2 ∈ We with Q1 ∩Q2 ̸= ∅, then

d(Q∗
1, Q

∗
2) ≲ (1 +B + (AB)−1) diam(Q1).

In the proof of the boundedness of the extension operator, one needs
to connect Whitney cubes by appropriate touching chains. The following
lemma presents a basic principle of how to build a chain out of a path γ

and how the quantities length(γ) and d(γ,Γ) translate into the length of
the chain and the distance of the cubes of the chain to Γ.

Lemma 5.7. — Let R1, R2 ∈ W(Γ) with R1 ̸= R2 and let x ∈ R1,
y ∈ R2, and γ be a rectifiable path in Rd \ Γ connecting x and y. Assume
that there exist constants C1, C2 > 0 such that length(γ) ⩽ C1 diam(R1)
and d(z,Γ) ⩾ C2 diam(R1) for all z ∈ γ. Then there exists a touching chain
of cubes R1 = S1, . . . , Sm = R2 in W(Γ), where m is bounded by a number
depending only on d, C1, and C2. Moreover,

C2

5 diam(R1) ⩽ diam(Si) ⩽ (5 + C1) diam(R1) (i = 1, . . . ,m).

Proof. — Let S be the finite set of cubes in W(Γ) intersecting γ. For
S ∈ S one finds by (4.1) and by assumption that diam(S) ⩾ C2

5 diam(R1).
Fix z ∈ S ∩ γ, then

d(z,Γ) ⩽ d(x,Γ) + |x− z| ⩽ 5 diam(R1) + length(γ) ⩽ (5 + C1) diam(R1),

so that diam(S)⩽ (5+C1) diam(R1) by (ii). This, together with length(γ) ⩽
C1 diam(R1) implies that S ⊆ B(x, (5 + 2C1) diam(R1)). Because all ele-
ments of S are mutually disjoint one finds

♯(S) ⩽ |B(x, (5 + 2C1) diam(R1))|
( C2

5
√

d
diam(R1))d

= ωd

(
5
√
d(5 + 2C1)
C2

)d

,

where ♯(S) denotes the cardinality of S and ωd := |B(0, 1)|. By (iii) the
elements of S are dyadic and thus one finds a subset of S which is a touching
chain starting at R1 and ending at R2. □

Lemma 5.8. — There exist constants C1, C2 > 0 depending only on ε,
d, λ, and K such that if A ⩽ C1 and B ⩾ C2 and if Qj , Qk ∈ We with
Qj ∩Qk ̸= ∅, then there exists a touching chain Fj,k = {Q∗

j = S1, . . . , Sm =
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Q∗
k} of cubes in W(Γ) connecting Q∗

j and Q∗
k, where m can be bounded

uniformly by a constant depending only on ε, d, K, A, and B. Moreover,
there exist K1,K2 > 0 depending only on ε, d, K, A, and B such that

K1 diam(Qj) ⩽ diam(Si) ⩽ K2 diam(Qj) (i = 1, . . . ,m).

Proof. — If Q∗
j = Q∗

k there is nothing to show. Thus, assume Q∗
j ̸= Q∗

k

and let x ∈ Q∗
j and y ∈ Q∗

k. We show in the following that the assumptions
of Lemma 5.7 are satisfied.

Using Lemmas 5.5 and 5.6 in conjunction with (iv) gives

|x− y| ⩽ d(Q∗
j , Q

∗
k) + diam(Q∗

j ) + diam(Q∗
k)

≲ (1 +B + (AB)−1) diam(Qj).
(5.7)

If δ is finite we get, since Qj ∈ We, that

|x− y| ≲ (A+AB +B−1)δ,

so we obtain |x−y| < δ when we first choose B large enough and afterwards
A sufficiently small. Let γ be a path connecting x and y according to
Assumption 2.1. By (LC), (5.7), and (5.3) one finds

length(γ) ≲ (1 +B + (AB)−1) diam(Q∗
j ).

To estimate the distance between each z ∈ γ and Γ, notice that if |x− z| ⩽
1
2 diam(Q∗

j ), then d(z,Γ) ⩾ 1
2 diam(Q∗

j ). Analogously, but by employing
additionally (5.3) twice and (iv), if |y − z| ⩽ 1

2 diam(Q∗
k), then

d(z,Γ) ⩾ 1
2 diam(Q∗

k)

⩾
1
2 diam(Qk)

⩾
1
8 diam(Qj)

≳
(
1 +B + (AB)−1)−1 diam(Q∗

j ).

(5.8)

In the remaining case, one estimates by (CC-Γ), the calculation performed
in (5.8), and (5.7) that

d(z,Γ) ≳
diam(Q∗

j )2

(1 +B + (AB)−1)|x− y|
≳

diam(Q∗
j )

(1 +B + (AB)−1)2 . □

The following lemma provides the existence of chains that ‘escape Ω’ for
reflections of cubes Q ∈ W(Ω) that are close to a relatively open portion
of D. These chains will be important to obtain a Poincaré inequality with
a quantitative control of the constants.
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Lemma 5.9. — There exist constants C1, C2 > 0 depending only on ε,
d, λ, and K such that if A ⩽ C1 and B ⩾ C2 and if Q ∈ W(Ω)\We satisfies
diam(Q) ⩽ Aδ and has a non-empty intersection with a cube Qj ∈ We,
then there exists a touching chain FP,j = {Q∗

j = S1, . . . , Sm} of cubes in
W(Γ), where m is bounded by a constant depending only on ε, d, K, A,
and B and Sm ∩Qj is a dyadic cube that satisfies

|Sm ∩Qj | ≳ diam(Qj)d.

Furthermore, all Si ∈ FP,j satisfy

K1 diam(Qj) ⩽ diam(Si) ⩽ K2 diam(Qj) (i = 1, . . . ,m).

The constants K1,K2 > 0 depend only on ε, d, K, A, and B.

Proof. — Let Qj ∈ We be an intersecting cube of Q. Then, using prop-
erties of the Whitney cubes and Q /∈ We, one estimates

B d(Qj , ∂Ω \ Γ) ⩽ 6B d(Q, ∂Ω \ Γ) ⩽ 6 d(Q,Γ) ⩽ 36 d(Qj ,Γ).(5.9)

Let B ⩾ 720, then (5.9) implies d(Qj , ∂Ω\Γ) = d(Qj ,Ω). Hence, using (5.9)
again and (ii), one finds that d(Qj ,Γ) ⩾ B

36 d(Qj ,Ω) ⩾ B
36 diam(Qj). Let

x0 ∈ D be such that d(x0, Qj) = d(Qj ,Ω) ⩽ 4 diam(Qj). The properties
collected above then imply

d(x0,Γ) ⩾ d(Qj ,Γ) − d(x0, Qj) − diam(Qj) ⩾ (36−1B − 5) diam(Qj),

and if y is any point in B(x0, 5 diam(Qj)) then the previous estimate de-
livers

d(y,Γ) ⩾ d(x0,Γ) − 5 diam(Qj) ⩾ (36−1B − 10) diam(Qj) ⩾ 10 diam(Qj).

Fix y ∈ B(x0, 5 diam(Qj))∩Ω. Notice that the midpoint z of Qj is contained
in B(x0, 5 diam(Qj)). Thus, each point on the line segment γ1 connecting
y to z has a distance larger than 10 diam(Qj) to Γ.

For x ∈ Q∗
j ∩ Ω Lemma 5.5 together with {y} ∪Qj ⊆ B(x0, 6 diam(Qj))

implies

|x− y| ⩽ d(y,Qj) + d(Qj , Q
∗
j ) + diam(Qj) + diam(Q∗

j )

≲ (1 +B + (AB)−1) diam(Qj).

If δ is finite, we can ensure |x−y| < δ using exactly the same argument as in
the proof of Lemma 5.8 and otherwise this condition is again meaningless.
Let γ2 be the path connecting x and y subject to Assumption 2.1 and
let R ∈ W(Γ) with y ∈ R. Since d(R,Γ) ⩾ C diam(Q∗

j ) for some C > 0
depending only on ε, K, d, A, and B, one concludes as in the proof of
Lemma 5.8 that the path γ2, and hence, by the consideration above, also

ANNALES DE L’INSTITUT FOURIER



EXTENDABILITY OF FUNCTIONS WITH PARTIAL ZERO TRACE 23

the path γ = γ1 + γ2 which connects x ∈ Q∗
j with z ∈ Qj satisfies the

assumptions of Lemma 5.7, where Q∗
j fulfills the role of R1 and R2 is

some cube in W(Γ) that contains z. Note that the constants appearing in
Lemma 5.7 depend only on ε, K, d, A, and B.

As in the statement of the lemma we write Sm for R2 and distinguish
cases for the relation between Sm and Qj . Since Qj ∩ Sm ̸= ∅ and since
Whitney cubes are dyadic, it either holds Sm ⊆ Qj or Qj ⊆ Sm. If Qj ⊆ Sm

the proof is finished. If Sm ⊆ Qj , then

4 diam(Sm) ⩾ d(Sm,Γ) ⩾ d(Qj ,Γ) ⩾ 36−1B diam(Qj),

so that |Sm ∩Qj | ≳ diam(Qj)d. □

The next lemma shows that for a fixed cube R ∈ Wi, there are only
finitely many cubes in We, whose reflected cube is R.

Lemma 5.10. — There is a constant C ∈ N such that for each R ∈ Wi

there are at most C cubes Q ∈ We such that Q∗ = R, where C solely
depends on d, K, A, B, and ε.

Proof. — Let α denote the constant from (5.4) and let Q ∈ We with
reflected cube R, then it follows with (5.3) that d(R,Q) ⩽ α diam(R). So,
if xR denotes the center of R, every cube Q with Q∗ = R must be contained
in B(xR, (α + 3

2 ) diam(R)). Because for those cubes diam(Q) is controlled
from below by diam(R) according to (5.3) and because cubes from We have
disjoint interiors, the lemma follows by a counting argument. □

6. Construction of the extension operator and exterior
estimates

This section is devoted to the construction of the extension operator
from Theorem 1.2. We also establish estimates for the operator on Ωc. To
do so, we start with a preparatory part on (adapted) polynomials, followed
by some overlap considerations. We proceed with the construction of the
extension operator, in which the adapted polynomials will appear, followed
by the exterior estimates, for which we will need the results on overlap.

Agreement 6.1. — If not otherwise mentioned, the symbols k and p

are supposed to refer to the parameters in Theorem 1.2. The numbers A and
B which were introduced in Section 5 will be considered as fixed numbers
depending only on ε, d, K, and λ such that all statements in Section 5 are
valid. From now on we will use the symbols ≲ and ≳ in a more liberal way
than described in Agreement 5.4, that is, implicit constants are allowed to
depend on all fixed parameters including A, B, and δ.
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Polynomial fitting and Poincaré type estimates

We record some results on polynomial approximation and Poincaré type
estimates. Most of them stem from [6] and were used there for a similar
purpose.

We start out with the following generic norm comparison lemma for poly-
nomials of fixed degree, see [6, Lemma 2.3]. Recall the set of polynomials
Pm introduced in the notation section.

Lemma 6.2. — Let Q,R be cubes with R ⊆ Q and assume that there
exists a constant κ > 0 such that |R| ⩾ κ|Q|. Then for each polynomial P
of degree at most m one has

∥P∥Lp(Q) ≲ ∥P∥Lp(R),

where the implicit constant only depends on d, κ, p, and m. In particular,
if S is another cube with S ⊆ Q and |S| ⩾ κ|Q|, then the Lp norms over R
and S are equivalent norms on Pm and the implicit constants only depend
on d, κ, p, and m.

The following lemma provides “adapted” polynomials together with cor-
responding Poincaré type estimates. A proof can be found in [6, Theo-
rem 4.5, Theorem 4.7 & Remark 4.8], note that the proof of the remark
still works when replacing Whitney cubes by cubes of the same size.

Lemma 6.3. — Let Q be a cube, R a touching cube of Q of the same
size, and k ⩾ 0 an integer. Then there exists a projection P : L1(Q) → Pk−1
that satisfies the estimate

∥∂αPf∥Lp(Q) ≲ ∥∂αf∥Lp(Q)(6.1)

for f ∈ C∞
D (Rd)∩Wk,p(Q), |α| ⩽ k and 1 ⩽ p ⩽ ∞. Moreover, the Poincaré

type estimate

∥∂α(f − Pf)∥Lp(Q∪R) ≲ diam(Q)ℓ−|α|∥∇ℓf∥Lp(Q∪R),(6.2)

holds for f ∈ C∞
D (Rd) ∩ Wk,p(Q ∪ R), 0 ⩽ ℓ ⩽ k, |α| ⩽ ℓ, and 1 ⩽ p ⩽ ∞.

The implicit constants depend only on d, k, and p. Of course, the case
Q = R is also permitted.
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Remarks 6.4.
(1) The polynomial Pf will be denoted by (f)Q. The case |α| = k

in (6.1) was not stated in [6] but follows since the degree of Pf is
at most k − 1.

(2) That the projection is always meaningfully defined on L1(Q) be-
comes evident from (4.2) in [6].

(3) In the case α = 0 we can drop the intersection with C∞
D (Rd) in both

estimates in Lemma 6.3. This follows from a direct computation
using the representation formula for the projection given in [6].

Combining these results gives a Poincaré type estimate where the poly-
nomial is only adapted to a subcube of the domain of integration.

Corollary 6.5. — Let Q and R be cubes with R ⊆ Q such that there
is κ > 0 with |R| ⩾ κ|Q|. Then with f ∈ C∞

D (Rd) ∩ Wk,p(Q), 0 ⩽ ℓ ⩽ k,
|α| ⩽ ℓ, and 1 ⩽ p ⩽ ∞ we obtain

∥∂α(f − (f)R)∥Lp(Q) ≲ diam(Q)ℓ−|α|∥∇ℓf∥Lp(Q),

where the implicit constant does only depend on d, k, p, and κ. We may
also replace Q by the union of two touching cubes of the same size where
one of them contains R as a subcube.

Proof.
Step 1. — We start with the case that Q is a single cube. Using

Lemma 6.3 and Lemma 6.2 we get from the fact that ∂α((f)Q − (f)R)
is a polynomial of degree at most k − 1 the estimate

∥∂α(f − (f)R)∥Lp(Q) ⩽ ∥∂α(f − (f)Q)∥Lp(Q) + ∥∂α((f)Q − (f)R)∥Lp(Q)

≲ diam(Q)ℓ−|α|∥∇ℓf∥Lp(Q) +∥∂α((f)Q −(f)R)∥Lp(R).

The first term satisfies the desired estimate, so we focus on the second one.
Using that R ⊆ Q and Lemma 6.3 twice, we estimate further

∥∂α((f)Q − (f)R)∥Lp(R) ⩽ ∥∂α(f − (f)Q)∥Lp(R) + ∥∂α(f − (f)R)∥Lp(R)

≲ ∥∂α(f − (f)Q)∥Lp(Q) +diam(R)ℓ−|α|∥∇ℓf∥Lp(R)

≲ diam(Q)ℓ−|α|∥∇ℓf∥Lp(Q).

Step 2. — Now, assume that Q = Q1 ∪Q2 is the union of two touching
cubes with R ⊆ Q1 and |R| ⩾ κ|Q1|. We reduce this case to the already
shown case. Start with the triangle inequality to get

∥∂α(f − (f)R)∥Lp(Q) ⩽ ∥∂α(f − (f)R)∥Lp(Q1) + ∥∂α(f − (f)R)∥Lp(Q2).
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The first term is fine by Step 1 and for the second we continue with

∥∂α(f − (f)R)∥Lp(Q2)

⩽ ∥∂α(f − (f)Q2)∥Lp(Q2) + ∥∂α((f)Q2 − (f)R)∥Lp(Q2).

Again, the first term is good and for the other one we exploit Q1 ⊆ 3Q2 to
derive with Lemma 6.2

∥∂α((f)Q2 −(f)R)∥Lp(Q2) ≲ ∥∂α((f)Q2 − (f)R)∥Lp(Q1)

⩽ ∥∂α(f−(f)Q2)∥Lp(Q) + ∥∂α(f − (f)R)∥Lp(Q1).

The first term is good by Lemma 6.3 and the second by Step 1. □

Some overlap considerations

Let Qj ∈ We and let Q ∈ W(Ω) \ We be such that it intersects a cube
in We and satisfies diam(Q) ⩽ Aδ. Let Fj,k be as in Lemma 5.8 and FP,k

be as in Lemma 5.9. Define

F (Qj) :=
⋃

Qk∈We

Qj∩Qk ̸=∅

⋃
S∈Fj,k

2S and FP (Q) :=
⋃

Qk∈We

Q∩Qk ̸=∅

⋃
S∈FP,k

2S.

We count how many of these “extended” chains F (Qj) and FP (Q) can
intersect a fixed point x ∈ Rd. To be concise, we only present the case of
F (Qj).

By Lemma 5.8, we know that a chain Fj,k has length less than a constant
M which only depends on d, K, λ, and ε. If x ∈ F (Qj), then there exist
k ∈ N and S ∈ Fj,k with x ∈ 2S. Assume R ∈ W(Γ) is any cube such that
also x ∈ 2R. By (ii) and an elementary geometric consideration one infers
for z ∈ S that

4 diam(R) ⩾ d(R,Γ) ⩾ d(z,Γ) − |x− z| − 3
2 diam(R).

Pick some z that satisfies |x− z| ⩽ diam(S)/2. Then

4 diam(R) ⩾ d(S,Γ) − 1
2 diam(S) − 3

2 diam(R) ⩾ 1
2 diam(S) − 3

2 diam(R).

By symmetry (interchange S and R) this implies that
1
11 diam(S) ⩽ diam(R) ⩽ 11 diam(S).(6.3)

Now let Fα,β be another chain such that x ∈
⋃

S∈Fα,β
2S. This means that

there is a cube in Fα,β that fulfills the role of R above. Since Q∗
α and R as

well as Q∗
j and S are connected by touching chains of Whitney cubes each

ANNALES DE L’INSTITUT FOURIER



EXTENDABILITY OF FUNCTIONS WITH PARTIAL ZERO TRACE 27

of length at most M , we deduce from (6.3) that diam(Q∗
α) ≈ diam(Q∗

j )
and conclude d(Q∗

j , Q
∗
α) ≲ diam(Q∗

j ). Then the usual counting argument
yields a bound on such reflected cubes Q∗

α. Finally, Lemma 5.10 implies
that there exists a constant C > 0 that depends only on d, K, λ, and ε

such that ∑
Qj∈We

χF (Qj)(x) ⩽ C.(6.4)

Construction of the extension operator

Fix an enumeration (Qj)j of We and take a partition of unity (φj)j on⋃
Qj∈We

Qj valued in [0, 1] on Rd and satisfying supp(φj) ⊆ 17
16Qj as well

as ∥∂αφj∥L∞ ≲ diam(Qj)−|α| for |α| ⩽ k and with an implicit constant
only depending on k.

Let f be a measurable function on Ω and A ⊆ Rd closed. Write EAf for
the zero extension of f to A. Clearly, EA is isometric from Lp(A ∩ Ω) to
Lp(A) for all 1 ⩽ p ⩽ ∞. Moreover, if f ∈ C∞

D (Ω)∩Wk,p(Ω) and A∩Γ = ∅,
then EAf is again in C∞

D (A)∩Wk,p(A). A relevant example is A = Q ∈ Wi.
Note that then ∥∂αEAf∥Lp(A) = ∥∂αf∥Lp(A∩Ω) holds for any |α| ⩽ k.

Recall the notation introduced in Remark 6.4. Define the extension op-
erator E on some locally integrable f by

Ef(x) :=


f(x), x ∈ Ω,
0, x ∈ D,∑

Qj∈We
(EQ∗

j
f)Q∗

j
(x)φj(x), x ∈ Ωc.

If We is empty (which is the case if D = ∂Ω according to Remark 5.2) then
the sum is empty and its value is considered to be zero.

Remark 6.6. — Note that due to the properties of the Whitney cubes,
φj(x) ̸= 0 only for finitely many j. If f ∈ L1

loc(Ω) in the sense of Def-
inition 1.1, then Ef is defined almost everywhere on Rd according to
Lemma 5.1. Moreover, Ef is smooth on Ωc by construction. Due to Re-
mark 6.4, E restricts to a bounded operator from Lp(Ω) to Lp(Rd) for all
1 ⩽ p ⩽ ∞. If f ∈ C∞

D (Ω) ∩ Wk,p(Ω) then Ef vanishes almost everywhere
around D. Indeed, this follows from the support assumption on f and the
fact that Q∗

j is close to D if x is close to D, see (5.4).
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Estimates for the extension operator

We show estimates for the extension operator on different types of cubes.
The overlap considerations from before will permit us to sum them up in
Proposition 6.11 to arrive at exterior estimates for the extension operator.

Lemma 6.7. — Let f ∈ C∞
D (Ω) ∩ Wk,p(Ω), 0 ⩽ ℓ ⩽ k, |α| ⩽ ℓ, and

1 ⩽ p ⩽ ∞. If S1, . . . , Sm is a touching chain of Whitney cubes with
respect to Γ whose length is bounded by a constant M , then

∥∂α((ES1f)S1 − (ESm
f)Sm

)∥Lp(S1) ≲ diam(S1)ℓ−|α|∥∇ℓf∥Lp(
⋃m

r=1
(2Sr)∩Ω),

where the implicit constant does only depend on d, k, p, and M . The
assertion remains true if the chain consists of cubes in Ξ of fixed size (not
necessarily Whitney cubes). In that case, the set

⋃m
r=1(2Sr) ∩ Ω in the

Lp-norm on the right-hand side can be replaced by
⋃m

r=1 Sr ∩ Ω.

Proof. — We focus on the case of Whitney cubes; the other case is even
simpler.

Note first that the sizes of cubes from the chain are pairwise comparable
due to the bound on the chain length. Using Lemma 6.2 (observe that the
whole chain is contained in a comparably larger cube) we get

∥∂α((ES1f)S1 − (ESm
f)Sm

)∥Lp(S1)

≲
m−1∑
r=1

∥∂α((ESrf)Sr − (ESr+1f)Sr+1)∥Lp(Sr+1)

=
m−1∑
r=1

∥∂α((ESr∪Sr+1f)Sr
) − (ESr+1f)Sr+1)∥Lp(Sr+1)

⩽
m−1∑
r=1

∥∂α((ESr∪Sr+1f)Sr
− ESr+1f)∥Lp(Sr+1)

+ ∥∂α(ESr+1f − (ESr+1f)Sr+1)∥Lp(Sr+1)

⩽
m−1∑
r=1

∥∂α(ESr∪Sr+1f − (ESr∪Sr+1f)Sr )∥Lp(Sr∪Sr+1)

+ ∥∂α((ESr+1f)Sr+1 − ESr+1f)∥Lp(Sr+1).

By virtue of Lemma 6.3, the second term in the sum on the right-hand side
is controlled by diam(S1)ℓ−|α|∥∇ℓf∥Lp(Sr+1∩Ω).

If Sr and Sr+1 are of the same size, the first term can be controlled using
Lemma 6.3. Otherwise, assume without loss of generality that diam(Sr+1)<
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diam(Sr). Since the cubes are dyadic, it follows that Sr ∪Sr+1 ⊆ 2Sr. More-
over,

d(2Sr,Γ) ⩾ d(Sr,Γ) − 1
2 diam(Sr) ⩾ 1

2 diam(Sr).

So, E2Sr
f is a smooth extension of ESr∪Sr+1f to 2Sr, in particular one has

(ESr∪Sr+1f)Sr = (E2Srf)Sr . Invoking Corollary 6.5 yields

∥∂α(ESr∪Sr+1f − (ESr∪Sr+1f)Sr
)∥Lp(Sr∪Sr+1)

⩽ ∥∂α(E2Sr
f − (E2Sr

f)Sr
)∥Lp(2Sr)

≲ diam(S1)ℓ−|α|∥∇ℓf∥Lp((2Sr)∩Ω). □

Lemma 6.8. — Let f ∈ C∞
D (Ω) ∩ Wk,p(Ω), 0 ⩽ ℓ ⩽ k, |α| ⩽ ℓ, and

1 ⩽ p ⩽ ∞. If Qj ∈ We, then

∥∂αEf∥Lp(Qj) ≲ diam(Qj)ℓ−|α|∥∇ℓf∥Lp(F (Qj)∩Ω) + ∥∂αf∥Lp(Q∗
j

∩Ω).

Proof. — Observe that φk vanishes on Qj if Qk ∩ Qj = ∅. Hence, by
definition it holds Ef =

∑
Qk∈We

Qj∩Qk ̸=∅
(EQ∗

k
f)Q∗

k
φk and

∑
Qk∈We

Qj∩Qk ̸=∅
φk ≡ 1 on

Qj . Consequently, using the Leibniz rule we get

∥∂αEf∥Lp(Qj)

⩽

∥∥∥∥∥ ∑
Qk∈We

Qj∩Qk ̸=∅

∑
β⩽α

cα,β∂
α−β

[
(EQ∗

k
f)Q∗

k
− (EQ∗

j
f)Q∗

j

]
∂βφk

∥∥∥∥∥
Lp(Qj)

+ ∥∂α(EQ∗
j
f)Q∗

j
∥Lp(Qj)

=: I + II.

We employ the estimate for ∂βφk and Lemma 6.2 (taking Lemma 5.5 into
account), followed by Lemma 6.7 and (v) to derive

I ≲
∑

Qk∈We

Qj∩Qk ̸=∅

∑
β⩽α

diam(Qk)−|β|∥∂α−β
[
(EQ∗

k
f)Q∗

k
− (EQ∗

j
f)Q∗

j

]
∥Lp(Q∗

j
)

≲ diam(Qj)ℓ−|α|∥∇ℓf∥Lp(F (Qj)∩Ω).

The term II is controlled by ∥∂αf∥Lp(Q∗
j

∩Ω) using (6.1) from Lemma 6.3;
Note that we can switch to Q∗

j using Lemma 6.2 as in the estimate for
term I. □
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Lemma 6.9. — Let f ∈ C∞
D (Ω) ∩ Wk,p(Ω), 0 ⩽ ℓ ⩽ k, |α| ⩽ ℓ, and

1 ⩽ p ⩽ ∞. If Q ∈ W(Ω) \ We intersects a cube in We and satisfies
diam(Q) ⩽ Aδ, then

∥∂αEf∥Lp(Q) ≲ diam(Q)ℓ−|α|∥∇ℓf∥Lp(FP (Q)∩Ω).

Proof. — Note that Q satisfies the assumptions of Lemma 5.9. For Qj ∈
We an intersecting cube of Q let Q∗

j = S1, . . . , Smj
be the corresponding

touching chain. Then

∥∂αEf∥Lp(Q)

≲
∑

Qj∈We

Q∩Qj ̸=∅

∑
β⩽α

diam(Q∗
j )−|β|∥∥∂α−β

[
(EQ∗

j
f)Q∗

j

]∥∥
Lp(Q∗

j
)

≲
∑

Qj∈We

Q∩Qj ̸=∅

∑
β⩽α

diam(Q∗
j )−|β|

[∥∥∂α−β
[
(ES1f)S1 − (ESmj

f)Smj

]∥∥
Lp(S1)

+ ∥∂α−β(ESmj
f)Smj

∥Lp(Smj
)

]
.

By virtue of Lemma 6.7 and (v) the first term inside the double sum can be
controlled by diam(Q)ℓ−|α|∥∇ℓf∥Lp(

⋃mj

r=1
(2Sr)∩Ω). For the second term in

the sum, note that ESmj
f ≡ 0 on the cube Smj

∩Qj and that |Smj
∩Qj | ≳

diam(Qj)d by Lemma 5.9. Estimate using Lemma 6.2 and the fact that
(ESmj

f)Smj
∩Qj vanishes that∥∥∂α−β(ESmj

f)Smj

∥∥
Lp(Smj

)

≲
∥∥∂α−β

[
(ESmj

f)Smj
− (ESmj

f)Smj
∩Qj

]∥∥
Lp(Smj

∩Qj).

Using Lemma 6.3 and diam(Smj ) ≈ diam(Qj) we further estimate

⩽
∥∥∂α−β

[
ESmj

f − (ESmj
f)Smj

]∥∥
Lp(Smj

)

+
∥∥∂α−β

[
ESmj

∩Qj
f − (ESmj

f)Smj
∩Qj

]∥∥
Lp(Smj

∩Qj)

≲ diam(Smj
)ℓ−|α|+|β|∥∇ℓf∥Lp(Smj

∩Ω)

+ diam(Smj ∩Qj)ℓ−|α|+|β|∥∇ℓf∥Lp(Smj
∩Qj∩Ω)

≲ diam(Qj)ℓ−|α|+|β|∥∇ℓf∥Lp(Smj
∩Ω).

With (v) and diam(Qj) ≈ diam(Q) this concludes the proof. □

Lemma 6.10. — Let f ∈ C∞
D (Ω) ∩ Wk,p(Ω), 0 ⩽ ℓ ⩽ k, |α| ⩽ ℓ, and

1 ⩽ p ⩽ ∞. If Q ∈ W(Ω) \ We intersects a cube in We and satisfies
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diam(Q) > Aδ, then
∥∂αEf∥Lp(Q) ≲ max(1, δ−ℓ)∥f∥

Wℓ,p
(⋃

Qj∈We

Q∩Qj ̸=∅
Q∗

j
∩Ω
).

Proof. — Note that in fact diam(Q) ≈ δ because Q intersects We. The
same is true for its intersecting Whitney cubes. Hence, with a similar cal-
culation as in Lemma 6.8 we derive

∥∂αEf∥Lp(Q) ≲
∑

Qj∈We

Q∩Qj ̸=∅

∑
β⩽α

δ−|β|∥∂α−β(EQ∗
j
f)Q∗

j
∥Lp(Q∗

j
)

≲
∑

Qj∈We

Q∩Qj ̸=∅

∑
β⩽α

δ−|β|∥∂α−βf∥Lp(Q∗
j

∩Ω)

≲ max(1, δ−ℓ)∥f∥
Wℓ,p

(⋃
Qj∈We

Q∩Qj ̸=∅
Q∗

j
∩Ω
). □

Proposition 6.11. — For all 1 ⩽ p ⩽ ∞ and 0 ⩽ ℓ ⩽ k there exists a
constant C > 0 depending only on d, ε, δ, k, p, λ, and K such that for all
f ∈ C∞

D (Ω) ∩ Wk,p(Ω) and |α| ⩽ ℓ one has
∥∂αEf∥Lp(Ωc) ⩽ C∥f∥Wℓ,p(Ω).

Proof. — The estimates for the derivatives in the case p < ∞ are deduced
by the following calculation based on Lemmas 6.8, 6.9, and 6.10

∥∂αEf∥p

Lp(Ωc)

=
∑

Qj∈We

∥∂αEf∥p
Lp(Qj) +

∑
Q∈W(Ω)\We

Q∩We ̸=∅

∥∂αEf∥p
Lp(Q)

≲
∑

Qj∈We

(
diam(Qj)(ℓ−|α|)p∥∇ℓf∥p

Lp(F (Qj)∩Ω) + ∥∂αf∥p
Lp(Q∗

j
∩Ω)
)

+
∑

Q∈W(Ω)\We

Q∩We ̸=∅
diam(Q)>Aδ

max(1, δ−ℓp) ∥f∥p

Wℓ,p
(⋃

Qj∈We

Q∩Qj ̸=∅
Q∗

j
∩Ω
)

+
∑

Q∈W(Ω)\We

Q∩We ̸=∅
diam(Q)⩽Aδ

diam(Qj)(ℓ−|α|)p∥∇ℓf∥p
Lp(FP (Q)∩Ω).

Since ℓ−|α| ⩾ 0 and diam(Qj) is comparably smaller than δ, we can get rid
of the factors in front of the norm terms to the cost of an implicit constant
depending only on δ and k. The estimate then follows from Lemma 5.10
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and from (6.4), which holds also true for the chains FP (Q) as mentioned
in the discussion previous to (6.4).

The estimate in the case p = ∞ is even simpler because we can use the
same estimates but can omit the overlap argument. □

Remark 6.12. — Assume that G and H are subsets of Rd such that the
following version of (6.4) holds true:∑

Qj∈We

Qj∩G ̸=∅

χF (Qj)(x) ⩽ CχH(x).

Then we may replace the Lp(Ωc) norm on the left-hand side of the estimate
in Proposition 6.11 by an Lp(G ∩ Ωc) norm and the Wℓ,p(Ω) norm on the
right-hand side by an Wℓ,p(H ∩ Ω) norm. Moreover, if |α| = ℓ and G

is contained in NAδ(Ω), then it suffices to estimate against ∥∇ℓf∥Lp(H∩Ω).
Indeed, in this case the second term in the final estimate in Proposition 6.11
vanishes. We will benefit from these observations in Section 10.

7. Approximation with smooth functions on Rd

In this section, we show that smooth and compactly supported functions
on Rd whose support stays away from D are dense in C∞

D (Ω) ∩ Wk,p(Ω).
In particular, both classes of functions have the same Wk,p(Ω)-closure. We
will benefit from this fact in Section 8. To do so, we use an approximation
scheme similar to that introduced in [20, Section 4]. The arguments rely on
techniques similar to what we have used in the construction of the extension
operator.

To begin with, let f ∈ C∞
D (Ω) ∩ Wk,p(Ω), 1 ⩽ p < ∞, and put κ :=

d(supp(f), D) > 0. Furthermore, let η > 0 quantify the approximation
error. We need parameters A, B, s, t, and ρ for which we will collect
several constraints in the course of this section (similar to what we have
done in Section 5). Some parameters depend on each other, but there is a
non-cyclic order in which they can be picked. This will enable us to prove
the following proposition.

Proposition 7.1. — Let f , η, and κ be as above. Then there exists
a function g which is smooth on Rd and satisfies d(supp(g), D) > κ/2 as
well as ∥f −g∥Wk,p(Ω) ≲ η. In particular, smooth and compactly supported
functions on Rd whose support has positive distance to D are dense in
C∞

D (Ω) ∩ Wk,p(Ω) with respect to the Wk,p(Ω) topology.
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For brevity, put B̃t := Nt(∂Ω) for the tubular neighborhood of size t
around ∂Ω and choose 0 < s < min(1, κ/2) in such a way that we have the
estimate

∥f∥Wk,p(B̃3s∩Ω) ⩽ η.(7.1)

Furthermore, we define a region near Γ that stays away from D and is
adapted to the support of f , namely

Bt :=
{
x ∈ Rd : d(x,Γ) < t and d(x,D) > κ

2

}
.

Later on, we will only deal with t ∈ (0, 3s), so that (7.1) will in particular
be applicable on Bt ∩ Ω.

Denote the zero extension of f to

Ω0 := Ω ∪
⋃

x∈D

B(x, 3κ/4)

by E0f . Note that this function is again smooth since

d(B(x, 3κ/4), supp(f)) ⩾ κ

4 for x ∈ D.

Lemma 7.2. — Let x ∈ Ω \Bs, then B(x, t) ⊆ Ω0 for all 0 < t < s/2.

Proof. — Recall s < κ/2. We distinguish two cases.
Case 1: d(x,D) ⩽ κ/2. — Let z ∈ D with |x − z| = d(x,D). For

y ∈ B(x, κ/4) we derive

|y − z| ⩽ |x− y| + |x− z| < κ/4 + κ/2 = 3κ/4,

so by choice of s we see

B(x, t) ⊆ B(x, κ/4) ⊆ B(z, 3κ/4) ⊆ Ω0.

Case 2: d(x,D) > κ/2 and consequently d(x,Γ) ⩾ s. — Then d(x, ∂Ω) ⩾
min(κ/2, s) = s > t, therefore B(x, t) ⊆ Ω ⊆ Ω0 (keep in mind x ∈ Ω). □

A family of interior cubes

Assume that ρ is a dyadic number and G is the collection of dyadic
cubes of sidelength ρ. Recall Ξ = Rd \ Γ. As before, we write (Ωm)m for
the connected components of Ω whose boundary intersects Γ and (Υm)m

for the remaining ones. Define

Σ′ := {R ∈ G : R ⊆ Ξ}.
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Moreover, we introduce the collection of cubes

Σ :=
{
R ∈ G : there exist S ∈ W(Γ) and m:

diam(S) ⩾ Aρ,

R ⊆ S & R ∩ Ωm ̸= ∅

}
.

These cubes take the role of Wi in the upcoming approximation construc-
tion. Note that Σ ⊆ Σ′. For R ∈ Σ define enlarged cubes

R̂ := BR and ̂̂
R := 2BR.

We claim that if we choose ρ ⩽ κ
2

√
d
, then R ⊆ Ω0. Indeed, if R ∩ D = ∅,

then R is properly contained in Ω since it has a non-trivial intersection
with Ω and avoids its boundary. Otherwise, let z ∈ R ∩ D, then R ⊆
B(z,diam(R)) ⊆ B(z, 3κ/4).

Lemma 7.3. — There exist positive constants C1 = C1(d) > 0 and
C2 = C2(A, s) > 0 such that⋃

m

Ωm \Ns(Γ) ⊆
⋃

R∈Σ
R,

provided A ⩾ C1 and ρ ⩽ C2.

Proof. — Let x ∈ Ωm \Ns(Γ). In particular, x ∈ Ξ and hence there exists
S ∈ W(Γ) that contains x. Since d(x,Γ) ⩾ s by choice of x we conclude
diam(S) ⩾ 1

5 d(x,Γ) ⩾ s
5 . Hence, if we choose ρ ⩽ s

5A , then diam(S) ⩾ Aρ.
Let R be some cube in G that contains x. If we demand A ⩾

√
d, then

R ⊆ S because both are dyadic cubes and they have a common point.
Finally, R ∩ Ωm ̸= ∅ since x ∈ Ωm, so R ∈ Σ. □

The following lemma provides a covering of the support of f close to the
Neumann boundary region by the enlarged cubes R̂.

Lemma 7.4. — There exist constants C1 = C1(A, ε) > 0 and C2 =
C2(A, δ, ε, κ, λ) > 0 such that

B2s ∩
⋃
m

Ωm ⊆
⋃

R∈Σ
R̂,

provided B ⩾ C1 and ρ ⩽ C2.

Proof. — Let x ∈ B2s ∩ Ωm. Choose ρ ⩽ ε
80A min(δ, λδ). Then 20A

ε ρ <

λδ/2 ⩽ diam(Ωm)/2 by (DC), hence there exists some y ∈ Ωm satisfying
|x − y| = 20A

ε ρ. Moreover, since |x − y| < δ, there is a curve γ subject to
Assumption 2.1 that connects x and y. Let z ∈ γ with |x − z| = 1

2 |x − y|.
Then

d(z,Γ) ⩾ ε

2 |y − z| ⩾ ε

4 |x− y| = 5Aρ.

ANNALES DE L’INSTITUT FOURIER



EXTENDABILITY OF FUNCTIONS WITH PARTIAL ZERO TRACE 35

Since γ takes its values in Ξ, there exists a cube S ∈ W(Γ) with z ∈ S.
We deduce diam(S) ⩾ 1

5 d(z,Γ) ⩾ Aρ. As in the previous lemma, there is
some cube R ∈ G that contains z and consequently is a subcube of S. To
conclude that R ∈ Σ we must ensure that γ cannot escape Ωm. To this end,
let us assume that z ̸∈ Ωm. Since x ∈ Ωm, there would be some z̃ ∈ γ with
z̃ ∈ ∂Ωm. Since z̃ ̸∈ Γ by definition of γ, we must have z̃ ∈ D. Now recall
that by definition of B2s it holds d(x,D) > κ

2 . On imposing the constraint
ρ ⩽ ε2κ

40A we then get the contradiction

d(x,D) ⩽ |x− z̃| ⩽ length(γ) ⩽ 20A
ε2 ρ ⩽

κ

2 < d(x,D).

So, indeed, z ∈ Ωm and therefore R ∈ Σ. Denote the center of R by xR

and estimate

|x− xR|∞ ⩽ |x− z| + |xR − z|∞ ⩽

(
10A
ε

+ 1
2

)
ρ.

So, if we choose B ⩾ 20A
ε + 1, then x ∈ R̂. □

We have already mentioned that the collection Σ is a substitute for Wi,
so it is not surprising that we want to connect nearby cubes in Σ by a
touching chain of cubes (which we allow to be in Σ′) of bounded length.

Lemma 7.5. — There are constants C1 =C1(B, d, ε)> 0, C2 =C2(d, ε)>
0, and C3 = C3(B, d, δ) > 0 such that any pair of cubes R,S ∈ Σ witĥ̂
R∩ ̂̂S ̸= ∅ can be connected by a touching chain of cubes in Σ′ whose length
is controlled by C1, provided that A ⩾ C2 and ρ ⩽ C3.

Proof. — By definition of Σ we can pick x ∈ R∩ Ωm and y ∈ S ∩ Ωℓ. By
assumption we moreover fix ̂̂z ∈ ̂̂R ∩ ̂̂S. Let xR, yS denote the centers of R
and S, then

|x− y| ⩽
√
d
(
|x− xR|∞ + |xR − ̂̂z|∞ + |yS − ̂̂z|∞ + |y − yS |∞

)
⩽

√
d(1 + 2B)ρ.

(7.2)

If we choose ρ ⩽ δ
2

√
d(1+B) , then |x − y| < δ and we can connect x and

y by a curve γ subject to Assumption 2.1. Let z ∈ γ and pick Q ∈ G
such that z ∈ Q. By symmetry we assume without loss of generality that
|x− z| ⩽ |y − z|. This implies, in particular, that |x− y| ⩽ 2|y − z|.

Case 1: |x− z| ⩽ 4
√

d
ε ρ. — Then, since R ∈ Σ, we find Q̃ ∈ W(Γ) with

R ⊆ Q̃ and diam(Q̃) ⩾ Aρ. Using x ∈ R ⊆ Q̃, it follows

d(x,Γ) ⩾ d(Q̃,Γ) ⩾ diam(Q̃) ⩾ Aρ,
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consequently

d(Q,Γ) ⩾ d(x,Γ) − |x− z| − diam(Q) ⩾
(
A− 4

√
d

ε
−

√
d
)
ρ.

We choose A ⩾
√
d(4/ε+ 2) to conclude d(Q,Γ) ⩾ diam(Q), in particular

Q ∈ Σ′.
Case 2: |x− z| > 4

√
d

ε ρ. — We calculate using (CC-Γ)

d(Q,Γ) ⩾ d(z,Γ) − diam(Q) ⩾ ε

2 |x− z| −
√
dρ > diam(Q).

So, as before, Q ∈ Σ′.
Taking (LC) and (7.2) into account, we get length(γ) + diam(Q) ⩽√
d
( 2B+1

ε + 1
)
ρ and Q ⊆ B(x, length(γ) + diam(Q)). By the usual count-

ing argument that we have already used in Lemma 5.7 it follows that the
number of such cubes Q can be bounded by a constant depending only on
B, d, and ε. We select a touching chain out of that collection of cubes to
conclude the proof. □

Remark 7.6. — There is a constant C = C(B, d, ε, s) such that for R,S ∈
Σ as in the foregoing lemma with R∩B2s ̸= ∅ we have that the connecting
chain stays in B̃3s provided ρ ⩽ C. Indeed, let C̃ be the constant C1 from
that lemma with dependence on B, d, and ε. If x is contained in some
cube from the connecting chain between R and S and y ∈ R ∩ B2s, then
d(x, ∂Ω) ⩽ d(y,Γ) + C̃

√
dρ < 2s+ C̃

√
dρ, so the claim follows if we choose

ρ ⩽ s(C̃
√
d)−1.

So far, we have seen that near Γ and away from D we can reasonably
cover the components Ωm. The next two lemmas show that we will not
have to bother with the components Υm.

Lemma 7.7. — There is a constant C = C(B, d, δ, ε, κ) > 0 such that
for any R ∈ Σ with ̂̂R ∩ B2s ̸= ∅ it follows ̂̂R ∩

⋃
m Υm = ∅ provided that

ρ ⩽ C.

Proof. — Assume there exists y ∈ ̂̂R∩ Υm. Furthermore, let x ∈ R∩ Ωℓ.
It holds |x − y| ⩽ 2B

√
dρ, so x and y can be connected by a path in Ξ

subject to Assumption 2.1 if we ensure ρ ⩽ (4
√
dB)−1δ, and its length can

be controlled by length(γ) ⩽ ε−1|x−y| according to (LC). Since x and y are
in different connected components by assumption, there must be a point
z ∈ γ which satisfies z ∈ D. By assumption we may pick some z̃ ∈ ̂̂R∩B2s.
Then

d(x,D) ⩾ d(̂̂R,D) ⩾ d(z̃, D) − diam(̂̂R) > κ/2 − 2B
√
dρ.
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On the other hand,

|x− z| ⩽ length(γ) ⩽ 2B
√
d

ε
ρ.

If we choose ρ ⩽ εκ
16

√
dB

as well as ρ ⩽ κ
8B

√
d
, then we arrive at the contra-

diction

d(x,D) ⩽ |x− z| ⩽ κ

8 <
κ

4 ⩽ d(x,D). □

Lemma 7.8. — Let x ∈ B2s ∩
⋃

m Υm, then x ̸∈ supp(f).

Proof. — Let x ∈ B2s ∩ Υm, then there is y ∈ Γ such that |x− y| < 2s.
Since y ̸∈ Υm, there is z ∈ ∂Υm ⊆ D on the connecting line between x and
y. Thus,

d(x,D) ⩽ |x− z| ⩽ |x− y| < 2s < κ = d(supp(f), D).

Consequently, x ̸∈ supp(f). □

Construction of the approximation and estimates

Let ψ be a cutoff function valued in [0, 1] which is 1 on Bs, supported
in Ns(Bs), and satisfies |∂αψ| ≲ s−|α| for |α| ⩽ k. Moreover, fix an enu-
meration (Rj)j of Σ and let φj be a partition of unity on

⋃
j R̂j with

supp(φj) ⊆ ̂̂
Rj and |∂αφj | ≲ ρ−|α|. The implicit constants depend on α, d,

and B. Note that according to Lemma 7.4 this partition of unity exists in
particular on B2s ∩

⋃
m Ωm.

Now we may construct the approximation g of f for Proposition 7.1.
With Lemma 7.2 in mind, choose t ∈ (0, s/2) small enough that

∥f − E0f ∗ Φt∥Wk,p(Ω\Bs) ⩽ ηsk,(7.3)

where Φt is a mollifier function supported in B(0, t). Recall the notation
for adapted polynomials introduced in Remark 6.4 and put

g1 :=
∑

j

(E0f)Rj
φj , g2 := E0f ∗ Φt, and g := ψg1 + (1 − ψ)g2.

With a further constraint on ρ we see that g1 vanishes near D.

Lemma 7.9. — There exists a constant C = C(d, κ) > 0 such that
d(supp(g1), D) ⩾ 3κ/4, provided ρ ⩽ C.
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Proof. — Let x ∈ Rd with d(x,D) ⩽ 3κ
4 . If x ∈ supp(φj), then fix some

y ∈ Rj . We estimate (with z the center of Rj)

d(y,D) ⩽ |y − z| + |x− z| + d(x,D) ⩽ 1
2

√
dρ+B

√
dρ+ 3κ

4 .

Choose ρ ⩽ κ
4(1+2B)

√
d
, then d(y,D) ⩽ 7

8κ < d(supp(f), D), so y ̸∈ supp(f)
and (f)Rj

= 0 by linearity of the projection. But this means g1(x) = 0. □

Proof of Proposition 7.1. — Assume that all constraints on the param-
eters collected in this section are fulfilled. We split the proof into several
steps.

Step 1: g is well-defined and smooth. — We have already noticed after
the definition of Σ that we can ensure that all its cubes are contained in
Ω0, so the usage of polynomial approximations is justified and yields the
smooth function g1 on Rd. By definition of the mollification, g2 is a smooth
function in Ω\Bs. If x ∈ Ω with d(x,D) ⩽ κ/2, then we get as in Lemma 7.2
that B(x, κ/4) ⊆ B(z, 3κ/4) ⊆ Ω0 for some z ∈ D and E0f vanishes on this
ball, so by definition of the mollification, g2 vanishes in that neighborhood
of D. Together with the knowledge on the support of 1 − ψ we infer that
(1 − ψ)g2 can be extend by zero to a smooth function on Rd.

Step 2: d(supp(g), D) ⩾ κ/2. — First, we have d(supp(g1), D) ⩾ 3κ/4
by Lemma 7.9. On the other hand, we have already noticed in Step 1 that
d(supp(g2), D) ⩾ κ/2, which in total gives a distance of at least κ/2 to D.

Step 3: Split up the terms for estimation. — Let α be some multi-index
with |α| ⩽ k. Then

∂α(f − g) = ∂α(ψ(f − g1)) + ∂α((1 − ψ)(f − g2))

=
∑
β⩽α

cα,β

(
∂α−βψ∂β(f − g1) + ∂α−β(1 − ψ)∂β(f − g2)

)
=:
∑
β⩽α

cα,β(Iα,β + IIα,β).

Clearly, it suffices to estimate for fixed α and β the terms Iα,β and IIα,β

in the Lp(Ω)-norm. The estimate for IIα,β is possible in a uniform man-
ner whereas for Iα,β we will have to carefully consider different relations
between |α|, |β|, and k.

Step 4: Estimate of IIα,β . — Owing to (7.3), this term is under control
on keeping |∂α−β(1 − ψ)| ≲ s−|α−β| ⩽ s−k in mind (recall s < 1).

Step 5: Reduction of the area of integration in Iα,β . — Since the support
of ψ is contained in Ns(Bs), we only have to consider this region. Assume
x ∈ Ns(Bs) \B2s. Then we must have d(x,D) ⩽ κ/2. But in this region f
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and g1 vanish according to the definition of κ and Step 2. So we only have
to deal with B2s. Furthermore, f vanishes on B2s ∩

⋃
m Υm according to

Lemma 7.8 and the same is true for g1 owing to Lemma 7.7. So in summary,
we only need to estimate the term Iα,β on B2s ∩

⋃
m Ωm.

Step 6: Estimate of Iα,β if |β| < |α|. — Since ψ = 1 onBs and |α−β| ≠ 0,
we even only have to estimate the Lp norm over (B2s \Bs)∩

⋃
m Ωm. Write

M for this set. The fact (B2s \Bs)∩Ns(Γ) = ∅ allows us to use Lemma 7.3
to cover M by cubes from Σ to calculate

∥∂α−βψ∂β(f − g1)∥p
Lp(M)

⩽
∑

Rj∈Σ
Rj∩B2s ̸=∅

sp(|β|−|α|)

∥∥∥∥∥∂β

(
f −

∑
Rk∈Σ

ˆ̂
Rk∩Rj ̸=∅

(E0f)Rk
φk

)∥∥∥∥∥
p

Lp(Rj)

.

Using that (φk)k is a partition of unity on Rj , we derive using the Leibniz
rule that on Rj we have

∂β
∑

Rk∈Σ
ˆ̂
Rk∩Rj ̸=∅

(E0f)Rk
φk = ∂β(E0f)Rj + ∂β

∑
Rk∈Σ

ˆ̂
Rk∩Rj ̸=∅

[
(E0f)Rk

− (E0f)Rj

]
φk.

Using Lemma 6.3 we can estimate the norm of ∂β
[
f − (E0f)Rj

]
against

ρk−|β|∥∇kf∥Lp(Rj). From ρ ⩽ s ⩽ 1 we obtain s|β|−|α|ρk−|β| ⩽ 1, so we
infer with (7.1) that∑

Rj∈Σ
Rj∩B2s ̸=∅

sp(|β|−|α|)∥∂β
[
f − (E0f)Rj

]
∥p

Lp(Rj) ≲ ∥∇kf∥p

Lp(B̃3s∩Ω) ⩽ ηp.

For the second term, we first expand using the Leibniz rule to obtain

∂β
∑

Rk∈Σ
ˆ̂
Rk∩Rj ̸=∅

[
(E0f)Rk

− (E0f)Rj

]
φk

=
∑

Rk∈Σ
ˆ̂
Rk∩Rj ̸=∅

∑
γ⩽β

cβ,γ∂
β−γ

[
(E0f)Rk

− (E0f)Rj

]
∂γφk.

According to Lemma 7.5 we can apply Lemma 6.7 to the effect that

∥∂β−γ
[
(E0f)Rk

− (E0f)Rj

]
∥Lp(Rj) ≲ ρk−|β|+|γ|∥∇kf∥Lp(Gj,k),

where Gj,k denotes the connecting chain from Lemma 7.5 between Rj and
Rk. The ρ factor compensates for s|β|−|α| and |∂γφk| as before. The sums
in k and j add up by similar (but simpler) overlap considerations as already
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seen in Section 6 for Fj,k. Finally, since Gj,k stays in B̃3s by Remark 7.6,
we get an estimate against η as was the case for the first term.

Step 7: Estimate of Iα,β if |β| = |α|. — The estimate follows the same
ideas as in Step 6, so we only mention which modifications are needed.

First of all, we have to estimate over the whole B2s ∩
⋃

m Ωm. According
to Lemma 7.4, this set can be covered by the enlarged cubes R̂j . As there
are no derivatives on ψ, this term can be ignored. For the Lp(R̂j) norm of

∂β
∑

Rk∈Σ
ˆ̂
Rk∩Rj ̸=∅

[
(E0f)Rk

− (E0f)Rj

]
φk

we use Lemma 6.2 to estimate

∥∂β−γ
[
(E0f)Rk

− (E0f)Rj

]
∥Lp(R̂j) ≲ ∥∂β−γ

[
(E0f)Rk

− (E0f)Rj

]
∥Lp(Rj),

where the implicit constant introduces a dependence on B (which deter-
mines κ in that lemma). Then this term can be handled as in Step 6.

For the term ∂β
[
f − (E0f)Rj

]
we crudely apply the triangle inequal-

ity. Then we can estimate ∂βf directly with (7.1), and for ∂β(E0f)Rj we
estimate with Lemma 6.2 and Lemma 6.3 that

∥∂β(E0f)Rj
∥Lp(R̂j) ≲ ∥∂β(E0f)Rj

∥Lp(Rj) ≲ ∥∇kf∥Lp(Rj).

Step 8: Approximation by compactly supported functions. — As we
have seen in the previous steps, g is an approximation to f that satisfies
all properties but the compact support. But if we multiply g with a cutoff
ψn from B(0, n) to B(0, 2n) then this sequence does the job. □

8. Conclusion of the proof of Theorem 1.2

First, we show that the extension of a compactly supported function in
C∞

D (Rd) ∩ Wk,p(Ω) constructed in Section 6 is weakly differentiable up to
order k. More precisely, we show this for the larger class C∞

D (Rd)∩Wk,∞(Ω),
which makes this result also applicable for Section 9. Clearly, compactly
supported functions in C∞

D (Rd) ∩ Wk,p(Ω) belong to this class, though the
inclusion is not topological. Combined with the exterior estimates from
Proposition 6.11 and the density result from Section 7, this allows us to
conclude Theorem 1.2.

Proposition 8.1. — Let f ∈ C∞
D (Rd) ∩ Wk,∞(Ω) and |α| ⩽ k − 1,

then ∂αEf exists on Rd in the weak sense and has a Lipschitz continuous
representative gα which satisfies d(supp(gα), D) > 0.
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Proof. — Fix an extension F ∈ C∞
D (Rd) of f . We show the claim by

induction over |α|. By Proposition 6.11, Ef is well-defined and bounded.
Now assume that |α| < k and ∂αEf is well-defined and bounded. It suffices
to show that ∂αEf is given by a Lipschitz function. To this end, define gα

to equal ∂αF on Ω and ∂αEf otherwise. We proceed in two steps.
Step 1: gα is a representative of ∂αEf . — That gα and ∂αEf coincide

on Ω ∪ Ωc is by definition. It follows from Remark 6.6 that ∂αEf vanishes
on D. The same is true for F by assumption. Consequently, Lemma 5.1
reveals that gα is a representative of ∂αEf .

Step 2: gα is Lipschitz continuous. — By assumption, gα is Lipschitz on
Ω. Furthermore, gα is smooth on Ωc and its gradient is bounded according
to Proposition 6.11. Hence, gα is Lipschitz on any line segment contained
in the exterior of Ω. The claim follows if we show that gα is continuous
on ∂Ω. This is already established around D, so it only remains to show
continuity in x ∈ Γ with d(x,D) > 0.

Clearly, it suffices to consider y ∈ Ωc close to x to show continuity.
Moreover, using the positive distance of x to D, we may assume using
Lemma 5.5 that y ∈ Qj for some cube Qj ∈ We and that Q∗

j ⊆ Ω. Write yj

for the center of Qj . Fix some cube R which contains Qj and Q∗
j with size

comparable to Q∗
j . Also, note that Ef(z) = (EQ∗

j
f)Q∗

j
(z) in a neighborhood

of yj by choice of the partition of unity used in the construction of E, and
that EQ∗

j
f = F on Q∗

j since Q∗
j is properly contained in Ω. Then

|gα(x) − gα(y)|

⩽ |∂αF (x) − ∂αF (yj)| + |∂αF (yj) − ∂α(EQ∗
j
f)Q∗

j
(yj)|

+ |∂αEf(yj) − ∂αEf(y)|

⩽ ∥∂αF∥Lip(Rd)|x− yj | + ∥∂α
(
F − (F )Q∗

j

)
∥L∞(R)

+ ∥∂αEf∥Lip(Qj) diam(Qj).

Clearly, the first and the last term tend to zero when y approaches x.
Finally, we estimate the second term using Corollary 6.5 to get decay of
order diam(R) ≈ diam(Qj). Hence, gα is indeed continuous in x. □

We are now in the position to prove Theorem 1.2.
Proof of Theorem 1.2. — Let f ∈ C∞

D (Rd) ∩ Wk,p(Ω) with compact
support. First, we treat the trivial case Ω = Rd. In this situation, we
extend f to D by zero. This is a representative according to Lemma 5.1, it
is weakly differentiable of all orders by assumption on f , and the extension
is isometric with respect to the norm of Wk,p(Ω). Hence, this case can be
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completed by continuity, compare with the conclusion of the general case
below.

Otherwise, derive from Proposition 8.1 that Ef has weak derivates up
to order k and satisfies d(supp(Ef), D) > 0. From the latter follows in
particular that ∂αEf vanishes in D. Proposition 6.11 yields the desired
estimate on Rd \ Ω. Taking Lemma 5.1 into account, these estimates sum
up to an estimate that holds almost everywhere on Rd \Ω, which completes
the boundedness assertion.

Because we have the positive distance of the support of Ef to D, a
convolution argument shows that moreover Ef ∈ Wk,p

D (Rd). Finally, we
can extend E by density to Wk,p

D (Ω) using the definition of that space and
the density of C∞

D (Rd) ∩ Wk,p(Ω) shown in Section 7. □

9. Some additional first-order results

9.1. Extension of Lipschitz functions vanishing on D

Definition 9.1. — Let Ω ⊆ Rd be open and let D ⊆ Ω be closed. The
space of Lipschitz continuous functions that vanish on D is given by

LipD(Ω) := {u : Ω −→ R : u Lipschitz and u = 0 on D}

with norm
∥u∥LipD(Ω) := max(∥u∥L∞(Ω), |u|Lip(Ω)).

Here, |u|Lip(Ω) is defined as

|u|Lip(Ω) := sup
x,y∈Ω
x ̸=y

|u(x) − u(y)|
|x− y|

.

The following approximation lemma for functions in LipD(Ω) is a modi-
fied version of an argument of Stein [22, p. 188] and is used as a substitute
for the result from Section 7 in the case p < ∞.

Lemma 9.2. — Let f ∈ LipD(Ω). Then there exists a bounded sequence
(fn)n ⊆ C∞

D (Rd)∩W1,∞(Ω) that converges to f in L∞(Ω) and satisfies the
estimate ∥fn∥Lip(Ω) ≲ ∥f∥Lip(Ω), where the implicit constant only depends
on d.

Proof. — It suffices to show the claim for functions defined on Rd since by
Whitney’s extension theorem [14, Theorem 3.1.1] there exists an extension
F ∈ LipD(Rd) of f that satisfies ∥F∥Lip(Rd) ≲ ∥f∥Lip(Ω), where the implicit
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constant depends only on the dimension d. For convenience, we drop Rd in
the notation of function spaces for the rest of this proof.

Pick a family of functions φn : [0,∞) → [0, 1] satisfying for y ⩾ x > 0
(i) φn = 0 on [0, 1/n)
(ii) φn = 1 on (2/n,∞)
(iii) |φn(x) − φn(y)| ≲ 1

x |x− y|,
for an explicit construction see [18, Theorem 3.7]. Put ψn(x) := φn(dD(x)).
By construction, ψn vanishes around D and, by Lipschitz continuity of the
distance function, (iii) yields for x, y ∈ Rd with dD(x) ⩽ dD(y)

|ψn(x) − ψn(y)| ≲ dD(x)−1|x− y|.(9.1)

It suffices to show that there is a sequence of Lipschitz functions whose
supports have positive distance to D which fulfill all claims but smoothness,
since then we can conclude using mollification. Note that the mollified
sequence converges in L∞ because we have Lipschitz continuity.

In this light, define the sequence of functions fn := ψnf . Clearly, these
functions are Lipschitz, and their supports stay away from D because ψn

has this property. Next, we show that fn converges to f in L∞. To this
end, let x ∈ Rd and pick z ∈ D satisfying |x− z| = dD(x). Since f(z) = 0,
we get

|f(x) − fn(x)| = (1 − ψn(x))|f(x) − f(z)| ⩽ ∥f∥Lip(1 − ψn(x)) dD(x).

By definition of ψn, (1 − ψn(x)) dD(x) ⩽ 2/n. Consequently, it follows
|f(x) − fn(x)| → 0 uniformly in x.

It remains to show that the Lipschitz seminorms of fn can be estimated
against ∥f∥Lip. The argument uses the same trick using an element from D

as we have just seen. So, let x, y ∈ Rd\D. Assume without loss of generality
that dD(x) ⩽ dD(y) and let z realize the distance from x to D. Using (9.1),
we obtain

|fn(x) − fn(y)| ⩽ |f(x) − f(y)|ψn(y) + |f(x)||ψn(x) − ψn(y)|

≲ ∥f∥Lip|x− y| + |f(x) − f(z)| dD(x)−1|x− y|.

The first term is fine and for the second we notice that

|f(x) − f(z)| ⩽ ∥f∥Lip|x− z| = ∥f∥Lip dD(x). □

Theorem 9.3. — Let Ω ⊆ Rd be an open set and let D ⊆ Ω be closed
such that Ω and D are subject to Assumption 2.1. Then there exists an
extension operator E which is bounded from W1,p

D (Ω) to W1,p
D (Rd) for all

1 ⩽ p < ∞ and from LipD(Ω) to LipD(Rd).
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Proof. — Write E for the extension operator constructed in Section 6 for
the case k = 1. The boundedness on W1,p

D (Ω) is the content of Theorem 1.2.
Now, let f ∈ LipD(Ω) and let (φn)n be the approximation in C∞

D (Rd) ∩
W1,∞(Ω) constructed in Lemma 9.2. According to Proposition 6.11 we have
L∞ bounds for E on φn. In particular, this shows the L∞(Rd) bound for
E on f . Moreover, this permits us to calculate for almost every x, y ∈ Rd

that

|Ef(x) − Ef(y)| = lim
n→∞

|Eφn(x) − Eφn(y)|.

By Proposition 8.1, Eφn is Lipschitz and hence

lim
n→∞

|Eφn(x) − Eφn(y)| ⩽ lim inf
n→∞

∥∇Eφn∥L∞(Rd)|x− y|.

Proceeding by Proposition 6.11 and Lemma 9.2, we obtain

lim inf
n→∞

∥∇Eφn∥L∞(Rd) ≲ lim inf
n→∞

∥φn∥W1,∞(Ω) ≲ ∥f∥Lip(Ω).

So, Ef satisfies a Lipschitz estimate against ∥f∥Lip(Ω) almost everywhere.
Hence, Ef possesses a representative which is Lipschitz on Rd and satisfies
the boundedness estimate. □

Remark 9.4. — If one is merely interested in extending functions in
LipD(Ω) to Rd, this is possible without any geometric quality using for
example an extension operator of Whitney type [22, p. 174]. However, this
operator is not an extension operator in the sense of Definition 1.1 and in
particular does not extend to a consistent extension operator on the spaces
W1,p

D (Ω) in this general situation.

9.2. An extension using reference geometries

As a corollary, we obtain the existence of an extension operator on even
more general but very inexplicit geometries.

Corollary 9.5. — Let Ω ⊆ Rd be open, D ⊆ ∂Ω be closed, and define
Γ := ∂Ω \ D. Further, assume that there exists a proper open superset
ΩΓ ⊃ Ω such that Γ is contained in ∂ΩΓ and is relatively open with respect
to ∂ΩΓ. Finally, assume that ΩΓ and D′ := ∂ΩΓ \Γ satisfy Assumption 2.1.
Then there exists an extension operator E that restricts to a bounded
operator from Lp(Ω) to Lp(Rd) as well as from W1,p

D (Ω) to W1,p
D (Rd) in the

case 1 ⩽ p < ∞, and which restricts to a bounded operator from L∞(Ω)
to L∞(Rd) as well as from LipD(Ω) to LipD(Rd). The operator norms of
E only depend on d, p, K, ε, δ, and λ. Here, the quantities K, ε, δ, and λ

are measured with respect to ΩΓ.
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Proof. — Throughout this proof, let ε, δ > 0 be the parameters from
Assumption 2.1 with respect to ΩΓ and D′.

Let E0 be the operator that extends functions by zero from Ω to ΩΓ, and
let EΓ denote the extension operator constructed for ΩΓ in Theorem 1.2
for k = 1. We claim that E := EΓ ◦ E0 is the desired extension operator.
We proceed in several steps.

Step 1: E is Lp bounded for 1 ⩽ p ⩽ ∞. — The respective estimate for
E0 is clear by construction. The same is true for EΓ by Theorem 1.2 in the
case p < ∞. Owing to Remark 6.6, the Lp-estimates for EΓ also hold in
the case p = ∞. Hence, the claim follows by composition.

Step 2: E0 maps LipD(Ω) boundedly into LipD′(ΩΓ). Let f ∈ LipD(Ω).

Claim 1: E0f is Lipschitz continuous on ΩΓ. — It suffices to consider
x ∈ Ω and y ∈ ΩΓ \Ω with |x−y| < δ. Let γ be the path connecting x with
y subject to Assumption 2.1. By virtue of (CC-Γ) and the intermediate
value theorem there exists z ∈ γ ∩ D. Now, by Lipschitz continuity of f ,
the fact that f vanishes on D, and by (LC) one estimates

|E0f(x) − E0f(y)| = |f(x) − f(z)| ⩽ |f |Lip(Ω)|x− z|(9.2)

⩽
|f |Lip(Ω)

ε
|x− y|.

Claim 2: E0f vanishes on D′. Let x ∈ D′. — If x ∈ ∂Ω, then x ∈ D

since x ̸∈ Γ by definition of D′. Hence, E0f(x) = f(x) = 0 by choice of f .
Otherwise, there is a ball B around x that avoids Ω. Choose a sequence xn

in B ∩ ΩΓ that approaches x, by construction of E0f and continuity shown
in Step 1 we conclude that E0f vanishes in x.

Claim 3: E0 is bounded. — The crucial estimate was shown in (9.2).

Step 3: E0 maps W1,p
D (Ω) boundedly into W1,p

D′ (ΩΓ) for 1 ⩽ p < ∞. —
Let f ∈ W1,p

D (Ω) and pick an approximating sequence (fn)n ⊆ C∞
D (Ω) ∩

W1,p(Ω), which exists by definition of the space. Since f vanishes around
D, E0fn is weakly differentiable on ΩΓ with ∇E0fn = E0∇fn almost ev-
erywhere. Therefore,

∥E0fn∥W1,p(ΩΓ) = ∥fn∥W1,p(Ω),

which yields that there exists g ∈ W1,p(ΩΓ) such that a subsequence E0fnj

converges weakly to g in W1,p(ΩΓ). By the Lp-continuity of E0 we conclude
that E0f coincides with g. Finally, E0f belongs to W1,p

D′ (ΩΓ) by construc-
tion.
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Step 4: E is bounded in W1,p
D (Ω) for 1 ⩽ p < ∞ and LipD(Ω). — This

follows by composition using Steps 2 or 3 together with Theorem 9.3 or
Theorem 1.2. □

Remarks 9.6.
(1) Notice that Assumption 2.1 is an explicit assumption that uses only

information on points in Ω. To the contrary of that, the geometry
described in Corollary 9.5 has an inexplicit nature, as it is a priori
not clear how to construct such a set ΩΓ. However, there are im-
portant examples where this condition can be checked in the “blink
of an eye”, see Example 9.7 below.

(2) We suggest that a similar result holds in the higher-order case using
an induction similar to that in Proposition 8.1. Moreover, a more
involved approximation procedure than our truncation method em-
ployed at the end of Step 3 would be needed.

Example 9.7 (Exterior boundary cusps at zero or at infinity). — Let Ω be
a domain that has an exterior boundary cusp either at zero or at infinity, as
it is informally depicted in Figure 9.1. In this case, Ω is an W1,p

D -extension
domain as a simple reflection argument shows. However, it is not so clear if
it satisfies Assumption 2.1. Nevertheless, it is simple to verify the validity
of the geometric setting stated in Corollary 9.5. Indeed, simply take as ΩΓ
the lower half-space and notice that the parameter K in Assumption 2.1
can be set to zero because it is already an (ε, δ)-domain.

We can even go further and extend the geometric setting from Exam-
ple 3.5 to the following one (see Figure 9.1).

y

xΓ

D

Ω

y

xΓ

D

Ω

θ

y

x

Tθ

Γ
D

Ω

Figure 9.1. Situations in Example 9.7.

Let θ ∈ (0, π) and let Sθ ⊆ R2 denote the open sector symmetric about
the positive x-axis with opening angle 2θ. Define Tθ := Sθ ∩ {(x, y) ∈ R2 :
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y > 0}. Let Ω ⊆ R2 be a domain satisfying Tθ ⊆ Ωc and define

Γ := (0,∞) × {0} and D := ∂Ω \ Γ.

Assume further, that Ω is such that D is closed (this avoids that D touches
Γ from below). To apply Corollary 9.5 take ΩΓ := (Tθ)c. As this is an
(ε, δ)-domain, it satisfies Assumption 2.1 with K = 0.

10. Homogeneous estimates

We provide further estimates for the extension operator from Theo-
rem 1.2 which concern homogeneous estimates and locality (see Defini-
tion 10.1 for a proper definition). These results build on the observations
made in Remark 6.12.

Definition 10.1. — An extension operator E on Wk,p
D (Ω) is called local

if there exist constants r0, κ > 0 such that
∥∇ℓEf∥Lp(B(x,r)) ≲ ∥f∥Wk,p(Ω∩B(x,κr))

for all x ∈ ∂Ω, r ∈ (0, r0), and ℓ ⩽ k. Moreover, call E homogeneous if one
can replace the right-hand side of that estimate by ∥∇ℓf∥Lp(Ω∩B(x,κr)).

To verify that E is local, we choose G = B(x, r) in Remark 6.12 and let
Qj ∈ We with Qj ∩ B(x, r) ̸= ∅. On using (5.3), (5.4), the bound on the
chain length from Lemmas 5.8 as well as the properties of Whitney cubes,
we see that F (Qj) is contained in the ball B(x, κr) for some κ depending
only on ε, d, K, and λ (as before, an analogous version for FP (Q) holds
on using Lemma 5.9 instead of Lemma 5.8 and a similar reasoning). So,
with H = B(x, κr) we derive locality from Remark 6.12 with r0 = ∞. If we
restrict to r0 = Aδ, the same remark also yields that E is homogeneous.
Note that in the case of δ = ∞ this restriction is void. We summarize this
result in the following theorem.

Theorem 10.2. — Let Ω ⊆ Rd be open and D ⊆ ∂Ω be closed such
that Ω and D are subject to Assumption 2.1, and fix some integer k ⩾ 0.
Then there exist A, κ > 0 and an extension operator E such that for all
1 ⩽ p < ∞ one has that E restricts to a bounded mapping from Wk,p

D (Ω)
to Wk,p

D (Rd) and which is moreover homogeneous and local, that is, the
estimate

∥∇ℓEf∥Lp(B(x,r)) ≲ ∥∇ℓf∥Lp(B(x,κr)∩Ω)

holds for f ∈ Wk,p
D (Ω), ℓ ⩽ k, x ∈ ∂Ω, and r ∈ (0, Aδ). The implicit

constant in that estimate depends on d, p, K, k, ε, δ, and λ.
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