[Chaînes d’espaces de Hilbert à noyau reproduisant générés par des fonctions unimodulaires]
Nous présentons une méthode pour construire une chaîne d’espaces de Hilbert à noyau reproduisant contrôlés par un système d’équations différentielles du premier ordre à partir d’une fonction unimodulaire donnée satisfaisant plusieurs conditions. L’une des applications de cette méthode est une solution conditionnelle mais richement générale au problème inverse de la récupération de l’hamiltonien de structure à partir d’un espace de Branges donné.
We present a method to construct a chain of reproducing kernel Hilbert spaces controlled by a first-order system of differential equations from a given unimodular function satisfying several conditions. One of the applications of that method is a conditional but richly general solution to the inverse problem of recovering the structure Hamiltonian from a given de Branges space.
Révisé le :
Accepté le :
Première publication :
Keywords: de Branges spaces, inverse problem, structure Hamiltonians, reproducing kernel Hilbert spaces, unimodular functions
Mots-clés : espaces de Branges, problème inverse, Hamiltoniens de structure, espaces de Hilbert à noyau reproduisant, fonctions unimodulaires
Suzuki, Masatoshi 1
@unpublished{AIF_0__0_0_A128_0, author = {Suzuki, Masatoshi}, title = {Chains of reproducing kernel {Hilbert} spaces generated by unimodular functions}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3705}, language = {en}, note = {Online first}, }
Suzuki, Masatoshi. Chains of reproducing kernel Hilbert spaces generated by unimodular functions. Annales de l'Institut Fourier, Online first, 46 p.
[1] Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal., Volume 259 (2010) no. 10, pp. 2673-2701 | DOI | MR | Zbl
[2] Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1968 | MR | Zbl
[3] Scattering, determinants, hyperfunctions in relation to (2008) (http://arxiv.org/abs/math/0602425)
[4] A survey of some recent results on truncated Toeplitz operators, Recent progress on operator theory and approximation in spaces of analytic functions (Contemporary Mathematics), Volume 679, American Mathematical Society, 2016, pp. 59-77 | DOI | MR | Zbl
[5] Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, 31, Academic Press Inc., 1976 | MR | Zbl
[6] Introduction to model spaces and their operators, Cambridge Studies in Advanced Mathematics, 148, Cambridge University Press, 2016 | DOI | MR | Zbl
[7] Admissible majorants for model subspaces of . I. Slow winding of the generating inner function, Can. J. Math., Volume 55 (2003) no. 6, pp. 1231-1263 | DOI | MR | Zbl
[8] Real linear operator theory and its applications, Integral Equations Oper. Theory, Volume 69 (2011) no. 1, pp. 113-132 | DOI | MR | Zbl
[9] The spectral theory of a string, Ukraïn. Mat. Zh., Volume 46 (1994) no. 3, pp. 155-176 | DOI | MR | Zbl
[10] On a method of effective solution of an inverse boundary problem, Dokl. Akad. Nauk SSSR, n. Ser., Volume 94 (1954), pp. 987-990 | MR | Zbl
[11] On integral equations generating differential equations of 2nd order, Dokl. Akad. Nauk SSSR, n. Ser., Volume 97 (1954), pp. 21-24 | MR | Zbl
[12] On some continuation problems which are closely related to the theory of operators in spaces . IV. Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions, J. Oper. Theory, Volume 13 (1985) no. 2, pp. 299-417 | MR | Zbl
[13] Direct and inverse spectral problems for generalized strings, Integral Equations Oper. Theory, Volume 30 (1998) no. 4, pp. 409-431 dedicated to the memory of Mark Grigorievich Krein (1907–1989) | DOI | MR | Zbl
[14] Chains of non-regular de Branges spaces, Ph. D. Thesis, California Institute of Technology, Pasadena, California, USA (2015)
[15] Fourier spectrum characterization of Hardy spaces and applications, Proc. Am. Math. Soc., Volume 137 (2009) no. 3, pp. 971-980 | DOI | MR | Zbl
[16] Canonical systems with discrete spectrum, J. Funct. Anal., Volume 278 (2020) no. 4, 108318 | DOI | MR | Zbl
[17] Integrals and orders of growth of distributions, Theory of Distributions (Proc. Internat. Summer Inst., Lisbon, 1964), Inst. Gulbenkian de Ciência, Centro de Cálculo Científico, Lisbon (1964), pp. 327-390 | MR
[18] An inverse problem for a class of canonical systems and its applications to self-reciprocal polynomials, J. Anal. Math., Volume 136 (2018) no. 1, pp. 273-340 | DOI | MR | Zbl
[19] Integral operators arising from the Riemann zeta function, Various aspects of multiple zeta functions – in honor of Professor Kohji Matsumoto’s 60th birthday (Advanced Studies in Pure Mathematics), Volume 84, Mathematical Society of Japan, 2020, pp. 399-411 | DOI | MR | Zbl
[20] An inverse problem for a class of canonical systems having Hamiltonians of determinant one, J. Funct. Anal., Volume 279 (2020) no. 12, 108699 | DOI | MR | Zbl
[21] Hamiltonians arising from -functions in the Selberg class, J. Funct. Anal., Volume 281 (2021) no. 8, 109116 | DOI | MR | Zbl
[22] An inverse problem for a class of lacunary canonical systems with diagonal Hamiltonian, Tôhoku Math. J., Volume 74 (2022) no. 4, pp. 549-568 | DOI | MR | Zbl
[23] Interpretation of the Schur-Cohn test in terms of canonical systems, Michigan Math. J., Volume 74 (2024) no. 3, pp. 617-657 | DOI | MR | Zbl
[24] Anti- (conjugate) linearity, Sci. China Phys. Mech. Astron., Volume 59 (2016), 630301 | DOI
[25] De Branges spaces and growth aspects, Operator Theory (Alpay, D., ed.), Springer, 2015, pp. 489-523 | DOI | Zbl
Cité par Sources :