Chains of reproducing kernel Hilbert spaces generated by unimodular functions
[Chaînes d’espaces de Hilbert à noyau reproduisant générés par des fonctions unimodulaires]
Annales de l'Institut Fourier, Online first, 46 p.

Nous présentons une méthode pour construire une chaîne d’espaces de Hilbert à noyau reproduisant contrôlés par un système d’équations différentielles du premier ordre à partir d’une fonction unimodulaire donnée satisfaisant plusieurs conditions. L’une des applications de cette méthode est une solution conditionnelle mais richement générale au problème inverse de la récupération de l’hamiltonien de structure à partir d’un espace de Branges donné.

We present a method to construct a chain of reproducing kernel Hilbert spaces controlled by a first-order system of differential equations from a given unimodular function satisfying several conditions. One of the applications of that method is a conditional but richly general solution to the inverse problem of recovering the structure Hamiltonian from a given de Branges space.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3705
Classification : 34A55, 31A10, 34L40, 47B35
Keywords: de Branges spaces, inverse problem, structure Hamiltonians, reproducing kernel Hilbert spaces, unimodular functions
Mots-clés : espaces de Branges, problème inverse, Hamiltoniens de structure, espaces de Hilbert à noyau reproduisant, fonctions unimodulaires

Suzuki, Masatoshi 1

1 Department of Mathematics, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
@unpublished{AIF_0__0_0_A128_0,
     author = {Suzuki, Masatoshi},
     title = {Chains of reproducing kernel {Hilbert} spaces generated by unimodular functions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3705},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Suzuki, Masatoshi
TI  - Chains of reproducing kernel Hilbert spaces generated by unimodular functions
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3705
LA  - en
ID  - AIF_0__0_0_A128_0
ER  - 
%0 Unpublished Work
%A Suzuki, Masatoshi
%T Chains of reproducing kernel Hilbert spaces generated by unimodular functions
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3705
%G en
%F AIF_0__0_0_A128_0
Suzuki, Masatoshi. Chains of reproducing kernel Hilbert spaces generated by unimodular functions. Annales de l'Institut Fourier, Online first, 46 p.

[1] Baranov, Anton; Chalendar, Isabelle; Fricain, Emmanuel; Mashreghi, Javad; Timotin, Dan Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal., Volume 259 (2010) no. 10, pp. 2673-2701 | DOI | MR | Zbl

[2] de Branges, Louis Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1968 | MR | Zbl

[3] Burnol, Jean-François Scattering, determinants, hyperfunctions in relation to Γ(1-s)/Γ(s) (2008) (http://arxiv.org/abs/math/0602425)

[4] Chalendar, Isabelle; Fricain, Emmanuel; Timotin, Dan A survey of some recent results on truncated Toeplitz operators, Recent progress on operator theory and approximation in spaces of analytic functions (Contemporary Mathematics), Volume 679, American Mathematical Society, 2016, pp. 59-77 | DOI | MR | Zbl

[5] Dym, Harry; McKean, Henry P. Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, 31, Academic Press Inc., 1976 | MR | Zbl

[6] Garcia, Stephan Ramon; Mashreghi, Javad; Ross, William T. Introduction to model spaces and their operators, Cambridge Studies in Advanced Mathematics, 148, Cambridge University Press, 2016 | DOI | MR | Zbl

[7] Havin, Victor; Mashreghi, Javad Admissible majorants for model subspaces of H 2 . I. Slow winding of the generating inner function, Can. J. Math., Volume 55 (2003) no. 6, pp. 1231-1263 | DOI | MR | Zbl

[8] Huhtanen, Marko; Ruotsalainen, Santtu Real linear operator theory and its applications, Integral Equations Oper. Theory, Volume 69 (2011) no. 1, pp. 113-132 | DOI | MR | Zbl

[9] Kats, I. S. The spectral theory of a string, Ukraïn. Mat. Zh., Volume 46 (1994) no. 3, pp. 155-176 | DOI | MR | Zbl

[10] Kreĭn, Mark G. On a method of effective solution of an inverse boundary problem, Dokl. Akad. Nauk SSSR, n. Ser., Volume 94 (1954), pp. 987-990 | MR | Zbl

[11] Kreĭn, Mark G. On integral equations generating differential equations of 2nd order, Dokl. Akad. Nauk SSSR, n. Ser., Volume 97 (1954), pp. 21-24 | MR | Zbl

[12] Kreĭn, Mark G.; Langer, Heinz On some continuation problems which are closely related to the theory of operators in spaces Π κ . IV. Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions, J. Oper. Theory, Volume 13 (1985) no. 2, pp. 299-417 | MR | Zbl

[13] Langer, Heinz; Winkler, Henrik Direct and inverse spectral problems for generalized strings, Integral Equations Oper. Theory, Volume 30 (1998) no. 4, pp. 409-431 dedicated to the memory of Mark Grigorievich Krein (1907–1989) | DOI | MR | Zbl

[14] Linghu, D. Chains of non-regular de Branges spaces, Ph. D. Thesis, California Institute of Technology, Pasadena, California, USA (2015)

[15] Qian, Tao; Xu, Yuesheng; Yan, Dunyan; Yan, Lixin; Yu, Bo Fourier spectrum characterization of Hardy spaces and applications, Proc. Am. Math. Soc., Volume 137 (2009) no. 3, pp. 971-980 | DOI | MR | Zbl

[16] Romanov, Roman; Woracek, Harald Canonical systems with discrete spectrum, J. Funct. Anal., Volume 278 (2020) no. 4, 108318 | DOI | MR | Zbl

[17] Sebastião e Silva, José Integrals and orders of growth of distributions, Theory of Distributions (Proc. Internat. Summer Inst., Lisbon, 1964), Inst. Gulbenkian de Ciência, Centro de Cálculo Científico, Lisbon (1964), pp. 327-390 | MR

[18] Suzuki, Masatoshi An inverse problem for a class of canonical systems and its applications to self-reciprocal polynomials, J. Anal. Math., Volume 136 (2018) no. 1, pp. 273-340 | DOI | MR | Zbl

[19] Suzuki, Masatoshi Integral operators arising from the Riemann zeta function, Various aspects of multiple zeta functions – in honor of Professor Kohji Matsumoto’s 60th birthday (Advanced Studies in Pure Mathematics), Volume 84, Mathematical Society of Japan, 2020, pp. 399-411 | DOI | MR | Zbl

[20] Suzuki, Masatoshi An inverse problem for a class of canonical systems having Hamiltonians of determinant one, J. Funct. Anal., Volume 279 (2020) no. 12, 108699 | DOI | MR | Zbl

[21] Suzuki, Masatoshi Hamiltonians arising from L-functions in the Selberg class, J. Funct. Anal., Volume 281 (2021) no. 8, 109116 | DOI | MR | Zbl

[22] Suzuki, Masatoshi An inverse problem for a class of lacunary canonical systems with diagonal Hamiltonian, Tôhoku Math. J., Volume 74 (2022) no. 4, pp. 549-568 | DOI | MR | Zbl

[23] Suzuki, Masatoshi Interpretation of the Schur-Cohn test in terms of canonical systems, Michigan Math. J., Volume 74 (2024) no. 3, pp. 617-657 | DOI | MR | Zbl

[24] Uhlmann, Armin Anti- (conjugate) linearity, Sci. China Phys. Mech. Astron., Volume 59 (2016), 630301 | DOI

[25] Woracek, Harald De Branges spaces and growth aspects, Operator Theory (Alpay, D., ed.), Springer, 2015, pp. 489-523 | DOI | Zbl

Cité par Sources :