[Sur la cohomologie d’Orlicz asymptotique et continue des groupes]
On généralise quelques résultats sur la cohomologie asymptotique et continue des groupes à la cohomologie d’Orlicz. En particulier, on montre que la cohomologie d’Orlicz asymptotique est invariante sous quasi-isométries et que les deux notions coïncident dans le cas des groupes localement compacts à base dénombrable d’ouverts. Le cas de degré est étudié plus en détail.
We generalize some results on asymptotic and continuous group -cohomology to Orlicz cohomology. In particular, we show that asymptotic Orlicz cohomology is a quasi-isometry invariant and that both notions coincide in the case of a locally compact second countable group. The case of degree is studied in more detail.
Révisé le :
Accepté le :
Première publication :
Keywords: Orlicz cohomology, quasi-isometry invariance, topological group
Mots-clés : Cohomologie d’Orlicz, invariance sous quasi-isométies, groupe topologique
Kopylov, Yaroslav 1 ; Sequeira, Emiliano 2
@unpublished{AIF_0__0_0_A137_0, author = {Kopylov, Yaroslav and Sequeira, Emiliano}, title = {On asymptotic and continuous group {Orlicz} cohomology}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3704}, language = {en}, note = {Online first}, }
Kopylov, Yaroslav; Sequeira, Emiliano. On asymptotic and continuous group Orlicz cohomology. Annales de l'Institut Fourier, Online first, 44 p.
[1] Elliptic operators, discrete groups and Von Neumann algebras, Colloque “Analyse et Topologie” en l’honneur de Henri Cartan (Astérisque), Volume 32-33, Société Mathématique de France, 1976, pp. 43-72 | Numdam | Zbl
[2] Sur la cohomologie continue des groupes localement compacts, Ann. Sci. Éc.Norm. Sup. (4), Volume 12 (1979) no. 2, pp. 137-168 | DOI | Numdam | MR | Zbl
[3] Vanishing and non-vanishing for the first -cohomology of groups, Comment. Math. Helv., Volume 80 (2005) no. 2, pp. 377-389 | DOI | MR | Zbl
[4] Cohomologie et espaces de Besov., J. Reine Angew. Math., Volume 558 (2003), pp. 85-108 | DOI | MR | Zbl
[5] Quasi-isometric invariance of continuous group -cohomology, and first applications to vanishings, Ann. Henri Lebesgue, Volume 3 (2020), pp. 1291-1326 | DOI | MR | Zbl
[6] Non-vanishing for group -cohomology of solvable and semisimple Lie groups, J. Éc. Polytech., Math., Volume 10 (2023), pp. 771-814 | DOI | MR | Zbl
[7] Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | DOI | MR | Zbl
[8] Orlicz spaces and the large scale geometry of Heintze groups, Math. Ann., Volume 368 (2016), pp. 433-481 | DOI | Zbl
[9] Metric Geometry of Locally Gompact Groups, EMS Tracts in Mathematics, 25, European Mathematical Society, 2016 | DOI | MR | Zbl
[10] Contracting automorphisms and -cohomology in degree one., Ark. Mat., Volume 49 (2011) no. 2, pp. 295-324 | DOI | MR | Zbl
[11] Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28, Society for Industrial and Applied Mathematics, Philadelphia, 1999 | DOI | Zbl
[12] The -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata, Volume 8 (1997), pp. 263-279 | DOI | MR | Zbl
[13] Coarse cohomology and -cohomology, -Theory, Volume 13 (1998) no. 1, pp. 1-22 | DOI | MR | Zbl
[14] Scaled Alexander–Spanier Cohomology and -Cohomology for Metric Spaces, Ph. D. Thesis, EPFL, Lausanne, Suisse (2014) (Thesis no. 6330)
[15] Sur les Groupes Hyperboliques d’après Mikhael Gromov, Progress in Mathematics, 83, Birkhäuser, 1990 | DOI | Zbl
[16] Uniform Fréchet Algebras, North-Holland Mathematics Studies, 162, North-Holland, 1990 | MR | Zbl
[17] Some calculations of Orlicz cohomology and Poincaré–Sobolev–Orlicz inequalities, Sib. Èlektron. Mat. Izv., Volume 16 (2019), pp. 1079-1090 | DOI | Zbl
[18] Differential forms on Lipschitz manifolds, Sib. Math. J., Volume 23 (1982) no. 2, pp. 151-161 | DOI | Zbl
[19] Integration of differential forms of the classes , Sib. Math. J., Volume 23 (1982) no. 5, pp. 640-653 | DOI | Zbl
[20] Geometric group theory. Volume 2: Asymtotic Invariants for Infinite Groups, London Mathematical Society Lecture Note Series, 182, Cambridge University Press, 1993 (edited by G. A. Niblo and M. A. Roller) | Zbl
[21] Cohomologie des Groupes Topologiques et des Algèbres de Lie, Textes mathématiques, 2, CEDIC; Fernand Nathan, 1980 | MR | Zbl
[22] Lectures on Analysis on Metric Spaces, Universitext, Springer, 2001 | DOI | MR | Zbl
[23] On homogeneous manifolds of negative curvature, Math. Ann., Volume 211 (1974), pp. 23-34 | DOI | MR | Zbl
[24] Amenability of closed subgroups and Orlicz spaces, Sib. Èlektron. Mat. Izv., Volume 10 (2013), pp. 583-590 | DOI | MR | Zbl
[25] -harmonic functions on discrete groups and the first -cohomology, Sib. Math. J., Volume 55 (2014), pp. 904-914 | DOI | Zbl
[26] Conformal Dimension: Theory and Application, University Lecture Series, 54, American Mathematical Society, 2010 | MR | Zbl
[27] On the first -cohomology of discrete groups, Groups Geom. Dyn., Volume 1 (2007) no. 1, pp. 81-100 | DOI | MR | Zbl
[28] Orlicz Spaces on Groups, Manifolds, and Graphs, Ph. D. Thesis, Novosibirsk, Russia (2018)
[29] Cohomologie des variétés à courbure négative, cas du degré , Rend. Sem. Mat. Univ. Pol. Torino (1989) (Special Issue) | Zbl
[30] Cohomologie : invariance sous quasiisométries (1995) (preprint, https://www.imo.universite-paris-saclay.fr/~pansu/qi04.pdf)
[31] The first -cohomology of some finitely generated groups and -harmonic functions, J. Funct. Anal., Volume 237 (2006), pp. 391-401 | DOI | MR | Zbl
[32] Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, 1991 | MR | Zbl
[33] Vanishing of -Betti numbers of locally compact groups as an invariant of coarse equivalence, Fundam. Math., Volume 243 (2018), pp. 301-311 | DOI | MR | Zbl
[34] Relative and Orlicz Cohomology and Applications to Heintze Groups, Ph. D. Thesis, Universidad de la República, Montevideo, Uruguay; Université de Lille, France (2020) (https://theses.fr/2020lilui053)
[35] Vanishing of the first reduced cohomology with values in an -representation, Ann. Inst. Fourier, Volume 59 (2009), pp. 851-876 | DOI | MR | Zbl
[36] Ergodic Theory and Semisimple Groups, Monographs in Mathematics, 81, Birkhäuser, 1984 | DOI | MR | Zbl
Cité par Sources :