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ON ASYMPTOTIC AND CONTINUOUS GROUP
ORLICZ COHOMOLOGY

by Yaroslav KOPYLOV & Emiliano SEQUEIRA (*)

Abstract. — We generalize some results on asymptotic and continuous group
Lp-cohomology to Orlicz cohomology. In particular, we show that asymptotic Orlicz
cohomology is a quasi-isometry invariant and that both notions coincide in the case
of a locally compact second countable group. The case of degree 1 is studied in
more detail.

Résumé. — On généralise quelques résultats sur la cohomologie Lp asympto-
tique et continue des groupes à la cohomologie d’Orlicz. En particulier, on montre
que la cohomologie d’Orlicz asymptotique est invariante sous quasi-isométries et
que les deux notions coïncident dans le cas des groupes localement compacts à base
dénombrable d’ouverts. Le cas de degré 1 est étudié plus en détail.

1. Introduction

Different versions of Lp-cohomology (and, more generally, Lp,q-cohomo-
logy) have been studied in last decades with the aim of obtaining Lipschitz
and quasi-isometry invariants and explore the existence of inequalities of
Sobolev–Poincaré type and p-harmonic functions. This notion is defined,
for instance, for simplicial complexes [4, 12, 20], Riemannian manifolds [1,
18, 19, 29], discrete and topological groups [3, 5, 6, 10, 20, 27, 31, 35] and
more general metric measure spaces [14, 29, 30, 35], and consists, in all
cases, of a family of topological vector spaces constructed from a cochain
complex of Lp-integrable graded functions.

Keywords: Orlicz cohomology, quasi-isometry invariance, topological group.
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As for classical Lp-spaces, one can generalize Lp-cohomology by using
Orlicz spaces, which are obtained from a convex function (more precisely,
a Young function) ϕ instead of the parameter p. A motivation to do this is
to obtain a bigger family of quasi-isometry invariants, which can be useful,
for example, for distinguishing certain spaces up to quasi-isometry, as is
done in [8].

In particular, asymptotic Lp-cohomology is a construction introduced
by Pansu in [30], following a previous version for degree 1 [29], defined for
a metric measure space with bounded geometry. A quite complete study
of this notion can be read in [14]. Asymptotic Lp-cohomology provides a
quasi-isometry invariant for a wide family of metric spaces, however, it has
the disadvantage of being difficult to compute.

We study the Orlicz version of this notion and prove the following result,
where LϕHk

AS(X) denotes the k-space of asymptotic Orlicz cohomology of
a metric space X for a Young function ϕ, and LϕHk

AS(X) is the respective
reduced space. For a proof in the Lp-case see [14, 30].

Theorem 1.1. — Let (X,µ) and (Y, ν) be two metric measure spaces
with bounded geometry and ϕ a Young function. If there exists a quasi-
isometry F : X → Y , then LϕH∗AS(X) and LϕH∗AS(Y ) are isomorphic (as
topological vector spaces) and LϕH

∗
AS(X) and LϕH

∗
AS(Y ) are isomorphic

(as Fréchet spaces).

Recent articles [5, 6] by Bourdon and Rémy study the continuous group
Lp-cohomology, following some previous ideas given in [10, 13, 20], which
is defined for locally compact groups. They prove an equivalence theorem
between continuous group Lp-cohomology and asymptotic Lp-cohomology,
which allows to conclude that the first one is a quasi-isometry invariant,
and make some computations for Lie groups.

We present an Orlicz version of the main result in [5], which was earlier
proved for the L2 case in [33]. Here Hk

ct(G,Lϕ(G)) is the k-space of contin-
uous group cohomology of G with coefficients in Lϕ(G), and Hk

ct(G,Lϕ(G))
is the corresponding reduced cohomology space.

Theorem 1.2. — Suppose that G is a locally compact second countable
group equipped with a left-invariant proper metric and a left-invariant Haar
measure and ϕ is a doubling Young function. Then the topological vector
spaces Hk

ct(G,Lϕ(G)) and LϕHk
AS(G) are isomorphic for every k ∈ N and

so are the Fréchet spaces Hk

ct(G,Lϕ(G)) and LϕH
k

AS(G).

The doubling condition on ϕ is an assumption about its behavior at 0 and
∞ that will be specified later. The existence of a left-invariant proper metric
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compatible with the topology of G is guaranteed by Struble’s theorem
(see [9, Theorem 2.B.4]).

Combining Theorems 1.1 and 1.2, we obtain the following result:

Corollary 1.3. — If F : G1 → G2 is a quasi-isometry between two
groups as in Theorem 1.2 and ϕ is a doubling Young function, then
Hk(G1, L

ϕ(G1)) is isomorphic to Hk(G2, L
ϕ(G2)) for every k ∈ N. The

same holds for the reduced cohomology.

For the case of degree 1, we generalize some results given in [27, 31, 35]
for Lp-cohomology and in [25] for Orlicz cohomology in the case of discrete
groups. In particular, we prove that if G is compactly generated and ϕ

satisfies some conditions, then every class in H1(G,Lϕ(G)) is represented
by one (and only one) ϕ-harmonic function.

Finally, we show with an example that some properties of Orlicz coho-
mology fail to hold if the Young function is not doubling. In particular, it
is known that, if ϕ is doubling, then

• the Orlicz cohomology in degree 1 of a uniformly contractible
Gromov-hyperbolic simplicial complex with bounded geometry
whose boundary admits an Ahlfors-regular visual metric is reduced,
that is, it coincides with its reduced Orlicz cohomology (see [8]);

• the continuous Orlicz cohomology in degree 1 of a non-amenable
non-compact second countable locally compact group is reduced
(see [24]). Therefore, its asymptotic Orlicz cohomology is reduced.

We prove that in both cases, the doubling condition is necessary.

Acknowledgments

We thank Pierre Pansu, Michael Puls, and Romain Tessera for useful
comments on their works concerning the Lp-case and Rafael Potrie for a
valuable suggestion to improve the text.

This work is inspired by previous works by Pierre Pansu, Luc Genton,
Marc Bourdon and Betrand Rémy.

2. Preliminaries

2.1. Quasi-isometries

Consider two metric spaces X and Y , where the metric in both cases is
denoted by | · − · |. A function F : X → Y is a quasi-isometry if there exist
two constants λ ⩾ 1 and ϵ ⩾ 0 such that
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(a) for every x, x′ ∈ X,

λ−1|x− x′| − ϵ ⩽ |F (x) − F (x′)| ⩽ λ|x− x′| + ϵ;

(b) for every y ∈ Y there exists x ∈ X such that |F (x) − y| ⩽ ϵ.
Notice that (a) is a coarse version of the bi-Lipschitz condition, while (b)
expresses a kind of surjectivity.

The notion of quasi-isometry defines an equivalence relation among met-
ric spaces. Indeed, the composition of quasi-isometries is a quasi-isometry
and for every quasi-isometry F : X → Y there exists a quasi-isometry
F : Y → X such that F ◦ F and F ◦ F are at bounded uniform distance
from the identity. In this case, we say that F is a quasi-inverse of F . Ob-
serve that the quasi-inverse is not uniquely defined, but one can easily show
that two quasi-inverses of the same quasi-isometry are at bounded uniform
distance from each other.

We refer to [15] for more details.

2.2. Orlicz spaces

By a Young function we mean a non-negative function ϕ : R → [0,+∞)
that is convex and even and satisfies ϕ(t) = 0 if and only if t = 0. We say
that ϕ is a N -function if it is in addition continuous and satisfies

lim
t→ 0

ϕ(t)
t

= 0 and lim
t→+∞

ϕ(t)
t

= +∞.

If (Z, µ) is a measure space and f : Z → R is a measurable function, we
define

(2.1) ρϕ(f) =
∫
Z

ϕ
(
f(x)

)
dµ(x).

The Orlicz space of (Z, µ) associated to ϕ is the space Lϕ(Z) = Lϕ(Z, µ) of
classes of functions f : Z → R such that ρϕ(f/α) < +∞ for some constant
α > 0, equipped with the Luxemburg norm

∥f∥ϕ = inf
{
α > 0 : ρϕ

(
f

α

)
⩽ 1
}
.

The space (Lϕ(Z), ∥ ∥ϕ) is a Banach space and, as in the Lp-case, the
convexity of ϕ implies that Lϕ(Z) ⊂ L1

loc(Z).

ANNALES DE L’INSTITUT FOURIER
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Remark 2.1. — Observe that if λ ⩾ 1 and f is a measurable function
on Z, then ∥f∥ϕ ⩽ ∥f∥λϕ. Moreover, the convexity of ϕ implies that
ϕ(t/λ) ⩽ ϕ(t)/λ for every t ∈ R; thus, if α > ∥f∥ϕ, then∫

Z

λϕ

(
f

λα

)
dµ ⩽

∫
Z

ϕ

(
f

α

)
dµ ⩽ 1,

which implies ∥f∥λϕ ⩽ λ∥f∥ϕ. We conclude that for any λ > 0,

C−1∥ ∥ϕ ⩽ ∥ ∥λϕ ⩽ C∥ ∥ϕ,

where C = max{λ, λ−1}.
A consequence of this fact is that, if ρϕ(f) ⩽ λρϕ(λ′g) = ρλϕ(λ′g) for

λ, λ′ > 0, then ∥f∥ϕ ⩽ Cλ′∥g∥ϕ.

If ϕ is a Young function one can consider its convex conjugate

ψ : R → [0,+∞], ψ(s) = sup{t|s| − ϕ(t) : t ⩾ 0}.

It is easy to see that if ϕ is an N -function, then ψ is also an N -function.
A general version of Hölder’s inequality holds for a pair of conjugate N -
functions (ϕ, ψ):

(2.2)
∫
Z

|fg| dµ ⩽ 2∥f∥Lϕ∥g∥Lψ

for every f ∈ Lϕ(Z) and g ∈ Lψ(Z). It is obtained by using Young’s
inequality:

(2.3) ts ⩽ ψ(t) + ϕ(s) ∀ t, s ∈ R.

We refer to [32, Section 3.3] for a proof of (2.2).
A Young function ϕ is doubling if there exists a constant D ⩾ 2 such

that for every t ⩾ 0,

(2.4) ϕ(2t) ⩽ Dϕ(t).

(Observe that, since ϕ is convex and ϕ(0) = 0, then ϕ(2t) ⩾ 2ϕ(t) for every
t ⩾ 0.) It is not difficult to prove that ϕ is doubling if and only if there
exists an increasing function D1 : [1,+∞) → [1,∞) such that for every
t ⩾ 0 and s ⩾ 1,

ϕ(st) ⩽ D1(s)ϕ(t).
The following proposition is known and easy to prove. A short proof can

be found in [34, Lemma 2.5.4].

Proposition 2.2. — Let ϕ be a doubling Young function, then
(i) f ∈ Lϕ(Z, µ) if and only if ρϕ(f) < +∞.
(ii) fn → f in Lϕ(Z, µ) if and only if ρϕ(fn − f) → 0.

TOME 0 (0), FASCICULE 0
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In the same way as for Lp-spaces one can prove that simple functions are
dense in Lϕ(Z) if ϕ is doubling. For that it is necessary to use part (ii) of
Proposition 2.2. This allows to prove the following fact by reproducing the
corresponding proof for Lp-spaces.

Lemma 2.3. — Suppose that ϕ is a doubling Young function. If X is
a proper metric space (i.e. every closed bounded set is compact) and µ is
a Radon measure, then the space of continuous functions with compact
support on X is dense in Lϕ(X,µ).

For more details on Orlicz spaces we refer to [32].

2.3. Continuous group cohomology

Let G be a locally compact second countable group. A topological G-
module (or simply G-module) is a pair (π, V ), where V is a Hausdorff
locally convex topological vector space over R and π is a continuous repre-
sentation of G on V (that is, G× V → V, (g, v) 7→ π(g)v is continuous).

For k ∈ N we consider the space

C
(
Gk+1, V

)
=
{
ω : Gk+1 → V : ω is continuous

}
equipped with the compact-open topology.

The sum and product on C(Gk+1, V ) are continuous. Furthermore, the
space C(Gk+1, V ) is Hausdorff and locally convex and the representation
Π : G → Aut(C(Gk+1, V )) defined by(

Π(g)ω
)
(x0, . . . , xk) = (g · ω)(x0, . . . , xk) = π(g)

(
ω(g−1x0, . . . , g

−1xk)
)

is continuous. We say that ω ∈ C(Gk+1, V ) is G-invariant if (g ·ω) = ω for
every g ∈ G and denote by C(Gk+1, V )G the space of G-invariant functions.

In general, if X is any set, Y is a vector space and A ⊂ Xk+1, one can
consider the (formal) derivative of any function f : A → Y ,

(2.5) dkf(x0, . . . , xk+1) =
k+1∑
i=0

(−1)if (x0, . . . , x̂i, . . . , xk+1) ,

defined for (x0, . . . , xk+1) in some subset of Xk+2. We also write d = dk
when the sub-index is clear.

Let us focus on the derivative of elements of C(Gk+1, V ) for k ⩾ 0.
It is easy to see that dk : C(Gk+1, V ) → C(Gk+2, V ) is well-defined and

ANNALES DE L’INSTITUT FOURIER
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continuous and maps C(Gk+1, V )G onto C(Gk+2, V )G. Then we consider
the complex

(2.6) C
(
G1, V

)G d0→ C
(
G2, V

)G d1→ C
(
G3, V

)G d2→ · · · .

Its cohomology is called the continuous (group) cohomology of G with
coefficients in (π, V ). That is, the family of topological vector spaces

Hk(G,V ) = Ker dk
Im dk−1

.

The reduced continuous (group) cohomology of G is the family of G-
modules

H
k(G,V ) = Ker dk

Im dk−1
.

By a G-morphism we mean a linear continuous map between G-modules
that is G-equivariant, that is, φ : A → B such that φ(g · a) = g · φ(a) for
every g ∈ G and a ∈ A. A G-morphism is a strong G-injection if it has a
continuous left inverse. We say that a G-morphism φ : A → B is strong if
the induced maps Kerφ → A and A/Kerφ → B are strong G-injections.
From this we can define a strong resolution of a G-module V as an exact
sequence of G-modules and strong G-morphisms

(2.7) 0 → V
d−1→ A0 d0→ A1 d1→ · · ·

We use the notation 0 → V
d∗→ A∗ to mean a resolution as above.

Remark 2.4. — To see that (2.7) is a strong resolution of V it is enough
to show that it admits a continuous contracting homotopy. That is, a family
of linear continuous maps {hk}k⩾ 0 such that{

h0 ◦ d−1 = Id
hk+1 ◦ dk + dk−1 ◦ hk = Id for k ⩾ 0.

Indeed, dk−1 ◦ hk is the left inverse of Ker dk → Ak for k ⩾ 0, and hk+1
induces the left inverse of Ak/Ker dk → Ak+1 for k ⩾ −1, by putting
A−1 = V .

A G-module U is relatively injective if for every strong G-injection
ι : A → B and G-morphism φ : A → U , there exists a G-morphism
φ̄ : B → U such that φ̄ ◦ ι = φ. A strong G-resolution as (2.7) is relatively
injective if Ak is relatively injective for every k ∈ N.

An important example of relatively injective strong resolution is given
by (2.6).

TOME 0 (0), FASCICULE 0
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Proposition 2.5. — The complex 0 → V
d∗→ C(G∗+1, V ) is a relatively

injective strong G-resolution of V , where d−1(v) ≡ v.

Proof. — See [5, Example 2.2]. □

The main technique to prove Theorem 1.2 will be to find a special rela-
tively injective strong G-resolution of Lϕ(G), as it is done for the Lp-case
by Bourdon and Rémy in [5], and use the following results.

Proposition 2.6. — Let V a topological G-module. Assume that
0 → V → A∗ and 0 → V → B∗ are two relatively injective strong G-
resolutions of V . Then the complexes (A∗)G and (B∗)G are homotopy
equivalent.

The proof of Proposition 2.6 can be found in [21, p. 177, Proposition 1.1].
Combining Propositions 2.5 and 2.6 we obtain:

Corollary 2.7. — Suppose that 0 → V → A∗ is a relatively injective
strong G-resolution of V . Then the cohomology and the reduced cohomol-
ogy of the complex (A∗)G are topologically isomorphic to H∗(G,V ) and
H
∗(G,V ) respectively.

3. Asymptotic Orlicz cohomology

Let (X, | · − · |) be a metric space equipped with a Borel measure µ

satisfying the bounded geometry condition: there exist r0 > 0 such that

(3.1) 0 < v(r) = inf
x∈X

µ(B(x, r)) ⩽ V (r) = sup
x∈X

µ(B(x, r)) < +∞

for every r ⩾ r0, where B(x, r) is the open ball of center x and radius r > 0.
We regard the product space Xk+1 as a set of k-simplices, so it is natural

to consider the vector space of k-chains

Ck(X) =
{

m∑
i=1

ai∆i : m ∈ N and ∆i ∈ Xk+1, ai ∈ R ∀ i = 1, . . . , m
}
,

and the boundary operator ∂ : Ck(X) → Ck−1(X), defined on Xk+1 by

(3.2) ∂∆ =
k∑
i=0

(−1)i∂i∆,

where ∂i∆ = (x0, . . . , x̂i, . . . , xk) if ∆ = (x0, . . . , xk).
Given k ∈ N, we equip the space Xk+1 with the product measure

µk+1 = µ× · · · × µ and the distance

|∆ − ∆′| = max {|xi − x′i| : i = 0, . . . , k}

ANNALES DE L’INSTITUT FOURIER
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for ∆ = (x0, . . . , xk) and ∆ = (x′0, . . . , x′k). Observe that µk+1 satisfies

v(r)k+1 ⩽ µk+1(B(∆, r)
)
⩽ V (r)k+1

for every ∆ ∈ Xk+1 and r > 0. In order to simplify the notation, we write
dµ(x) = dx and dµk+1(∆) = d∆.

For s > 0 we define

Xk+1
s =

{
∆ ∈ Xk+1 : diam(∆) ⩽ s

}
⊂ Xk+1.

Fix a Young function ϕ, then for every Borel function u : Xk+1 → R and
s > 0 we consider the semi-norm

∥u∥ϕ,s = inf
{
α > 0 : ρϕ,s

(u
α

)
⩽ 1
}
,(3.3)

where ρϕ,s
(u
α

)
:=
∫
Xk+1
s

ϕ

(
u(∆)
α

)
d∆.

Then we define the Lϕ-space of Alexander–Spanier k-cochains as the space
ASkϕ(X) of classes of measurable functions u : Xk+1 → R such that
∥u∥ϕ,s < +∞ for every s > 0, equipped with the topology induced by
the family of semi-norms {∥ ∥ϕ,s}s> 0. Observe that each semi-norm ∥ ∥ϕ,s
is the Lϕ-norm in the space Xk+1

s .
An element u ∈ ASkϕ(X) (or a function u : Xk+1 → R in general) can be

linearly extended (a.e.) to ũ : Ck(X) → R. We will not distinguish between
the function u and its extension ũ from now on.

Remark 3.1. — For t ⩽ s we consider the continuous operator

Ts,t : Lϕ
(
Xk+1
s

)
→ Lϕ

(
Xk+1
t

)
, u 7→ u|Xk+1

t

and take the inverse limit

lim
←
Lϕ
(
Xk+1
s

)
=
{

{us} ∈
∏
s> 0

Lϕ
(
Xk+1
s

)
: Ts,t(us) = ut if t < s

}
equipped with the topology induced by the family of semi-norms ∥{us}∥s
= ∥us∥ϕ for s > 0. It is a Fréchet space because it is defined from a dense
projective system of Banach spaces (see [16, Section 3.3.3]). This is the
Orlicz version of the definition given by Pansu in [30].

Furthermore, the map

(3.4) ASkϕ(X) → lim
←
Lϕ
(
Xk+1
s

)
, u 7→

{
u|Xk+1

s

}
is clearly an isomorphism of topological vector spaces; hence ASkϕ(X) is a
Fréchet space for every k.

TOME 0 (0), FASCICULE 0
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Observe that the formal derivative on AS∗ϕ(X) defined by (2.5) satisfies
du(∆) = u(∂∆). In this case it can also be called the coboundary operator
on AS∗ϕ(X).

Proposition 3.2. — The derivative dk maps continuously ASkϕ(X) to
ASk+1

ϕ (X). Moreover, dk+1 ◦ dk = 0 for every k ⩾ 0 (which is also written
as d2 = 0).

Proof. — The condition d2 = 0 can be verified directly. Let us prove
that if u ∈ ASkϕ(X), then ∥du∥ϕ,s ⪯ ∥u∥ϕ,s, which means that there exists
a constant C > 0 intependent of u such that ∥du∥ϕ,s ⩽ C∥u∥ϕ,s. In this
case, the constant depends on s and k.

Using Jensen’s inequality, we have∫
Xk+2
s

ϕ (du) dµk+1 ⩽
1

k + 2

∫
Xk+2
s

k+1∑
i=0

ϕ
(
(k + 2)u(∂i∆)

)
d∆

⩽
1

k + 2

k+1∑
i=0

∫
Xk+1
s

µ (B(xji , s))ϕ ((k + 2)u(∂i∆)) d(∂i∆),

where ji is any index different from i. Applying (3.1), we get

ρϕ,s(du) ⩽ V (s)ρϕ,s
(
(k + 2)u

)
,

and then, by Remark 2.1, ∥du∥ϕ,s ⪯ ∥u∥ϕ,s. □

We now consider the complex

AS0
ϕ(X) d0→ AS1

ϕ(X) d1→ AS2
ϕ(X) d2→ · · ·

Its cohomology is the asymptotic Lϕ-cohomology of X. We denote it by

LϕH∗AS(X) = Ker d∗
Im d∗−1

.

We also define the reduced Lϕ-cohomology of X as the family of Fréchet
spaces

LϕH
∗
AS(X) = Ker d∗

Im d∗−1
.

3.1. Quasi-isometry invariance

By a kernel on X we mean a non-negative bounded function κ : X → R
satisfying the following conditions:

(c) There exists K > 0 such that if |x− x′| > K, then κ(x, x′) = 0.

ANNALES DE L’INSTITUT FOURIER
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(d) For every x ∈ X,

(3.5)
∫
X

κ(x, x′)dx′ = 1.

Because of the bounded geometry (3.1), it is always possible to take a kernel
on X, for instance one can consider

κ(x, x′) = 1
µ(B(x,K))1B(x,K)(x′),

with K ⩾ r0.
Observe that for every x′ ∈ X,

(3.6)
∫
X

κ(x, x′)dx ⩽ sup(κ)V (K).

If ∆ = (x0, . . . , xk) and ∆′ = (x′0, . . . , x′k), then we write

(3.7) κ(∆,∆′) =
k∏
i=0

κ(xi, x′i).

It is clear that for a fixed ∆ = (x0, . . . , xk) we have
∫
Xk+1 κ(∆,∆′) d∆′ = 1.

Now consider another metric space (Y, | · − · |) equipped with a Borel
measure ν satisfying (3.1) with functions v and V . Suppose that F : X → Y

is a quasi-isometry and F : Y → X is a quasi-inverse of F . We can assume
that λ ⩾ 1 and ϵ ⩾ 0 satisfy conditions (a) and (b) for both F and F .
Observe that F and F induce quasi-isometries F : Xk+1 → Y k+1 and
F : Y k+1 → Xk+1 with the same constants.

For a kernel κY in Y , define the pull-back of a function u : Y k+1 → R
by F as follows:

F ∗u : Xk+1 → R, F ∗u(∆X) =
∫
Y k+1

u(∆Y )κY (F∆X ,∆Y ) d∆Y .

Lemma 3.3. — The pull-back F ∗ defines a continuous map from
ASkϕ(Y ) to ASkϕ(X).

Proof. — First observe that Jensen’s inequality implies

ϕ
(
F ∗u(∆X)

)
⩽
∫
Y k+1

ϕ
(
u(∆Y )

)
κY (F∆X ,∆Y ) d∆Y .

Hence, for every s > 0 we have

ρϕ,s
(
F ∗u(∆X)

)
⩽
∫
Xk+1
s

∫
Y k+1

ϕ (u(∆Y ))κY (F∆X ,∆Y ) d∆Y d∆X

=
∫
Y k+1

ϕ (u(∆Y )) Ψs(∆Y ) d∆Y ,
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where
Ψs(∆Y ) =

∫
Xk+1
s

κY (F∆X ,∆Y ) d∆X .

Claim. — Ψs is bounded and its support is included in Y k+1
s′ , where s′

depends on s, the constants K, λ and ϵ, and the function V .

For ∆Y ∈ Y k+1 consider ∆X ∈ Xk+1 such that |F∆X − ∆Y | ⩽ ϵ (this
simplex exists because F is a quasi-isometry with constants λ and ϵ). If
κY (F∆X ,∆Y ) ̸= 0, then |F∆X − F∆X | ⩽ ϵ + K and therefore
|∆X − ∆X | ⩽ λ(2ϵ + K). This implies that if H is the supremum of κY ,
then

Ψs(∆Y ) ⩽
∫
Xk+1
s

H1
B
(

∆X ,λ(2ϵ+K)
)d∆X ⩽ HV

(
λ(2ϵ+K)

)k+1 =: H,

which shows that Ψs is bounded.
In order to prove the other part of the claim, observe that if ∆X ∈ Xk+1

s ,
then diam(F∆X) ⩽ λs + ϵ. If in addition κY (F∆X ,∆Y ) ̸= 0 for some
∆X ∈ Xk+1

s , then we have

(3.8) diam(∆Y ) ⩽ 2K + λs+ ϵ.

Indeed, if ∆X = (x0, . . . , xk) and ∆Y = (y0, . . . , yk) then for any i and j

|yi − yj | ⩽ |yi − F (xi)| + |F (xi) − F (xj)| + |F (xj) − yj |
⩽ K + λs+ ϵ+K = 2K + λs+ ϵ,

which implies (3.8).
The proof of the claim finishes by taking s′ = 2K + λs+ ϵ.
Putting the above together, for s > 0 and u ∈ ASkϕ(Y ) we have

ρϕ,s(F ∗u) ⩽ Hρϕ,s′(u), and hence ∥F ∗u∥ϕ,s ⪯ ∥u∥ϕ,s′ , where the constant
does not depend on u. □

It is easy to show that the pull-back F ∗ commutes with d, and thus it
defines maps in (reduced) cohomology.

Lemma 3.4. — Suppose that κX and κY are kernels on X and Y re-
spectively. Then the function κ : X ×X → R defined by

κ(x, x′) =
∫
Y

κY
(
F (x), y

)
κX
(
F (y), x′

)
dy

is a kernel.

Proof. — Suppose that K > 0 is the constant in (c) for both kernels κX
and κY . Assume also that the uniform distance between F ◦ F and IdX
and between F ◦ F and IdY is bounded by C ⩾ 0.
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Observe that if κY (F (x), y) ̸= 0, then |x−F (y)| ⩽ λK+ϵ+C. From this
we conclude that if |x−x′| > K ′ = (λ+ 1)K+ ϵ+C, then κY (F (x), y) = 0
or κX(F (y), x′) = 0 for every y ∈ Y , and hence κ(x, x′) = 0.

To see that κ is bounded observe that given x, x′ ∈ X, the support of
the function

y 7→ κY
(
F (x), y

)
κX
(
F (y), x′

)
is contained in the ball B(F (x),K), thus κ(x, x′) ⩽ V (K) sup(κX) sup(κY ).

A direct calculation shows that
∫
X
κ(x, x′)dx′ = 1 for every x ∈ X, which

finishes the proof. □

In order to prove Theorem 1.1, we adapt an argument given in [30] (see
also [14]). In particular, we use the following operator: given u : Xk+2 → R
and ∆ ∈ Xk+1, we consider

Bku(∆) =
∫
Xk+1

u
(
b(∆,∆′)

)
κ(∆,∆′) d∆′,

where

b(∆,∆′) =
k∑
i=0

(−1)i(x0, . . . , xi, x
′
i, . . . , x

′
k).

for ∆ = (x0, . . . , xk) and ∆′ = (x′0, . . . , x′k). Here κ is the kernel given by
Lemma 3.4.

Lemma 3.5 ([14, Lemma 3.3.3]). — Let ∆,∆′ ∈ Xk+1, then

∂b(∆,∆′) = ∆′ − ∆ −
k∑
i=0

b(∂i∆, ∂i∆′).

Lemma 3.6. — For every k ⩾ 0, Bk defines a continuous operator from
ASk+1

ϕ (X) to ASkϕ(X).

Proof. — Fix s > 0 and take u ∈ ASk+1
ϕ (X) and ∆ = (x0, . . . , xk) in

Xk+1
s , then

|Bku(∆)| ⩽
k∑
i=0

∫
Xk+1

|u(∆i)|κ(∆,∆′)d∆′,

where ∆′ = (x′0, . . . , x′k) and ∆i = (x0, . . . , xi, x
′
i, . . . , x

′
k). Using Jensen’s

inequality, we have

ρϕ,s (Bku) ⪯
k∑
i=0

∫
Xk+1
s

∫
Xk+1

ϕ
(
u(∆i)

)
κ(∆,∆′) d∆′d∆.

We write each term of the above sum as∫
Xk+1

∫
Xk+1

ϕ
(
u(∆i)

)
1Xk+1

s
(∆)κ(∆,∆′) d∆′d∆.
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Notice that 1Xk+1
s

(∆)κ(∆,∆′) ̸= 0 implies ∆i ∈ Xk+1
s+2K′ . Thus, using (3.5),

(3.6) and (3.7), we obtain

ρϕ,s (Bku) ⪯
k∑
i=0

∫
Xk+2
s+2K′

(supκ)V (K ′)kϕ
(
u(∆i)

)
d∆i ⪯ ρϕ,s (u) .

This implies that ∥Bku∥ϕ,s ⪯ ∥u∥ϕ,s+2K′ , which finishes the proof. □

Proof of Theorem 1.1. — We need to prove that F ∗ ◦ F ∗ and F
∗ ◦ F ∗

are homotopic to the identity. We will prove the first assertion by verifying

(3.9)
{

B0 ◦ d0 = F ∗ ◦ F ∗ − Id

Bk+1 ◦ dk+1 + dk ◦Bk = F ∗ ◦ F ∗ − Id for all k ⩾ 0.

The other part is analogous.
If u ∈ AS0

ϕ(X), then we have

(B0 ◦ d0)u(x0) =
∫
X

du
(
b(x0, x)

)
κ(x0, x) dx =

∫
X

u(x)κ(x0, x) dx− u(x0)

=
∫
X

u(x)
(∫

Y

κY
(
F (x0), y

)
κX
(
F (y), x

)
dy

)
dx− u(x0)

=
∫
Y

(∫
X

u(x)κX
(
F (y), x

)
dx

)
κY
(
F (x0), y

)
dy − u(x0)

= (F ∗ ◦ F ∗)u(x0) − u(x0).

Therefore, B0 ◦ d0 = F ∗ ◦ F ∗ − Id.
Now we take u ∈ ASk+1

ϕ (X). First observe that

(dk ◦Bk)u(∆) = Bku(∂∆) = Bku

(
k∑
i=0

(−1)i∂i∆
)

=
k∑
i=0

(−1)iBku(∂i∆)

=
k∑
i=0

(−1)i
∫
Xk+1

u
(
b(∂i∆,∆′)

)
κ(∂i∆,∆′) d∆′.

By Lemma 3.5, (Bk+1 ◦ dk+1)u(∆) is equal to

∫
Xk+2

u(∆′)κ(∆,∆′) d∆′−u(∆)−
k∑
i=0

(−1)i
∫
Xk+2

u
(
b(∂i∆, ∂i∆′)

)
κ(∆,∆′)d∆′.
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ASYMPTOTIC CONTINUOUS GROUP ORLICZ COHOMOLOGY 15

As in the case k = 0, the first term is equal to (F ∗ ◦F ∗)u(∆). With respect
to the third term, for ∆ = (x0, . . . , xk) and ∆′ = (x′0, . . . , x′k), we have

k∑
i=0

(−1)i
∫
Xk+2

u
(
b(∂i∆, ∂i∆′)

)
κ(∆,∆′) d∆′

=
k∑
i=0

(−1)i
∫
Xk+1

u
(
b(∂i∆, ∂i∆′)

)
κ(∂i∆, ∂i∆′)

(∫
X

κ(xi, x′i)dx′i
)
d(∂i∆′)

= (dk ◦Bk)u(∆).

This shows that Bk+1 ◦ dk+1 +Bk ◦ dk = F ∗ ◦F ∗− Id for every k ⩾ 0. □

Remark 3.7. — Observe that if F1, F2 : X → Y are two quasi-isometries
at bounded uniform distance, then a quasi-isometry G : Y → X is a quasi-
inverse of F1 if and only if it is a quasi-inverse of F2. We have proven that in
this case F ∗1 ◦G∗ and F ∗2 ◦G∗ are homotopy equivalent and G∗ is invertible.
As a consequence, F1 and F2 induce the same isomorphism in (reduced)
cohomology.

Remark 3.8. — Theorem 1.1 says that the asymptotic Orlicz cohomol-
ogy of (X,µ) does not depend on the measure µ. Thus, one can define
such cohomology for any metric space admitting measures with bounded
geometry.

A metric condition that guarantees the existence of such a measure is a
weak version of doubling condition for metric spaces: there exists a constant
ϵ and a function V : (0,+∞) → (0,+∞) such that any ϵ-separated set (i.e.
set of points of mutual distance at least ϵ) in a ball of radius r cannot
contain more than V (r) points. From this condition one can take µ as the
counting measure on a maximal ϵ-separated discrete set in X.

Observe that if X is a doubling metric space, the function V can be
taken with polynomial growth at ∞ (see [26, Sections 1.3.1 and 1.4.1]).

4. Continuous group Orlicz cohomology

Let G be a locally compact second countable group equipped with a Haar
measure H and a left invariant proper metric | · − · |. Fix a doubling Young
function ϕ.

Lemma 4.1. — The right regular representation of G on the space
Lϕ(G) = Lϕ(G,H), (

π(g)f
)
(x) = f(xg)

for every f ∈ Lϕ(G) and g, x ∈ G, is well-defined and continuous.
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16 Yaroslav KOPYLOV & Emiliano SEQUEIRA

Proof. — First observe that if g ∈ G, then ρϕ(π(g)u) = ∆(g)ρϕ(u),
where ∆ is the modular function associated to H. Hence, the representation
is well-defined.

To prove continuity, consider gn → g in G and fn → f in Lϕ(G). Observe
that

∥π(gn)fn − π(g)f∥ϕ ⩽ ∥π(gn)fn − π(gn)f∥ϕ + ∥π(gn)f − π(g)f∥ϕ ,

where, by Proposition 2.2, the first term of the right-hand side converges
to 0 because

ρϕ
(
π(gn)fn − π(gn)f

)
= ρϕ

(
π(gn)(fn − f)

)
= ∆(gn)ρϕ(fn − f) → 0.

The second term can be bounded as follows:

∥π(gn)f − π(g)f∥ϕ

⩽
∥∥∥π(gn)f − π(gn)f̃

∥∥∥
ϕ

+
∥∥∥π(gn)f̃ − π(g)f̃

∥∥∥
ϕ

+
∥∥∥π(g)f̃ − π(g)f

∥∥∥
ϕ
,

where f̃ is continuous with compact support. By taking f̃ close enough to f
(see Lemma 2.3), we can bound the first and third terms on the right-hand
side. Moreover, since f̃ is continuous and gn → g, the sequence of functions

x 7→ ϕ
(∣∣∣f̃(xgn) − f̃(xg)

∣∣∣)
converges pointwise to 0. If K ⊂ G is a compact neighborhood of g such
that gn ∈ K for every n, then these functions are bounded by

ϕ
(

2 max
(
f̃
))
1E ,

with E = supp(f̃)K−1. Therefore, the Dominated Convergence Theorem
implies that

ρϕ

(
π(gn)f̃ − π(g)f̃

)
→ 0,

and hence, by Proposition 2.2, ∥π(gn)f̃ − π(g)f̃∥ϕ → 0. □

From the right regular representation π we can consider the (reduced)
continuous cohomology of G with coefficients in (π, Lϕ(G)), which we also
call (reduced) continuous Lϕ-cohomology ofG and denote byH∗(G,Lϕ(G))
and H

∗(G,Lϕ(G)).

Remark 4.2. — Since G is locally compact and second countable, it can
be represented as the union of an increasing sequence of compact subsets
{Kn}. Thus, C(Gk+1, Lϕ(G)) is a Fréchet space for the family of semi-
norms

∥ω∥Kn = max{∥ω(x0, . . . , xk)∥ϕ : xj ∈ Kn for every j}.
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The continuity of the representation π implies that C(Gk+1, Lϕ(G))G is a
closed subspace of C(Gk+1, Lϕ(G)) and hence a Fréchet space. We conclude
that the reduced cohomology space Hk+1(G,Lϕ(G)) is also a Fréchet space.

In this section, we prove Theorem 1.2 by showing that the complex
(C
(
G∗+1, Lϕ(G)

)G
, d) is homotopy equivalent to (AS∗ϕ(G), d). For this,

we construct a relatively injective strong G-resolution of Lϕ(G) such that
the associated G-invariant complex is homotopy equivalent to the complex
(AS∗ϕ(G), d) and use Propositions 2.5 and 2.6.

Given two proper metric spaces X and Y equipped with Radon measures
µX and µY and a doubling Young function ϕ, denote by Lϕloc(X,Y ) the
space of (classes) of Borel real functions f on X × Y such that f |K×Y
∈ Lϕ(K × Y ) for every compact set K ⊂ X. Endow Lϕloc(X,Y ) with the
family of semi-norms

∥f∥ϕ,K = inf
{
α > 0 : ρϕ,K

(
f

α

)
⩽ 1
}
,(4.1)

ρϕ,K (f) =
∫
K

∫
Y

ϕ (f) dµY dµX ,

for K ⊂ X compact. Observe that ∥ ∥ϕ,K is the norm on Lϕ(K × Y ).
Since X is proper, it can be represented as the union of an increasing

sequence of compact subsets Kn. Thus Lϕloc(X,Y ) is the inverse limit of
the sequence of the Banach spaces Lϕ(Kn × Y ), which implies that it is a
Fréchet space (using again [16, Section 3.3.3]).

We study in more detail the case where Y = G, assuming that G acts
on X preserving the measure µX .

Lemma 4.3. — The space of continuous functions with compact support
on X ×G, denoted by C0(X ×G), is dense in Lϕloc(X,G).

Proof. — We write X =
⋃
n∈NBn with Bn = B(x0, n). Since X is

proper, Bn is compact.
Take f ∈ Lϕloc(X,G). Observe that f |Bn×G ∈ Lϕ(Bn × G) for every

n. Since C0(Bn × G) is dense in Lϕ(Bn × G), for every n we can take
fn ∈ C0(Bn ×G) such that

∫
Bn

∫
G

ϕ
(
|fn − f |

)
dH dµX ⩽

1
n
.

We can extend fn to the whole X ×G by zero.
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18 Yaroslav KOPYLOV & Emiliano SEQUEIRA

Given a compact set K ⊂ X, there exists n0 such that for every n ⩾ n0
we have K ⊂ Bn, and as a consequence∫

K

∫
G

ϕ
(
|fn − f |

)
dH dµX ⩽

∫
Bn

∫
G

ϕ
(
|fn − f |

)
dH dµX ⩽

1
n
.

Thus, ∥fn − f∥ϕ,K → 0 for every compact set K ⊂ X. □

Lemma 4.4. — Lϕloc(X,G) is a G-module for the representation given
by

(g · f)(x, h) = f
(
g−1x, hg

)
.

Proof. — By analogy with the proof of Lemma 4.1, for every
f ∈ Lϕloc(X,G), g ∈ G, and a compact set K ⊂ X,

ρϕ,K(g · f) = ∆(g)ρϕ,g−1K(f).

Therefore, the representation is well-defined.
Continuity is proven following the argument in the proof of Lemma 4.1.

Indeed, since G and Lϕloc(X,G) are both metrizable spaces, it is enough to
prove that if gn → g in G and fn → f in Lϕloc(X,G), then gn · fn → g · f
in Lϕloc(X,G).

Fix a compact set K ⊂ X. Since ∥ ∥ϕ,K is a semi-norm, we have

(4.2) ∥gn · fn − g · f∥ϕ,K ⩽ ∥gn · fn − gn · f∥ϕ,K + ∥gn · f − g · f∥ϕ,K .

Consider a compact neighborhood V ⊂ G of g and n0 ∈ N such that gn ∈ V

for every n ⩾ n0. The first term of the right-hand side in (4.2) goes to 0 as
n → ∞ because

ρϕ,K (gn · fn − gn · f)
= ∆(gn)ρϕ,g−1

n K (fn − f) ⩽ ∆(gn)ρϕ,V −1K (fn − f) → 0.

Here we use that ∆(gn) → ∆(g) < ∞ and ρϕ,V −1K(fn − f) → 0.
The second term can be bounded as follows:

∥gn · f − g · f∥ϕ,K

⩽
∥∥∥gn · f − gn · f̃

∥∥∥
ϕ,K

+
∥∥∥gn · f̃ − g · f̃

∥∥∥
ϕ,K

+
∥∥∥g · f̃ − g · f

∥∥∥
ϕ,K

,

where f̃ ∈ C0(X × G). Taking f̃ closed enough from f (which is possible
because of Lemma 4.3) we can bound the first and third term using the
above argument.

To see that the middle term goes to 0 as n → ∞, we can proceed in
the same way as in Lemma 4.1. To do that we can take two compact sets

ANNALES DE L’INSTITUT FOURIER



ASYMPTOTIC CONTINUOUS GROUP ORLICZ COHOMOLOGY 19

K1 ⊂ X and K2 ⊂ G such that supp(f̃) ⊂ K1 × K2 and dominate the
function

(4.3) (x, h) 7→ ϕ
(∣∣∣f̃ (g−1

n x, hgn
)

− f̃
(
g−1x, hg

)∣∣∣)
by ϕ(2M)1E , where E = (V K1) × (K2V

−1). The proof is finished by
applying the Dominated Convergence Theorem. □

From now on we take X = Gk+1 equipped with the product measure
Hk+1 and the maximum distance, which are preserved by the action of G
by left translations.

In the Lp-case the following lemma stems from [2, Theorem 3.4].

Lemma 4.5. — Lϕloc(Gn+1, G) is a relatively injective G-module for ev-
ery n ⩾ 0.

For proving Lemma 4.5, we need the following lemma:

Lemma 4.6. — Let G be a locally compact group, X a topological space
and x0 ∈ X. If η : G × X → R is continuous with η(g, x0) = 0 for every
g ∈ G and K ⊂ G is compact, then

lim
x→ x0

(
sup {|η(g, x)| : g ∈ K}

)
= 0.

Proof. — Let V be the family of neighborhoods of x0 ∈ X. We need to
prove that given ϵ > 0 there exists V ∈ V such that for every x ∈ V ,

sup {|η(g, x)| : g ∈ K} < ϵ.

Suppose this fails, then there exists ϵ > 0 such that for every V ∈ V
there are xV ∈ V and gV ∈ K with η(gV , xV ) ⩾ ϵ. Since K is compact,
the net {gV }V ∈V has a convergent subnet {gU} to g ∈ K. The net {xU}
converges to x0, thus, by continuity of η, we have η(g, x0) ⩾ ϵ, which is a
contradiction. □

Proof of Lemma 4.5. — Let ι : A → B be a strong G-injection be-
tween G-modules, β : B → A its left-inverse, and φ : A → Lϕloc(Gn+1, G) a
G-morphism. We need to prove that there exists a G-morphism
φ̄ : B → Lϕloc(Gn+1, G) such that φ̄ ◦ ι = φ.

Let χ : G → R be a non-negative and bounded function with compact
support such that

(4.4)
∫
G

χ
(
g−1) dg = 1.
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If b ∈ B, we define

(4.5) φ̄(b)(x0, . . . , xn, x)

=
∫
G

χ
(
g−1x0

)
φ
(
β(g−1 ·b)

) (
g−1x0, . . . , g

−1xn, xg
)
dg.

Using that ι and φ are G-equivariant, the identity β ◦ ι = IdA and (4.4), it
is easy to see that φ̄ ◦ ι = φ.

Let us prove now that φ̄ is G-equivariant: for h ∈ G,

φ̄(h·b)(x0, . . . , xn, x)

=
∫
G

χ
(
g−1x0

)
φ
(
β(g−1h·b)

) (
g−1x0, . . . , g

−1xn, xg
)
dg.

Putting h−1g = g̃, we have

φ̄(h · b)(x0, . . . , xn, x)

=
∫
G

χ
(
g̃−1h−1x0

)
φ
(
β(g̃−1 · b)

) (
g̃−1h−1x0, . . . , g̃

−1h−1xn, xhg̃
)
dg̃

= φ̄(b)
(
h−1x0, . . . , h

−1xn, xh
)

= (h · φ̄(b)) (x0, . . . , xn, x).

To prove that φ̄ is continuous, first observe that, by Jensen’s inequality,

ϕ (φ̄(b)(x0, . . . , xn, x))

⩽
∫
G

ϕ
(
φ
(
β
(
g−1 · b

)) (
g−1x0, . . . , g

−1xn, xg
))
χ
(
g−1x0

)
dg.

Therefore, if K ⊂ Gn+1 is a compact subset, we have

ρϕ,K
(
φ̄(b)

)
=
∫
G

∫
K

ϕ
(
φ̄(b)(x0, . . . , xn, x)

)
dx0 . . . dxn dx

⩽
∫
G

∫
K

∫
G

ϕ
(
φ
(
β
(
g−1 · b

)) (
g−1x0, . . . , g

−1xn, xg
))

χ
(
g−1x0

)
dgdx0 . . . dxndx.

Let K0 ⊂ G be the projection of K on the first coordinate. Observe that
if x0 ∈ K0 and χ(g−1x0) ̸= 0, then g ∈ K̃ = K0 supp(χ)−1, which is a

ANNALES DE L’INSTITUT FOURIER



ASYMPTOTIC CONTINUOUS GROUP ORLICZ COHOMOLOGY 21

compact set. If C = sup(χ), we have

ρϕ,K(φ̄(b))

⩽ C

∫
K̃

∫
G

∫
K

ϕ
(
φ
(
β
(
g−1 · b

)) (
g−1x0, . . . , g

−1x0, xg
))
dx0 . . . dxn dx dg

= C

∫
K̃

(
∆(g)

∫
G

∫
K

ϕ
(
φ
(
β
(
g−1 · b

))
(x0, . . . , xn, x)

)
dx0 . . . dxn dx

)
dg

= C

∫
K̃

∆(g)ρϕ,K
(
φ
(
β
(
g−1 · b

)))
dg.

Since the representations and the maps β, φ, ρϕ,K and ∆ are continuous,
the function

Ψb : G → R, g 7→ ∆(g)ρϕ,K
(
φ
(
β
(
g−1 · b

)))
,

is continuous and hence ρϕ,K(φ̄(b)) < +∞. Thus, φ̄(b) ∈ Lϕloc(Gn+1, G).
Moreover, by Lemma 4.6 applied to the function η : G × B → R,

η(g, b) = Ψb(g), we have

ρϕ,K
(
φ̄(b− b0)

)
→ 0 as b → b0,

which implies that ∥φ̄(b) − φ̄(b0)∥ϕ,K → 0 as b → b0 because ϕ is doubling.
Since K ⊂ G is any compact set, we conclude that φ̄ is continuous. □

Consider the complex of Fréchet G-modules

(4.6) 0 → Lϕ(G) δ−1→ Lϕloc(G,G) δ0→ Lϕloc
(
G2, G

) δ1→ Lϕloc
(
G3, G

) δ2→ · · · ,

where

(δkf)(x0, . . . , xk+1, g) =
k+1∑
i=0

(−1)if (x0, . . . , x̂i, . . . , xk+1, g) .

This complex is an Orlicz version of the resolution Lploc(G∗+1, Lp(G)) con-
sidered in [5]. In general, Blanc shows in [2] that Lploc(G∗+1, V ) is a rela-
tively injective strong G-resolution for every G-module V .

Lemma 4.7. — For every k ⩾ 0, the operator δ = δk is a G-morphism
from Lϕloc(Gk+1, G) to Lϕloc(Gk+2, G). Moreover, δ2 = 0.

Proof. — Take f ∈ Lϕloc(Gk+2, G). Since every compact set in Gk+2 is
contained in a compact set of the form Kk+2, where K is a compact set
in G, it suffices to estimate ρϕ,Kk+2(δf) for proving that δ is well-defined
and continuous.
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Using Jensen’s inequality, we infer

ρϕ,Kk+2(δf) ⩽ 1
k + 2

k+1∑
i=0

H(K)
∫

G×Kk+1

ϕ
(
(k + 2)

f(x0, . . . , x̂i, . . . , xk+1, g)
)
dx0 . . . dxk+1 dg

⩽ H(K)ρϕ,Kk+1
(
(k + 2)f

)
.

Therefore, ∥δf∥ϕ,Kk+2 ⪯ ∥f∥ϕ,Kk+1 .
The G-equivariance of δ and the relation δ2 = 0 are straightforward

from the definition. □

Lemma 4.8. — The complex (4.6) is a strong resolution of Lϕ(G).

Proof. — By Remark 2.4 it suffices to construct a continuous contracting
homotopy, that is, a family of continuous linear maps

σk : Lϕloc(G
k+1, G) → Lϕloc(G

k, G) for k ⩾ 1 and σ0 : Lϕloc(G,G) → Lϕ(G)

such that

(4.7)
{
σ0 ◦ δ−1 = Id

σk+1 ◦ δk + δk−1 ◦ σk = Id for all k ⩾ 0
To this end, we begin by considering a non-negative bounded function

χ : G → R with compact support Kχ such that∫
G

χ(x)dx = 1.

Then, given f ∈ Lϕloc(Gk+1, G), we define (where it exists)

(4.8) (σkf)(x0, . . . , xk−1, g) = (−1)k
∫
G

f(x0, . . . , xk−1, x, g)χ(x) dx.

In the case k = 0, the left-hand side of (4.8) is (σ0f)(g).
Let us prove that the expression (4.8) is defined for almost every

(x0, . . . , xk−1) ∈ Gk and g ∈ G. Since f ∈ Lϕloc(Gk+1, G), for any com-
pact set K ⊂ Gk, we have∫

G

∫
K

∫
Kχ

ϕ
(
f(x0, . . . , xk−1, x, g)

)
dx dx0 . . . dxk−1 dg < +∞.

Thus, ∫
Kχ

ϕ
(
f(x0, . . . , xk−1, x, g)

)
dx < +∞

for almost every (x0, . . . , xk−1) ∈ K and g ∈ G, that is, the function
x 7→ f(x0, . . . , xk−1, x, g) belongs to Lϕ(Kχ) and hence it belongs to
L1(Kχ) for these values of (x0, . . . , xk−1) and g. This implies that σkf
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is well-defined for almost every point in K ×G, and since Gk can be writ-
ten as a countable union of compact sets, it is well-defined for almost every
point in Gk × G. The argument also works for k = 0 by omitting the
compact set K.

To see that σk maps continuously Lϕloc(Gk+1, G) into Lϕloc(Gk, G), take
f ∈ Lϕloc(Gk+1, G) and K a compact subset of Gk, then by Jensen’s in-
equality we have

ρϕ,K(σkf)

⩽
∫
G

∫
K×Kχ

supχ
H(Kχ)ϕ

(
H(Kχ)f(x0, . . . , xk−1, x, g)

)
dx0 . . . dxk−1dxdg.

This implies that ∥σkf∥ϕ,K ⪯ ∥f∥ϕ,K×Kχ . As above, the same argument
works for k = 0.

The lemma is proven with the verification of (4.7), which is straightfor-
ward from the definitions. □

As a consequence of Lemmas 4.5 and 4.8, we conclude that
(Lϕloc(G∗+1, G), δ) is a relatively injective strong G-resolution. By Proposi-
tions 2.5 and 2.6, the cohomology of (Lϕloc(G∗+1, G)G, δ) is isomorphic to
the continuous Lϕ-cohomology of G.

With the following lemma we finish the proof of Theorem 1.2.

Lemma 4.9. — For every k ⩾ 0, the spaces Lϕloc(Gk+1, G)G and ASkϕ(G)
are isomorphic. Furthermore, the isomorphism commutes with the deriva-
tives δ and d.

In the proof of this lemma, we will use a proposition from Zimmer’s book
([36, Section B.5]). A simplified version of it is used in [4] to prove the Lp
version of the lemma.

Proposition 4.10. — Let X and Y be two standard Borel spaces (i.e.
they are isomorphic to some Borel subset of a complete separable metric
space) and G a locally compact second countable group acting on X and Y .
Suppose that µ is a G-quasi-invariant Borel measure on X (i.e. µ(gA) = 0
if and only if µ(A) = 0 for any A ⊂ X) and f : X → Y is a Borel function
such that for every g ∈ G we have f(gx) = gf(x) for µ-almost every x ∈ X.
Then there exists a G-invariant Borel subset of full measure X0 ⊂ X and
a G-equivariant Borel function f̃ : X0 → Y that coincides with f almost
everywhere.
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Proof of Lemma 4.9. — Given u ∈ ASkϕ(G), define Λ(u) : Gk+1 ×G → R
by

Λ(u)(x0, . . . , xn, g) = u(gx0, . . . , gxk).
Then Λ must be a Borel function because u is Borel and the map
θ : Gk+1 ×G → Gk+1, θ(x0, . . . , xk, g) = (gx0, . . . , gxk), is continuous.

Moreover, if A = u−1(R \ {0}), we have

Hk+2(θ−1A) =
∫
G

∫
Gk+1

1θ−1A(x0, . . . , xk, g) dx0 . . . dxk dg

=
∫
G

∫
Gk+1

1A(gx0, . . . , gxk) dx0 . . . dxk dg

=
∫
G

Hk+1(g−1A) dg =
∫
G

Hk+1(A) dg,

which implies that Hk+2(θ−1A) = 0 if and only if Hk+1(A) = 0, or, equiva-
lently, Λ(u) = 0 almost everywhere if and only if u = 0 almost everywhere.
As a consequence, the function u 7→ Λ(u) is well-defined and injective to
the space of Borel functions up to almost everywhere zero functions. We
have to prove that it is well-defined, surjective, continuous, and open from
ASkϕ(G) to Lϕloc(Gk+1, G)G.

It is easy to see that Λ(u) is G-invariant. Observe that the topology of
Lϕloc(Gk+1, G) is generated by the family of semi-norms of the form ∥ ∥ϕ,KQ

s
,

where
KQ
s = {(x0, . . . , xk) ∈ Gk+1

s : x0 ∈ Q}
for Q any compact set and s > 0. If u ∈ ASkϕ(G), then

ρϕ,KQ
s

(
Λ(u)

)
=
∫
G

∫
Q

∫
Gk
ϕ
(
u(gx, gxy1, . . . , gxyk)

)
1Gk+1

s
(1, y1, . . . , yk) dy1 . . . dyk dx dg

=
∫
G

∫
Q

∫
Gk

∆(x)ϕ
(
u(g, gy1, . . . , gyk)

)
1Gk+1

s
(1, y1, . . . , yk) dy1 . . . dyk dx dg

=
(∫

Q

∆(x)dx
)∫

Gk+1
s

ϕ
(
u(y0, . . . , yk)

)
dy0 . . . dyk = D(Q)ρϕ,s(u),

where D(Q) =
∫
Q

∆(x)dx < +∞. Hence, Λ is a well-defined continuous
embedding.

Finally, let us prove that Λ is surjective. Take f ∈ Lϕloc(Gk+1, G)G and
find u ∈ ASϕ,k(G) with Λ(u) = f .

We use Proposition 4.10 for X = Gk+1 ×G equipped with the measure
Hk+2 where G acts by h · (x0, . . . , xk, g) = (h−1x0, . . . , h

−1xk, gh), and
Y = R where G acts trivially. Then we obtain a G-invariant Borel set of
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full measure X0 ⊂ X and a G-invariant function f̃ : X0 → R that coincides
with f almost everywhere.

Consider for h ∈ G the set

Zg = {(x0, . . . , xk) ∈ Gk+1 : (x0, . . . , xk, g) ∈ X0}.

One can easily verify that h−1Zg = Zgh for every g, h ∈ G. Thus, an
argument as in the beginning of the proof allows to show that Zg has full
measure in Gk+1.

Define u : Gk+1 → R by

u(x0, . . . , xk) =
{

f̃(x0, . . . , xk, 1) if (x0, . . . , xk) ∈ Z1,

0 otherwise.

To see that Λ(u) = f , observe that, by definition, for every g ∈ G and
every (x0, . . . , xk) in Zg,

u(gx0, . . . , gxk) = f̃(gx0, . . . , gxk, 1) = f̃(x0, . . . , xk, g).

Therefore, Λ(u)(x0, . . . , xk, g) = f(x0, . . . , xk, g) for almost every

(x0, . . . , xk, g) ∈ Gk+1 ×G,

which finishes the proof of Lemma 4.9. □

5. The discrete case

Suppose that X is a finite-dimensional simplicial complex equipped with
a length metric of bounded geometry, that is, there exist a constant C ⩾ 0
and an increasing function N : (0,+∞) → (0,+∞) such that

(e) the diameter of every simplex is bounded by C;
(f) for every r > 0 the number of simplices that intersect any ball of

radius r is bounded by N(r).
Consider the cochain complex

ℓϕ
(
X(0)

)
d0→ ℓϕ

(
X(1)

)
d1→ ℓϕ

(
X(2)

)
d2→ . . . ,

where X(k) is the set of k-simplices in X and d = dk is defined by (2.5),
which coincides with the usual coboundary operator, that is, dθ(σ) = θ(∂σ)
for every θ ∈ ℓϕ(X(k)) and σ ∈ X(k+1). The spaces ℓϕ(X(k)) are Banach
spaces equipped with the Luxemburg norm ∥ ∥ϕ. We define the kth (re-
duced) ℓϕ-cohomology space of X as

ℓϕHk(X) = Ker dk
Im dk−1

(
ℓϕH

k(X) = Ker dk
Im dk−1

)
.
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Theorem 5.1 ([8]). — Let X and Y be two uniformly contractible sim-
plicial complexes with bounded geometry. If they are quasi-isometric, then
(ℓϕ(X(∗)), d) and (ℓϕ(Y (∗)), d) are homotopy equivalent for any Young func-
tion ϕ. Hence, their (reduced) cohomologies are isomorphic.

A metric space X is uniformly contractible if there exists an increasing
function φ : (0,+∞) → (0,+∞) such that every ball B(x, r) is contractible
in the ball B(x, φ(r)).

Let G be a discrete group acting properly discontinuously, cocompactly,
and freely on a contractible locally finite simplicial complex X by simpli-
cial automorphisms. For each k ⩾ 0, consider the space C

(
X(k), ℓϕ(G)

)
of

functions f : X(k) → ℓϕ(G). We equip it with the compact-open topol-
ogy, which coincides with the topology of pointwise convergence. They are
G-modules for the action

(g · f)(σ) = π(g)
(
f(g−1σ

))
∈ ℓϕ(G), g ∈ G, σ ∈ X(k).

Recall that π is the right regular representation on ℓϕ(G).
The derivative dk : C(X(k), ℓϕ(G)) → C(X(k+1), ℓϕ(G)) is defined by

(2.5). It is easy to see that it is a G-morphism. Then

0 → V
d−1→ C

(
X(0), ℓϕ(G)

)
d0→ C

(
X(1), ℓϕ(G)

)
d1→ C

(
X(2), ℓϕ(G)

)
d2→ · · ·

is a relatively injective strong G-resolution of V (See [5, Example 2.2]).

Proposition 5.2. — The complexes(
C
(
G∗+1, ℓϕ(G)

)G
, d
)

and
(
ℓϕ
(
X(∗)

)
, d
)

are homotopy equivalent. Thus their (reduced) cohomologies are isomor-
phic.

The proof of this proposition is a general version of the proof of [5,
Proposition 3.2].

Proof. — By Corollary 2.7, it suffices to prove that the complex
C(X(k), ℓϕ(G))G is isomorphic to ℓϕ(X(∗)) and the isomorphism commutes
with the derivative. To this end, we define Ψ : ℓϕ(X(k)) → C(X(k), ℓϕ(G))
by

Ψ(θ) = f, f(σ)(g) = θ(gσ).

Observe that, if σ ∈ X(k), then

ρϕ
(
f(σ)

)
=
∑
g∈G

ϕ
(
θ(gσ))

)
⩽

∑
σ ∈X(k)

ϕ
(
θ(σ)

)
= ρϕ(θ),
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where the inequality comes from the fact that G acts freely on X. We
conclude that f(σ) ∈ ℓϕ(G) and hence Ψ is well-defined. This also shows
that Ψ is continuous, because if θn → 0 in ℓϕ(X(k)), then

ρϕ
(
Ψ(θn)(σ)

)
⩽ ρϕ(θn) → 0

for every σ ∈ X(k).
It is easy to see that Ψ is injective, indeed, if Ψ(θ) = f = 0, then

θ(σ) = f(σ)(1) = 0 for every σ ∈ X(k); and that the image of Ψ is in
C(X(k), ℓϕ(G))G: if Ψ(θ) = f , then

(g · f)(σ)(h) = f
(
g−1σ

)
(hg) = θ

(
hgg−1σ

)
= f(σ)(h).

Now, for f ∈ Ck(X, ℓϕ(G))G define θ : X(k) → R by θ(σ) = f(σ)(1).
Since f is G-invariant, θ(gσ) = f(σ)(g) for every σ ∈ X(k) and g ∈ G,
which means that Ψ(θ) = f . Moreover, if A(k) ⊂ X(k) is the (finite) set of
k-simplices that intersect a compact fundamental domain for the action of
G, we have

ρϕ(θ) =
∑

σ∈X(k)

ϕ
(
θ(σ)

)
⩽

∑
σ∈A(k)

∑
g∈G

ϕ
(
θ(gσ)

)
=

∑
σ∈A(k)

∑
g ∈G

ϕ
(
f(σ)(g)

)
=

∑
σ∈A(k)

ρϕ
(
f(σ)

)
.

This shows that the inverse of Ψ is continuous, because if fn = Ψ(θn) → 0
pointwise, then θn → 0 in ℓϕ(X(k)). □

Remark 5.3.
(1) Suppose that the groups G and G′ act, in addition, by isometries on

X and X ′ respectively, which are uniformly contractible simplicial
complexes with bounded geometry. By [7, p. 140, Proposition 8.19],
G and G′ are finitely generated and quasi-isometric to X and X ′

respectively when we equip them with word metrics. Combining
Theorem 5.1 and Proposition 5.2, we conclude that if G and G′

are quasi-isometric, then they have the same (reduced) continuous
Lϕ-cohomology for any Young function ϕ.

(2) If G is a finitely generated group, then it acts by isometries (and
simplicial isomporphisms) on its Cayley graph Cay(G,S) for some
finite generator S. This action is properly discontinuous, free, and
cocompact. In general, the Cayley graph is not uniformly con-
tractible; however, if G is in addition a hyperbolic group, then the
nth Rips complex of Cay(G,S) is a uniformly contractible simpli-
cial complex (see [7, p. 469, Proposition 3.23]) and the action of G
on it satisfies the conditions required in Proposition 5.2.
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6. The case of degree 1

Inspired by previous works as [8, 25, 27, 31, 35], here we study some
peculiarities of the case of degree 1.

Let us start with the asymptotic Orlicz cohomology. We assume that
(X,µ) is a metric measure space with bounded geometry and also that X
has the midpoint property, that is, there is a constant c ⩾ 0 such that for
any x, y ∈ X there exists z ∈ X such that

|x− z|, |y − z| ⩽ 1
2 |x− y| + c.

We denote by Z1
ϕ(X) the kernel of d : AS1

ϕ(X) → AS2
ϕ(X), then

LϕH1
AS(X) = Z1

ϕ(X)/dLϕ(X) and LϕH
1
AS(X) = Z1

ϕ(X)/dLϕ(X).

Recall that the topology of ASkϕ(X) is given by the family of semi-norms
(3.3).

Observe that we can describe Z1
ϕ(X) as the space of classes of functions

u ∈ AS1
ϕ(X) such that

(6.1) u(x, y) = u(z, y) − u(z, x)

for almost all x, y, z ∈ X. This implies that there exists a fixed z0 ∈ X

such that u(x, y) = u(z0, y) − u(z0, x) for almost all x, y ∈ X. Thus we can
define

(6.2) fu(x) = u(z0, x).

We have that dfu(x, y) coincides with u(x, y) for almost all x, y ∈ X and
satisfies (6.1) for all x, y, z ∈ X.

Lemma 6.1. — There exists t0 ⩾ 0 such that the semi-norms ∥ ∥ϕ,t1
and ∥ ∥ϕ,t2 are equivalent in Z1

ϕ(X) for all t1, t2 > t0. In particular ∥ ∥ϕ,t
is a norm in Z1

ϕ(X) for every t > t0 and (Z1
ϕ(X), ∥ ∥ϕ,t) is a Banach space.

Proof. — Let v, V and r0 as in (3.1) for the space (X,µ).
Take u ∈ Z1

ϕ(X). Because of the above observation, we can suppose
that u satisfies (6.1) for every x, y, z ∈ X. We will prove that if t > t0 :=
max{8c, 8r0},
then ∥u∥ϕ, 3t

2
⪯ ∥u∥ϕ,t, where the constant depends only on t. Observe

that this proves the first part of the lemma because it is clear that if t ⩽ t′,
then ∥u∥ϕ,t ⩽ ∥u∥ϕ,t′ .

Claim. —

1X2
3t
2

(x, y) ⩽ 1
v(t/8)

∫
X

1X2
t
(x, z)1X2

t
(z, y) dz.
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If 1X2
3t
2

(x, y) = 1, take z0 ∈ X such that

|x− z0|, |y − z0| ⩽ 1
2 |x− y| + c ⩽

3t
4 + c.

By the choice of t0, the ball B(z0, t/8) is included in B(x, t) ∩B(y, t). This
implies that∫

X

1X2
t
(x, z)1X2

t
(z, y) dz ⩾ µ

(
B(z0, t/8)

)
⩾ v(t/8) > 0,

which proves the claim.

Using the claim and Jensen’s inequality, we obtain

ρϕ, 3t
2

(u) =
∫
X2

ϕ
(
u(x, y)

)
1X2

3t
2

(x, y) dx dy

⩽
1

v(t/8)

∫
X2

ϕ
(
u(x, z) + u(z, y)

)(∫
X

1X2
t
(x, z)1X2

t
(z, y) dz

)
dx dy

⩽
1

2v(t/8)

∫
X3

(
ϕ
(
2u(x, y)

)
+ ϕ

(
2u(x, y)

))
1X2

t
(x, z)1X2

t
(z, y) dx dy dz

= V (t)
v(t/8)

∫
X2

ϕ
(
2u(x, y)

)
1X2

t
(x, z) dx dz = V (t)

v(t/8)ρϕ,t (2u) .

This implies that

∥u∥ϕ, 3t
2
⩽

2V (t)
v(t/8)∥u∥ϕ,t.

Observe that tor every t > t0 and u ∈ Z1
ϕ(X), ∥u∥ϕ,t = 0 implies that

∥u∥ϕ,t′ = 0 for any other t′ > t0. Hence u = 0 almost everywhere and, as a
consequence, ∥ ∥ϕ,t is a norm on Z1

ϕ(X).
Finally, since d is continuous, Z1

ϕ(X) is a Fréchet space with the topology
of AS1

ϕ(X). In addition, the equivalence of the norms ∥ ∥ϕ,t for t > t0
implies that Cauchy (respectively, convergent) sequences for one of such
t are Cauchy (respectively, convergent) for every t′ > t0. From this we
conclude that (Z1

ϕ(X), ∥ ∥ϕ,t) is a Banach space. □

Remark 6.2. — Suppose that X has a length metric (then c = 0) and
satisfies v(t) > 0 for every t > 0; thus t0 can be taken equal to 0.

Notice that Lemma 6.1 implies that LϕH1
AS(X) is indeed a Banach space

if X has the midpoint property.
Now we consider G a locally compact second countable topological group

and H a left Haar measure on G. We also assume that G is equipped with
a left-invariant metric possessing the midpoint property and has a compact
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generator S that contains an open neighborhood of 1 ∈ G that is also a
generator.

We consider the Luxemburg semi-norm ∥ ∥ϕ,S associated to the modular

ρϕ,S(f) =
∫
S

ρϕ
(
π(s)f − f

)
ds =

∫
S

∫
G

ϕ
(
f(xs) − f(x)

)
dx ds,

that is,

∥f∥ϕ,S = inf
{
α > 0 : ρϕ,S

(
f

α

)
⩽ 1
}
.

We say that f : G → R is a ϕ-Dirichlet function if ∥f∥ϕ,S < +∞, and
take Dϕ(G) the space of classes of ϕ-Dirichlet functions coinciding almost
everywhere. Observe that Lϕ(G) is contained in Dϕ(G).

Suppose that t0 ⩾ 0 is as in Lemma 6.1 and S contains a closed ball
B(1, t) for some t > t0. Given f ∈ Dϕ(G) we have

ρϕ,t(df) =
∫
G

∫
B(x,t)

ϕ
(
f(y) − f(x)

)
dy dx

=
∫
G

∫
B(1,t)

ϕ
(
f(xs) − f(x)

)
ds dx

⩽ ρϕ,S(f) ⩽
∫
G

∫
B(1,t′)

ϕ
(
f(xs) − f(x)

)
ds dx = ρϕ,t′(df),

where t′ = diam(S).
The above estimate implies that if S is big enough, then d : Dϕ(G) →

Z1
ϕ(G) is well-defined and continuous, and its kernel is the subspace of al-

most everywhere constant functions. Moreover, the induced map d : Dϕ(G)
→ Z1

ϕ(G) is a topological embedding, where Dϕ(G) = Dϕ(G)/R (where R
denotes the subspace of functions constant almost everywhere). We also
know that d is surjective because dfu = u for every u ∈ Z1

ϕ(G), so the
map is indeed a topological isomorphism (in particular Dϕ(G) is a Banach
space). We conclude that

(6.3) LϕH1
AS(G) ≃ Dϕ(G)/Lϕ(G) and LϕH

1
AS(G) ≃ Dϕ(G)/Lϕ(G),

where Lϕ(G) is the image of Lϕ(G) by the projection Dϕ(G) → Dϕ(G)
(observe that if µ is infinite, then Lϕ(G) coincides with Lϕ(G)). Recall that
if ϕ is doubling, then these quotients are isomorphic to LϕH1(G,Lϕ(G))
and LϕH

1(G,Lϕ(G)) respectively.

Remark 6.3. — In general, if (X,µ) is a measure metric space with the
midpoint property and t is large enough, then the Banach space
(Z1

ϕ(X), ∥ ∥ϕ,t) is isometric to

Dϕ(X) = Dϕ(X)/R = {f : X → R : ∥df∥ϕ,t < +∞} /R
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equipped with the natural norm. Therefore, equivalences (6.3) hold for
metric spaces.

Let us now show an alternative definition of the continuous Orlicz co-
homology of a topological group. It comes from the definition of group co-
homology in terms of inhomogeneus cocycles (see for example [21, p. 17]).
Let Zϕ(G) be the space of continuous functions ω : G → Lϕ(G) such that
ω(gh) = π(g)ω(h) + ω(g) for all g, h ∈ G equipped with the compact-open
topology. We also take Bϕ(G) as the subspace of those functions that can
be written as ω(g) = π(g)f − f for some f ∈ Lϕ(G).

From now on we assume that ϕ is doubling. In this case, by Lemma 4.1,
the elements of Bϕ(G) are continuous cocycles and so Bϕ(G) ⊂ Zϕ(G). One
can easily verify that the function

Zϕ(G) → C
(
G2, Lϕ(G)

)
, ω 7→ dω,

induces isomorphisms

H1(G,Lϕ(G)
)

≃ Zϕ(G)/Bϕ(G) and H
1(
G,Lϕ(G)

)
≃ Zϕ(G)/Bϕ(G).

In these equivalences, the group G need not have a compact generator. If,
in addition, G has a compact generator S containing an open neighborhood
of 1 ∈ G that is also a generator, we can define on Zϕ(G) the semi-norm

∥ω∥S = sup
s∈S

∥ω(s)∥ϕ.

Observe that, since the modular function ∆ is continuous and S is compact,
there exists a constant M ⩾ 1 such that for every s ∈ S and f ∈ Lϕ(G),

(6.4) ∥π(s)f∥ϕ ⩽M∥f∥ϕ,

This observation and the condition ω(gh) = π(g)ω(h) + ω(g) imply that
∥ω∥ = 0 if and only if ω = 0 (and as a consequence ∥ ∥S is a norm).

Proposition 6.4.
(i) The norm ∥ ∥S induces the compact-open topology on Zϕ(G).
(ii) (Zϕ(G), ∥ ∥S) is a Banach space.

Proof. — Since Lϕ(G) is a metric space and G is the union of countably
many compact subsets, the compact-open topology is the topology of uni-
form convergence on compact sets and G is first countable. Suppose that
ωn → 0 uniformly on compact sets, then for every ϵ > 0 there exists n0
such that ∥ωn(s)∥ϕ < ϵ for every s ∈ S and n ⩾ n0. This implies that
∥ωn∥S → 0.

Conversely, suppose that ∥ωn∥S → 0 and fix a compact set K ⊂ G. Since
S contains an open generator, there exists k such that K ⊂ Sk. For every
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x ∈ K we can write x = s1 . . . sℓ with ℓ ⩽ k and s1, . . . , sℓ ∈ S. The
condition ω(gh) = π(g)ω(h) + ω(g) implies

ωn(x) =
ℓ∑
i=1

π(s1 . . . si−1)ωn(si).

Therefore, using (6.4), we obtain ∥ωn(x)∥ϕ ⩽ kMk∥ωn∥S . Since ∥ωn∥S→ 0,
we have ∥ωn(x)∥ϕ → 0 uniformly on K. This proves (i).

To prove (ii) it is enough to observe that (Zϕ(G), ∥ ∥S) can be seen as a
closed subspace of (C(S,Lϕ(G)), ∥ ∥∞). □

6.1. ϕ-Harmonic functions

Here we assume in addition that G is unimodular and has a compact
generator S that is also a symmetric neighborhood of 1 ∈ G. We also
assume that the Haar measure on G is locally doubling, that is, for every
R > 0 there exists a constant C = C(R) ⩾ 1 such that for every x ∈ G and
0 < r < R,

(6.5) 0 < µ
(
B(x, 2r)

)
⩽ Cµ

(
B(x, r)

)
< +∞.

Throughout this section, ϕ will be a doubling strictly convex N -function
whose derivative exists at every point different from 0. We extend the deriv-
ative ϕ′ to the whole R by putting ϕ′(0) = 0. Let ψ be the convex conjugate
of ϕ, which is also an N -function in this case. Since ϕ is an N -function, the
function η(s) = ϕ′(t)s− ϕ(s) has a positive maximum for any fixed t > 0,
which is attained at some s such that η′(s) = ϕ′(t)−ϕ′(s) = 0. Hence t = s

because ϕ is strictly convex. By the definition of ψ we conclude that

(6.6) ψ
(
ϕ′(t)

)
= tϕ′(t) + ϕ(t),

for every t > 0. If t = 0, then the previous equality is obviously true, and
since ϕ′ is an odd function, it also holds for t < 0.

Lemma 6.5. — If f ∈ Lϕ(G), then ϕ′(f) ∈ Lψ(G). In fact, ρψ(ϕ′(f))
⩽ (D − 1)ρϕ(f), where D is a constant satisfying (2.4).

Proof. — Since ϕ′ is non-decreasing we have that for every t ⩾ 0,

tϕ′(t) ⩽
∫ 2t

t

ϕ(t) dt ⩽
∫ 2t

0
ϕ(t) dt = ϕ(2t) ⩽ Dϕ(t).

This is also true for t < 0 because ϕ is even and ϕ′ is odd. Using (6.6) and
the previous estimate, we obtain ψ(ϕ′(f)) ⩽ (D − 1)ϕ(f), thus

ρψ
(
ϕ′(f)

)
=
∫
G

ψ
(
ϕ′(f)

)
dµ ⩽ (D − 1)

∫
G

ϕ(f) dµ = ρϕ(f) < +∞.
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□

Define the ϕ-Laplacian of a function f ∈ Dϕ(G) by

∆ϕf(x) =
∫
S

ϕ′
(
f(xs) − f(x)

)
ds.

We say that f is ϕ-harmonic if ∆ϕf = 0 almost everywhere. An element [f ]
of Dϕ(G) is ϕ-harmonic if f is a ϕ-harmonic function (it does not depend on
the representative). Observe that this definition depends on S; however, we
will see that there exists a one-to-one correspondence between ϕ-harmonic
classes of functions for different generators.

Proposition 6.6. — Let f ∈ Dϕ(G). Then ∆ϕf is well-defined and
locally integrable.

Proof. — Consider K ⊂ G a compact set with µ(K) > 0. Using Tonelli’s
theorem, Jensen’s inequality, and Lemma 6.5, we get∫

K

∫
S

∣∣∣ϕ′(f(xs) − f(x)
)∣∣∣ ds dx

⩽ µ(K)µ(S)ψ−1
(

1
µ(K)µ(S)

∫
S

ρψ

(
ϕ′
(
f(xs) − f(x)

))
ds

)
⩽ µ(K)µ(S)ψ−1

(
D − 1

µ(K)µ(S)

∫
S

ρϕ
(
f(xs) − f(x)

)
ds

)
⩽ µ(K)µ(S)ψ−1

(
D − 1

µ(K)µ(S)ρϕ,S(f)
)
< +∞.

Since G is locally compact and µ is positive on open sets by (6.5),∫
S

∣∣∣ϕ′(f(xs) − f(x)
)∣∣∣ds < +∞

for almost every x ∈ G and thus ∆ϕf is defined almost everywhere. Fur-
thermore, the previous estimate shows that ∆ϕf ∈ L1

loc(G). □

We want to prove the following result:

Theorem 6.7. — Suppose that ψ is also doubling. Then for every
[f ] ∈ Dϕ(G) there exists [u] ∈ Lϕ(G) and a ϕ-harmonic class [h] ∈ Dϕ(G)
such that [f ] = [u] + [h].

This theorem says that every class in H
1(
G,Lϕ(G)

)
can be represented

by a ϕ-harmonic function (unique up to constants). This also gives a one-
to-one correspondence between ϕ-harmonic classes for two different gener-
ators. To prove it, we adapt the argument used in [25] for discrete groups.
It is also suggested for the Lp case in [35].
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The problem of finding [u] as in Theorem 6.7 is, as in other contexts,
equivalent to minimizing a kind of energy operator. Given f ∈ Dϕ(G), we
define the operator

If : Lϕ(G) → [0,+∞), If
(
[g]
)

= ρϕ,S(f − g).

Since ϕ is strictly convex, If is also strictly convex. Using Proposition 2.2,
it is easy to see that If is continuous.

Proposition 6.8. — The class [u] ∈ Lϕ(G) minimizes If if and only if
[h] = [f ] − [u] is ϕ-harmonic.

In order to prove Proposition 6.8, recall the definition of Gâteaux deriv-
ative of an operator and some properties involving it.

The Gâteaux derivative of a function F : V → R (defined on a topological
vector space V ) at u in the direction v ∈ V is, if it exists,

F ′(u; v) = lim
λ→ 0+

F (u+ λv) − F (u)
λ

.

We say that F is Gâteaux differentiable at u if the limit exists for every
v ∈ V and the map Fu = F ′(u; ·) is in the dual space of V .

Remark 6.9. — Observe that if F : V → R is a Gâteaux differentiable
function that has a minimum on a subspace W at u, then Fu|W ≡ 0. This
is because for every w ∈ W ,

0 ⩽ Fu(−v) = −Fu(v) ⩽ 0.

Lemma 6.10. — The operator If is Gâteaux differentiable at every [u]
and

If[u]
(
[g]
)

=
∫
S

∫
G

ϕ′
(
(f − u)(xs) − (f − u)(x)

)(
g(xs) − g(x)

)
dx ds.

Proof. — Since ϕ is convex, for a, b ∈ R and λ > 0 we have

ϕ(a+ λb) − ϕ(a)
λ

=
ϕ
(
(1 − λ)a+ λ(a+ b)

)
− ϕ(a)

λ
⩽ ϕ(a+ b) − ϕ(a) ⩽ ϕ(a+ b).

If we put a = (f − u)(xs) − (f − u)(x) and b = g(xs) − g(x), we have that
the function

(s, x) 7→

ϕ
(
(f−u+λg)(xs) − (f−u+λg)(x)

)
− ϕ

(
(f−u)(xs) − (f−u)(x)

)
λ
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is dominated by a function in L1(S ×G). Observe that if

(f − u)(xs) − (f − u)(x) ̸= 0,

then the previous quotient goes to

ϕ′
(
(f − u)(xs) − (f − u)(x)

)(
g(xs) − g(x)

)
when λ → 0+. If (f −u)(xs) − (f −u)(x) = 0, then the quotient is equal to

ϕ
(
λ
(
g(xs) − g(x)

))
λ

,

which converges to ϕ′(0) = 0 because ϕ is an N -function. By the Dominated
Convergence Theorem, we obtain

(If )′
(
[u]; [g]

)
=
∫
S

∫
G

ϕ′
(
(f − u)(xs) − (f − u)(x)

)(
g(xs) − g(x)

)
dx ds.

Applying Hölder’s inequality (2.2), we get∣∣∣(If )′
(
[u]; [g]

)
− (If )′

(
[u]; [g̃]

)∣∣∣
⩽
∫
S

∫
G

∣∣∣ϕ′((f − u)(xs) − (f − u)(x)
)∣∣∣∣∣(g − g̃)(xs) − (g − g̃)(x)

∣∣ dx ds
⩽ 2
∥∥ϕ′(π(·)(f − u) − (f − u)

)∥∥
Lψ(S×G)∥g − g̃∥ϕ,S

By Lemma 6.5 (applied to the space S ×G), we have∥∥ϕ′(π(·)(f − u) − (f − u)
)∥∥
Lψ(S×G) ⪯ ∥f − u∥ϕ,S < +∞,

from which we deduce that (If )′([u]; ·) is an element of the dual space of
Lϕ(G), which finishes the proof of Lemma 6.10. □

Lemma 6.11. — The class [h] = [f ] − [u] is ϕ-harmonic if and only if
If[u] ≡ 0.

Proof. — (⇒) Since If[u] is continuous, it is enough to prove that
If[u]([g]) = 0 for every g ∈ Lϕ(G).

By Young’s inequality (2.3) and Lemma 6.5 applied to the space S ×G,
we have∫

S

∫
G

∣∣∣ϕ′(h(xs) − h(x)
)∣∣∣∣∣g(xs)

∣∣ dx ds
⩽
∫
S

∫
G

ψ
(
ϕ′
(
h(xs) − h(x)

))
dx ds+

∫
S

∫
G

ϕ
(
g(xs)

)
dx ds

⩽ (D − 1)ρϕ,S(h) + µ(S)ρϕ(g) < +∞,
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where D is a doubling constant for ϕ. In the last inequality, we use that G
is unimodular. In the same way, we get∫

S

∫
G

∣∣∣ϕ′(h(xs) − h(x)
)∣∣∣∣∣g(x)

∣∣ dx ds < +∞.

This allows to decompose If[u]([g]) as follows:

If[u]
(
[g]
)

=
∫
S

∫
G

ϕ′
(
h(xs) − h(x)

)
g(xs) dx ds

−
∫
S

∫
G

ϕ′
(
h(xs) − h(x)

)
g(x) dx ds = −2

∫
G

∆ϕh(x)g(x) = 0.

(⇐) For x ∈ G and ϵ > 0 we define

δx,ϵ = 1
µ
(
B(x, ϵ)

)1B(x,ϵ) ∈ Lϕ(G).

As before,

0 = If[u](δx,ϵ) = −2
µ(B(x, ϵ))

∫
B(x,ϵ)

∆ϕh(x)dx.

Applying the Differentiation Lebesgue Theorem (see [22, Theorem 1.8](1) )
we conclude that, for almost every x ∈ G,

0 = lim
ϵ→ 0

If[u](δx,ϵ) = ∆ϕh(x);

thus, h is ϕ-harmonic. □

The last ingredient we need for proving Proposition 6.8 is the following
result, which can be found in [11, p. 24; Proposition 5.4.].

Proposition 6.12. — Let F a Gâteaux differentiable function defined
on a convex set C. Then F is strictly convex on C if and only if for every
u, v ∈ C with u ̸= v,

F (v) > F (u) + F ′u(v − u).

Proof of Proposition 6.8. — If If has a minimum at [u], then If[u] ≡ 0
by Remark 6.9. Using Lemma 6.11, we conclude that [h] is ϕ-harmonic.

Conversely, if [h] is ϕ-harmonic, then If[u] ≡ 0 (again by Lemma 6.11).
Applying Proposition 6.12 to F = If , we see that this operator has a
minimum at [u]. □

In order to prove Theorem 6.7, we use the following proposition, which
is a particular case of [11, p. 35, Proposition 1.2].

(1) In [22], the theorem is proven for non-negative functions and doubling measure, but
it can be easily generalized to our case.
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Proposition 6.13. — Let V be a reflexive Banach space and
F : V → R a convex lower semicontinuous operator such that F (u) → +∞
if ∥u∥ → +∞. Then F has a minimum. If F is in addition strictly convex,
then the minimum is unique.

Proof of Theorem 6.7. — By Proposition 6.8, we have to prove that If
has a unique minimum. For this end we will apply Proposition 6.13.

Observe that there is a natural isometric embedding

Dϕ(G) → Lϕ(S ×G), [f ] 7→ π(·)f − f.

Since ϕ is doubling and has doubling conjugate, Lϕ(S × G) is reflexive
(see [32, p. 111, Corollary 9]). Thus Dϕ(G) is also reflexive because it is
isometric to a closed subspace of a reflexive space.

We already know that If is strictly convex. Furthermore, it is continuous
and hence it is lower semicontinuous. Let us prove that If ([g]) → +∞ if
∥g∥ϕ,S → +∞.

If ∥gn∥ϕ,S → +∞, then, assuming that ∥f − gn∥ϕ,S ⩾ 1, we have

1 = ρϕ,S

(
f − gn

∥f − gn∥ϕ,S

)
⩽
ρϕ,S(f − gn)
∥f − gn∥ϕ,S

=
If
(
[gn]
)

∥f − gn∥ϕ,S
,

and as a consequence If ([gn]) ⩾ ∥f − gn∥ϕ,S → +∞.
Putting all together, we conclude that If has a unique minimum [u],

from which we obtain the desired decomposition. □

Remark 6.14. — Following Remark 6.3, we can give a definition of ϕ-
Laplacian for more general metric spaces:

∆ϕ,t : Dϕ(X) → L1
loc(X), ∆ϕ,tf(x) =

∫
X2
t

ϕ′
(
f(y) − f(x)

)
dy dx.

This notion is similar to the one defined in [35]. All done above works in
this more general context if the measure on X is locally doubling.

6.2. Examples

(1)

We study the case G = R with the usual addition, measure, and metric.
Here S = [−1, 1] and ϕ is as in Theorem 6.7.

On the one hand, it is easy to see that H1(R, Lϕ(R)) ̸= 0. Indeed, if
f : R → R is a continuous increasing function such that f(x) = 0 for every
x ⩽ 0 and f(x) = 1 for every x ⩾ 1, then it is clear that f ∈ Dϕ(R) because
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the function x 7→ f(x+s)−f(x) has image included in [−1, 1] and support
in [−1, 2]. It is also easy to see that f /∈ Lϕ(R) + R, which implies that
f represents a non-zero class in H1(R, Lϕ(R)) via identification (6.3) and
Theorem 1.2.

On the other hand, since R and Z are quasi-isometric, their reduced
asymptotic Lϕ-cohomologies are isomorphic, and therefore, they have iso-
morphic reduced continuous Lϕ-cohomologies. Let us prove that Z has no
ϕ-harmonic classes, which implies H1(Z, ℓϕ(Z)) = H

1(R, Lϕ(R)) = 0. In
particular, R has no non-trivial ϕ-harmonic classes.

The argument below can also be found in [28].
Consider in Z the generator S = {−1, 0, 1}. If f ∈ Dϕ(Z) is ϕ-harmonic,

then for every n ∈ Z,

0 = ∆ϕf(n) = ϕ′
(
f(n+ 1) − f(n)

)
+ ϕ′

(
f(n− 1) − f(n)

)
.

Since ϕ′ is odd and increasing, from the previous equality we have that
n 7→ f(n+ 1) − f(n) is constant. Which implies that f is constant because
f is a ϕ-Dirichlet function. We conclude that the only ϕ-harmonic class on
Z is the trivial one.

(2)

Let us say something about the Lϕ-cohomology of the real hyperbolic
space Hn for some fixed doubling Young function ϕ. It can be seen as the
Heintze group Hn = Rn−1 ⋊Id R (see [23]).

We first observe that if Γ ⩽ Isom(Hn) is a discrete group such that
M = Hn/Γ is a closed hyperbolic manifold, then Γ acts freely, properly
discontinuously, and cocompactly on Hn. Moreover, a simplicial structure
can be defined by lifting a triangulation of M to Hn. According to this
structure, Γ acts also by simplicial automorphisms; hence, Proposition 5.2
implies that Hk(Γ, ℓϕ(Γ)) and ℓϕHk(Hn) are isomorphic for every k ∈ N.
The same is true for the reduced cohomology.

If we equip Γ with the word metric and the counting measure, it satisfies
the hypothesis of Theorem 1.2. The groups Γ and Hn are quasi-isometric
and hence by Corollary 1.1 their (reduced) continuous Lϕ-cohomologies co-
incide (and they coincide with their asymptotic Lϕ-cohomologies). There-
fore,

Hk
(
Hn, Lϕ(Hn)

) ∼= ℓϕHk(Hn) and

H
k(Hn, Lϕ(Hn)

) ∼= ℓϕH
k(Hn), k ∈ N.
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In the case k = 1, [8, Theorem 1.2] implies that ℓϕH1(Hn) = ℓϕH
1(Hn)

and they coincide with the Besov space Bϕ(Sn−1)/R, where

Bϕ(Sn−1) =
{
u : Sn−1 → R : ∥u∥Bϕ < +∞

}
and ∥ ∥Bϕ is the Luxemburg semi-norm associated to

ρBϕ(u) =
∫
Sn−1× Sn−1

ϕ
(
u(x) − u(y)

)
|x− y|2n−2 dH(x) dH(y).

Here H is the (n − 1)-dimensional Hausdorff measure on the sphere, and,
as before, R denotes the space of constant functions.

If ϕ(t) = |t|p, then it is easy to see that the Lipschitz functions on
an Ahlfors-regular metric space Z are in Bϕ(Z) if p is greater than the
Hausdorff dimension of Z, which implies Bϕ(Z)/R ̸= 0. Let us repeat the
proof in our more general case in order to obtain some condition on ϕ for
the non-vanishing of Bϕ(Sn−1)/R.

Let u : Sn−1 → R be a L-Lipschitz function. The sphere is (n − 1)-
Ahlfors regular, that is, there exists C ⩾ 1 such that for every x ∈ Sn−1

and r ∈ (0, 2π),

(6.7) C−1rn−1 ⩽ H
(
B(x, r)

)
⩽ Crn−1.

Here we assume that Sn−1 has diameter 2π. Define the m-annulus around
a point x ∈ Sn−1 as the subset Am(x) = B(x, 2π

m ) \ B(x, 2π
m+1 ). Then,

by (6.7),

ρBϕ(u) =
∫
Sn−1

∑
m⩾ 1

(∫
Am(x)

ϕ
(
u(x) − u(y)

)
|x− y|2n

dH(y)
)
dH(x)

⩽
∫
Sn−1

∑
m⩾ 1

H
(
Am(x)

)
ϕ(2πL/m)(m+ 1)2n−2 dH(x)

⩽ H
(
Sn−1) ∑

m⩾ 1
ϕ(2πL/m)

(
2π
m

)n−1
(m+ 1)2n−2.

Thus, a sufficient condition to u be in Bϕ(Sn−1) is

(6.8)
∑
m⩾ 1

ϕ(1/m)mn−1 < +∞.

For any fixed point x0 ∈ Sn−1, the map u(x) = |x − x0| is Lipschitz
and non-constant. If ϕ satisfies (6.8), then ℓϕH1(Hn) = ℓϕH

1(Hn) ̸= 0. We
conclude that

H1(Hn, Lϕ(Hn)
)

= H
1(Hn, Lϕ(Hn)

)
̸= 0.
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A condition similar to (6.8) is given in [17] as a sufficient condition for
the non-vanishing of the de Rham Orlicz cohomology of H2 in degree 1.

Observe that the Haar measure on Hn is the Riemannian volume, hence
it is locally doubling. Therefore, if ϕ and S are as in Subsection 6.1, then
condition (6.8) guarantees the existence of non-constant ϕ-harmonic func-
tions.

An explicit computation of the simplicial Orlicz cohomology in degree 1
of a wide family of Heintze groups for certain doubling Young functions
can be found in [8].

7. Some observations on the non-doubling case

In this section, we study an example that illustrates some differences
between the doubling and non-doubling case.

Consider the free group F2 generated by two generators a and b. We
equip F2 with the counting measure and the word metric associated to the
symmetric generator S = {a, a−1, b, b−1}.

Let us focus on the asymptotic Orlicz cohomology of F2 associated to a
Young function ϕ. Observe that for every x, y ∈ F2 there exist n ∈ N and
x0, x1, . . . , xn ∈ F2 (all of them different) such that x0 = x, xn = y and
|xi−1 −xi| = 1; moreover, these points are unique. For ω ∈ Z1

ϕ(F2), we have

ω(x, y) =
n∑
i=1

ω(xi−1, xi).

We can conclude that every element in Z1
ϕ(F2) is determined by its values

at the set (F 2
2 )1 of all the pairs of elements at distance 1, which also implies

that ∥ ∥ϕ,1 is a norm in Z1
ϕ(F2).

Let X be the Cayley graph of F2 for the generator S, which is geomet-
rically a tree. It is clear that the map

Θ :
(
Z1
ϕ(F2), ∥ ∥ϕ,1

)
→
(
ℓϕ
(
X(1)), ∥ ∥ϕ

)
, Θ(ω)

(
[x, y]

)
= ω(x, y),

is an isomorphism that preserves dℓϕ(F2). In particular, (Z1
ϕ(F2), ∥ ∥ϕ,1) is

a Banach space and has the topology given by the whole family of semi-
norms ∥ ∥ϕ,t. This shows that the (reduced) asymptotic Lϕ-cohomology of
F2 coincides with the (reduced) simplicial ℓϕ-cohomology of X even if ϕ is
not doubling.

Consider a function ϕ such that ϕ(t) = e−
1
t2 for |t| small enough. It is

easy to see that this formula defines a convex function on (−
√

2/3,
√

2/3).
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Since we are in the discrete case, the behaviour of the function for large
t is not important. However, ϕ can be extended to a non-doubling Young
function on R, for example by putting ϕ(t) = α + βe|t| when |t| >

√
2/3

for suitable α, β ∈ R.
First observe that LϕH1

AS(F2) ̸= 0. For that we decompose F2 into two
disjoint subsets A and B, where A is the set of elements x ∈ F2 that can be
written as x = as1 · · · sk with s1, . . . , sk ∈ S and s−1

1 ̸= a. Take ω ∈ Z1
ϕ(F2)

defined in (F 2
2 )1 by ω(1, a) = ϵ (and then ω(a, 1) = −ϵ) and ω(x, y) = 0 if

{x, y} ̸= {1, a}, where ϵ > 0. If f : F2 → R satisfies df = ω, then f must
be constant on A and B but taking a different value on each subset, so
it cannot be in ℓϕ(F2). This implies that ω represents a non-zero class in
cohomology.

Now check that if ϵ <
√

2/3, then ω can be approximated by a sequence
{ωn} ⊂ Z1

ϕ(F2) such that for every n ∈ N there exists fn ∈ ℓϕ(F2) with
dfn = ωn. We again define ωn in (F 2

2 )1 such that

• ωn(1, a) = ϵ

• ωn(x, y) = ϵ/n if x, y ∈ A and |x− a| = |y − a| − 1 ⩽ n− 1
• ωn(x, y) = 0 if x, y ∈ B or |x− a| > n or |y − a| > n.

It is clear that ωn = dfn for fn with finite support. Moreover

ρϕ,1

(
ωn − ω

α

)
= 2 · 3ne−(αn/ϵ)2

,

which is equal to 1 if

α = ϵ

√
log 2
n2 + log 3

n
.

This shows that ∥ωn − ω∥ϕ → 0 when n → +∞.
It is known (see [24, Proposition 2]) that in the doubling case, the con-

tinuous Lϕ-cohomology in degree 1 of a noncompact second countable lo-
cally compact group coincides with its reduced cohomology if and only if
the group is non-amenable. By Theorem 1.2 the same holds for the asymp-
totic Orlicz cohomology. However, the above observation shows that the
asymptotic Lϕ-cohomology in degree 1 of the non-amenable group F2 can
be non-reduced (that is LϕH1

AS(F2) ̸= LϕH
1
AS(F2)) if ϕ is non-doubling.

[8, Theorem 1.2] implies that, if ϕ is doubling and X is a Gromov-
hyperbolic simplicial complex with bounded geometry such that its bound-
ary ∂X admits an Ahlfors-regular visual metric, then ℓϕH1(X) = ℓϕH

1(X).
In our case, it is easy to see that the Cayley graph X is Gromov-hyperbolic
and its boundary has an Ahlfors-regular visual metric of dimension log 3.
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Then, combining this result with Theorem 1.2 and Proposition 5.2, we ob-
tain LϕHAS(X) = LϕHAS(X) if ϕ is doubling. Observe that the above
computation shows that this is not true in the non-doubling case.

In fact, we can see directly that if ϕ is as above, then ℓϕH1(X) ̸=
ℓϕH

1(X), which shows that the doubling condition is necessary for the
claim of [8, Theorem 1.2].
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