On characteristic power series of dual signed Selmer groups
[Sur la série caractéristique des groupes de Selmer signés]
Annales de l'Institut Fourier, Online first, 17 p.

Nous relions la cardinalité de la composante p-primaire du groupe Selmer de Bloch–Kato sur associé à une forme modulaire en un nombre premier p non-ordinaire au terme constant de la série caractéristique du groupe de Selmer signés le long de la p -extension cyclotomique de . Ceci généralise un résultat de Vigni et Longo dans le cas ordinaire. Dans le cas des courbes elliptiques, de tels résultats découlent des travaux de Greenberg, Kim, du deuxième auteur, et d’Ahmed–Lim, qui englobent le cas ordinaire et la plupart des cas supersinguliers.

We relate the cardinality of the p-primary part of the Bloch–Kato Selmer group over attached to a modular form at a non-ordinary prime p to the constant term of the characteristic power series of the signed Selmer groups over the cyclotomic p -extension of . This generalizes a result of Vigni and Longo in the ordinary case. In the case of elliptic curves, such results follow from earlier works by Greenberg, Kim, the second author, and Ahmed–Lim, covering both the ordinary and most of the supersingular case.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3702
Classification : 11R23, 11R18, 11F11, 11F85
Keywords: Euler characteristic, modular forms, signed Selmer groups, algebraic $p$-adic $L$-function
Mots-clés : caractéristique d’Euler, formes modulaires, groupes de Selmer signés, fonctions $L$ $p$-adiques algébriques

Ray, Jishnu 1 ; Sprung, Florian ITO 2

1 Harish Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211 019 (India)
2 School of Mathematical and Statistical Sciences, Arizona State University Tempe, AZ 85287-1804 (USA)
@unpublished{AIF_0__0_0_A148_0,
     author = {Ray, Jishnu and Sprung, Florian ITO},
     title = {On characteristic power series of dual signed {Selmer} groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3702},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Ray, Jishnu
AU  - Sprung, Florian ITO
TI  - On characteristic power series of dual signed Selmer groups
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3702
LA  - en
ID  - AIF_0__0_0_A148_0
ER  - 
%0 Unpublished Work
%A Ray, Jishnu
%A Sprung, Florian ITO
%T On characteristic power series of dual signed Selmer groups
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3702
%G en
%F AIF_0__0_0_A148_0
Ray, Jishnu; Sprung, Florian ITO. On characteristic power series of dual signed Selmer groups. Annales de l'Institut Fourier, Online first, 17 p.

[1] Ahmed, Suman; Lim, Meng Fai On the Euler characteristics of signed Selmer groups, Bull. Aust. Math. Soc., Volume 101 (2020) no. 2, pp. 238-246 | DOI | MR | Zbl

[2] Coates, John; Sujatha, Ramdorai Euler–Poincaré characteristics of abelian varieties, C. R. Math. Acad. Sci. Paris, Volume 329 (1999) no. 4, pp. 309-313 | DOI | Zbl

[3] Coates, John; Sujatha, Ramdorai Cyclotomic fields and zeta values, Springer Monographs in Mathematics, Springer, 2006 | DOI | MR | Zbl

[4] Coates, John; Sujatha, Ramdorai Galois cohomology of elliptic curves, Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research, 91, Narosa Publishing House; for the Tata Institute of Fundamental Research, Mumbai, 2010 | MR | Zbl

[5] Deligne, Pierre Formes modulaires et representations -adiques, Séminaire Bourbaki vol. 1968/69 Exposés 347-363 (Lecture Notes in Mathematics), Volume 179, Springer, 1971, pp. 139-172 | DOI | Zbl

[6] Diamond, Fred; Flach, Matthias; Guo, Li The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 663-727 | DOI | Numdam | MR | Zbl

[7] Greenberg, Ralph Iwasawa theory for p-adic representations, Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 97-137 | DOI | Zbl

[8] Greenberg, Ralph Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1999, pp. 51-144 | DOI | MR | Zbl

[9] Hachimori, Yoshitaka; Matsuno, Kazuo An analogue of Kida’s formula for the Selmer groups of elliptic curves, J. Algebr. Geom., Volume 8 (1999) no. 3, pp. 581-601 | MR | Zbl

[10] Hatley, Jeffrey; Lei, Antonio Arithmetic properties of signed Selmer groups at non-ordinary primes, Ann. Inst. Fourier, Volume 69 (2019) no. 3, pp. 1259-1294 | DOI | Numdam | MR | Zbl

[11] Kato, Kazuya p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | Zbl

[12] Kim, Byoung Du The plus/minus Selmer groups for supersingular primes, J. Aust. Math. Soc., Volume 95 (2013) no. 2, pp. 189-200 | DOI | MR | Zbl

[13] Kobayashi, Shin-ichi Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl

[14] Lei, Antonio Iwasawa theory for modular forms at supersingular primes, Compos. Math., Volume 147 (2011) no. 3, pp. 803-838 | DOI | MR | Zbl

[15] Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia Wach modules and Iwasawa theory for modular forms, Asian J. Math., Volume 14 (2010) no. 4, pp. 475-528 | DOI | MR | Zbl

[16] Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia Coleman maps and the p-adic regulator, Algebra Number Theory, Volume 5 (2011) no. 8, pp. 1095-1131 | DOI | MR | Zbl

[17] Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia On the asymptotic growth of Bloch–Kato–Shafarevich–Tate groups of modular forms over cyclotomic extensions, Can. J. Math., Volume 69 (2017) no. 4, pp. 826-850 | DOI | MR | Zbl

[18] Lei, Antonio; Ponsinet, Gautier On the Mordell–Weil ranks of supersingular abelian varieties in cyclotomic extensions, Proc. Am. Math. Soc., Ser. B, Volume 7 (2020) no. 1, pp. 1-16 | DOI | MR | Zbl

[19] Loeffler, David; Zerbes, Sarah Livia Iwasawa theory and p-adic L-functions over p 2 -extensions, Int. J. Number Theory, Volume 10 (2014) no. 08, pp. 2045-2095 | DOI | MR | Zbl

[20] Longo, Matteo; Vigni, Stefano Plus/minus Heegner points and Iwasawa theory of elliptic curves at supersingular primes, Boll. Unione Mat. Ital., Volume 12 (2019) no. 3, pp. 315-347 | DOI | MR | Zbl

[21] Longo, Matteo; Vigni, Stefano On Bloch–Kato Selmer groups and Iwasawa theory of p-adic Galois representations, New York J. Math., Volume 27 (2021), pp. 437-467 | MR | Zbl

[22] Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2000 | MR | Zbl

[23] Ponsinet, Gautier On the structure of signed Selmer groups, Math. Z., Volume 294 (2020) no. 3, pp. 1635-1658 | DOI | MR | Zbl

[24] Rubin, Karl Euler systems. (Hermann Weyl lectures), Annals of Mathematics Studies, 147, Princeton University Press, 2014 | DOI | MR | Zbl

[25] Sprung, Florian E. Ito Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl

[26] Sprung, Florian E. Ito The Iwasawa Main Conjecture for odd supersingular primes (2016) | arXiv

Cité par Sources :