[Sur la série caractéristique des groupes de Selmer signés]
Nous relions la cardinalité de la composante -primaire du groupe Selmer de Bloch–Kato sur associé à une forme modulaire en un nombre premier non-ordinaire au terme constant de la série caractéristique du groupe de Selmer signés le long de la -extension cyclotomique de . Ceci généralise un résultat de Vigni et Longo dans le cas ordinaire. Dans le cas des courbes elliptiques, de tels résultats découlent des travaux de Greenberg, Kim, du deuxième auteur, et d’Ahmed–Lim, qui englobent le cas ordinaire et la plupart des cas supersinguliers.
We relate the cardinality of the -primary part of the Bloch–Kato Selmer group over attached to a modular form at a non-ordinary prime to the constant term of the characteristic power series of the signed Selmer groups over the cyclotomic -extension of . This generalizes a result of Vigni and Longo in the ordinary case. In the case of elliptic curves, such results follow from earlier works by Greenberg, Kim, the second author, and Ahmed–Lim, covering both the ordinary and most of the supersingular case.
Révisé le :
Accepté le :
Première publication :
Keywords: Euler characteristic, modular forms, signed Selmer groups, algebraic $p$-adic $L$-function
Mots-clés : caractéristique d’Euler, formes modulaires, groupes de Selmer signés, fonctions $L$ $p$-adiques algébriques
Ray, Jishnu 1 ; Sprung, Florian ITO 2
@unpublished{AIF_0__0_0_A148_0, author = {Ray, Jishnu and Sprung, Florian ITO}, title = {On characteristic power series of dual signed {Selmer} groups}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3702}, language = {en}, note = {Online first}, }
Ray, Jishnu; Sprung, Florian ITO. On characteristic power series of dual signed Selmer groups. Annales de l'Institut Fourier, Online first, 17 p.
[1] On the Euler characteristics of signed Selmer groups, Bull. Aust. Math. Soc., Volume 101 (2020) no. 2, pp. 238-246 | DOI | MR | Zbl
[2] Euler–Poincaré characteristics of abelian varieties, C. R. Math. Acad. Sci. Paris, Volume 329 (1999) no. 4, pp. 309-313 | DOI | Zbl
[3] Cyclotomic fields and zeta values, Springer Monographs in Mathematics, Springer, 2006 | DOI | MR | Zbl
[4] Galois cohomology of elliptic curves, Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research, 91, Narosa Publishing House; for the Tata Institute of Fundamental Research, Mumbai, 2010 | MR | Zbl
[5] Formes modulaires et representations -adiques, Séminaire Bourbaki vol. 1968/69 Exposés 347-363 (Lecture Notes in Mathematics), Volume 179, Springer, 1971, pp. 139-172 | DOI | Zbl
[6] The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 663-727 | DOI | Numdam | MR | Zbl
[7] Iwasawa theory for -adic representations, Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 97-137 | DOI | Zbl
[8] Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1999, pp. 51-144 | DOI | MR | Zbl
[9] An analogue of Kida’s formula for the Selmer groups of elliptic curves, J. Algebr. Geom., Volume 8 (1999) no. 3, pp. 581-601 | MR | Zbl
[10] Arithmetic properties of signed Selmer groups at non-ordinary primes, Ann. Inst. Fourier, Volume 69 (2019) no. 3, pp. 1259-1294 | DOI | Numdam | MR | Zbl
[11] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | Zbl
[12] The plus/minus Selmer groups for supersingular primes, J. Aust. Math. Soc., Volume 95 (2013) no. 2, pp. 189-200 | DOI | MR | Zbl
[13] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[14] Iwasawa theory for modular forms at supersingular primes, Compos. Math., Volume 147 (2011) no. 3, pp. 803-838 | DOI | MR | Zbl
[15] Wach modules and Iwasawa theory for modular forms, Asian J. Math., Volume 14 (2010) no. 4, pp. 475-528 | DOI | MR | Zbl
[16] Coleman maps and the -adic regulator, Algebra Number Theory, Volume 5 (2011) no. 8, pp. 1095-1131 | DOI | MR | Zbl
[17] On the asymptotic growth of Bloch–Kato–Shafarevich–Tate groups of modular forms over cyclotomic extensions, Can. J. Math., Volume 69 (2017) no. 4, pp. 826-850 | DOI | MR | Zbl
[18] On the Mordell–Weil ranks of supersingular abelian varieties in cyclotomic extensions, Proc. Am. Math. Soc., Ser. B, Volume 7 (2020) no. 1, pp. 1-16 | DOI | MR | Zbl
[19] Iwasawa theory and -adic -functions over -extensions, Int. J. Number Theory, Volume 10 (2014) no. 08, pp. 2045-2095 | DOI | MR | Zbl
[20] Plus/minus Heegner points and Iwasawa theory of elliptic curves at supersingular primes, Boll. Unione Mat. Ital., Volume 12 (2019) no. 3, pp. 315-347 | DOI | MR | Zbl
[21] On Bloch–Kato Selmer groups and Iwasawa theory of -adic Galois representations, New York J. Math., Volume 27 (2021), pp. 437-467 | MR | Zbl
[22] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2000 | MR | Zbl
[23] On the structure of signed Selmer groups, Math. Z., Volume 294 (2020) no. 3, pp. 1635-1658 | DOI | MR | Zbl
[24] Euler systems. (Hermann Weyl lectures), Annals of Mathematics Studies, 147, Princeton University Press, 2014 | DOI | MR | Zbl
[25] Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl
[26] The Iwasawa Main Conjecture for odd supersingular primes (2016) | arXiv
Cité par Sources :