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ON CHARACTERISTIC POWER SERIES OF DUAL
SIGNED SELMER GROUPS

by Jishnu RAY & Florian ITO SPRUNG (*)

Abstract. — We relate the cardinality of the p-primary part of the Bloch–Kato
Selmer group over Q attached to a modular form at a non-ordinary prime p to the
constant term of the characteristic power series of the signed Selmer groups over
the cyclotomic Zp-extension of Q. This generalizes a result of Vigni and Longo in
the ordinary case. In the case of elliptic curves, such results follow from earlier
works by Greenberg, Kim, the second author, and Ahmed–Lim, covering both the
ordinary and most of the supersingular case.

Résumé. — Nous relions la cardinalité de la composante p-primaire du groupe
Selmer de Bloch–Kato sur Q associé à une forme modulaire en un nombre premier
p non-ordinaire au terme constant de la série caractéristique du groupe de Selmer
signés le long de la Zp-extension cyclotomique de Q. Ceci généralise un résultat
de Vigni et Longo dans le cas ordinaire. Dans le cas des courbes elliptiques, de
tels résultats découlent des travaux de Greenberg, Kim, du deuxième auteur, et
d’Ahmed–Lim, qui englobent le cas ordinaire et la plupart des cas supersinguliers.

1. Introduction

The aim of this paper is to relate the size of a p-adic Selmer group
attached to a modular form which is non-ordinary at p to the constant
term of the characteristic power series of the cyclotomic deformation of
this Selmer group. This has been done in the case of elliptic curves, in the
ordinary and most of the supersingular (i.e. non-ordinary) case, and in the
case of modular forms, but working with ordinary p. We review what is
known in the next three subsections before describing our contribution.

Keywords: Euler characteristic, modular forms, signed Selmer groups, algebraic p-adic
L-function.
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1.1. The case of elliptic curves (ordinary at p)

Let E be an elliptic curve defined over a number field F such that E

has good ordinary reduction at all the primes of F above an odd prime p.
Assume the p-primary Selmer group Selp(E/F ) is finite. Let Fcyc be the
cyclotomic Zp-extension of F . Then by a control theorem, Selp(E/Fcyc)
is known to be cotorsion over the corresponding Iwasawa algebra of the
Galois group Γ0 := Gal(Fcyc/F ). Let fE(X) generate the characteristic
ideal of the Pontryagin dual of Selp(E/Fcyc), considered as a power series
by identifying 1+X with a topological generator of Γ0. In [8, Theorem 4.1],
Greenberg showed that fE(0) ̸= 0 and

(1.1) fE(0) ∼
#Selp(E/F ) ·

∏
v bad cv(E) ·

∏
v|p #

(
Ẽv(Fv)p

)2

#
(
E(F )p

)2 ,

where the symbol ∼ means that the two quantities differ by a p-adic unit.
Here cv(E) is the Tamagawa number of E at a prime v of bad reduction,
Fv is the residue field of F at v, Ẽv(Fv)p is the p-torsion of the group of
Fv-rational points of the reduction Ẽv of E at v and E(F )p is the p-torsion
subgroup of the Mordell–Weil group E(F ).

The product of quantities in (1.1) can be reinterpreted as an Euler char-
acteristic, so that

fE(0) ∼ χ (Γ0, Selp (E/Fcyc)) ;
see [8, Lemma 4.2] both for the statement and the definition of χ(Γ0,

Selp(E/Fcyc)).

1.2. The case of elliptic curves (supersingular and mixed
reduction)

In the supersingular case, the classical Selmer group Selp(E/Fcyc) is not
cotorsion. However, there are remedies. Denote by Sp the primes of F

above p. Suppose for the moment that for each v ∈ Sp, av = 1 + p −
#Ẽv(Fp) = 0, i.e. we are in a subcase of supersingular reduction. Follow-
ing the intuition that the cotorsion of the Selmer group fails because there
are too many points in the local condition that defines it, Kobayashi con-
structed signed (plus/minus) Selmer groups Sel±p (E/Fcyc) using “half” of
the local points, and proved that when F = Q, they are cotorsion over
the corresponding Iwasawa algebra [13]. Suppose p splits completely in F

and is totally ramified in Fcyc. The signed Selmer groups Sel±p (E/Fcyc) are

ANNALES DE L’INSTITUT FOURIER
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conjectured to be cotorsion over the Iwasawa algebra of Γ0. When this is
the case, let f± be generators of the characteristic power series of their
Pontryagin duals.

When Selp(E/F ) is finite, one can use a control theorem to prove
Sel±p (E/Fcyc) are cotorsion. Kim then showed that

f±(0) ∼ #Selp(E/F ) ·
∏

ℓ

cℓ.

Here ℓ runs over every prime and the Tamagawa factor cℓ = [E(Qℓ) :
E0(Qℓ)]. See [12, Theorem 1.2 or Corollary 3.15 and the explanations in
its proof] for the above assertions.

If one drops the assumption av = 0, the second author has generalized
Kobayashi’s construction to construct a pair of chromatic Selmer groups
Sel♯ and Sel♭ [25], and given an analogous formula of Kim’s, all assuming
that F = Q, see [26, Lemmas 4.4, 4.5, 4.8].

Returning to the case av = 0, in Kim’s results, the local condition ap-
pearing in the definition of Sel+p (E/Fcyc) is the same (“plus condition” of
Kobayashi) for each v. Analogously, the local condition in Sel−p (E/Fcyc)
is the same “minus condition” for each v. However, one may consider
mixed signed Selmer groups, where the local conditions may be different
for different v. In this case, Kim’s Euler characteristic formula has been
generalized by Ahmed and Lim under certain additional hypotheses (see
[1, Theorem 1.1]).

1.3. The case of modular forms (ordinary at p)

Suppose f(q) =
∑

n⩾1 an(f)qn is a newform of even weight k ⩾ 4 and
level Γ0(N). Let Qf = Q(an(f) | n ⩾ 1) be the Hecke field of f . Suppose
p ∤ 2N and fix a prime p of Qf above p. Assume that ap(f) is a p-adic unit
(i.e. p is ordinary for f) and ap(f) ̸≡ 1 (modp). Following the notations
of Longo and Vigni, we write E for the completion of Qf at p and OE

for the valuation ring of E. Let V be the self-dual twist of the representa-
tion Vf,p of GQ attached to f by Deligne; hence V = Vf,p(k/2). Choose a
GQ-stable OE-lattice T of V and set Af = V/T . Let Σ be a finite set of
primes of Q containing p, primes dividing the level N and the archimedean
prime. Suppose that the Bloch–Kato Selmer group SelBK(Af /Q) is finite.
Then Greenberg’s Selmer group SelGr(Af /Qcyc) over the cyclotomic Zp-
extension Qcyc of Q is cotorsion [21, Proposition 4.1]. The reader may
consult [21, Section 3.4] for the definition of the Bloch–Kato and Green-
berg Selmer groups. Let F be the power series generating the Pontryagin

TOME 0 (0), FASCICULE 0



4 Jishnu RAY & Florian ITO SPRUNG

dual of SelGr(Af /Qcyc). Vigni and Longo then showed the following Euler
characteristic formula (see [21, Theorem 1.1]).

(1.2) #(OE/F(0) · OE) = #SelBK(Af /Q) ·
∏

v ∈ Σ,v∤p

cv(Af ).

Here cv(Af ) := [H1
ur(Qℓ, Af ) : H1

f (Qℓ, Af )] (see [21, Definition 3.2]).
Vigni and Longo were actually able to deduce this Euler characteristic

result for general ordinary representations satisfying additional hypotheses
(see [21, Assumption 2.1]).

1.4. The case of modular forms (non-ordinary at p)

This is the case missing from the literature and this is precisely what
this article addresses. In this case, using the theory of Wach modules, Lei,
Loeffler, and Zerbes constructed signed Selmer groups over Qcyc (see [14,
15, 16]). Again, the issue with the classical Selmer group is that the local
condition is too big. Instead of considering “half” of the local points as
Kobayashi did, the authors are able to cut out two appropriate subspaces
of the local condition that come from kernels of certain maps, the Cole-
man maps. This is an analogue and generalization of [25] for the case of
elliptic curves. These signed Selmer groups are generally conjectured to be
cotorsion and this is known to hold in a large number of cases. Many arith-
metic properties of the signed Selmer groups have recently been proved
by Hatley and Lei [10]. Our main goal in this article is to generalize (1.2)
for the characteristic power series obtained from the signed Selmer groups
over Qcyc.

To produce results analogous to those of Longo and Vigni work in the
non-ordinary setting, we need the signed Selmer groups to behave as well as
the Selmer groups in the ordinary case, but this is not guaranteed. Hatley
and Lei in [10] considered families of twists of these signed Selmer groups,
and showed that appropriate twists result in well-behaved signed Selmer
groups. Our task is thus to work with these (infinitely many) twists of
signed Selmer groups Sel1(A(s)/Qcyc) and Sel2(A(s)/Qcyc) coming from
twists A(s) of Af , where s is an integer, and hope that they give us desir-
able arithmetic information. For these Seli(A(s)/Qcyc), the local conditions
at the prime p are defined as the Tate-local orthogonal complement of the
kernel of signed Coleman maps, which the interested reader can study in
Section 2.2 and the beginning of Section 3. The arithmetic properties of
such local conditions at the prime p studied by Hatley and Lei [10] need to

ANNALES DE L’INSTITUT FOURIER
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be developed further for our purposes. In particular, we prove a “Control
Lemma at the prime p” (Lemma 3.3), equating local cohomology groups
of the form H1(Qp,−) to H1(Qcyc,p,−)Γ0 sitting in an exact sequence.
When the Seli(A(s)/Qcyc) are cotorsion, let fi,s generate their characteris-
tic ideals. Under some mild hypotheses made in [10] and some hypotheses
on s, our main theorem is (see Theorem 3.1)

#
(

OE

fi,s(0)OE

)
= #χ

(
Γ0, Seli (A(s)/Qcyc)

)
= #SelBK(A(s)/Q) ·

∏
ℓ ∈ Σ,

ℓ∤p

cℓ(A(s)),

for i = 1 or i = 2, where cℓ(A(s)) := [H1
ur(Qℓ, A(s)) : H1

f (Qℓ, A(s))] is the
p-part of the Tamagawa number of A(s) at ℓ. Here, Σ is still the same set
of primes we chose in the previous subsection.

One comment about the hypotheses on s: The first equality holds for all
but finitely many, while for the second, we need s to be one of 0, · · · , k−2.

The astute reader might have noticed that the Tamagawa numbers are
over the primes not diving p in both our formula and in that of Longo–
Vigni’s, in contrast to the elliptic curve case. This is because only over
those places the local conditions for the (signed) Selmer groups coincide
with Greenberg’s local conditions (and with the usual Bloch–Kato local
conditions, again because we are away from p, see Section 2.3). The recent
techniques of Vigni and Longo [21] developed to deal with primes not di-
viding p in the ordinary case are sufficiently general to come to the rescue
in our setting, the non-ordinary case, as well.

We use this to perform a calculation of the Euler characteristic, and we
are then in a position to deduce our result relating the characteristic power
series of the Pontryagin dual of the signed Selmer groups with that of the
cardinality of Bloch–Kato Selmer group over Q and the Tamagawa factors.

1.5. Outlook

Ponsinet obtained a similar formula for the constant terms of the charac-
teristic power series for the dual signed Selmer groups of abelian varieties
with supersingular reduction at p such that the Hodge–Tate weights lie in
[0, 1] (see [23, Corollary 2.10]), under various other additional hypotheses
(see [23, Sections 1.2 and 1.3]). Proving such a result in a more general
setting is currently underway.
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2. Preliminaries

2.1. Notation

Several results in our paper rely on the results of [10]. In order to make
it easier for the reader to jump between papers, we follow their notation
(which in turn follows mostly that of [8]) as much as possible. Thus, let p be
a fixed odd prime. The letter ℓ also denotes a prime. Let Qp,n = Qp(µpn),
Q∞ = Q(µp∞) and Γ = Gal(Q∞/Q) ∼= Gal(Qp(µp∞)/Qp) ∼= Γ0×∆, where
Γ0 ∼= Zp and ∆ ∼= Z/(p − 1)Z. Let κ and ω be the restriction of the
cyclotomic character χ to Γ0 and ∆. Then Qcyc = Q∆

∞ is the cyclotomic
Zp-extension of Q. In any subfield of Q∞, we write p for its unique prime
above p, since p is totally ramified in Q∞.

Let f =
∑

an(f)qn be a normalized new cuspidal eigenform of even
weight k ⩾ 2, level N and nebentypus ε. We assume that p ∤ N , f is non-
ordinary at p and an(f) is defined over a totally real field for all n. Let E

be a finite extension of Qp containing an(f) for all n, ϖ a uniformizer of
E, and Vf the E-linear Galois representation attached to f constructed by
Deligne [5]. Let Tf be the canonical GQ-stable OE-lattice in Vf defined by
Kato [11, Section 8.3]. Let Af = Vf /Tf (1). Note that Vf has Hodge–Tate
weights {0, 1− k}, where the convention is that the Hodge–Tate weight of
the cyclotomic character is 1. Let Tf be the Tate twist Tf (k−1) which has
Hodge–Tate weights {0, k − 1}.

We let Λ := OE [[Γ0]] and let Λ(Γ) := OE [∆][[X]], the Iwasawa algebra of
Γ. There are certain Λ(Γ)-morphisms called Coleman maps for each i = 1, 2
constructed using the theory of Wach modules,

Colf,i : H1
Iw (Qp, Tf )→ Λ(Γ)

ANNALES DE L’INSTITUT FOURIER
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(see e.g. [10, p. 1264 after eq. (2.1)]). Here, H1
Iw(Qp, Tf ) := lim←−H1(Qp,n, Tf ).

For any finite extension K/Qp contained in Q∞,p, by Tate-duality, there
exists the Tate pairing

(2.1) H1 (K, Tf )×H1 (K, Af )→ Qp/Zp.

Upon taking direct and inverse limits, we obtain a pairing

(2.2) H1
Iw (Qp, Tf )×H1 (Q∞,p, Af )→ Qp/Zp.

Let H1
i (K, Af ) be the orthogonal complement (under the Tate-pairing

(2.1)) of the image of ker Colf,i under the natural map H1
Iw(Qp, Tf ) →

H1(Kv, Tf ). Let H1
i (Q∞,p, Af ) be the direct limit lim−→H1

i (K, Af ). The
group H1

i (Q∞,p, Af ) can also be identified with the orthogonal comple-
ment of ker Colf,i under the pairing (2.2). In [10, Remark 2.5], Hatley–Lei
showed the following compatibility relation, which is crucial when analyzing
the control diagram for the local conditions at p (see Lemma 3.4):

(2.3) H1
i (Q∞,p, Af )Gal(Q∞,p/K) = H1

i (K, Af ).

Following [23, Section 1.6] or [18, Section 2.1], we set

(2.4) H1
i (Qcyc,p, Af ) := H1

i (Q∞,p, Af )∆
.

These are the local condition at p which will be used in defining the signed
Selmer groups below. When v is a prime of Q∞ not above the prime p, the
local condition is

(2.5) H1
i (Q∞,v, Af ) := H1

un(Q∞,v, Af ),

which is the unramified subgroup of H1(Q∞,v, Af ).

2.2. The signed Selmer groups

The signed Selmer groups over Q∞ are defined as

Seli(Af /Q∞) = ker
(

H1 (Q∞, Af )→
∏

v

H1
/i (Q∞,v, Af )

)
,

where v runs through all the places of Q∞ and

H1
/i (Q∞,v, Af ) := H1 (Q∞,v, Af )

H1
i (Q∞,v, Af ) .

When L is a subfield of Q∞ and v is a prime of L not above p, we can
define H1

i (Lv, Af ) in the same way as in (2.5).

TOME 0 (0), FASCICULE 0
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Hence the signed Selmer groups are defined as

Seli (Af /L) := ker
(

H1 (L, Af )→
∏

v

H1
/i (Lv, Af )

)
.

Using (2.4), we obtain

Seli (Af /Qcyc) ∼= Seli (Af /Q∞)∆

as in [10, p. 1267]. Given an integer s, let Af,s = Af ⊗ χs, and Tf,s =
Tf ⊗ χ−s. These twists commute with cohomology, so that one can define
twisted the signed Selmer groups Seli(Af,s/Q∞) and Seli(Af,s/L) (cf. [10,
p. 1268 before Remark 2.6]). Recall that κ (resp. ω) is the restrictions of the
cyclotomic character χ to Γ0 (resp. ∆). For i ∈ {1, 2}, the signed Selmer
groups over the cyclotomic Zp-extension Qcyc are then given by

Seli (Af,s/Qcyc) ∼= Seli (Af,s/Q∞)∆ ∼= Seli (Af /Q∞)ω−s

⊗ κs,

as Λ = OE [[Γ0]]-modules, see [10, Remark 2.6]. Here Seli(Af /Q∞)ω−s is
the ω−s-isotypic component of Seli(Af /Q∞). If θ is a character of ∆, then
the θ-isotypic component of Seli(Af,s/Q∞) is Seli(Af,s/Q∞)θ and we have
the following isomorphisms of Λ-modules.

Seli (Af,s/Q∞)θ ∼= Seli (Af /Q∞)θω−s

⊗ κs ∼= Seli
(
Af,s

(
θ−1) /Qcyc

)
(See again [10, a little further down in Remark 2.6]). We record the following
hypotheses also made in [10].
(irred): The GQ-representation Tf /ϖTf is irreducible.

(inv): For all m ⩾ 0, Af (m)GQ∞,p = 0.
(tor): For any character θ of ∆, the Selmer groups Seli(Af /Q∞)θ are

both cotorsion over Λ for i = 1, 2(1) .
Various conditions guarantee these hypotheses, which include many cases.

For the convenience of the reader, we recall these hypotheses and the ap-
propriate references.

Remark 2.1. — The torsion assumption (tor) guarantees that Seli(A(s)/
Qcyc) is Λ-cotorsion for all s. This follows from [10, Remark 2.6], and noting
that twisting a finitely generated Λ-cotorsion module by the cyclotomic
character results in a finitely generated Λ-cotorsion module.

(1) In [10], the statement is about Seli(Af,s/Q∞)θ for any fixed integer s, which is
equivalent to our hypothesis thanks to [10, Remark 2.6], noting that twisting by the
cyclotomic character does not change Λ-cotorsion-ness of a module.

ANNALES DE L’INSTITUT FOURIER
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Hypothesis Sufficient conditions References

(irred)

p > k and
aq(f) ̸≡ 1 + qk−1 (mod ϖ)

for some prime
q ≡ 1 (mod N)

[6, Proof of Lemma 2.4],
cf. [10, Lemma 7.1]

(inv) k ⩽ p [14, Lemma 4.4]
(tor) ap = 0 or k ⩾ 3 [10, Start of Sec. 7, p. 1289]

In the references [13, Theorem 7.3], [14, Proposition 6.4], [15, Theo-
rem 6.5], [25, Theorem 7.14], one can find proofs that the conditions men-
tioned in the second column and the last row of Table 2.2 imply that the
hypothesis (tor) is satisfied.

2.3. The Bloch–Kato Selmer groups

Let V be a Qp-vector space defined with a GQ-action and T be a Zp-
stable lattice of V . Let us suppose that ℓ ̸= p. Recall that for ∗ ∈ {V, V/T}
the unramified local cohomology group is defined as

H1
ur(Qℓ, ∗) := ker

(
H1(Qℓ, ∗)→ H1(Iℓ, ∗)

)
,

where Iℓ is the inertia subgroup at ℓ.
Then the Bloch–Kato local conditions are defined as

H1
f (Qℓ, V ) =

{
H1

ur(Qℓ, V ) ℓ ̸= p,

ker
(
H1(Qℓ, V )→ H1(Qℓ, V ⊗ Bcris)

)
ℓ = p,

where Bcris is the Fontaine’s crystalline period ring. We also define H1
f (Qℓ,

T ) (resp. H1
f (Qℓ, V/T )) as the preimage (resp. image) of H1

f (Qℓ, V ) under
the natural inclusion map (resp. projection map). In the ℓ ̸= p case, we
have the following diagram (see e.g [20, Section 3.1])

(2.6)
0 H1

ur(Qℓ, V/T ) H1(Qℓ, V/T ) H1(Iℓ, V/T )

0 H1
ur(Qℓ, V ) H1(Qℓ, V ) H1(Iℓ, V ),

which shows that H1
f (Qℓ, V/T ) ⊂ H1

ur(Qℓ, V/T ). The index

cℓ(V/T ) :=
[
H1

ur(Qℓ, V/T ) : H1
f (Qℓ, V/T )

]
is finite (see [24, Lemma 1.3.5] or [21, Lemma 3.1]) and is defined as the
p-part of the Tamagawa number of V/T at ℓ.

TOME 0 (0), FASCICULE 0
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Let Σ be a finite set of places of Q containing the prime p, all the places
that divide the level N , and the archimedean prime. Let QΣ be the maximal
extension of Q unramified outside Σ. The Bloch–Kato Selmer group is
defined as

SelBK (Af,s/Q) := ker
(

H1 (QΣ/Q, Af,s)→
∏

ℓ ∈ Σ
H1

/f (Qℓ, Af,s)
)

,

where
H1

/f (Qℓ, Af,s) := H1 (Qℓ, Af,s)
H1

f (Qℓ, Af,s) .

To conclude this section, we recall an important result of Greenberg.

Lemma 2.2 (Greenberg’s Lemma). — Let M be a cofinitely generated,
cotorsion module over the Iwasawa algebra O[[T ]], where O is the ring of
integers of any finite degree extension of Qp. Let f(T ) be a generator of
the characteristic ideal of the Pontryagin dual of M . Assume that MΓ is
finite. Then MΓ is finite, f(0) ̸= 0, and

f(0) ∼
∣∣MΓ∣∣ /|MΓ| = χ(M)

The quantity on the right is the Euler characteristic of M , which will be
made precise in the main section.

Proof. — When O = Zp, this is [7, Lemma 4.2]. To make [8, Proof of
Lemma 4.2] work for general O, notice that all you have to do is replace
the first appearance of “Zp” by “O”. □

3. Main result

Let s be any integer and θ be a character of ∆. The Pontryagin dual of
Af (κsθ−1) is Tf (κ−sθ) = Tf,s(θωs). Let Af,s := Tf,s ⊗ E/OE = Af,k−s−2.
We will write

A(s) := Af,s(θωs).
Note that we slightly differ from the notation of [10, Proof of Proposi-
tion 3.3, line -1 in p. 1274] where it is denoted as A, since they fix s.

We define the Γ0-Euler characteristic of Seli(A(s)/Qcyc) as

χ
(
Γ0, Seli(A(s)/Qcyc)

)
= #H0(Γ0, Seli(A(s)/Qcyc))

#H1(Γ0, Seli(A(s)/Qcyc)) ,

whenever the quantitites are finite.
When Seli(A(s)/Qcyc) is Λ-cotorsion, let fi,s ∈ Λ be a characteristic

power series that generates its Pontryagin dual.

ANNALES DE L’INSTITUT FOURIER
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Theorem 3.1. — Assume (tor), (inv), and (irred). Choose i ∈ {1, 2}.
Then for all but finitely many s, χ(Γ0, Seli(A(s)/Qcyc)) is well-defined.
Moreover, Seli(A(s)/Q) is finite, fi,s(0) ̸= 0, and

#
(

OE

fi,s(0)OE

)
= χ (Γ0, Seli (A(s)/Qcyc))

= #Seli(A(s)/Q) ·
∏

ℓ ∈ Σ,
ℓ∤p

cℓ(A(s)).(3.1)

Further, suppose that s ∈ {0, . . . , k − 2}. If i = 1, assume also that
ap(f) ̸= ε(p)ps +pk−s−2. Then Seli(A(s)/Q) and SelBK(A(s)/Q) are finite,
fi,s(0) ̸= 0, and

#
(

OE

fi,s(0)OE

)
= χ (Γ0, Seli (A(s)/Qcyc))

= #SelBK(A(s)/Q) ·
∏

ℓ ∈ Σ,
ℓ∤p

cℓ(A(s)).(3.2)

Here cℓ(A(s)) := [H1
ur(Qℓ, A(s)) : H1

f (Qℓ, A(s))] is the p-part of the
Tamagawa number of A(s) at ℓ.

We record a proposition and two lemmas before proving the theorem.

Proposition 3.2 (Hatley–Lei). — Under the hypotheses (tor), (inv),
and (irred), we have for each i = 1 or 2 that for all but finitely many
integers s:

(1)
(
Seli(A(s)/Qcyc)

)Γ0 is finite,
(2) The restriction map

Seli(A(s)/Q)→
(
Seli(A(s)/Qcyc)

)Γ0

is injective with finite cokernel.

Lemma 3.3. — Let ℓ ∈ Σ and v be any one of the finitely many places
of Qcyc over ℓ.

(1) In the commutative diagram below, h is an isomorphism and ρ is
surjective.

(2) In the case ℓ ̸= p, # ker g/i,ℓ = cℓ(A(s)).
(3.3)
0 Seli(A(s)/Q) H1(QΣ/Q, A(s))

∏
ℓ ∈ Σ

H1
/i

(Qℓ, A(s))

0 Seli (A(s)/Qcyc)Γ0 H1 (QΣ/Qcyc, A(s))Γ0
∏

v|ℓ,ℓ ∈ Σ
H1

/i
(Qcyc,v , A(s))Γ0

a h

ρ

g=
∏

g/i,ℓ

TOME 0 (0), FASCICULE 0
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Lemma 3.4 (Control Lemma at the prime p). — The vertical maps in
the commutative diagram below are isomorphisms:
(3.4)

0 H1
i (Qp, A(s)) H1 (Qp, A(s)) H1

/i
(Qp, A(s))

0 H1
i (Qcyc,p, A(s))Γ0 H1 (Qcyc,p, A(s))Γ0 H1

/i
(Qcyc,p, A(s))Γ0

gi,p gp

c

g/i,p

Proof of Theorem 3.1. — The assumption (tor) gives us that the Eu-
ler characteristic χ(Γ0, Seli(A(s)/Qcyc)) is well-defined: Indeed, Proposi-
tion 3.2(1) shows that Seli(A(s)/Qcyc)Γ0 is finite. Hence by Lemma 2.2,
we know that Seli(A(s)/Qcyc)Γ0 is finite. Since Γ0 ∼= Zp, we can identify
H1(Γ0, Seli(A(s)/Qcyc)) with Seli(A(s)/Qcyc)Γ0 and so the Euler charac-
teristic equals

χ (Γ0, Seli (A(s)/Qcyc)) = #Seli (A(s)/Qcyc)Γ0

#Seli (A(s)/Qcyc)Γ0

.

For the main part of the proof, choose s so that Seli(A(s)/Qcyc)Γ0 is
finite. This only excludes finitely many s by proposition 3.2. Applying the
snake lemma to diagram (3.3), we obtain from Lemma 3.3(1) that coker a

is finite, ker a is trivial, and Seli(A(s)/Q) is finite. From Lemma 3.3(2) and
Lemma 3.4, we then have

#Seli (A(s)/Qcyc)Γ0 = #Seli(A(s)/Q) ·
∏

ℓ ∈ Σ,ℓ∤p

cℓ(A(s)).

But the left-hand side is the Euler characteristic, since from [10, Proof of
Theorem 3.1, very end of Section 3], Seli(A(s)/Qcyc)Γ0 = 0, i.e. we really
have

(3.5) χ (Γ0, Seli (A(s)/Qcyc)) = #Seli(A(s)/Q) ·
∏

ℓ ∈ Σ,
ℓ∤p

cℓ(A(s)),

which is the second equality in equation (3.1) of the theorem.
Greenberg’s Lemma 2.2 for M = Seli(A(s)/Qcyc) implies fi,s(0) ̸= 0 and

#
(

OE

fi,s(0)OE

)
= χ (Γ0, Seli (A(s)/Qcyc)) ,

giving us the first equality. (Note that this is the supersingular analogue
of [21, Proposition 4.3]).

To obtain the equalities in equation (3.2), recall from [10, Proposition
2.14 and Remark 2.15] that for i = 2 and s ∈ {0, . . . , k − 2},

Sel2(A(s)/Q) = SelBK(A(s)/Q),
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ON CHARACTERISTIC POWER SERIES OF SELMER GROUPS 13

and that if i = 1 and if we further assume that ap(f) ̸= ε(p)ps + pk−s−2,
then

Sel1(A(s)/Q) ∼= SelBK(A(s)/Q). □

Remark 3.5. — In the last part of the proof of Theorem 3.1, we needed
to restrict s in the range {0, . . . , k− 2} because this is needed in the proof
of [10, Proposition 2.12]. In their proof they first use a result from [19]
where they need s to be nonnegative. Later in their proof they use a result
from [17] where they need s to be in the range {0, . . . , k − 2} so that the
twisted representation has appropriate Hodge–Tate weights(2) .

3.1. Proofs of Proposition 3.2, Lemma 3.3, and Lemma 3.4

Proof of Proposition 3.2. — Consider the Selmer group

Seli (A(s)/Qcyc) = Seli (Af,s (θωs) /Qcyc)
∼= Seli

(
Af

(
θωk−2) /Qcyc

)
⊗ κk−s−2.

With η = θ−1ω2−k (independent of s) we have the following isomorphism:

Seli
(
Af

(
θωk−2) /Qcyc

)
⊗ κk−s−2 ∼= Seli (Af /Q∞)η ⊗ κk−s−2.

But the hypothesis (tor) gives that Seli(Af /Q∞)η is Λ-cotorsion. Hence
for all but finitely many s ∈ Z,

(3.6)
(
Seli(Af /Q∞)η ⊗ κk−s−2)Γ0 is finite.

This proves part (1) of Proposition 3.2.

In order to prove part (2), we need to consider the fundamental dia-
gram (3.3). Note that ker(h) and coker(h) can be regarded as inside the
inflation-restriction exact sequence, and are zero because of hypothesis
(inv). (Cf. also [9, Lemma 3.3]). Let ℓ ∈ Σ and v be any one of the finitely
many places of Qcyc over ℓ. By the inflation-restriction exact sequence, the
kernel of the map H1(Qℓ, A(s)) → H1(Qcyc,v, A(s))Γ0 is H1(Qcyc,v/Qℓ,

A(s)GQcyc,v ). This kernel is trivial if:
(1) ℓ = p (by (inv)), or if
(2) ℓ splits completely over Qcyc.

Assume that ℓ does not satisfy either of the above conditions. Let γv be a
topological generator for Gal(Qcyc,v/Qℓ), and let B(s) = A(s)GQcyc,v . Then

H1 (Qcyc,v/Qℓ, A(s)GQcyc,v
) ∼= B(s)/(γv − 1)B(s)

(2) We thank Jeffrey Hatley for pointing this out to us.
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and we have an exact sequence

0→ A(s)GQℓ → B(s) γv−1−−−→ B(s)→ B(s)/(γv − 1)B(s)→ 0.

Note that for all but finitely many s,

(3.7) A(s)GQℓ is finite.

In this case, we have that B(s)div ⊂ (γv − 1)B(s), where B(s)div is the
maximal divisible subgroup of B(s). Hence it follows that B(s)/(γv−1)B(s)
is bounded by B(s)/B(s)div, and this is finite. Hence for all but finitely
many s ∈ Z, the proof of Proposition 3.2 is complete. □

Proof of Lemma 3.3. — As noted above in the proof of Proposition 3.2,
the fact that the map h is an isomorphism follows form the inflation-
restriction exact sequence and the hypothesis (inv).

The surjectivity of ρ follows from [10, Proposition 3.3] and its proof.
The Greenberg local condition at v (see [21, Section 3.4.2]) coincides

with the Bloch–Kato local condition defined in section 2.3. Hence, by [21,
Lemma 5.3], we obtain

# ker g/i,ℓ = cℓ(A(s)),

which is indeed finite by [21, Lemma 3.1]. (It is also interesting to note that
if v /∈ Σ the Tamagawa factors are trivial (see [21, Lemma 3.3])). □

Proof of Lemma 3.4. — The kernel of the map gp is H1(Qcyc,p/Qp,

A(s)GQcyc,p ) and its cokernel maps into H2(Qcyc,p/Qp, A(s)GK∞,p ) which
are both trivial because of our hypothesis (inv). Hence the map gp is an
isomorphism.

Next, we analyze the kernel and the cokernel of the map g/i,p.
We have the following isomorphism by duality

H1
i (Qcyc,p, A(s)) =

(
Im (Colf,i)θ ⊗ κ−s

)∨
.

Since Im(Colf,i)θ ⊂ Λ, it implies that(
Im(Colf,i)θ ⊗ κ−s

)Γ0 = 0.

Hence we have

(3.8) H1
i (Qcyc,p, A(s))Γ0

= 0.

Consider the short exact sequence

0→ H1
i (Qcyc,p, A(s))→ H1 (Qcyc,p, A(s))→ H1

/i (Qcyc,p, A(s))→ 0.

Combining (3.8) with the isomorphism

H1
i (Qcyc,p, A(s))Γ0

∼= H1 (Γ0, H1
i (Qcyc,p, A(s))

)
,
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(see e.g. [22, Proposition 1.7.7]), we obtain

H1
/i (Qcyc,p, A(s))Γ0 ∼=

H1 (Qcyc,p, A(s))Γ0

H1
i (Qcyc,p, A(s))Γ0

,

as in [10, p. 1276].
But it follows from [10, p. 1276, line 10] that

H1 (Qcyc,p, A(s))Γ0

H1
i (Qcyc,p, A(s))Γ0

∼= H1
/i(Qp, A(s))

using the Hochschild–Serre spectral sequence and the facts that

H1 (Qcyc,p, A(s))Gal(Qcyc,p/Qp) = H1(Qp, A(s)),

H1
i (Qcyc,p, A(s))Gal(Qcyc,p/Qp) = H1

i (Qp, A(s)) ,

cf. [10, Remark 2.5]. Finally, we obtain from this that

H1
/i (Qcyc,p, A(s))Γ0 ∼= H1

/i (Qp, A(s)) ,

which shows that the map g/i,p is also an isomorphism.
The map c is surjective by definition, and hence by the snake lemma

we obtain that the map gi,p is also an isomorphism. (This generalizes an
analogous property that has been proved by Ahmed and Lim in the case
of elliptic curves (see [1, Lemma 2.6])). □

To summarize, the local conditions at the prime p for the two signed
Selmer groups Seli(A(s)/Q) and Seli(A(s)/Qcyc)Γ0 are shown to be iso-
morphic in Lemma 3.4, which allows us to bypass computing the kernel of
g/i,p; this is the key ingredient in computing the Euler characteristic for-
mula in Theorem 3.1. The signed conditions here play a crucial role because
the Selmer groups are defined such that their local conditions at p satisfy
the compatibility conditions (2.3) and (2.4). Also note that we have chosen
our twists A(s) (i.e. those s for which both (3.6) and (3.7) are true) such
that Proposition 3.2 holds; part (1) of this proposition is used to guaran-
tee that the Euler characteristic is well-defined by Greenberg’s Lemma (cf.
Lemma 2.2). To treat the places away from p, we rely on the methods of
Longo–Vigni [21].
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