Schwarz reflections and the Tricorn
[Sur les réflections de Schwarz et la Tricorn]
Annales de l'Institut Fourier, Tome 75 (2025) no. 5, pp. 1987-2100

We continue our exploration of the family $\mathcal{S}$ of Schwarz reflection maps with respect to the cardioid and a circle which was initiated in our earlier work. We prove that there is a natural combinatorial bijection between the geometrically finite maps of this family and those of the basilica limb of the Tricorn, which is the connectedness locus of quadratic anti-holomorphic polynomials. We also show that every geometrically finite map in $\mathcal{S}$ arises as a conformal mating of a unique geometrically finite quadratic anti-holomorphic polynomial and a reflection map arising from the ideal triangle group. We then follow up with a combinatorial mating description for the periodically repelling maps in $\mathcal{S}$. Finally, we show that the locally connected topological model of the connectedness locus of $\mathcal{S}$ is naturally homeomorphic to such a model of the basilica limb of the Tricorn.

Nous poursuivons l’exploration d’une famille $\mathcal{S}$ d’applications de réflections de Schwarz par rapport la cardioïde et par rapport au cercle, qui a été initiée dans des travaux antérieurs. Nous prouvons qu’il y a une bijection naturelle de nature combinatoire entre les applications géométriquement finies de cette famille et celles du membre associé à la basilique de la Tricorn, qui est le lieu de connexité des applications polynomiales anti-holomorphes de degré deux. Nous prouvons aussi que toute application géométriquement finie dans $\mathcal{S}$ provient d’un accouplement conforme entre un polynôme quadratique anti-holomorphe géométriquement fini uniquement déterminé avec une application associée à un groupe engendré par les réflections par rapport aux côtés d’un triangle idéal. Nous continuons avec une description d’un accouplement combinatoire pour les applications périodiquement répulsives de $\mathcal{S}$. Enfin, nous montrons que le modèle topologique locallement connexe du lieu de connexité de $\mathcal{S}$ est naturellement homéomorphe à un tel modèle du membre associé à la basilique de la Tricorn.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3700
Classification : 37F10, 37F20, 37F31, 37F32, 37F46, 30C45, 30D05, 30D40, 82B21
Keywords: Schwarz reflection map, Antiholomorphic dynamics, Mating, Reflection group, Quadrature domain
Mots-clés : Réflections de Schwarz, Dynamique d’application anti-holomorphes, Accouplement, Groupe de réflection, Domaine de quadrature

Lee, Seung-Yeop 1 ; Lyubich, Mikhail 2 ; Makarov, Nikolai G. 3 ; Mukherjee, Sabyasachi 4

1 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620 (USA)
2 Institute for Mathematical Sciences, Stony Brook University, NY, 11794 (USA)
3 Department of Mathematics, California Institute of Technology, Pasadena, California 91125 (USA)
4 School of Mathematics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2025__75_5_1987_0,
     author = {Lee, Seung-Yeop and Lyubich, Mikhail and Makarov, Nikolai G. and Mukherjee, Sabyasachi},
     title = {Schwarz reflections and the {Tricorn}},
     journal = {Annales de l'Institut Fourier},
     pages = {1987--2100},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {75},
     number = {5},
     year = {2025},
     doi = {10.5802/aif.3700},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3700/}
}
TY  - JOUR
AU  - Lee, Seung-Yeop
AU  - Lyubich, Mikhail
AU  - Makarov, Nikolai G.
AU  - Mukherjee, Sabyasachi
TI  - Schwarz reflections and the Tricorn
JO  - Annales de l'Institut Fourier
PY  - 2025
SP  - 1987
EP  - 2100
VL  - 75
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3700/
DO  - 10.5802/aif.3700
LA  - en
ID  - AIF_2025__75_5_1987_0
ER  - 
%0 Journal Article
%A Lee, Seung-Yeop
%A Lyubich, Mikhail
%A Makarov, Nikolai G.
%A Mukherjee, Sabyasachi
%T Schwarz reflections and the Tricorn
%J Annales de l'Institut Fourier
%D 2025
%P 1987-2100
%V 75
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3700/
%R 10.5802/aif.3700
%G en
%F AIF_2025__75_5_1987_0
Lee, Seung-Yeop; Lyubich, Mikhail; Makarov, Nikolai G.; Mukherjee, Sabyasachi. Schwarz reflections and the Tricorn. Annales de l'Institut Fourier, Tome 75 (2025) no. 5, pp. 1987-2100. doi: 10.5802/aif.3700

[1] Agam, O.; Bettelheim, E.; Wiegmann, P.; Zabrodin, A. Viscous Fingering and the Shape of an Electronic Droplet in the Quantum Hall Regime, Phys. Rev. Lett., Volume 88 (2002) no. 23, 236801 | DOI

[2] Aharonov, D.; Shapiro, H. S. A minimal-area problem in conformal mapping - preliminary report (1973) no. 7 (Research bulletin trita-mat)

[3] Aharonov, D.; Shapiro, H. S. Domains on which analytic functions satisfy quadrature identities, J. Anal. Math., Volume 30 (1976), pp. 39-73 | DOI | MR | Zbl

[4] Aharonov, D.; Shapiro, H. S. A minimal-area problem in conformal mapping - preliminary report. Part II (1978) no. 5 (Research bulletin trita-mat)

[5] Aharonov, D.; Shapiro, H. S.; Solynin, A. Y. A minimal area problem in conformal mapping, J. Anal. Math., Volume 78 (1999), pp. 157-176 | DOI | MR | Zbl

[6] Bergweiler, W.; Eremenko, A. Green’s function and anti-holomorphic dynamics on a torus, Proc. Am. Math. Soc., Volume 144 (2016) no. 7, pp. 2911-2922 | DOI | MR | Zbl

[7] Bogdanov, K.; Mamayusupov, K.; Mukherjee, S.; Schleicher, D. Antiholomorphic perturbations of Weierstrass Zeta functions and Green’s function on tori, Nonlinearity, Volume 30 (2017) no. 8, pp. 3241-3254 | DOI | MR | Zbl

[8] Bonifant, A.; Buff, X.; Milnor, J. Antipode preserving cubic maps: the fjord theorem, Proc. Lond. Math. Soc., Volume 116 (2018) no. 3, pp. 670-728 | DOI | MR | Zbl

[9] Branner, B.; Fagella, N. Quasiconformal surgery in holomorphic dynamics, Cambridge Studies in Advanced Mathematics, 141, Cambridge University Press, 2014 | Zbl | MR | DOI

[10] Bullett, S.; Lomonaco, L. Mating quadratic maps with the modular group II, Invent. Math., Volume 220 (2020) no. 1, pp. 185-210 | DOI | MR | Zbl

[11] Bullett, S.; Lomonaco, L. Dynamics of modular matings, Adv. Math., Volume 410 (2022) no. Part B, 108758, 43 pages | DOI | MR | Zbl

[12] Bullett, S.; Penrose, C. Mating quadratic maps with the modular group, Invent. Math., Volume 115 (1994) no. 3, pp. 483-511 | MR | Zbl | DOI

[13] Caffarelli, L. A.; Karp, L.; Shahgholian, H. Regularity of a free boundary with application to the Pompeiu problem, Ann. Math., Volume 151 (2000) no. 1, pp. 269-292 | DOI | MR | Zbl

[14] Canela, J.; Fagella, N.; Garijo, A. On a family of rational perturbations of the doubling map, J. Difference Equ. Appl., Volume 21 (2015) no. 8, pp. 715-741 | DOI | MR | Zbl

[15] Carleson, L.; Gamelin, T. W. Complex Dynamics, Universitext, Springer, 1993 | Zbl | DOI | MR

[16] Crowe, W. D.; Hasson, R.; Rippon, P. J.; Clark, P. E. D. Strain On the Structure of the Mandelbar Set, Nonlinearity, Volume 2 (1989), pp. 541-553 | Zbl | DOI | MR

[17] Davis, P. J. The Schwarz function and its applications, The Carus Mathematical Monographs, 17, Mathematical Association of America, Buffalo, NY, 1974 | MR | Zbl | DOI

[18] Douady, A. Descriptions of compact sets in , Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Inc., Houston, TX, 1993, pp. 429-465 | Zbl | MR

[19] Douady, A.; Hubbard, J. H. On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Supér., Volume 18 (1985) no. 2, pp. 287-343 | DOI | MR | Zbl | Numdam

[20] Douady, Adrien; Hubbard, John H. Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay, 84-2, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 | MR | Zbl

[21] Douady, Adrien; Hubbard, John H. Étude dynamique des polynômes complexes. Partie II, Publications Mathématiques d’Orsay, 85-4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 | MR | Numdam | Zbl

[22] Dudko, D. Matings with laminations (2011) | arXiv | Zbl

[23] Duren, P. L. Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, 1983 | Zbl | MR

[24] Quadrature domains and their applications (Ebenfelt, P.; Gustafsson, B.; Khavinson, D.; Putinar, M., eds.), Operator Theory: Advances and Applications, 156, Birkhäuser, 2005 (The Harold S. Shapiro anniversary volume, Papers from the conference held at the University of California at Santa Barbara, Santa Barbara, CA, March 2003) | Zbl | DOI | MR

[25] Elbau, P.; Felder, G. Density of eigenvalues of random normal matrices, Commun. Math. Phys., Volume 259 (2005) no. 2, pp. 433-450 | DOI | MR | Zbl

[26] Gauthier, T.; Vigny, G. Distribution of postcritically finite polynomials III: Combinatorial continuity, Fundam. Math., Volume 244 (2019) no. 1, pp. 17-48 | DOI | MR | Zbl

[27] Goldberg, L. R. Fixed points of polynomial maps. I. Rotation subsets of the circles, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992) no. 6, pp. 679-685 | DOI | MR | Zbl | Numdam

[28] Goldberg, L. R.; Milnor, J. Fixed points of polynomial maps II: Fixed point portraits, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993), pp. 51-98 | DOI | Zbl | MR | Numdam

[29] Gustafsson, B. Quadrature identities and the Schottky double, Acta Appl. Math., Volume 1 (1983) no. 3, pp. 209-240 | DOI | MR | Zbl

[30] Gustafsson, B.; He, C.; Milanfar, P.; Putinar, M. Reconstructing planar domains from their moments, Inverse Probl., Volume 16 (2000) no. 4, pp. 1053-1070 | DOI | MR | Zbl

[31] Gustafsson, B.; Putinar, M. Hyponormal quantization of planar domains, Lecture Notes in Mathematics, 2199, Springer, 2017 (Exponential transform in dimension two) | DOI | MR | Zbl

[32] Gustafsson, B.; Vasilʼev, A. Conformal and potential analysis in Hele-Shaw cells, Advances in Mathematical Fluid Mechanics, Birkhäuser, 2006 | MR | Zbl

[33] Hatcher, A. Algebraic topology, Cambridge University Press, 2002 | MR | Zbl

[34] Hedenmalm, H.; Makarov, N. Coulomb gas ensembles and Laplacian growth, Proc. Lond. Math. Soc., Volume 106 (2013) no. 4, pp. 859-907 | DOI | MR | Zbl

[35] Hubbard, J. H. Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish Inc., 1993, pp. 467-511 | MR | Zbl

[36] Hubbard, John; Schleicher, Dierk Multicorns are not Path Connected, Frontiers in Complex Dynamics. In Celebration of John Milnor’s 80th Birthday, Princeton University Press, 2014, pp. 73-102 | Zbl | DOI

[37] Inou, H. Combinatorics and topology of straightening maps II: Discontinuity. (2009) | arXiv | Zbl

[38] Inou, H.; Mukherjee, S. Non-landing parameter rays of the multicorns, Invent. Math., Volume 204 (2016) no. 3, pp. 869-893 | DOI | MR | Zbl

[39] Inou, H.; Mukherjee, S. Discontinuity of straightening in anti-holomorphic dynamics: I, Trans. Am. Math. Soc., Volume 374 (2021) no. 9, pp. 6445-6481 | DOI | MR | Zbl

[40] Khavinson, D.; Świątek, G. On the number of zeros of certain harmonic polynomials, Proc. Am. Math. Soc., Volume 131 (2003) no. 2, pp. 409-414 | DOI | MR | Zbl

[41] Kiwi, J. Rational laminations of complex polynomials, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) (Contemporary Mathematics), Volume 269, American Mathematical Society, 2001, pp. 111-154 | DOI | MR | Zbl

[42] Lazebnik, K.; Makarov, N. G.; Mukherjee, S. Univalent polynomials and Hubbard trees, Trans. Am. Math. Soc., Volume 374 (2021) no. 7, pp. 4839-4893 | DOI | MR | Zbl

[43] Lee, S.-Y.; Lyubich, M.; Makarov, N. G.; Mukherjee, S. Dynamics of Schwarz reflections: The mating phenomena, Ann. Sci. Ec. Norm. Supér. (4), Volume 56 (2023) no. 6, pp. 1825-1881 | MR | Zbl

[44] Lee, S.-Y.; Makarov, N. G. Topology of quadrature domains, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 333-369 | DOI | MR | Zbl

[45] Lyubich, M. Dynamics of quadratic polynomials. I, II, Acta Math., Volume 178 (1997) no. 2, p. 185-247, 247–297 | Zbl | DOI | MR

[46] Lyubich, M. Conformal Geometry and Dynamics of Quadratic Polynomials, vol. I-II (2023) (http://www.math.stonybrook.edu/~mlyubich/book.pdf)

[47] Milnor, J. Remarks on iterated cubic maps, Exp. Math., Volume 1 (1992), pp. 5-24 | Zbl | MR

[48] Milnor, J. On rational maps with two critical points, Exp. Math., Volume 9 (2000) no. 4, pp. 481-522 | MR | DOI | Zbl

[49] Milnor, J. Periodic Orbits, External Rays and the Mandelbrot Set, Géométrie complexe et systèmes dynamiques (Astérisque), Volume 261, Société Mathématique de France, 2000, pp. 277-333 | Numdam | Zbl

[50] Milnor, J. Dynamics in one complex variable, Annals of Mathematics Studies, 160, Princeton University Press, 2006 | MR | DOI | Zbl

[51] Milnor, J. Hyperbolic components, Conformal dynamics and hyperbolic geometry (Contemporary Mathematics), Volume 573, American Mathematical Society, 2012, pp. 183-232 (With an appendix by A. Poirier) | DOI | MR | Zbl

[52] Moore, R. L. Concerning upper-semicontinuous collections of continua, Trans. Am. Math. Soc., Volume 27 (1925) no. 4, pp. 416-428 | MR | Zbl | DOI

[53] Mukherjee, S. Antiholomorphic Dynamics: Topology of Parameter Spaces, and Discontinuity of Straightening, Ph. D. Thesis, Jacobs University, Bremen, Germany (2015) (http://nbn-resolving.de/urn:nbn:de:gbv:579-opus-1005222)

[54] Mukherjee, S. Orbit portraits of unicritical antiholomorphic polynomials, Conform. Geom. Dyn., Volume 19 (2015), pp. 35-50 | Zbl | DOI | MR

[55] Mukherjee, S. Parabolic arcs of the multicorns: real-analyticity of Hausdorff dimension, and singularities of Per n (1) curves, Discrete Contin. Dyn. Syst., Volume 37 (2017) no. 5, pp. 2565-2588 | DOI | MR | Zbl

[56] Mukherjee, S.; Nakane, S.; Schleicher, D. On multicorns and unicorns II: bifurcations in spaces of antiholomorphic polynomials, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 3, pp. 859-899 | MR | Zbl | DOI

[57] Nakai, I. The classification of curvilinear angles in the complex plane and the groups of ± holomorphic diffeomorphisms, Ann. Fac. Sci. Toulouse, Math., Volume 7 (1998) no. 2, pp. 313-334 | Numdam | DOI | MR | Zbl

[58] Nakane, S. Connectedness of the Tricorn, Ergodic Theory Dyn. Syst., Volume 13 (1993), pp. 349-356 | MR | DOI | Zbl

[59] Nakane, S.; Schleicher, D. The nonarcwise-connectedness of the tricorn, Surikaisekikenkyusho Kokyuroku, Volume 959 (1996), pp. 73-83 Problems concerning complex dynamical systems (Japanese) (Kyoto, 1995) | MR

[60] Nakane, S.; Schleicher, D. On Multicorns and Unicorns I: Antiholomorphic Dynamics, Hyperbolic Components and Real Cubic Polynomials, Int. J. Bifurcation Chaos Appl. Sci. Eng., Volume 13 (2003), pp. 2825-2844 | Zbl | MR | DOI

[61] Poirier, A. Critical portraits for postcritically finite polynomials, Fundam. Math., Volume 203 (2009) no. 2, pp. 107-163 | DOI | MR | Zbl

[62] Richardson, S. Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech., Volume 56 (1972) no. 4, pp. 609-618 | DOI | Zbl

[63] Saff, E. B.; Totik, V. Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer, 1997 (Appendix B by Thomas Bloom) | MR | Zbl | DOI

[64] Sakai, M. A moment problem on Jordan domains, Proc. Am. Math. Soc., Volume 70 (1978) no. 1, pp. 35-38 | Zbl | DOI | MR

[65] Sakai, M. Quadrature domains, Lecture Notes in Mathematics, 934, Springer, 1982 | DOI | MR | Zbl

[66] Sakai, M. Regularity of a boundary having a Schwarz function, Acta Math., Volume 166 (1991) no. 3-4, pp. 263-297 | DOI | MR | Zbl

[67] Schleicher, D. On fibers and local connectivity of Mandelbrot and Multibrot sets, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 72, American Mathematical Society, 2004, pp. 477-517 | DOI | MR | Zbl

[68] Schleicher, Dierk Rational Parameter Rays of the Mandelbrot Set, Géométrie complexe et systèmes dynamiques (Astérisque), Volume 261, Société Mathématique de France, 2000, pp. 405-443 | Numdam | Zbl

[69] Shahgholian, H. On quadrature domains and the Schwarz potential, J. Math. Anal. Appl., Volume 171 (1992) no. 1, pp. 61-78 | DOI | MR | Zbl

[70] Sheil-Small, T. Complex polynomials, Cambridge Studies in Advanced Mathematics, 75, Cambridge University Press, 2002 | DOI | MR | Zbl

[71] Teodorescu, R.; Bettelheim, E.; Agam, O.; Zabrodin, A.; Wiegmann, P. Normal random matrix ensemble as a growth problem, Nucl. Phys., B, Volume 704 (2005) no. 3, pp. 407-444 | DOI | MR | Zbl

[72] Varchenko, A. N.; Ètingof, P. I. Why the boundary of a round drop becomes a curve of order four, University Lecture Series, 3, American Mathematical Society, 1992 | DOI | MR | Zbl

[73] Voronin, S. M. Analytic classification of pairs of involutions and its applications, Funkts. Anal. Prilozh., Volume 16 (1982) no. 2, pp. 21-29 | MR | Zbl

[74] Warschawski, S. E. On conformal mapping of infinite strips, Trans. Am. Math. Soc., Volume 51 (1942), pp. 280-335 | DOI | MR | Zbl

[75] Wiegmann, P. B. Aharonov–Bohm effect in the quantum Hall regime and Laplacian growth problems, Statistical field theories (Como, 2001) (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 73, Kluwer Academic Publishers, 2002, pp. 337-349 | DOI | MR

Cité par Sources :