[Sur les réflections de Schwarz et la Tricorn]
Nous poursuivons l’exploration d’une famille d’applications de réflections de Schwarz par rapport la cardioïde et par rapport au cercle, qui a été initiée dans des travaux antérieurs. Nous prouvons qu’il y a une bijection naturelle de nature combinatoire entre les applications géométriquement finies de cette famille et celles du membre associé à la basilique de la Tricorn, qui est le lieu de connexité des applications polynomiales anti-holomorphes de degré deux. Nous prouvons aussi que toute application géométriquement finie dans provient d’un accouplement conforme entre un polynôme quadratique anti-holomorphe géométriquement fini uniquement déterminé avec une application associée à un groupe engendré par les réflections par rapport aux côtés d’un triangle idéal. Nous continuons avec une description d’un accouplement combinatoire pour les applications périodiquement répulsives de . Enfin, nous montrons que le modèle topologique locallement connexe du lieu de connexité de est naturellement homéomorphe à un tel modèle du membre associé à la basilique de la Tricorn.
We continue our exploration of the family of Schwarz reflection maps with respect to the cardioid and a circle which was initiated in our earlier work. We prove that there is a natural combinatorial bijection between the geometrically finite maps of this family and those of the basilica limb of the Tricorn, which is the connectedness locus of quadratic anti-holomorphic polynomials. We also show that every geometrically finite map in arises as a conformal mating of a unique geometrically finite quadratic anti-holomorphic polynomial and a reflection map arising from the ideal triangle group. We then follow up with a combinatorial mating description for the periodically repelling maps in . Finally, we show that the locally connected topological model of the connectedness locus of is naturally homeomorphic to such a model of the basilica limb of the Tricorn.
Révisé le :
Accepté le :
Première publication :
Keywords: Schwarz reflection map, Antiholomorphic dynamics, Mating, Reflection group, Quadrature domain
Mots-clés : Réflections de Schwarz, Dynamique d’application anti-holomorphes, Accouplement, Groupe de réflection, Domaine de quadrature
Lee, Seung-Yeop 1 ; Lyubich, Mikhail 2 ; Makarov, Nikolai G. 3 ; Mukherjee, Sabyasachi 4
@unpublished{AIF_0__0_0_A140_0, author = {Lee, Seung-Yeop and Lyubich, Mikhail and Makarov, Nikolai G. and Mukherjee, Sabyasachi}, title = {Schwarz reflections and the {Tricorn}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3700}, language = {en}, note = {Online first}, }
TY - UNPB AU - Lee, Seung-Yeop AU - Lyubich, Mikhail AU - Makarov, Nikolai G. AU - Mukherjee, Sabyasachi TI - Schwarz reflections and the Tricorn JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3700 LA - en ID - AIF_0__0_0_A140_0 ER -
Lee, Seung-Yeop; Lyubich, Mikhail; Makarov, Nikolai G.; Mukherjee, Sabyasachi. Schwarz reflections and the Tricorn. Annales de l'Institut Fourier, Online first, 114 p.
[1] Viscous Fingering and the Shape of an Electronic Droplet in the Quantum Hall Regime, Phys. Rev. Lett., Volume 88 (2002) no. 23, 236801 | DOI
[2] A minimal-area problem in conformal mapping - preliminary report (1973) no. 7 (Research bulletin trita-mat)
[3] Domains on which analytic functions satisfy quadrature identities, J. Anal. Math., Volume 30 (1976), pp. 39-73 | DOI | MR | Zbl
[4] A minimal-area problem in conformal mapping - preliminary report. Part II (1978) no. 5 (Research bulletin trita-mat)
[5] A minimal area problem in conformal mapping, J. Anal. Math., Volume 78 (1999), pp. 157-176 | DOI | MR | Zbl
[6] Green’s function and anti-holomorphic dynamics on a torus, Proc. Am. Math. Soc., Volume 144 (2016) no. 7, pp. 2911-2922 | DOI | MR | Zbl
[7] Antiholomorphic perturbations of Weierstrass Zeta functions and Green’s function on tori, Nonlinearity, Volume 30 (2017) no. 8, pp. 3241-3254 | DOI | MR | Zbl
[8] Antipode preserving cubic maps: the fjord theorem, Proc. Lond. Math. Soc., Volume 116 (2018) no. 3, pp. 670-728 | DOI | MR | Zbl
[9] Quasiconformal surgery in holomorphic dynamics, Cambridge Studies in Advanced Mathematics, 141, Cambridge University Press, 2014 | DOI | MR | Zbl
[10] Mating quadratic maps with the modular group II, Invent. Math., Volume 220 (2020) no. 1, pp. 185-210 | DOI | MR | Zbl
[11] Dynamics of modular matings, Adv. Math., Volume 410 (2022) no. Part B, 108758 | DOI | MR | Zbl
[12] Mating quadratic maps with the modular group, Invent. Math., Volume 115 (1994) no. 3, pp. 483-511 | DOI | MR | Zbl
[13] Regularity of a free boundary with application to the Pompeiu problem, Ann. Math., Volume 151 (2000) no. 1, pp. 269-292 | DOI | MR | Zbl
[14] On a family of rational perturbations of the doubling map, J. Difference Equ. Appl., Volume 21 (2015) no. 8, pp. 715-741 | DOI | MR | Zbl
[15] Complex Dynamics, Universitext, Springer, 1993 | DOI | MR | Zbl
[16] On the Structure of the Mandelbar Set, Nonlinearity, Volume 2 (1989), pp. 541-553 | DOI | MR | Zbl
[17] The Schwarz function and its applications, The Carus Mathematical Monographs, 17, Mathematical Association of America, Buffalo, NY, 1974 | DOI | MR | Zbl
[18] Descriptions of compact sets in , Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Inc., Houston, TX, 1993, pp. 429-465 | MR | Zbl
[19] On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Supér., Volume 18 (1985) no. 2, pp. 287-343 | DOI | Numdam | MR | Zbl
[20] Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay, 84-2, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 | MR
[21] Étude dynamique des polynômes complexes. Partie II, Publications Mathématiques d’Orsay, 85-4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 | MR
[22] Matings with laminations (2011) | arXiv
[23] Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, 1983 | MR | Zbl
[24] Quadrature domains and their applications (Ebenfelt, P.; Gustafsson, B.; Khavinson, D.; Putinar, M., eds.), Operator Theory: Advances and Applications, 156, Birkhäuser, 2005 (The Harold S. Shapiro anniversary volume, Papers from the conference held at the University of California at Santa Barbara, Santa Barbara, CA, March 2003) | DOI | MR | Zbl
[25] Density of eigenvalues of random normal matrices, Commun. Math. Phys., Volume 259 (2005) no. 2, pp. 433-450 | DOI | MR | Zbl
[26] Distribution of postcritically finite polynomials III: Combinatorial continuity, Fundam. Math., Volume 244 (2019) no. 1, pp. 17-48 | DOI | MR | Zbl
[27] Fixed points of polynomial maps. I. Rotation subsets of the circles, Ann. Sci. Éc. Norm. Supér., Volume 25 (1992) no. 6, pp. 679-685 | DOI | Numdam | MR | Zbl
[28] Fixed points of polynomial maps II: Fixed point portraits, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993), pp. 51-98 | DOI | Numdam | MR | Zbl
[29] Quadrature identities and the Schottky double, Acta Appl. Math., Volume 1 (1983) no. 3, pp. 209-240 | DOI | MR | Zbl
[30] Reconstructing planar domains from their moments, Inverse Probl., Volume 16 (2000) no. 4, pp. 1053-1070 | DOI | MR | Zbl
[31] Hyponormal quantization of planar domains, Lecture Notes in Mathematics, 2199, Springer, 2017 (Exponential transform in dimension two) | DOI | MR | Zbl
[32] Conformal and potential analysis in Hele-Shaw cells, Advances in Mathematical Fluid Mechanics, Birkhäuser, 2006 | MR | Zbl
[33] Algebraic topology, Cambridge University Press, 2002 | MR | Zbl
[34] Coulomb gas ensembles and Laplacian growth, Proc. Lond. Math. Soc., Volume 106 (2013) no. 4, pp. 859-907 | DOI | MR | Zbl
[35] Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish Inc., 1993, pp. 467-511 | MR | Zbl
[36] Multicorns are not Path Connected, Frontiers in Complex Dynamics. In Celebration of John Milnor’s 80th Birthday, Princeton University Press, 2014, pp. 73-102 | DOI | Zbl
[37] Combinatorics and topology of straightening maps II: Discontinuity. (2009) | arXiv
[38] Non-landing parameter rays of the multicorns, Invent. Math., Volume 204 (2016) no. 3, pp. 869-893 | DOI | MR | Zbl
[39] Discontinuity of straightening in anti-holomorphic dynamics: I, Trans. Am. Math. Soc., Volume 374 (2021) no. 9, pp. 6445-6481 | DOI | MR | Zbl
[40] On the number of zeros of certain harmonic polynomials, Proc. Am. Math. Soc., Volume 131 (2003) no. 2, pp. 409-414 | DOI | MR | Zbl
[41] Rational laminations of complex polynomials, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) (Contemporary Mathematics), Volume 269, American Mathematical Society, 2001, pp. 111-154 | DOI | MR | Zbl
[42] Univalent polynomials and Hubbard trees, Trans. Am. Math. Soc., Volume 374 (2021) no. 7, pp. 4839-4893 | DOI | MR | Zbl
[43] Dynamics of Schwarz reflections: The mating phenomena, Ann. Sci. Ec. Norm. Supér. (4), Volume 56 (2023) no. 6, pp. 1825-1881 | MR | Zbl
[44] Topology of quadrature domains, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 333-369 | DOI | MR | Zbl
[45] Dynamics of quadratic polynomials. I, II, Acta Math., Volume 178 (1997) no. 2, p. 185-247, 247–297 | DOI | MR | Zbl
[46] Conformal Geometry and Dynamics of Quadratic Polynomials, vol. I-II (2023) (http://www.math.stonybrook.edu/~mlyubich/book.pdf)
[47] Remarks on iterated cubic maps, Exp. Math., Volume 1 (1992), pp. 5-24 | MR | Zbl
[48] On rational maps with two critical points, Exp. Math., Volume 9 (2000) no. 4, pp. 481-522 | DOI | MR | Zbl
[49] Periodic Orbits, External Rays and the Mandelbrot Set, Géométrie complexe et systèmes dynamiques (Astérisque), Volume 261, Société Mathématique de France, 2000, pp. 277-333 | Numdam | Zbl
[50] Dynamics in one complex variable, Annals of Mathematics Studies, 160, Princeton University Press, 2006 | DOI | MR | Zbl
[51] Hyperbolic components, Conformal dynamics and hyperbolic geometry (Contemporary Mathematics), Volume 573, American Mathematical Society, 2012, pp. 183-232 (With an appendix by A. Poirier) | DOI | MR | Zbl
[52] Concerning upper-semicontinuous collections of continua, Trans. Am. Math. Soc., Volume 27 (1925) no. 4, pp. 416-428 | DOI | MR | Zbl
[53] Antiholomorphic Dynamics: Topology of Parameter Spaces, and Discontinuity of Straightening, Ph. D. Thesis, Jacobs University, Bremen, Germany (2015) (http://nbn-resolving.de/urn:nbn:de:gbv:579-opus-1005222)
[54] Orbit portraits of unicritical antiholomorphic polynomials, Conform. Geom. Dyn., Volume 19 (2015), pp. 35-50 | DOI | MR | Zbl
[55] Parabolic arcs of the multicorns: real-analyticity of Hausdorff dimension, and singularities of curves, Discrete Contin. Dyn. Syst., Volume 37 (2017) no. 5, pp. 2565-2588 | DOI | MR | Zbl
[56] On multicorns and unicorns II: bifurcations in spaces of antiholomorphic polynomials, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 3, pp. 859-899 | DOI | MR | Zbl
[57] The classification of curvilinear angles in the complex plane and the groups of holomorphic diffeomorphisms, Ann. Fac. Sci. Toulouse, Math., Volume 7 (1998) no. 2, pp. 313-334 | DOI | Numdam | MR | Zbl
[58] Connectedness of the Tricorn, Ergodic Theory Dyn. Syst., Volume 13 (1993), pp. 349-356 | DOI | MR | Zbl
[59] The nonarcwise-connectedness of the tricorn, Surikaisekikenkyusho Kokyuroku, Volume 959 (1996), pp. 73-83 Problems concerning complex dynamical systems (Japanese) (Kyoto, 1995) | MR
[60] On Multicorns and Unicorns I: Antiholomorphic Dynamics, Hyperbolic Components and Real Cubic Polynomials, Int. J. Bifurcation Chaos Appl. Sci. Eng., Volume 13 (2003), pp. 2825-2844 | DOI | MR | Zbl
[61] Critical portraits for postcritically finite polynomials, Fundam. Math., Volume 203 (2009) no. 2, pp. 107-163 | DOI | MR | Zbl
[62] Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech., Volume 56 (1972) no. 4, pp. 609-618 | DOI | Zbl
[63] Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer, 1997 (Appendix B by Thomas Bloom) | DOI | MR | Zbl
[64] A moment problem on Jordan domains, Proc. Am. Math. Soc., Volume 70 (1978) no. 1, pp. 35-38 | DOI | MR | Zbl
[65] Quadrature domains, Lecture Notes in Mathematics, 934, Springer, 1982 | DOI | MR | Zbl
[66] Regularity of a boundary having a Schwarz function, Acta Math., Volume 166 (1991) no. 3-4, pp. 263-297 | DOI | MR | Zbl
[67] On fibers and local connectivity of Mandelbrot and Multibrot sets, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 72, American Mathematical Society, 2004, pp. 477-517 | DOI | MR | Zbl
[68] Rational Parameter Rays of the Mandelbrot Set, Géométrie complexe et systèmes dynamiques (Astérisque), Volume 261, Société Mathématique de France, 2000, pp. 405-443 | Numdam | Zbl
[69] On quadrature domains and the Schwarz potential, J. Math. Anal. Appl., Volume 171 (1992) no. 1, pp. 61-78 | DOI | MR | Zbl
[70] Complex polynomials, Cambridge Studies in Advanced Mathematics, 75, Cambridge University Press, 2002 | DOI | MR | Zbl
[71] Normal random matrix ensemble as a growth problem, Nucl. Phys., B, Volume 704 (2005) no. 3, pp. 407-444 | DOI | MR | Zbl
[72] Why the boundary of a round drop becomes a curve of order four, University Lecture Series, 3, American Mathematical Society, 1992 | DOI | MR | Zbl
[73] Analytic classification of pairs of involutions and its applications, Funkts. Anal. Prilozh., Volume 16 (1982) no. 2, pp. 21-29 | MR | Zbl
[74] On conformal mapping of infinite strips, Trans. Am. Math. Soc., Volume 51 (1942), pp. 280-335 | DOI | MR | Zbl
[75] Aharonov–Bohm effect in the quantum Hall regime and Laplacian growth problems, Statistical field theories (Como, 2001) (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 73, Kluwer Academic Publishers, 2002, pp. 337-349 | DOI | MR
Cité par Sources :