[Théorèmes des nombres premiers hautement uniformes]
We prove a highly uniform version of the prime number theorem for a certain class of $L$-functions. The range of $x$ depends polynomially on the analytic conductor, and the error term is expressed in terms of an optimization problem depending explicitly on the available zero-free region. The class contains the Rankin–Selberg $L$-function $L(s,\pi \times \pi ^{\prime })$ associated to cuspidal automorphic representations $\pi $ and $\pi ^{\prime }$ of $\mathrm{GL}_{m}$ and $\mathrm{GL}_{m^{\prime }}$, respectively. Our main result implies the first nontrivial prime number theorem for such an $L$-function (with analytic conductor uniformity) in complete generality.
Nous prouvons une version très uniforme du théorème des nombres premiers pour une certaine classe de fonctions $L$. L’étendue de $x$ dépend polynomialement du conducteur analytique, et le terme d’erreur est exprimé en termes d’un problème d’optimisation dépendant explicitement de la région sans zéro disponible. La classe contient la fonction $L$ de Rankin–Selberg $L(s, \pi \times \pi ^{\prime })$ associée aux représentations automorphes cuspidales $\pi $ et $\pi ^{\prime }$ de $\mathrm{GL}_{m}$ et $\mathrm{GL}_{m^{\prime }}$, respectivement. Notre résultat principal implique le premier théorème non trivial des nombres premiers pour une telle fonction $L$ (avec uniformité du conducteur analytique) en toute généralité.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mots-clés : théorèmes des nombres premiers, région sans zéro, fonction $L$ de Rankin–Selberg
Kaneko, Ikuya 1 ; Thorner, Jesse 2

@article{AIF_2025__75_5_1901_0, author = {Kaneko, Ikuya and Thorner, Jesse}, title = {Highly uniform prime number theorems}, journal = {Annales de l'Institut Fourier}, pages = {1901--1923}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {75}, number = {5}, year = {2025}, doi = {10.5802/aif.3698}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3698/} }
TY - JOUR AU - Kaneko, Ikuya AU - Thorner, Jesse TI - Highly uniform prime number theorems JO - Annales de l'Institut Fourier PY - 2025 SP - 1901 EP - 1923 VL - 75 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3698/ DO - 10.5802/aif.3698 LA - en ID - AIF_2025__75_5_1901_0 ER -
%0 Journal Article %A Kaneko, Ikuya %A Thorner, Jesse %T Highly uniform prime number theorems %J Annales de l'Institut Fourier %D 2025 %P 1901-1923 %V 75 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3698/ %R 10.5802/aif.3698 %G en %F AIF_2025__75_5_1901_0
Kaneko, Ikuya; Thorner, Jesse. Highly uniform prime number theorems. Annales de l'Institut Fourier, Tome 75 (2025) no. 5, pp. 1901-1923. doi : 10.5802/aif.3698. https://aif.centre-mersenne.org/articles/10.5802/aif.3698/
[1] Primes in arithmetic progressions to large moduli. II, Math. Ann., Volume 277 (1987) no. 3, pp. 361-393 | DOI | MR | Zbl
[2] An upper bound on conductors for pairs, J. Number Theory, Volume 65 (1997) no. 2, pp. 183-196 | DOI | MR | Zbl
[3] Siegel zeros and cusp forms, Int. Math. Res. Not., Volume 1995 (1995) no. 6, pp. 279-308 | DOI | MR | Zbl
[4] Standard zero-free regions for Rankin-Selberg -functions via sieve theory, Math. Z., Volume 292 (2019) no. 3–4, pp. 1105-1122 (with an appendix by Farrell Brumley) | DOI | MR | Zbl
[5] Towards a variant of the Hoheisel phenomenon, Trans. Am. Math. Soc., Volume 375 (2022), pp. 1801-1824 | DOI | MR | Zbl
[6] Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004 | MR | Zbl
[7] On the Harish-Chandra Schwartz space of , Automorphic representations and -functions (Tata Institute of Fundamental Research. Studies in Mathematics), Volume 22, Tata Institute of Fundamental Research, 2013, pp. 335-377 (with an appendix by Farrell Brumley) | MR | Zbl
[8] On the least prime in an arithmetic progression. I: The basic theorem, Mat. Sb., N. Ser., Volume 15 (1944) no. 57, pp. 139-178 | MR | Zbl
[9] On the least prime in an arithmetic progression. II: The Deuring–Heilbronn theorem, Mat. Sb., N. Ser., Volume 15 (1944) no. 57, pp. 347-368 | MR | Zbl
[10] Absolute convergence of the spectral side of the Arthur trace formula for , Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 58-93 (with an appendix by E. M. Lapid) | DOI | MR | Zbl
[11] Weak subconvexity without a Ramanujan hypothesis, Duke Math. J., Volume 168 (2019), pp. 1231-1268 (with an appendix by Farrell Brumley) | DOI | MR | Zbl
[12] A unified and improved Chebotarev density theorem, Algebra Number Theory, Volume 13 (2019) no. 5, pp. 1039-1068 | DOI | MR | Zbl
Cité par Sources :