[Théorèmes des nombres premiers hautement uniformes]
Nous prouvons une version très uniforme du théorème des nombres premiers pour une certaine classe de fonctions . L’étendue de dépend polynomialement du conducteur analytique, et le terme d’erreur est exprimé en termes d’un problème d’optimisation dépendant explicitement de la région sans zéro disponible. La classe contient la fonction de Rankin–Selberg associée aux représentations automorphes cuspidales et de et , respectivement. Notre résultat principal implique le premier théorème non trivial des nombres premiers pour une telle fonction (avec uniformité du conducteur analytique) en toute généralité.
We prove a highly uniform version of the prime number theorem for a certain class of -functions. The range of depends polynomially on the analytic conductor, and the error term is expressed in terms of an optimization problem depending explicitly on the available zero-free region. The class contains the Rankin–Selberg -function associated to cuspidal automorphic representations and of and , respectively. Our main result implies the first nontrivial prime number theorem for such an -function (with analytic conductor uniformity) in complete generality.
Révisé le :
Accepté le :
Première publication :
Mots-clés : théorèmes des nombres premiers, région sans zéro, fonction $L$ de Rankin–Selberg
Kaneko, Ikuya 1 ; Thorner, Jesse 2
@unpublished{AIF_0__0_0_A138_0, author = {Kaneko, Ikuya and Thorner, Jesse}, title = {Highly uniform prime number theorems}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3698}, language = {en}, note = {Online first}, }
Kaneko, Ikuya; Thorner, Jesse. Highly uniform prime number theorems. Annales de l'Institut Fourier, Online first, 23 p.
[1] Primes in arithmetic progressions to large moduli. II, Math. Ann., Volume 277 (1987) no. 3, pp. 361-393 | DOI | MR | Zbl
[2] An upper bound on conductors for pairs, J. Number Theory, Volume 65 (1997) no. 2, pp. 183-196 | DOI | MR | Zbl
[3] Siegel zeros and cusp forms, Int. Math. Res. Not., Volume 1995 (1995) no. 6, pp. 279-308 | DOI | MR | Zbl
[4] Standard zero-free regions for Rankin-Selberg -functions via sieve theory, Math. Z., Volume 292 (2019) no. 3–4, pp. 1105-1122 (with an appendix by Farrell Brumley) | DOI | MR | Zbl
[5] Towards a variant of the Hoheisel phenomenon, Trans. Am. Math. Soc., Volume 375 (2022), pp. 1801-1824 | DOI | MR | Zbl
[6] Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004 | MR | Zbl
[7] On the Harish-Chandra Schwartz space of , Automorphic representations and -functions (Tata Institute of Fundamental Research. Studies in Mathematics), Volume 22, Tata Institute of Fundamental Research, 2013, pp. 335-377 (with an appendix by Farrell Brumley) | MR | Zbl
[8] On the least prime in an arithmetic progression. I: The basic theorem, Mat. Sb., N. Ser., Volume 15 (1944) no. 57, pp. 139-178 | MR | Zbl
[9] On the least prime in an arithmetic progression. II: The Deuring–Heilbronn theorem, Mat. Sb., N. Ser., Volume 15 (1944) no. 57, pp. 347-368 | MR | Zbl
[10] Absolute convergence of the spectral side of the Arthur trace formula for , Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 58-93 (with an appendix by E. M. Lapid) | DOI | MR | Zbl
[11] Weak subconvexity without a Ramanujan hypothesis, Duke Math. J., Volume 168 (2019), pp. 1231-1268 (with an appendix by Farrell Brumley) | DOI | MR | Zbl
[12] A unified and improved Chebotarev density theorem, Algebra Number Theory, Volume 13 (2019) no. 5, pp. 1039-1068 | DOI | MR | Zbl
Cité par Sources :