Highly uniform prime number theorems
[Théorèmes des nombres premiers hautement uniformes]
Annales de l'Institut Fourier, Online first, 23 p.

Nous prouvons une version très uniforme du théorème des nombres premiers pour une certaine classe de fonctions L. L’étendue de x dépend polynomialement du conducteur analytique, et le terme d’erreur est exprimé en termes d’un problème d’optimisation dépendant explicitement de la région sans zéro disponible. La classe contient la fonction L de Rankin–Selberg L(s,π×π ) associée aux représentations automorphes cuspidales π et π de GL m et GL m , respectivement. Notre résultat principal implique le premier théorème non trivial des nombres premiers pour une telle fonction L (avec uniformité du conducteur analytique) en toute généralité.

We prove a highly uniform version of the prime number theorem for a certain class of L-functions. The range of x depends polynomially on the analytic conductor, and the error term is expressed in terms of an optimization problem depending explicitly on the available zero-free region. The class contains the Rankin–Selberg L-function L(s,π×π ) associated to cuspidal automorphic representations π and π of GL m and GL m , respectively. Our main result implies the first nontrivial prime number theorem for such an L-function (with analytic conductor uniformity) in complete generality.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3698
Keywords: Prime number theorem, zero-free region, Rankin–Selberg $L$-function
Mots-clés : théorèmes des nombres premiers, région sans zéro, fonction $L$ de Rankin–Selberg

Kaneko, Ikuya 1 ; Thorner, Jesse 2

1 The Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (USA)
2 Department of Mathematics, University of Illinois, Urbana, IL 61801 (USA)
@unpublished{AIF_0__0_0_A138_0,
     author = {Kaneko, Ikuya and Thorner, Jesse},
     title = {Highly uniform prime number theorems},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3698},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Kaneko, Ikuya
AU  - Thorner, Jesse
TI  - Highly uniform prime number theorems
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3698
LA  - en
ID  - AIF_0__0_0_A138_0
ER  - 
%0 Unpublished Work
%A Kaneko, Ikuya
%A Thorner, Jesse
%T Highly uniform prime number theorems
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3698
%G en
%F AIF_0__0_0_A138_0
Kaneko, Ikuya; Thorner, Jesse. Highly uniform prime number theorems. Annales de l'Institut Fourier, Online first, 23 p.

[1] Bombieri, Enrico; Friedlander, John B.; Iwaniec, Henryk Primes in arithmetic progressions to large moduli. II, Math. Ann., Volume 277 (1987) no. 3, pp. 361-393 | DOI | MR | Zbl

[2] Bushnell, Colin J.; Henniart, Guy An upper bound on conductors for pairs, J. Number Theory, Volume 65 (1997) no. 2, pp. 183-196 | DOI | MR | Zbl

[3] Hoffstein, Jeffrey; Ramakrishnan, Dinakar Siegel zeros and cusp forms, Int. Math. Res. Not., Volume 1995 (1995) no. 6, pp. 279-308 | DOI | MR | Zbl

[4] Humphries, Peter Standard zero-free regions for Rankin-Selberg L-functions via sieve theory, Math. Z., Volume 292 (2019) no. 3–4, pp. 1105-1122 (with an appendix by Farrell Brumley) | DOI | MR | Zbl

[5] Humphries, Peter; Thorner, Jesse Towards a GL n variant of the Hoheisel phenomenon, Trans. Am. Math. Soc., Volume 375 (2022), pp. 1801-1824 | DOI | MR | Zbl

[6] Iwaniec, Henryk; Kowalski, Emmanuel Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004 | MR | Zbl

[7] Lapid, Erez On the Harish-Chandra Schwartz space of G(F)G(𝔸), Automorphic representations and L-functions (Tata Institute of Fundamental Research. Studies in Mathematics), Volume 22, Tata Institute of Fundamental Research, 2013, pp. 335-377 (with an appendix by Farrell Brumley) | MR | Zbl

[8] Linnik, Yuriĭ V. On the least prime in an arithmetic progression. I: The basic theorem, Mat. Sb., N. Ser., Volume 15 (1944) no. 57, pp. 139-178 | MR | Zbl

[9] Linnik, Yuriĭ V. On the least prime in an arithmetic progression. II: The Deuring–Heilbronn theorem, Mat. Sb., N. Ser., Volume 15 (1944) no. 57, pp. 347-368 | MR | Zbl

[10] Müller, Werner; Speh, Birgit Absolute convergence of the spectral side of the Arthur trace formula for GL n , Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 58-93 (with an appendix by E. M. Lapid) | DOI | MR | Zbl

[11] Soundararajan, Kannan; Thorner, Jesse Weak subconvexity without a Ramanujan hypothesis, Duke Math. J., Volume 168 (2019), pp. 1231-1268 (with an appendix by Farrell Brumley) | DOI | MR | Zbl

[12] Thorner, Jesse; Zaman, Asif A unified and improved Chebotarev density theorem, Algebra Number Theory, Volume 13 (2019) no. 5, pp. 1039-1068 | DOI | MR | Zbl

Cité par Sources :