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HIGHLY UNIFORM PRIME NUMBER THEOREMS

by Ikuya KANEKO & Jesse THORNER (*)

Abstract. — We prove a highly uniform version of the prime number theorem
for a certain class of L-functions. The range of x depends polynomially on the
analytic conductor, and the error term is expressed in terms of an optimization
problem depending explicitly on the available zero-free region. The class contains
the Rankin–Selberg L-function L(s, π × π′) associated to cuspidal automorphic
representations π and π′ of GLm and GLm′ , respectively. Our main result implies
the first nontrivial prime number theorem for such an L-function (with analytic
conductor uniformity) in complete generality.

Résumé. — Nous prouvons une version très uniforme du théorème des nombres
premiers pour une certaine classe de fonctions L. L’étendue de x dépend polyno-
mialement du conducteur analytique, et le terme d’erreur est exprimé en termes
d’un problème d’optimisation dépendant explicitement de la région sans zéro dis-
ponible. La classe contient la fonction L de Rankin–Selberg L(s, π × π′) associée
aux représentations automorphes cuspidales π et π′ de GLm et GLm′ , respective-
ment. Notre résultat principal implique le premier théorème non trivial des nombres
premiers pour une telle fonction L (avec uniformité du conducteur analytique) en
toute généralité.

1. Introduction and statement of the main result

We prove prime number theorems for a certain class of L-functions pos-
sessing a Dirichlet series, Euler product, analytic continuation, and func-
tional equation of the usual type with strong uniformity in the analytic
conductor. This problem has received attention before (see Iwaniec and
Kowalski [6, Section 5.6]), but our work provides several new and substan-
tial improvements. The class that we consider is slightly more restrictive

Keywords: Prime number theorem, zero-free region, Rankin–Selberg L-function.
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2 Ikuya KANEKO & Jesse THORNER

than the class S(m) considered by Soundararajan and Thorner [11, Sec-
tions 1.1–1.4]. Given an integer m ⩾ 1, S(m) denotes the set of L-functions
satisfying the following four properties (A)–(D):

(A) (Dirichlet series and Euler product.) Let p run over the primes.
The L-function L(s, π) is given by a Dirichlet series and an Euler
product

(1.1) L(s, π) =
∞∑

n=1

λπ(n)
ns

=
∏

p

m∏
j=1

1
1 − αj,π(p)p−s

,

both converging absolutely for Re(s) > 1. Let Λ(n) be the von
Mangoldt function. We define the function aπ(n), supported on
prime powers, by the identity

−L′

L
(s, π) =

∞∑
n=1

aπ(n)Λ(n)
ns

=
∑

p

∞∑
k=1

∑m
j=1 αj,π(p)k log p

pks
, Re(s) > 1.

(B) (Analytic continuation and functional equation.) There exist an in-
teger qπ ⩾ 1 attached to π, called the conductor of π, and complex
numbers µπ(j) for 1 ⩽ j ⩽ m such that if

rπ = − ord
s=1

L(s, π) ∈ [0,m] and L(s, π∞) = π− ms
2

m∏
j=1

Γ
(s+ µπ(j)

2

)
,

then
Λ(s, π) = (s(1 − s))rπqs/2

π L(s, π)L(s, π∞)
is an entire function of order 1. Moreover, there exists a complex
number κπ of modulus 1 such that Λ(s, π) = κπΛ(1 − s, π̃), where

qπ̃ = qπ, {µπ̃(j)} = {µπ(j)}, {απ̃,j(p)} = {απ,j(p)}.

We define the: analytic conductor

(1.2) C(π) = qπ

m∏
j=1

(|µπ(j)| + 3) ,

which serves as a key measure of “complexity” for L(s, π). The
zeros of Λ(s, π) are the nontrivial zeros of L(s, π), and the poles of
srπL(s, π∞) are the trivial zeros of L(s, π). If p ∤ qπ, then for all
1 ⩽ j ⩽ m, we have that αj,π(p) ̸= 0. If p|qπ, then at least one of
the αj,π(p) equals 0.

(C) (Pointwise bounds on local parameters.) If 1 ⩽ j ⩽ m and p is
prime, then

|αj,π(p)| ⩽ p1− 1
m , Re(µπ(j)) ⩾ −1 + 1

m
.

ANNALES DE L’INSTITUT FOURIER
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(D) (ℓ1 estimates.) There exists a constant(1) c1 such that if η > 0 and
T ⩾ 1, then

∞∑
n=1

|aπ(n)|Λ(n)
n1+η

⩽
m

η
+m logC(π) +O(m2)

and

(1.3)
∑

x < n ⩽ xe1/T

|aπ(n)|Λ(n) ≪ m
x

T
,

provided that x ⩾ c1m
182m4

(C(π)T )144m3
.

Remark. — In the version of (D) in [11], it is only assumed that there
exist certain unspecified constants c(m) > 0 and c′(m) > 0, depending at
most on m, such that

(1.4)
∑

x < n ⩽ xe1/T

|aπ(n)|Λ(n)

⩽ c(m) x
T
, provided that x ⩾ c′(m)(C(π)T )144m3

.

In (1.3), we assume that c(m) and c′(m) depend on m in a particular way.

The L-functions that we consider here satisfy two additional properties
that are not part of the definition of S(m) in [11].

(E) (Nonvanishing on Re(s) = 1.) If Re(s) ⩾ 1, then L(s, π) ̸= 0.
Consequently, there exists a function

δπ : [0,∞) →
(
0, 1

2
)

such that if T > 0, then L(s, π) ̸= 0 in the region

{s ∈ C : Re(s) ⩾ 1 − δπ(T + 3), |Im(s)| ⩽ T}

except for at most one real zero.
(F) (Zero repulsion.) Let δπ be as in (E). Define

β0 = max
({
β > max

{ 3
4 , 1 − δπ(3)

}
: L(β, π) = 0

}
∪ { 1

2 }
)
.

If β0 >
1
2 , then

(i) β0 is a simple zero of L(s, π),
(ii) there exists a constant c2 ⩾ 1 such that β0 ⩽ 1 − C(π)−c2m,

and
(1) The numbers c1, c2, c3, . . . form a sequence of certain positive, absolute and effectively
computable constants. The notation f ≪ν g or f = Oν(g) means that there exists an
effectively computable constant c = c(ν) > 0, depending at most on the parameter ν,
such that |f(z)| ⩽ c|g(z)| for all z in a range that is clear from context. If no parameter
ν is present, then c is absolute.

TOME 0 (0), FASCICULE 0



4 Ikuya KANEKO & Jesse THORNER

(iii) there exist constants c3 and c4 such that if ρ = β + iγ ̸= β0 is
a nontrivial zero of L(s, π), then

β ⩽ 1 − c3

log
(

c4

(1 − β0)m log (C(π) (|γ| + 3)m)

)
m log (C(π) (|γ| + 3)m)

.

Remark. — If (E) holds, then there are infinitely many choices of δπ

such that β0 = 1
2 . Property (F) asserts that there exists a δπ in (E) such if

β0 >
1
2 , then β0 is a simple zero.

Remark. — As in [11], one has some latitude in the formulation of (A)–
(F). Our formulation is based on what we can prove when L(s, π) is the
L-function of a cuspidal automorphic representation or the Rankin–Selberg
L-function associated to a pair of such representations.

We define S(m) to be the set of L-functions L(s, π) that satisfy (A)–(F).
Condition (E) is equivalent to the prime number theorem for L(s, π) ∈
S(m), namely

lim
x→∞

1
x

∑
n ⩽ x

aπ(n)Λ(n) = rπ.

We prove a highly uniform version of the prime number theorem for all
L(s, π) ∈ S(m).

Theorem 1.1. — There exist constants c5 ⩾ 1, c6, and c7 ⩾ 1 such
that the following is true. Let m ⩾ 1, and let L(s, π) ∈ S(m). Let δπ(t) be
given by (E) and β0 by (F), and define

(1.5) ηπ(x) = inf
t ⩾ 3

(δπ(t) log x+ log t) .

If A ⩾ 2 and x ⩾ C(π)c5A2m5 , then∑
n ⩽ x

aπ(n)Λ(n)

= rπx− xβ0

β0
+O

((
x− xβ0

β0

)(
m5x−c6/m4

+mc7m3
A2e−(1− 1

A )ηπ(x)
))

.

It is natural to compare Theorem 1.1 with the following result of Iwaniec
and Kowalski, which we present in our notation using properties (A)–(F).

Theorem 1.2 ([6, Theorem 5.13]). — There exists a constant c8 such
that the following is true. Let L(s, π) satisfy (A), (B), (E) with

δπ(T ) = c8

m4 log(C(π)T ) ,

ANNALES DE L’INSTITUT FOURIER
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and the ℓ2 estimate

(1.6)
∑

n ⩽ x

|aπ(n)|2Λ(n)2 ≪ m2x(log(C(π)x))2, x ⩾ 1.

Let β0 be as in (F). If x ⩾ 3, then∑
n ⩽ x

aπ(n)Λ(n) = rπx− xβ0

β0

+O

(
m4(log xC(π))4x exp

(
−c8

log x
m4
(
logC(π) +

√
log x

))) .
The O-term is nontrivial when x ⩾ C(π)4c−1

8 m4 log(m log C(π)).

Theorem 1.1 has many advantages over Theorem 1.2. First, if one thinks
of m as fixed (as is typical in many applications, but not all), then the range
of x in Theorem 1.1 depends polynomially on C(π), unlike Theorem 1.2.
This is comparable with Linnik’s theorem [8, 9], which states that if q ⩾ 1
and gcd(a, q) = 1, then there exists a constant c9 such that the counting
function π(x; q, a) for primes p ≡ a (mod q) is positive once x ⩾ qc9 . Sec-
ond, if β0 is especially close to s = 1, then the error term in Theorem 1.1
improves, unlike Theorem 1.2. This is a general extension of the zero repul-
sion phenomenon of Deuring and Heilbronn for Dirichlet L-functions, which
served a crucial role in Linnik’s work [8, 9]. Until now, such a quantitative
manifestation of this phenomenon has only been available when m = 1
(see [12, Theorem 1.4]). Third, there are many important L-functions that
are not yet known to satisfy the ℓ2 bound (1.6) in Theorem 1.2, but the
ℓ1 bounds in (D) and the pointwise bounds in (C) are known quite gener-
ally. Fourth, Theorem 1.1 produces prime number theorems for L-functions
having zero-free regions that are weaker than what Theorem 1.2 assumes.

Ultimately, Theorem 1.1 reduces the problem of establishing a prime
number theorem for L(s, π) ∈ S(m) to the estimation of ηπ(x). This is a
straightforward optimization calculation depending only on the available
zero-free region. This feature, as well as the improved range of x, stems
from our utilization of a log-free zero density estimate that follows from
properties (A)–(D). In Section 2, we catalogue the most uniform versions
to date of the prime number theorems that follow from Theorem 1.1 for the
standard L-function L(s, π) and the Rankin–Selberg L-function L(s, π×π′)
associated to cuspidal automorphic representations π of GLm(AQ) and π′ of
GLm′(AQ). When neither π nor π′ is self-dual, our prime number theorem
for L(s, π × π′) is completely new. Section 3 assembles various results on
zeros of L-functions in S(m), including a log-free zero density estimate that

TOME 0 (0), FASCICULE 0



6 Ikuya KANEKO & Jesse THORNER

improves as β0 worsens. In Section 4, we prove Theorem 1.1. The results
in Section 2 are proved in Sections 5 and 6.

Acknowledgements

IK thanks the Masason Foundation and the Spirit of Ramanujan STEM
Talent Initiative. This research was conducted as part of the Research Ex-
perience for Undergraduates at the University of Virginia in 2021. We thank
the anonymous referee for helpful comments.

2. Applications

Let Fm denote the family of cuspidal automorphic representations of
GLm(AQ) possessing unitary central character, normalized so that the cen-
tral character is trivial on the diagonally embedded copy of the positive
reals. Let π = π∞ ⊗ (⊗pπp) ∈ Fm have arithmetic conductor qπ ⩾ 1, where
πp (resp. π∞) is a smooth admissible representation of GLm(Qp) for every
prime p (resp. GLm(R)). The standard L-function L(s, π) associated to π
can be expressed as a Dirichlet series and an Euler product, each absolutely
convergent for Re(s) > 1:

L(s, π) =
∏

p

L(s, πp) =
∞∑

n=1

λπ(n)
ns

, L(s, πp) =
m∏

j=1

1
1 − αj,π(p)p−s

.

Here λπ(n) is the n-th Hecke eigenvalue of π. When p ∤ qπ, the Satake iso-
morphism assigns to πp the eigenvalues {α1,π(p), . . . , αm,π(p)} of a certain
semisimple conjugacy class in GLm(C). If p|qπ, then some of the αj,π(p)
might equal zero. We define the numbers aπ(n) by

∞∑
n=1

aπ(n)Λ(n)
ns

= −L′

L
(s, π) =

∑
p

∞∑
k=1

∑m
j=1 αj,π(p)k log p

pks
, Re(s) > 1,

where Λ(n) denotes the usual von Mangoldt function. We define aπ(n) = 0
when n is not a prime power. If p is prime, then aπ(p) = λπ(p). There are
m Langlands parameters µπ(j), 1 ⩽ j ⩽ m, from which we define

L(s, π∞) = π− ms
2

m∏
j=1

Γ
(s+ µπ(j)

2

)
.

If π̃ ∈ Fm is the contragredient representation, then π̃ ∈ Fm and

qπ̃ = qπ, {µπ̃(j)} = {µπ(j)}, {απ̃,j(p)} = {απ,j(p)}.

ANNALES DE L’INSTITUT FOURIER
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We denote by 1 ∈ F1 the trivial representation, whose L-function is ζ(s).
Given π ∈ Fm with conductor qπ and π′ ∈ Fm′ with conductor qπ′ ,

consider the Rankin–Selberg L-function

L(s, π × π′) =
∏

p

L(s, πp × π′
p) =

∞∑
n=1

λπ×π′(n)
ns

,

absolutely convergent for Re(s) > 1, with

L(s, πp × π′
p) =



m∏
j=1

m′∏
j′=1

(
1 − αj,π(p)αj′,π′(p)p−s

)−1 if p ∤ qπqπ′ ,

m∏
j=1

m′∏
j′=1

(
1 − αj,j′,π×π′(p)p−s

)−1 if p|qπqπ′ .

See [11, Appendix] for a complete description of the numbers αj,j′,π×π′(p)
when p|qπqπ′ . The conductor qπ×π′ divides qm′

π qm
π′ [2]. The L-function L(s, π

×π′) analytically continues to C. By our normalization of the central char-
acters, L(s, π × π′) is entire unless π′ = π̃, in which case there is a pole of
order 1 at s = 1. There are m′m Langlands parameters µπ×π′(j, j′), with
1 ⩽ j ⩽ m and 1 ⩽ j′ ⩽ m′, such that

L(s, π∞ × π′
∞) = π− m′ms

2

m∏
j=1

m′∏
j′=1

Γ
(
s+ µπ,π′(j, j′)

2

)
.

If π∞ and π′
∞ are unramified, then

{µπ,π′(j, j′)} = {µπ(j) + µπ′(j′)} .

See [10, Section 3] for a complete description of the numbers µπ×π′(j, j′)
when at least one of π∞ and π′

∞ is ramified. We define the numbers
aπ×π′(n) by the identity

∞∑
n=1

aπ×π′(n)Λ(n)
ns

= −L′

L
(s, π × π′).

The sum converges absolutely for Re(s) > 1, and

aπ×π′(p) = λπ×π′(p).

We require bounds for C(π× π′) in terms of C(π), C(π′), C(π× π̃), and
C(π′ × π̃′).

Lemma 2.1. — If π ∈ Fm and π′ ∈ Fm′ , then

C(π × π̃) m′
4mC(π′ × π̃′) m

4m′ ⩽ C(π × π′) ⩽ C(π)m′
C(π′)m.

TOME 0 (0), FASCICULE 0
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Proof. — By combining [4, Lemma A.2] and [11, Lemma 2.1], we see
that

C(π × π̃)(m′)2
C(π′ × π̃′)m2

⩽ eO((m′m)2)C(π × π′)4m′m,

C(π × π′) ⩽ eO(m′m)C(π)m′
C(π′)m.

In both of those proofs, the analytic conductor is defined to be

C(π) = qπ

m∏
j=1

(|µπ(j)|+1), C(π×π′) = qπ×π′

m∏
j=1

m′∏
j′=1

(|µπ×π′(j, j′)|+1).

A careful inspection of the proofs shows that we can remove the factors
eO((m′m)2) and eO(m′m) when the shift of +1 is increased to +3, as in (1.2).
Otherwise, the details are the same. □

The following result is [11, Proposition 2.5].

Proposition 2.2. — If π ∈ Fm and π′ ∈ Fm′ , then L(s, π) ∈ S(m) and
L(s, π × π′) ∈ S(m′m).

We refine Proposition 2.2 as follows.

Proposition 2.3. — If π ∈ Fm and π′ ∈ Fm′ , then L(s, π) ∈ S(m) and
L(s, π × π′) ∈ S(m′m).

Proof. — First, we confirm that L(s, π× π′) ∈ S(m′m). Properties (A),
(B), and (C) are true because L(s, π×π′) ∈ S(m′m), as proved in [11]. The
first estimate in (D) is proved in [11, pp. 1241-1242]. The second estimate
in (D) is proved by proceeding as in [11, Section 6], but with certain specific
choices of test functions Φ and Φ1. If 1(a,b)(t) is the indicator function of
the open interval (a, b) and one chooses

Φ(t) = exp
(

4
3 + 1(

t− 1
2
)2 − 1

)
1(− 1

2 , 3
2 )(t),

Φ1(t) = exp
(

1 + 1
(2t− 1)2 − 1

)
1(0,1)(t)

in the proof of [11, Theorem 2.4], then bounds for the Mellin transforms of
Φ and Φ1 that follow from [1, Lemma 9] permit us to take

c(m) ≪ m, c′(m) = c1m
182m4

in (1.4). Property (F) and a strong form of property (E) are given in Propo-
sitions 5.1, 5.2, and 5.3 below. We conclude that L(s, π×π′) ∈ S(m′m). If
π′ = 1, then L(s, π) = L(s, π × π′) ∈ S(m). □

ANNALES DE L’INSTITUT FOURIER
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Once we incorporate the best known zero-free regions for L(s, π) and
L(s, π × π′), we arrive at the most uniform versions of the prime number
theorem for L(s, π) and L(s, π×π′) up to now. First, we apply Theorem 1.1
to the standard L-function L(s, π).

Theorem 2.4. — Let π ∈ Fm − {1}. Let

β1 = max
({
β > 3

4 : L(β, π) = 0
}

∪
{ 1

2
})
.

There exist constants c5 and c10 such that if x ⩾ C(π)4c5m8 , then∑
n ⩽ x

aπ(n)Λ(n)

= −xβ1

β1
+O

((
x− xβ1

β1

)
exp

(
−c10

log x
m logC(π) +

√
m log x

))
.

For L(s, π × π′), we consider two separate cases.

Theorem 2.5. — Let π ∈ Fm and π′ ∈ Fm′ . Let

β1 = max
({
β > 3

4 : L(β, π × π′) = 0
}

∪
{ 1

2
})
.

There exist constants c5 and c10 such that if

(2.1) π′ ∈ {π̃, π̃′}

and x ⩾ (C(π)C(π′))4c5(m′m)8 , then

∑
n ⩽ x

aπ×π′(n)Λ(n) = rπ×π′x− xβ1

β1
+O

((
x− xβ1

β1

)

exp
(

−c10
log x

(m+m′) log(C(π)C(π′)) +
√
m(m+m′) log x

))
.

All preceding prime number theorems for L(s, π × π′) with a nontrivial
error term and a range of x with specified effective dependence on C(π)
and C(π′) have required an assumption of a “standard” zero-free region
for L(s, π × π′), which is known when (2.1) is true (Lemma 6.1 below).
When (2.1) is true, Theorems 2.4 and 2.5 produce the strongest known
error terms in ranges of x that are polynomial in the associated analytic
conductors. When (2.1) is false, we only have Brumley’s narrow zero-free
region (Lemma 6.2 below). For such π and π′, Theorem 1.1 and Lemma 6.2
together imply the first prime number theorem with a nontrivial error term
of any sort, with an effective range of x in terms of C(π) and C(π′).

TOME 0 (0), FASCICULE 0



10 Ikuya KANEKO & Jesse THORNER

Theorem 2.6. — Let π ∈ Fm, π′ ∈ Fm′ . If π′ ̸= π̃, then there exists a
constant c5 > 0 such that if

x ⩾ exp(c5

(
C(π)C(π′))2(m+m′)2

)
,

then ∑
n ⩽ x

aπ×π′(n)Λ(n) ≪m,m′ x(log x)− 1
m′m .

Remark. — Note that if p ∤ qπqπ′ , then aπ×π′(pk) = aπ(pk)aπ′(pk).
Therefore, since (C) holds for L(s, π×π′) even when p|qπqπ′ , Theorems 2.5
and 2.6 remain the same if we sum aπ(n)aπ′(n)Λ(n) instead of aπ×π′(n)
Λ(n).

3. Zeros of L-functions in S(m)

Let m ⩾ 1 be an integer, and let π ∈ S(m). Since Λ(s, π) is entire of
order 1 by (B), there exist constants aπ, bπ ∈ C such that we have the
Hadamard factorisation

(3.1) Λ(s, π) = eaπ+bπs
∏

Λ(ρ,π)=0

(
1 − s

ρ

)
e

s
ρ .

Lemma 3.1. — If L(s, π) ∈ S(m), t ∈ R, and 0 < η ⩽ 2, then

#{ρ : |ρ− (1 + it)| ⩽ η, L(ρ, π) = 0} ≪ ηm log(C(π)(2 + |t|)) +m2,

where the zeros ρ are counted with multiplicity. In particular,

#{ρ = β + iγ : 0 < β < 1, |γ − t| ⩽ 1, L(ρ, π) = 0} ≪ m log(C(π)(2 + |t|)).

Proof. — Since S(m) ⊆ S(m), this follows from [11, Lemma 3.1] when
0 < η ⩽ 1. Otherwise, this follows from [6, Proposition 5.7]. □

Next, we refine the m-dependence for the log-free zero density estimate
in [11, Theorem 1.2].

Theorem 3.2. — Let L(s, π) ∈ S(m) and T ⩾ 1. For σ ⩾ 0, define

Nπ(σ, T ) = #{ρ = β + iγ : L(ρ, π) = 0, β ⩾ σ, |γ| ⩽ T},

where each ρ is counted with multiplicity. There exists a constant c11 such
that

Nπ(σ, T ) ≪ mc11m3
(C(π)T )107m3(1−σ).

ANNALES DE L’INSTITUT FOURIER



HIGHLY UNIFORM PRIME NUMBER THEOREMS 11

Proof. — The proof proceeds as in [11, Section 4] with three small mod-
ifications. First, we use the bound (1.3) instead of the bound (1.4) (cf. [11,
(1.10)]). This helps us to explicate the suppressed m-dependence in the
implied constant in the third-to-last equation on [11, p. 1252]. Second, we
require that η in [11, Proof of Theorem 1.2] satisfy

1
200 log(C(π)T ) < η ⩽

1
200m instead of 1

log(C(π)T ) < η ⩽
1

200m.

When T = 1, this ensures that the interval containing η is always nonempty,
even if C(π) < e200m. (Since m was implicitly assumed to be fixed in [11],
such considerations were inconsequential.) Third, one chooses

K = 105m3η log(C(π)T ) + 300m3 log(em) + c12m
2

in [11, (4.4)], where c12 is suitably large. This ensures that the range of x
in (1.3) is compatible with the range of integration in the x-integral two
equations below [11, (4.6)], even when m is not fixed. These modifications
allow us to determine the dependence of the implied constant in [11, The-
orem 1.2] on m. □

We use (F) to refine Theorem 3.2.

Corollary 3.3. — Let L(s, π) ∈ S(m). For σ ⩾ 0 and T ⩾ 1, define

N∗
π(σ, T )

=
{

# {ρ = β + iγ ̸= β0 : L(ρ, π) = 0, β ⩾ σ, |γ| ⩽ T} if β0 >
1
2

Nπ(σ, T ) otherwise,

where each ρ is counted with multiplicity. Let β0 be as in Theorem 1.1, and
define

νπ(T ) = min{1, (1 − β0) log(C(π)T )}.
There exists a constant c13 ⩾ 1 such that

N∗
π(σ, T ) ≪ νπ(T )mc13m3

(C(π)T )c13m3(1−σ).

Proof. — If β0 = 1
2 or (1 − β0)m log(C(π)Tm) ⩾ c4

e , then the result
follows from Theorem 3.2. Now, suppose that

β0 >
1
2 , (1 − β0)m log (C(π)Tm) < c4

e
.

If

σ > 1 − c3

log
(

c4

(1 − β0)m log(C(π)(|γ| + 3)m)

)
m log(C(π)(|γ| + 3)m)

TOME 0 (0), FASCICULE 0
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then by (F), we have that N∗
π(σ, T ) = 0. Otherwise, σ satisfies

(3.2) c4

m2 (C(π)(T + 3)m)− m
c3

(1−σ)

⩽
1 − β0

m
log (C(π)(T + 3)m) ≪ νπ(T ).

It follows from Theorem 3.2 that N∗
π(σ, T ) ⩽ Nπ(σ, T ) is

≪ mc11m3
(C(π)T )107m3(1−σ) = νπ(T )mc11m3

(C(π)T )107m3(1−σ)νπ(T )−1.

Bounding νπ(T )−1 using (3.2), we obtain the corollary. □

4. Proof of Theorem 1.1

Let L(s, π) ∈ S(m). We will prove Theorem 1.1 when β0 >
1
2 in (E), in

which case (F) states that β0 is a real simple zero of L(s, π). If β0 = 1
2 ,

then the proof is easier.

4.1. Preliminaries

We use the following smooth weight function.

Lemma 4.1. — Let x ⩾ 3, ε ∈ (0, 1
4 ), and an integer ℓ ⩾ 2. Define

B = ε/(2ℓ log x). There exists a continuous function f(t) = f(t;x, ℓ, ε) of a
real variable t such that:

(i) 0 ⩽ f(t) ⩽ 1 for all t ∈ R, and f(t) ≡ 1 for 1
2 ⩽ t ⩽ 1.

(ii) The support of f is contained in the interval [ 1
2 − ε

log x , 1 + ε
log x ].

(iii) Its Laplace transform F (z) =
∫
R f(t)e−ztdt is entire and given by

F (z) = e−(1+2ℓB)z ·

(
1 − e(

1
2 +2ℓB)z

−z

)(
1 − e2Bz

−2Bz

)ℓ

.

(iv) Let s = σ + it, σ > 0, t ∈ R and α be any real number satisfying
0 ⩽ α ⩽ ℓ. Then

|F (−s log x)| ⩽ eσεxσ

|s| log x ·
(

1 + x−σ/2
)

·
(

2ℓ
ε|s|

)α

.

Moreover, |F (−s log x)| ⩽ eσεxσ and 1/2 < F (0) < 3/4.
(v) If 3

4 < σ ⩽ 1 and x ⩾ 10, then

F (− log x) − F (−σ log x) =
(

x

log x − xσ

σ log x

)
(1 +O(ε)) +O

(
x1/2

log x

)
.

ANNALES DE L’INSTITUT FOURIER
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Proof. — This is contained in the statement of [12, Lemma 2.2]. □

Using Lemma 4.1 and (C), we closely approximate∑
n ⩽ x

aπ(n)Λ(n)

with a smoothed sum.

Lemma 4.2. — Let π ∈ S(m) and

x ⩾ c145
1 m26390m4

C(π)20880m3
, 0 < ε < min

{
x− 1

145m3 , 1
4

}
.

If f is given by Lemma 4.1, then∣∣∣∣∣∣
∑

n ⩽ x

aπ(n)Λ(n) −
∞∑

n=1
aπ(n)Λ(n)f

(
logn
log x

)∣∣∣∣∣∣ ≪ mx1− 1
2m + εx.

Proof. — By hypothesis, we have 0 < ε < 1
4 . As such, Lemma 4.1 renders

the equality

∑
n ⩽ x

aπ(n)Λ(n) =
∞∑

n=1
aπ(n)Λ(n)f

(
logn
log x

)
+O

 ∑
1 ⩽ n ⩽

√
x

x ⩽ n ⩽ xeε

|aπ(n)|Λ(n)

 .

We apply (A), (C), and (D) with T = ε−1, the prime number theorem∑
n⩽x Λ(n) ∼ x, and partial summation to obtain ∑

n ⩽
√

x

+
∑

x < n ⩽ xeε

 |aπ(n)|Λ(n) ≪ m
∑

n ⩽
√

x

n1− 1
m Λ(n) + εmx

≪ mx1− 1
2m + εmx. □

We proceed to asymptotically evaluate the smoothed sum of aπ(n)Λ(n).
We let ρ = β + iγ run through the nontrivial zeros of L(s, π), and

∑′
ρ

denotes a sum over ρ ̸= β0, where each zero is counted with multiplicity.

Lemma 4.3. — If x ⩾ 3 and ℓ ⩾ m3, then

1
log x

∞∑
n=1

aπ(n)Λ(n)f
(

logn
log x

)
= rπF (− log x) − F (−β0 log x)

−
∑′

|ρ| > 1
4

F (−ρ log x) +O

((
ℓ

ε

x1− 1
2m

log x +mx
1
4

)
logC(π)

)
.
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Proof. — By Laplace inversion and (B), we obtain the identity

(4.1) 1
log x

∞∑
n=1

aπ(n)Λ(n)f
(

logn
log x

)

= 1
2πi

∫ 3+i∞

3−i∞
−L′

L
(s, π)F (−s log x)ds

= 1
2πi

∫ 3+i∞

3−i∞

(
rπ

s− 1 + rπ

s
+ log qπ

2 + L′

L
(s, π∞) − Λ′

Λ (s, π)
)
F (−s log x)ds.

By Lemma 4.1, F is entire and decays rapidly in vertical strips. By (C), we
have that − L′

L (s, π∞) is holomorphic for Re(s) > 1− 1
m . It follows that (4.1)

equals

rπF (− log x) − 1
2πi

∫ 3+i∞

3−i∞

Λ′

Λ (s, π)F (−s log x)ds

+ 1
2πi

∫ 1− 1
2m +i∞

1− 1
2m −i∞

(
rπ

s− 1 + rπ

s
+ log qπ

2 + L′

L
(s, π∞)

)
F (−s log x)ds.

By (A), we have that rπ ∈ [0,m]. Using Stirling’s formula and (C), it
follows that∣∣∣∣ rπ

s− 1 + rπ

s
+ log qπ

2 + L′

L
(s, π∞)

∣∣∣∣ ≪ m2 +m log(|Im(s)|+3)+logC(π),

Re(s) = 1 − 1
2m.

Therefore, by an application of Lemma 4.1(iv) (with α = 0 when |Im(s)| ⩽
m and α = 1 when |Im(s)| > m), we observe that∣∣∣∣∣ 1

2πi

∫ 1− 1
2m +i∞

1− 1
2m −i∞

(
rπ

s− 1 + rπ

s
+ log qπ

2 + L′

L
(s, π∞)

)
F (−s log x)ds

∣∣∣∣∣
≪ x1− 1

2m

log x

∫ m

−m

(
m2 +m log(|t| + 3) + logC(π)

)
dt

+ ℓx1− 1
2m

ε log x

∫
|t|>m

(
m2 +m log(|t| + 3) + logC(π)

) dt
|t|2

≪ x1− 1
2m

log x
(
m3 +m logC(π)

)
+ ℓ

εm

x1− 1
2m

log x
(
m2 + logC(π)

)
≪ ℓ

ε

x1− 1
2m

log x logC(π).
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Consequently, by the residue theorem, (4.1) equals

rπF (− log x) − F (−β0 log x) −
∑′

ρ

F (−ρ log x) +O

(
ℓ

ε

x1− 1
2m

log x logC(π)
)
.

For the zeros ρ such that |ρ| ⩽ 1
4 , Lemmata 3.1 and 4.1(iv) imply that∑

|ρ| ⩽ 1
4

|F (−ρ log x)| ≪ x
1
4 #
{
ρ : |ρ| < 1

4
}

≪ mx
1
4 logC(π).

The lemma follows once we combine the estimates above. □

4.2. Estimating the sum over zeros

We are in a position to evaluate the sum over nontrivial zeros ρ in
Lemma 4.3 using the log-free zero density estimate in Corollary 3.3.

Lemma 4.4. — Let

(4.2) A ⩾ 2, ℓ = Ac13m
3, ε = min

{
1
5 , 2Aℓx

−1/(2Aℓ)
}
.

Let δπ be as in (E), and let ηπ(x) be as in (1.5). Let νπ(T ) be as in
Corollary 3.3. If

(4.3) x ⩾ C(π)2A2c13m3
,

then ∑′

|ρ| ⩾ 1
4

|F (−ρ log x)| ≪ A2νπ(1)mc13m3 x

log xe
−(1− 1

A )ηπ(x).

Proof. — Let T0 = 0, and for j ⩾ 1, let Tj = 2j−1. Consider the sum

(4.4) Zj = log x
x

∑′

|ρ| ⩾ 1
4

Tj−1 ⩽ |γ|⩽ Tj

|F (−ρ log x)| .

First, we estimate the contribution of each zero ρ appearing in Zj . Let ρ =
β + iγ satisfy Tj−1 ⩽ |γ| ⩽ Tj and |ρ| ⩾ 1

4 , so that |ρ| ⩾ max(Tj−1, 1/4) ⩾
Tj/4 and |ρ| ⩾ 1

13 (|γ| + 3). Therefore, by Lemma 4.1(iv) with α = ℓ(1 − β)
and our choice of ε, we have that

log x
x

|F (−ρ log x)| ≪ xβ−1

|ρ|

(
2ℓ
ε|ρ|

)ℓ(1−β)

≪ T
− 1

A
j (|γ| + 3)−(1− 1

A )x−(1−β)(1− 1
A )(x 1

2AT ℓ
j )−(1−β).

TOME 0 (0), FASCICULE 0
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By (4.2) and (4.3), we have that

(4.5) log x
x

|F (−ρ log x)|

≪ T
− 1

A
j (|γ| + 3) 1

A −1x−(1−β)(1− 1
A )(C(π)Tj)−Ac13(1−β)m3

.

From (E) and (1.5), one has

(4.6) (|γ| + 3) 1
A −1x−(1−β)(1− 1

A ) ⩽ e−(1− 1
A )ηπ(x).

Combining (4.4), (4.5), and (4.6), we derive

Zj ≪ e−(1− 1
A )ηπ(x)T

− 1
A

j

∑′

Tj−1 ⩽ |γ|⩽ Tj

(C(π)Tj)−Ac13(1−β)m3
.

By partial summation and Corollary 3.3, it follows that∑′

Tj−1 ⩽ |γ| ⩽ Tj

(C(π)Tj)−Ac13(1−β)m3

≪
∫ 1

0
(C(π)Tj)−Ac13m3α

dN∗
π (1 − α, Tj)

≪ mc13m3
νπ(Tj).

Observe that

νπ(Tj)T− 1
2A

j ⩽ (1 − β0) sup
t ⩾ 1

{
t−

1
2A log(C(π)t)

}
≪ Aνπ(1).

The lemma now follows from the bound
∞∑

j=1
Zj ≪ Aνπ(1)mc13m3

e−(1− 1
A )ηπ(x)

∞∑
j=0

2− j−1
2A

≪ A2νπ(1)mc13m3
e−(1− 1

A )ηπ(x). □

Lemma 4.5. — If x ⩾ C(π)1056c2c13m5 , then

x
1− 1

1056c13m4 ≪ νπ(1)x ≪ x− xβ0

β0
.

Proof. — It suffices to prove the lemma when νπ(1) = (1 − β0) logC(π)
< 1. We consider two cases. First, if (1 − β0) log x ⩾ 1, then

νπ(1)x ≪ x ≪ x
(
1 − 2e−1) ⩽ x

(
1 − x−(1−β0)

β0

)
= x− xβ0

β0
.

Second, assume that 0 < (1 −β0) log x < 1. Our hypothesis on the range
of x implies that x ⩾ e4. We claim that

(4.7) (1 − β0) log(x/e)
1 − e−(1−β0) log x/β0

⩽
e

e− 1 ,

ANNALES DE L’INSTITUT FOURIER
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from which we deduce the desired bound

νπ(1)x = (1 − β0)x logC(π) ≪ (1 − β0)x log x
e

≪ x

(
1 − e−(1−β0) log x

β0

)
= x− xβ0

β0
.

To finish the proof of the lemma, we observe that C(π)−c2m ≪ νπ(1) by (F).
Now, the lemma now follows from our range of x.

To prove the claimed bound in (4.7), we make the change of variables
(1 − β0) log x = t, in which case the left hand side of (4.7) equals

f(x, t) = ett(log x− t)(log x− 1)
(et(log x− t) − log x) log x.

We maximize f(x, t) when x ⩾ e4 and 0 < t ⩽ 1. Observe that

lim
t→0+

f(x, t) = 1 ⩽
e(log x− 1)2

((e− 1) log x− e) log x = lim
t→1−

f(x, t),

and the sign of d
dtf(x, t) for t ∈ (0, 1] is the same as the sign of

(
et − (t+ 1)

)
(log x)2 − t

(
2et − (t+ 2)

)
log x+ ett2

⩾
((
et − (t+ 1)

)
log x− t

(
2et − (t+ 2)

))
log x

⩾
(
4
(
et − (t+ 1)

)
− t
(
2et − (t+ 2)

))
log x ⩾ 0.

Thus, as t monotonically increases from 0 to 1, f(x, t) monotonically in-
creases from 1 to

e(log x− 1)2

((e− 1) log x− e) log x.

It follows that

sup
t ∈ (0,1], x ⩾ e4

f(x, t) = sup
x ⩾ e4

e(log x− 1)2

((e− 1) log x− e) log x

= lim
x to ∞

e(log x− 1)2

((e− 1) log x− e) log x

= e

e− 1 . □

TOME 0 (0), FASCICULE 0
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4.3. Proof of Theorem 1.1

Without loss of generality, we may assume that 3
4 < β0 < 1. Let c5 be

suitably large, and let A ⩾ 4. If x ⩾ C(π)c5A2m5 , then by Lemmata 4.2–4.4,∑
n ⩽ x

aπ(n)Λ(n) =
(
rπF (− log x) − F (−β0 log x)

)
log x+

O

(
νπ(1)x

(
m

νπ(1)x 1
2m

+ ε

νπ(1) + ℓ logC(π)
ενπ(1)x 1

2m

+mc13m3
A2e−(1− 1

A )ηπ(x)
))

.

By Lemma 4.5 and the choices of ℓ and ε in Lemma 4.4, the O-term is

≪ νπ(1)x
(
m4x

− 1
33c13m4 +mc13m3

A2e−(1− 1
A )ηπ(x)

)
.

By Lemma 4.1(iii), if 3
4 < σ ⩽ 1, then

F (−σ log x) log x = xσ

σ

(
eεσ/ℓ − 1
εσ/ℓ

)ℓ

+O
(
x

σ
2
)

= xσ

σ
(1+O(εσ))+O

(
x

σ
2
)
.

This bound, along with Lemma 4.1(v), implies that

(rπF (− log x) − F (−β0 log x)) log x = rπx− xβ0

β0
+O

(
m(εx+

√
x)
)
.

Our choice of ε and the lower bound for νπ(1)x in Lemma 4.5 imply that

rπ(εx+
√
x) ≪ mεx ≪ m5νπ(1)x1− 1

33c13m4 ,

from which we conclude that∑
n ⩽ x

aπ(n)Λ(n)

= rπx− xβ0

β0
+O

(
νπ(1)x

(
m5x

− 1
33c13m4 +mc13m3

A2e−(1− 1
A )ηπ(x)

))
.

To finish the proof, we invoke the upper bound for νπ(1)x in Lemma 4.5.

5. Properties (E) and (F) for Rankin–Selberg L-functions

Let π ∈ Fm and π′ ∈ Fm′ . We now compile the best known zero-free
regions for L(s, π × π′).

Proposition 5.1. — There exists a constant c14 such that if π ∈ Fm

and π′ ∈ Fm′ satisfy (2.1), then L(s, π × π′) ̸= 0 in the region

Re(s) ⩾ 1 − c14

(m+m′) log(C(π)C(π′)(|Im(s)| + 3)m)
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apart from at most one exceptional zero β1 < 1. If β1 exists, then β1 is
both real and simple, and

π = π̃ and π′ = π̃′, or π′ = π̃.

Remark. — This implies a zero-free region for L(s, π) = L(s, π × 1).
If β1 exists, then π = π̃.

Proof. — When π′ = π̃, this is [5, Theorem 2.1(1)]. When π′ = π̃′,
this is [4, Theorem A.1] with a small improvement in the dependence on
m and m′ stemming from the fact that if Π is the isobaric automorphic
representation π⊗| det |iγ ⊞ π̃⊗| det |−iγ ⊞π′, then the Dirichlet coefficients
of logL(s,Π×Π̃) are nonnegative [3, Lemma a]. This produces an improved
degree dependence in [6, Lemma 5.9] that we insert into the proof of [4,
Theorem A.1]. □

Proposition 5.2. — Let π ∈ Fm and π′ ∈ Fm′ . Assume that π′ ̸= π̃.
For all ε > 0, there exists an effectively computable constant cm,m′,ε > 0
such that L(s, π × π′) ̸= 0 in the region

(5.1) Re(s) ⩾ 1 − cm,m′,ε

((C(π)C(π′))m+m′(3 + |t|)m′m)1− 1
m+m′ + ε

2
.

Proof. — This follows from [7, Theorem A.1] and Lemma 2.1. □

Finally, property (F) for L(s, π) and L(s, π × π′) follows from the next
result.

Proposition 5.3. — Let π ∈ Fm and π′ ∈ Fm′ . If β0 > 1
2 is a real

simple zero of L(s, π×π′), then β0 ⩽ 1 −C(π×π′)−c2m′m, and apart from
s = β0, L(s, π × π′) is nonzero in the region

Re(s) ⩾ 1 − c3

log
(

c4

(1 − β0)m′m log(C(π × π′)(|Im(s)| + 3)m′m)

)
m′m log(C(π × π′)(|Im(s)| + 3)m′m) .

Proof. — When π′ = π̃, this was shown in [5, Proposition 5.3 and Corol-
lary 5.4]. When π′ ̸= π̃, one applies the same ideas in [5, Proposition 5.3
and Corollary 5.4] to the L-function

D(s) = L(s, π × π̃)L(s, π′ × π̃′)L(s, π × π′)L(s, π̃ × π̃′)

instead of L(s, π × π̃), which has nonnegative Dirichlet coefficients by [3,
Lemma a]. The key observation is that while D(s) has a pole of order 2 at
s = 1, if ρ is a nontrivial zero of L(s, π × π′), then ρ is a nontrivial zero of
L(s, π̃ × π̃′). It remains to bound the analytic conductor of D(s) in terms
of C(π × π′), which is accomplished using Lemma 2.1. □
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6. Proofs of prime number theorems for L(s, π) and
L(s, π × π′)

Let π ∈ Fm and π′ ∈ Fm′ . To prove Theorems 2.4, 2.5, and 2.6, it remains
(after invoking Theorem 1.1) to bound e−ηπ(x) and e−ηπ×π′ (x) for x ⩾ 3
using Propositions 5.1 and 5.2.

Lemma 6.1. — If π ∈ Fm and π′ ∈ Fm′ satisfy (2.1), then

e−ηπ×π′ (x)

⩽ exp
(

−c14
log x

(m+m′) log(C(π)C(π′)) +
√
m(m+m′)c14 log x

)
.

Proof. — By (1.5) with the change of variables t 7→ eu and proposi-
tion 5.1, we have that

ηπ×π′(x)

⩾ inf
u ⩾ 0

ϕx(u), ϕx(u) = c14 log x
(m+m′) log(C(π)C(π′)) +m(m+m′)u + u.

Note that limu → ∞ ϕx(u) = ∞. The equation d
duϕx(u) = 0 has the unique

positive solution

u = u0 :=
(

c14 log x
m(m+m′)

) 1
2

− log(C(π)C(π′))
m

.

We have that u0 > 0 if and only if x > exp( m+m′

c14m (log(C(π)C(π′)))2), so

ϕx(u) ⩾


ϕx(u0) if x > exp

(
m+m′

c14m
(log(C(π)C(π′)))2

)
,

ϕx(0) if 3 ⩽ x ⩽ exp
(
m+m′

c14m
(log(C(π)C(π′)))2

)

=



2
(

c14 log x
m(m+m′)

) 1
2

− log(C(π)C(π′))
m

if x > exp
(
m+m′

c14m
(log(C(π)C(π′)))2

)
,

c14 log x
(m+m′) log(C(π)C(π′))

if 3 ⩽ x ⩽ exp
(
m+m′

c14m
(log(C(π)C(π′)))2

)
⩾ min

{(
c14 log x

m(m+m′)

) 1
2

,
c14 log x

(m+m′) log(C(π)C(π′))

}
.
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Since exp(− min{a, b}) ⩽ exp(− ab
a+b ) when a > 0 and b > 0, the lemma

follows. □

Proof of Theorems 2.4 and 2.5. — Theorem 2.5 follows from Theo-
rem 1.1 (with A = 2) and Lemma 6.1. We restrict the range of x in order
to absorb the factor of (m′m)c7(m′m)3 in the error term in Theorem 1.1.
Theorem 2.4 follows from Theorem 2.5 by choosing π′ = 1. □

We perform similar analysis using Brumley’s narrow zero-free region.

Lemma 6.2. — Let π ∈ Fm and π′ ∈ Fm′ satisfy π′ ̸= π̃. Let 0 < ε < 1,
and let cm,m′,ε be as in (5.1). Let

A = cm,m′,ε/(C(π)C(π′))(m+m′)(1+ ε
2 )−1,

B = m′m
(

1 − 1
m+m′ + ε

2

)
.

(6.1)

If x > exp(3B/(AB)), then

e−ηπ×π′ (x) ⩽ (ABe log x)−1/B.

Proof. — Let A and B be given by (6.1). By Proposition 5.2 and (1.5),
we have that

ηπ×π′(x) ⩾ inf
t ⩾ 3

ψx(t), ψx(t) = t−BA log x+ log t.

Note that limt → ∞ ψx(t) = ∞. The equation d
dtψx(t) = 0 has a unique

positive solution t0 = (AB log x)1/B. We have that t0 > 3 if and only if
x > exp(3B/(AB)), in which case

ψx(t) ⩾
{
ϕx(t0) if x > exp

(
3B/(AB)

)
,

ϕx(3) if 3 ⩽ x ⩽ exp
(
3B/(AB)

)
=
{

1+log(AB log x)
B ifx > exp

(
3B/(AB)

)
,

log 3 + A log x
3B if 3 ⩽ x ⩽ exp

(
3B/(AB)

)
.

The lemma now follows. □

Proof of Theorem 2.6. — If A ⩾ 2 and x ⩾ exp(3B/(AB)), then

e−(1− 1
A )ηπ×π′ (x) ⩽ (ABe log x)−(1− 1

A )/B

by Lemma 6.2. If A = 2(m+m′), then

(ABe log x)−(1− 1
A )/B

≪m,m′,ε (C(π)C(π′)) 1
m + 1

m′ − 1
2m′m (log x)− 2(m+m′)−1

m′m((2+ε)(m+m′)−2) .
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If we let ε = (m+m′)−2 and impose the condition

x ⩾ exp
(

(C(π)C(π′))2(m+m′)2
)
,

then

(C(π)C(π′)) 1
m + 1

m′ − 1
2m′m (log x)− 2(m+m′)−1

m′m((2+ε)(m+m′)−2) ≪m,m′ (log x)− 1
m′m .

Theorem 2.6 follows from this estimate, Theorem 1.1, and Lemma 2.1. □
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