[Classe Nevanlinna, série Dirichlet et problème de Szegö]
Cet article est associé à la classe de Nevanlinna, aux séries de Dirichlet et au problème de Szegő en un nombre infini de variables. Comme nous le verrons, il existe une connexion naturelle entre ces sujets. L’article introduit d’abord la classe de Nevanlinna et la classe de Smirnov dans ce contexte, et généralise la théorie classique en un nombre fini de variables au cadre des variables infinies. Ces résultats sont ensuite appliqués au problème de Szegő dans les espaces de Hardy en un nombre infini de variables. De plus, cet article est également consacré à l’étude de la correspondance entre les fonctions de Nevanlinna et les séries de Dirichlet.
This paper is associated with Nevanlinna class, Dirichlet series and Szegő’s problem in infinitely many variables. As we will see, there is a natural connection between these topics. The paper first introduces the Nevanlinna class and the Smirnov class in this context, and generalizes the classical theory in finitely many variables to the infinite-variable setting. These results applied to Szegő’s problem on Hardy spaces in infinitely many variables. Moreover, this paper is also devoted to the study of the correspondence between the Nevanlinna functions and Dirichlet series.
Révisé le :
Accepté le :
Première publication :
Keywords: Nevanlinna class, Smirnov class, Dirichlet series, Szegő’s problem, infinitely many variables
Mots-clés : classe Nevanlinna, classe Smirnov, série Dirichlet, le problème de Szegö, une infinité de variables
Guo, Kunyu 1 ; Ni, Jiaqi 2 ; Zhou, Qi 3
@unpublished{AIF_0__0_0_A131_0, author = {Guo, Kunyu and Ni, Jiaqi and Zhou, Qi}, title = {Nevanlinna class, {Dirichlet} series and {Szeg\H{o}{\textquoteright}s} problem}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3696}, language = {en}, note = {Online first}, }
Guo, Kunyu; Ni, Jiaqi; Zhou, Qi. Nevanlinna class, Dirichlet series and Szegő’s problem. Annales de l'Institut Fourier, Online first, 45 p.
[1] The spaces of a class of function algebras, Acta Math., Volume 117 (1967), pp. 123-163 | DOI | MR | Zbl
[2] Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not., Volume 2014 (2014) no. 16, pp. 4368-4378 | DOI | MR | Zbl
[3] Fatou and brothers Riesz theorems in the infinite-dimensional polydisc, J. Anal. Math., Volume 137 (2019) no. 1, pp. 429-447 | DOI | MR | Zbl
[4] Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976 | MR | Zbl
[5] Compact polynomials and compact differentiable mappings between Banach spaces, Semin. Pierre Lelong, Anal., Année 1974/75 (Lecture Notes in Mathematics), Volume 524, Springer, 1976, pp. 213-222 | MR | Zbl
[6] Szegő and Widom theorems for the Neil algebra, Interpolation and realization theory with applications to control theory (Operator Theory: Advances and Applications), Volume 272, Birkhäuser/Springer, 2019, pp. 61-70 | DOI
[7] Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math., Volume 136 (2002) no. 3, pp. 203-236 | DOI | MR | Zbl
[8] Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables, Math. Ann., Volume 368 (2017) no. 1-2, pp. 837-876 | DOI | MR | Zbl
[9] Approximation numbers of composition operators on spaces of Dirichlet series, Ann. Inst. Fourier, Volume 66 (2016) no. 2, pp. 551-588 | DOI | Numdam | MR | Zbl
[10] Almost periodic functions, Dover Publications, 1955 | MR | Zbl
[11] Szegő’s theorem and its probabilistic descendants, Probab. Surv., Volume 9 (2012), pp. 287-324 | DOI | MR | Zbl
[12] Measure theory. Vol. I, Springer, 2007 | DOI | MR | Zbl
[13] Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien , Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., Volume 1913 (1913), pp. 441-488 | Zbl
[14] Linear space properties of spaces of Dirichlet series, Trans. Am. Math. Soc., Volume 372 (2019) no. 9, pp. 6677-6702 | DOI | MR | Zbl
[15] A mean counting function for Dirichlet series and compact composition operators, Adv. Math., Volume 385 (2021), 107775, p. 48 | DOI | MR | Zbl
[16] The multiplicative Hilbert matrix, Adv. Math., Volume 302 (2016), pp. 410-432 | DOI | MR | Zbl
[17] Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. Lond. Math. Soc., Volume 53 (1986), pp. 112-142 | DOI | MR | Zbl
[18] The periodic dilation completeness problem: cyclic vectors in the Hardy space over the infinite-dimensional polydisk, J. Lond. Math. Soc., Volume 103 (2021) no. 1, pp. 1-34 | DOI | MR | Zbl
[19] Iterated limits in , Trans. Am. Math. Soc., Volume 178 (1973), pp. 139-146 | DOI | MR | Zbl
[20] Dirichlet series and holomorphic functions in high dimensions, New Mathematical Monographs, 37, Cambridge University Press, 2019 | DOI | MR | Zbl
[21] Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables, J. Reine Angew. Math., Volume 634 (2009), pp. 13-49 | DOI | MR | Zbl
[22] Complex analysis in locally convex spaces, North-Holland Mathematics Studies, 57, Elsevier, 1981 | MR | Zbl
[23] Uniform algebras, Prentice Hall Series in Modern Analysis, Prentice Hall, 1969 | MR | Zbl
[24] Cyclic vectors, outer functions and Mahler measure in two variables, Integr. Equ. Oper. Theory, Volume 93 (2021) no. 5, 56, p. 14 | DOI | MR | Zbl
[25] Szegő’s theorem on Hardy spaces induced by rotation-invariant Borel measures, Complex Anal. Oper. Theory (2022) no. 3, 45, p. 24 | DOI | MR | Zbl
[26] A Hilbert space of Dirichlet series and systems of dilated functions in , Duke Math. J., Volume 86 (1997) no. 1, pp. 1-37 | DOI | MR | Zbl
[27] Wesen und ziele einer analysis der unendlichvielen unabhängigen variabeln, Rend. Circ. Mat. Palermo, Volume 27 (1909), pp. 59-74 | DOI | Zbl
[28] Banach Spaces of Analytic Functions, Prentice Hall Series in Modern Analysis, Prentice Hall, 1962 | MR | Zbl
[29] Function theory of several complex variables, Pure and Applied Mathematics, John Wiley & Sons, 1982 | MR | Zbl
[30] A noncommutative Szegő theorem for subdiagonal subalgebras of von Neumann algebras, Proc. Am. Math. Soc., Volume 133 (2005) no. 12, pp. 3643-3646 | DOI | Zbl
[31] Szegő’s theorem on a bidisc, Trans. Am. Math. Soc., Volume 328 (1991) no. 1, pp. 421-432 | DOI | MR | Zbl
[32] An outer function and several important functions in two variables, Arch. Math., Volume 66 (1996) no. 6, pp. 490-498 | DOI | Zbl
[33] In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc, Ann. Inst. Fourier, Volume 62 (2012) no. 5, pp. 1601-1626 | DOI | Numdam | MR | Zbl
[34] A correction to ‘In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc’, Ann. Inst. Fourier, Volume 68 (2018) no. 2, pp. 563-567 | DOI | Numdam | MR | Zbl
[35] Analysis of several complex variables, Translations of Mathematical Monographs, 211, American Mathematical Society, 2002 | DOI | MR | Zbl
[36] On the boundary behaviour of the Hardy spaces of Dirichlet series and a frame bound estimate, J. Reine Angew. Math., Volume 663 (2012), pp. 33-66 | MR | Zbl
[37] Diophantine approximation and Dirichlet series, Texts and Readings in Mathematics, 80, Hindustan Book Agency; Springer, 2020 | DOI | MR | Zbl
[38] Function theory in polydiscs, Mathematics Lecture Note Series, Benjamin/Cummings Publishing Company, 1969 | MR | Zbl
[39] Real and complex analysis, McGraw-Hill, 1987 | MR | Zbl
[40] The spaces of an annulus, Memoirs of the American Mathematical Society, 56, American Mathematical Society, 1965 | DOI | Zbl
[41] Unusual topological properties of the Nevanlinna class, Am. J. Math., Volume 97 (1976), pp. 915-936 | DOI | MR | Zbl
[42] OPUC on one foot, Bull. Am. Math. Soc., Volume 42 (2005) no. 4, pp. 431-460 | DOI | MR | Zbl
[43] Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975 | MR | Zbl
[44] Multipliers and linear functionals for the class , Trans. Am. Math. Soc., Volume 180 (1973), pp. 449-461 | DOI | MR | Zbl
Cité par Sources :