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NEVANLINNA CLASS, DIRICHLET SERIES AND
SZEG(O’S PROBLEM

by Kunyu GUO, Jiaqi NI & Qi ZHOU (*)

ABSTRACT. — This paper is associated with Nevanlinna class, Dirichlet series
and Szeg6’s problem in infinitely many variables. As we will see, there is a natural
connection between these topics. The paper first introduces the Nevanlinna class
and the Smirnov class in this context, and generalizes the classical theory in finitely
many variables to the infinite-variable setting. These results applied to Szegd’s
problem on Hardy spaces in infinitely many variables. Moreover, this paper is also
devoted to the study of the correspondence between the Nevanlinna functions and
Dirichlet series.

REsuME. — Cet article est associé a la classe de Nevanlinna, aux séries de Di-
richlet et au probléeme de Szegé en un nombre infini de variables. Comme nous
le verrons, il existe une connexion naturelle entre ces sujets. L’article introduit
d’abord la classe de Nevanlinna et la classe de Smirnov dans ce contexte, et gé-
néralise la théorie classique en un nombre fini de variables au cadre des variables
infinies. Ces résultats sont ensuite appliqués au probléme de Szeg® dans les espaces
de Hardy en un nombre infini de variables. De plus, cet article est également consa-
cré a ’étude de la correspondance entre les fonctions de Nevanlinna et les séries de
Dirichlet.

1. Introduction

This paper is of three purposes. The first is to study the function theory
of the Nevanlinna class and the Smirnov class in infinitely many variables,
the second is to consider Szeg&’s problem in infinitely many variables, and
the third is to discuss the relationship between Dirichlet series and these
functions by the Bohr correspondence.

The function theory in infinitely many variables has received attention
in recent years, see [3, 14, 17, 33, 34]. We begin with the familiar Hardy
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spaces. Let T =T x T x --- denote the cartesian product of countably
infinitely many unit circles T, equipped with the product topology. Then
T is a compact group with the Haar measure dmq, = %iﬂl X [%2 X ---. By
a polynomial we mean that it is an analytic polynomial only depending on
finitely many complex variables. Let P., denote the ring consisting of all
polynomials. For 0 < p < oo, the Hardy space HP(T) is defined to be the
closure of Po, in LP(T*°). Therefore, when 1 < p < oo, HP(T°) is a Banach
space with the norm of LP(T*), and when 0 < p < 1, H?(T*°) is complete
in the metric d,(f,9) = [t |f — g|Pdmos. It is clear that the Hardy space
HP(T™) over the n-torus T™ can be viewed as a closed subspace of HP(T).

Assume 0 < p < oo. In finite-variable setting, it is known that H?(T")
is canonically isometrically isomorphic to the Hardy space H?(D™) over
the polydisk D™. We now turn to the infinite-variable setting. Let D> =
DxDx--- be the cartesian product of countably infinitely many open unit
disks D. Cole and Gamelin [17] showed that every function f € HP(T),
by evaluation functional, can be extended to a function fholomorphic on
Dg° = 2 N D>, a domain in the Hilbert space ¢? of all square-summable
sequences. In particular, for 1 < p < oo, this holomorphic function can be
represented by taking Poisson integrals [17]. On the other hand, the Hardy
space HP(D3°) over D° is defined as follows:

HP(D57)
= {F is holomorphic on D3° : || F||f = sup / |[Fl[Pdmee < oo},
0<r<1 Jroo
where
Fip(w) = F (rwy, ..., "Wy, ...), w = (wy,wy, )T,

see [14, 18]. As the same in the finite-variable setting, for every nonzero
function F' € HP(D5°), the radial limit F*(w) = lim,_, Fj,j(w) exists for
almost every w € T, and log|F*| € L'(T*) [3, 15]. Furthermore, the
map F' — F* gives a canonical isometric isomorphism from H?(D$°) onto
HP(T®°), and its inverse is given by f — f.fe HP(T®), see [3, 14, 18, 33,
34].

Hardy spaces in infinitely many variables are also closely related to spaces
formed by Dirichlet series. Let Pp be the set of all Dirichlet polynomials
Q(s) = Zi:[:l an,n~ . For 0 < p < oo and @ € Pp, it follows from the
almost periodicity of the function t — |Q(it)|P that

NS B
Il = Jim 57 [ 1@

ANNALES DE L’INSTITUT FOURIER
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exists, see [10], or [37, Theorem 1.5.6]. The Hardy—Dirichlet space HP is
defined to be the completion of Pp in the metric | - ||, [7]. Bohr’s vision
below [13] allows us to investigate HP via the Hardy space HP(T>). Let
N ={1,2, ...} be the set of positive integers and p; the 4 prime number.
With each n € N is associated a unique prime factorization n = pi"* - - - pp*,

and set a(n) = (g, ..., ag,0, ...). For a sequence of complex numbers
¢= ()G, - - 2), write ¢ = ¢ ... (X*. The Bohr correspondence

N
B: Z apn”_® — Z ango‘(")
n=1

is an algebraic isomorphism from Pp onto P,,. Then by Birkhoff-Oxtoby
theorem [37, Theorem 6.5.1], for every Q € Pp, ||Q[} = [ [BQPdme,
and hence the Bohr correspondence can be extended to an isometric iso-
morphism from H? onto HP(T).

When p = oo, let H>®(T*) be the weak*-closure of Py in L (T).
As done in [5, 17, 27], there is a canonical isometric isomorphism from
H>(T*) onto H*(D5°), the Banach algebra consisting of all bounded
holomorphic functions on D§°, by taking Poisson integrals. In addition, the
Hardy space H*(T*) can be identified with the Hardy-Dirichlet space
‘H>° by the Bohr correspondence, see works of Hedenmalm, Lindqvist and
Seip [26]. For some recent works on the Hardy—Dirichlet spaces H? (0 <
p < 00), we refer the reader to [2, 8, 9, 14, 16, 36].

The above statements briefly sketch some background material of both
HP? and HP in the case 0 < p < oco. This paper is intended as an attempt
to develop the theory of limit function spaces in two cases of both H? and
HP as p — 0. We first consider the case HP as p — 07, which is parallel
to the finite-variable setting [38]. For 0 < p < co and f € LP(T°), write

I = ([ 1spame )"

then when 0 < p < ¢ < oo, LY(T>) C LP(T*). As well known, if f €
L7 (T>) for some 0 < r < oo, then || f||, tends to exp ([r.. log|f|dmss) as
p — 01, where exp(—o0) is defined to be zero. An observation is that if
f is a complex measurable function on T°°, then exp ( fTOO log | f |dmoo) is
finite if and only if exp ([ log(1 + |f|)dms) is finite, and the latter is
equivalent to

I fllo = /Tm log(1 + | f])dmee < oo.

TOME 0 (0), FASCICULE 0
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So the limit space of LP(T*) as p — 0T, denoted by L°(T®°), is defined
to be the set of all complex measurable functions f on T for which || f|lo
is finite. Then L°(T*) is a topological vector space with the complete
metric do(f, g) = ||f — gllo- The limit space of HP(T*) as p — 07, denoted
by N.(T*), is defined to be the closure of P, in L°(T>), so-called the
Smirnov class over T*. It is shown that each function in N,(T*) can
be uniquely analytically extended to a domain D¢ of ¢!, where D$* =
1 N D> is a domain in the Banach space ¢! of summable sequences. This
leads to bring in the Smirnov class N, (ID$°) for holomorphic functions on
D$°. Section 2 will be concerned with the Smirnov class N, (D?°) and the
Nevanlinna class N(D5°), a larger class than N,(D$°). It is shown that
there is a natural correspondence between the class N,(T°) and the class
N, (D$°). For functions in the class N(D{°), there exists an analogue of
the classical Fatou’s theorem, that is, for every function F € N (D), the
radial limit F*(w) = lim,_1 F(rwy, ..., r"wy,, ...) exists for almost every
w € T°°. Furthermore, if F # 0, then log |F*| € L!(T).

In Section 3, we apply the preceding results to Szegdé’s problem in in-
finitely many variables. Let us first recall Szegé’s theorem in one variable
case [23, 28, 43]. Assume that K is a nonnegative function in L!(T) with
log K € L'(T), and m; is the normalized Lebesgue measure on T. Write
C[z] for the ring of all one-variable analytic polynomials, and Cy[z] for the
set of polynomials ¢ € C[z] with ¢(0) = 0. Szegd’s theorem states that
when 1 < p < 0o, the following equality holds:

inf / |1 — ¢|PKdmy = exp </ 10ngm1> .
q€Colz] J7 T

In fact, this holds because such K is exactly the modulus of an outer func-
tion [28]. Szegd’s theorem has a profound influence in many areas, especially
in the theory of orthogonal polynomials on the unit circle [11, 42, 43], and
it can be regarded as the cornerstone of the development of the invariant
subspace theory [23]. For more works relating to Szegd’s theorem, we refer
the reader to [1, 6, 24, 25, 30, 40]. When p = 2, Nakazi gave an analogous
version of Szegd’s theorem in two-variable setting [31]. Whereas in the case
of infinitely many variables, things become much more complicated. Let K
be a nonnegative function in L!(T*) with log K € L*(T>). Without loss
of generality, we assume that ||K|[; = 1. Write

K) = inf 1—¢qPK
S0 = int [ = apKame,

ANNALES DE L’INSTITUT FOURIER
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where Py denotes the set of polynomials ¢ € Py, with ¢(0) = 0. It is easy
to verify that S(K) falls into the closed interval [exp( [;.. log Kdma),1].
Naturally, the problem arises which is called Szegd’s problem: For which
function K, S(K) attains the lower bound exp( [;.. log Kdmq) or the up-
per bound 1?7 We will give a complete answer to this problem in Theo-
rem 3.1 and Theorem 3.4 by applying the previous results. It is worth
pointing out this paper provides a general method which also applies to
the finite-variable setting for Szeg$’s problem.

As in cases of the Nevanlinna class and the Smirnov class in the infinite-
variable setting, there exist analogies for Dirichlet series, that is, we are
concerned with the limit Hardy-Dirichlet space in the situation p — 0.
In Section 4, we introduce the Smirnov—Dirichlet class N, which is defined
to be the completion of Pp in the metric

S .
IQllo = Jim 57 [ log(1+ QB Qe Po.

Then N, can be viewed as the limit space of H? when p — 0. More-
over, we draw a conclusion that there exists a canonical isometric algebra
isomorphism from N, onto the Smirnov class N,.(D{°) by the Bohr corre-
spondence. In order to study composition operators on spaces of Dirichlet
series, Brevig and Perfekt [15] defined the class N, of Dirichlet series f
with the abscissa of uniform convergence o, (f) < 0 and

1 7
limsup lim —/ log™ | f(o +it)|dt < oo,
oT |

o—0+ T—o0

where log™ z = max{0,logz} for z > 0. This leads to an introduction of
the Nevanlinna—Dirichlet class A/, the completion of A, in the metric

1 T
|l fllo = limsup lim —/ log(1+ |f(o +it)))dt, [ € N,.
o0+ T'—o0 2T _T

We will prove that the Nevanlinna—Dirichlet class N can be isometrically
embedded into the Nevanlinna class N(D$°) by the Bohr correspondence.

Acknowledgments

The authors are sincerely grateful to the referees for insightful comments
and suggestions that have improved the presentation of this paper.

TOME 0 (0), FASCICULE 0



6 Kunyu GUO, Jiaqi NI & Qi ZHOU
2. The Nevanlinna class and the Smirnov class

This section is devoted to introducing the Nevanlinna class and the
Smirnov class in infinitely many variables.

2.1. The Nevanlinna class and the Smirnov class over D{°

We begin with co-subharmonic functions on D$°. Motivated by [38], an
upper semicontinuous function u : D — [—00, 00) is called co-subharmo-
nic, if w is subharmonic in each variable separately. As the same in sin-
gle variable, if u : D$® — [—00,00) is oo-subharmonic, and ¢ is a non-
decreasing convex function on the real line R, then o wu is co-subharmonic
(setting ¢(—00) = lim;—, o ©(t)).

For each function F' on Di® and 0 < r < 1, the function F},; over the
infinite torus T°° is defined by

Fij(w) = F (rwy, ..., r"wp,...), weT>.
The following result will be used frequently in this paper.
PROPOSITION 2.1. — If u is co-subharmonic on D$°, then integrals
I, :/ updme  (0<r <1)
increase with r. Therefore, if {r,}52, is an increasing sequence in (0,1)
with r, — 1 as n — oo, then supg ., . 1 Ir = sup,, e Ir, -

Proof. — Given 0 < r < s < 1, it suffices to prove that I, < I,. For each
n € N, write

_ +1 +2
s ) (W) = u (swr, .oy s W, 7" w1, 7" P wnga, L), w e T

Using subharmonicity successively in the first n variables, we obtain
I. < / u[r,s,n}dmoo-

Note that sD x --- x "D x --- is compact in ¢', where D denotes the
closed unit disk. The upper semicontinuity of u implies that {u[. s,y is
uniformly bounded above on T°°. Therefore, it follows from Fatou’s lemma
that

I, <lim sup/ Upp,s,n) Moo < / lim sup [y, 5, n)dMeo < I,

n— 00 n—oo

as desired. 0

ANNALES DE L’INSTITUT FOURIER
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Let D™ =DxDx--- denote the cartesian product of countably infinitely
many closed unit disks D, then it is compact with respect to the product
topology. The set of all continuous functions on ﬁoo, denoted by C (ﬁoo), is
a Banach algebra with the uniform norm. The following corollary is useful.

COROLLARY 2.2. — Let u € C(D™). If u is co-subharmonic on DS,
then for every 0 < r < 1,

u(0) < / U dMee < / UdMog .
Proof. — By Proposition 2.1, for each r < s < 1, we have

u(O)S/ u[r]dmoog/ ULs] Mo

The desired corollary follows from Lebesgue’s dominated convergence the-
orem by letting s — 1. 0

Recall that a complex-valued function F' defined on an open subset V'
of a Banach space X is called holomorphic [22], if F' satisfies the following
two conditions: (i) F is locally bounded. (ii) For each o € V and z € X,
the function F(zp + zx) is holomorphic in parameter z for zo + 2z € V.
One easily checks that holomorphic functions are continuous.

In this paper, we mainly concern with holomorphic functions on the
domain D$° C ¢*. For every 0 < r < 1 and M > 0, set

(2.1) Vi = {C €' ||¢|ly < M and for each n €N, [(,| <7},

then V;. pr are domains in ¢' which increase to D asrt1and M T oco. As
we will see later, when discussing holomorphic functions on D$°, the role
of the domains V. ps in D$° is similar to rD in D.
It is also worth mentioning that every function F' holomorphic on D$°
has a unique monomial expansion
o0
(2:2) F(Q) =) eng™™,
n=1
and the series converges uniformly and absolutely on compact subsets of
D2° for which we refer readers to [21].

Now we introduce the Nevanlinna class over D{°. Let F' be a holomor-
phic function on DS°. Since p(z) = max{0,z} is a non-decreasing convex
function on R, ¢(log |F|) = log™ |F| is co-subharmonic. Hence by Proposi-
tion 2.1,

(2.3) sup / log* |F[r]|dmoozliml/ log™ | Fjyy|dme.
0<r<1 JToe r—1 JTe

TOME 0 (0), FASCICULE 0
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The Nevanlinna class N(D$°) over D$° is defined to be the class of all
holomorphic functions F' on D$° such that the value of (2.3) is finite. The
following proposition is needed in the sequel.

PROPOSITION 2.3. — Let F' be a nonzero holomorphic function on D°.
Then the following statements are equivalent:
(1) F € N(D$°).
(2) supgcr<t [|Fjllo < oo.
(3) limsup,_,; [|log |F}|[l1 < oc.

To prove Proposition 2.3, we need to introduce the infinite polydisk al-
gebra [17]. The infinite polydisk algebra A(ID*°) is defined to be the closure
of Poo in C(D™). It is worth mentioning that if F' is a nonzero holomor-
phic function on D°, then for every 0 < r < 1, Fj,; € A(D*), and hence
log | F},j| € L'(T*) [3, 15]. On the other hand, we can also understand the
infinite polydisk algebra by “boundary functions”. Let A(T*°) be the norm-
closure of Py, in C(T*), the Banach space of all continuous functions on
Te°. Since the infinite polydisk algebra A(D*°) is of the Shilov boundary
T, one naturally identifies A(D>) with A(T°) by the restriction map.

Proof of Proposition 2.3. (1)<(2): By inequalities
(2.4) logt x <log(l +x) <logtx+1log2, x>0,

we see that (1) is equivalent to (2).
(1)<(3): It suffices to show (1) implies (3). Given 0 < ry < 1, since F is
a nonzero function, log |Fj,,j| € L*(T*). Then for every ro < r < 1,

10 Fif =2 [ og* || dmac = [ 108 [Py amec
< 2/ log™ |F[T] | dmee — / log |F[r0] | dmo,
Too Too
and hence
limsup || log | Fly| [,
r—1
< 2}1_)1111 - log™ |F[,.] ’ dmese — /TOo log |F[,.0] ’ dmys < 00,

as desired. O

Let F' be a function on D{°. For each n € N, we denote by A, F' Bohr’s
nte Abschnitt of F, which is defined by

(AnF)(C):F(Cla--anaOa-")? CGDTO

ANNALES DE L’INSTITUT FOURIER
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Since A, F' does not depend on variables ¢; (j > n), we may consider it as
a function defined on the polydisk D". For each w € T°, the slice function
of F' at w is defined by

F,(z) =F (zwy, ..., 2"wy,, ...), z¢€D.
If F is holomorphic on D3°, and w € T*, then for every n € N,
(AnF)y(2) = F (zwy, ..., 2"wp,0,...), z€D

is holomorphic on D. Note that {(A,F),}22, converges to Fy, uniformly
on each compact subset of D. It implies that F, is holomorphic on D.

Let N(D) be the Nevanlinna class over the open unit disk, then for every
F € N(D), the radial limit F*(A) = lim,_,; F(r\) exists for almost every
A €T, see [39, p. 346]. Now we give the following theorem for which its
second part is an analogue of the classical Fatou’s theorem.

THEOREM 2.4. — Let F be a nonzero function in N(D{®), then for
almost every w € T, F,, € N(D). Furthermore, for almost every w € T,
the radial limit

F*(w) = lim Fj,y(w)

r—1

exists, and log |F*| € L1 (T*).

The next corollary implies that every function ' € N(D$°) can be
uniquely determined by its “boundary function” F*.

COROLLARY 2.5. — Let F € N(D{°). If F* vanishes on some subset of
T with positive measure, then F = 0.

For every z € D and ¢ € D™, set
(2.5) 2xC=(2C1, ..., 2%, ...) €D

To prove Theorem 2.4, we need the following lemma, an analogue of [38,
Lemma 3.3.2].

LEMMA 2.6. — Let f be a nonnegative measurable function on T.
Then

(o) = [ [ FOx wydins (o )

Too

Proof. — Since the Haar measure mq, is rotation-invariant, for every
AeT,

(w)dmeo (W) = FOxw)dmes (w).
Too Too

TOME 0 (0), FASCICULE 0
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Integrating with respect to A over T and applying Fubini’s theorem yield
that

[ fwdme(w) / [ SO dme w)m ()

/w/f (e w)dima (N dimo (),

which completes the proof. O

Proof of Theorem 2.4. We use ideas from [38, Theorem 3.3.3] to com-
plete the proof. For every fixed w € T, log™ | F,,| is subharmonic on D),
and hence the integrals

Lo = / log* [y (rA)dmi (%) (0 <7 < 1)
T

increase with r. Then the monotone convergence theorem gives

20 [ (p,for) st
= s [ [ logt IR dm ) )

0<r<1

= sup / /logJr | Fpy (A % w) | dmy (A)dmis (w).
o<r<1 o JT

Applying Lemma 2.6 to log™ | Firy], we have

sup / /logJr ‘F[T]()\*w)’dml()\)dmoo(w)
oo JT

0<r<1

= sup / log™ | Flyj(w)| dmoe (w) < oo.
0<r<1 J oo

And hence by (2.6), for almost every w € T, supg,.. Jw,r is finite, which
implies that Fy, € N(D) for such w.

Let E be the set of points w € T for which F*(w) = lim,_; Fj;(w)
exists. Then E is a measurable set. Put

S = {w e T lini F,,(r)) exists for almost every A € 'H‘} .
r—

Since for almost every w € T, F,, € N(D), we see that S is a measurable
set, and meo(S) = 1. Furthermore, for every fixed w € S, A*w € FE for
almost every A € T, and thus

/ O x w)dmi (V) = 1,
T

ANNALES DE L’INSTITUT FOURIER
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where yg denotes the characteristic function of E. Moreover, applying
Lemma 2.6 to xg gives

maol ) = [ xpw)dmew)

> /S /T x5 (0 x w)dima (A dimos ()

= [ vimec)

=1,
forcing moo(E) = 1. Then for almost every w € T,
F*(w) = lim Fppj (w)
exists, and it follows from Proposition 2.3 and Fatou’s lemma that
[ og | 7| [|, < lim inf |[log [ Fiyy| [, < o0,
which implies that log |F*| € L!(T>). O

As done in the finite-variable setting, we characterize Nevanlinna func-
tions via the oo-harmonic majorant. Motivated by [38], a continuous func-
tion u : Df® — C is called co-harmonic, if » is harmonic in each variable
separately. The harmonic Hardy space h'(D$°) over D$° is defined to be

h'(D5°)
= {F is co-harmonic on D{° : | F||, = sup / | Fyp| dmos < oo} .
0<r<1 JTee
As in finite-variable cases, each function in h!(ID$°) can be represented by
the Poisson integral of a complex regular Borel measure on T*°. To show

this, we recall some notions of Poisson kernels in infinitely many variables,
see [17]. For each ¢ € D$°, the Poisson kernel at ¢ is defined to be

(o]
Pc(w) = [[ P, (wn), weT>,
n=1

where

TOME 0 (0), FASCICULE 0



12 Kunyu GUO, Jiaqi NI & Qi ZHOU

are Poisson kernels for the unit disk. It is easy to prove that when ¢ € DS°,
P is continuous on T*. Furthermore, if u € C’(ﬁoo) is oo-harmonic on
DS°, then for every ¢ € D3°,

(2.7) u(¢) = /OO P udme.

Let M (T°) denote the Banach space of all complex regular Borel measures
p on T with the norm ||pu||ar = |u](T). For every p € M(T), set

Pldu](¢) = /Toc Pcdp, ¢ eDP.

Then Pldu] is oo-harmonic on D$°, and by Fubini’s theorem, ||P[dy]||n
< ||pllar < oo, and hence P[du] € h'(D$°). Moreover, Pldu] = 0 implies
pw=0.

PROPOSITION 2.7. — The Poisson integral p — Pldu] establishes an
isometric isomorphism from M (T*) onto h*(D$°), and hence h*(D$°) is a
Banach space.

Proof. — By the arguments above, the map u +— P[dy] is a one-to-one
contraction. On the other hand, for every F € h'(D$°) and 0 < r < 1,
write du, = Fjjdmeo. Then it follows from Banach—Alaoglu theorem that
there exist a sequence 1, — 1 (n — 00) and a complex Borel measure pp
on T such that {p,, }5°; converges to up in the weak*-topology, in the
dual space of C'(T°). Combining this fact with (2.7) shows that for every
¢ eDy,

Plprl(Q) = [ Pedur = lim [ PeRy,jdma = lim PO = FQ),

which implies that F' = P[dur], and thus the map u — P[du] is onto.
Furthermore, we have

oo

i _ .
e lag <t e [y, < st [ [ dme = [

and hence the map p — P[dy] is an isometry. O

Recall that Pcdms, is a Jensen measure for ¢ € D{® with respect to
A(D), that is,

(2.8) log|F(O] < | _Pelog|Flamee, F € AD),
TOO
see [17]. This says that

GO = / P log |Fldme, ¢ €Dy

ANNALES DE L’INSTITUT FOURIER
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is an oco-harmonic majorant of log |F|. The next proposition gives a char-
acterization of functions in N(ID$°) via co-harmonic majorant.

PropPOSITION 2.8. — Let F' be a holomorphic function on D{°. Then
the following statements are equivalent:
(1) F € N(D$).
(2) log|F| has an oo-harmonic majorant in h*(D$°). That is, there is a
function H € h'(D$°) such that log |F| < H on D{°.

Proof. — (1)=(2): For every 0 < 7 < 1, set dv, = log|F},j|dms. Then
it follows from (3) of Proposition 2.3 and Banach—Alaoglu theorem that
there is a sequence 1, — 1 (n — o0) and a complex Borel measure v on
T°°, such that {v, }22; converges to v in the weak*-topology, in the dual
space of C'(T*°). Since for every n € N, Fy, ; € A(D>), we see from (2.8)
that

0z |Fip, (O] < [ Pelog| Ry, |dmac, ¢ DF

Letting n — oo yields that
log|F(Ol < [ Pedv, ¢eDE,
and the right side of this inequality gives an co-harmonic majorant of log | F|
in A1 (D5°).
(2)=-(1): By assumptions, we have

Osup / log™ |F[T]| dmes, < sup H[J;] dme
<r<1Je 0<r<1JTeo
< sup / !H[r]‘ dms < 00,
0<r<1 oo
which gives F' € N(D$°). O

We next consider the metric in the class N(ID°). Writing ¢(z) = log(1+
e®), then it is a non-decreasing convex function on R. Therefore, for ev-
ery F € N(D5°), p(log|F|) = log(1 + |F|) is co-subharmonic. Hence by
Proposition 2.1, integrals

/ log (1 + |Fjj|) dmee (0 <7 < 1)
TQC

increase with . As done in [19, 41, 44] for finite-variable cases, we define

|F|lo = sup/ log(1+|F[T]|)dmoo:1im/ log (1 + |Fjyy|) dmec
<1 J7eo r—1 Toeo

0<r
for F € N(D$°) and

dO(FvG): HF_G||07 F,GGN(D?O),
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then dy is a translation-invariant metric on the space N(D$°). In fact, we
have

PROPOSITION 2.9. — N(D$°) is complete with respect to the metric dy.

To prove Proposition 2.9, we need Lemma 2.10, which implies that the
evaluation functional at ¢ € D$° on N (D$°) is continuous, and will be used
frequently in the sequel.

Recall that for any ¢ € D*°, the Mébius map over the infinite-dimensional
polydisk is defined as

Q0 (w) = ( G —n , G2 e ,...>, weD™
1-— Clwl 1-— C2w2

Then ®; maps D> and T onto themselves, respectively. Moreover, a

direct verification shows that ®; maps D onto itself if and only if { € Dg°.

When ¢ € D{°, an observation is that for every nonnegative continuous

function f on T°°,

(2.9) £ o Bedme, :/ fPedma < ||P<||OO/ Fdme.
Too Toeo Too

LEMMA 2.10. — If ¢ € DS, then for every F' € N(D5°),
log(1+ [F(O)]) < [[Pcllog 1 1lo-

Proof. — For each 0 < r < 1, log(1 + |F};) o ®¢]) € CDY) is oo-
subharmonic on D$°. By Corollary 2.2,

log (1 + [F,y(Q)]) = log (1 + | (Fiy © ¢) (0)])
(2.10) < / log (1 + | Fyj 0 ®¢|) dmoe.
TOO

Applying the inequality (2.9) to log(1 + |Fj,|), we have

/T log (1 + |Fjyj 0 ®¢|) dmo < ||P<||OO/T log (1 + |Fjy|) dme.

Combining this with (2.10) yields that

o8 (1+[F(€)) < IPellc [ 108 (14 |Fio ) dce.
Letting » — 1 gives the desired conclusion. O
As defined earlier, for every 0 < r < 1 and M > 0, the domain
Vi ={C €' ||¢|l < M and for each n €N, |(,| <71} .

One can easily check that {P¢}¢cv, ,, is a bounded set in L>°(T>). We
now present the proof of Proposition 2.9.
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Proof of Proposition 2.9. Suppose that {F,,}22 ; is a Cauchy sequence
in N(D$°). By Lemma 2.10, for each ¢ € D$° and k,l € N,

log (1 + |(Fr = FI)(O) < [[PclloollFr — Fillo-

Note that for each 0 < v < 1 and M > 0, {P¢}ccv,,, is bounded in
L°(T*°). It follows that {F,}52, converges uniformly to a holomorphic
function on each V;. »s, and hence there exists a holomorphic function F' on
D$°, such that {F,}52, converges to F' uniformly on each V,. js. It remains
to prove F' € N(D$°) and ||Fy, — Fllo — 0 as k — oo. Given ¢ > 0, choose
N large enough such that for k,I > N, ||F — Filjo < €. Then for each
0<r<l,

/ log (1 + }(Fk - Fl)[r]|) dme < €.
']I‘OO

Note that {F}}£2, converges to F uniformly on rD x - - x r"Dx - - - . Letting
[ — oo yields that when k£ > N,

(2.11) /TOO log (14 |(Fi. — F)py|) dmoo < e,

and hence for all 0 < r < 1,

/ log (14 |Fjyy|) dmeo < €+/ log (14 |(Fi)pr|) dmec
Too Too
e+ ||Fxllo < oc.

This shows F € N(D$°). Furthermore, by (2.11), we have ||[F, — F|o < &,
which means that N(ID$°) is complete with respect to dy. O

An important subclass of N(ID°) is the Smirnov class N, (D$°), which
consists of all functions F € N(D$°) for which {log™ |Fj,j|}o<r<1 forms
a uniformly integrable family. When F' € N(D$°), (2.4) implies that F' €
N, (Df°) if and only if {log(1+|F},|) }o<r<1 is uniformly integrable over T°.

By Fatou’s lemma, for every function F' € N(D$°), using the metric in
LO(T*),

1 ]lo < Tim | E I, -
This inequality inspires the following characterization of functions in the
Smirnov class N, (ID°). For finite-variable cases, see [19, 41, 44].

PROPOSITION 2.11. — Let F be a function in N(D$®). Then the follow-
ing statements are equivalent:
(1) F € N,(D°).
(2) [[F"lo = limy— [ Ffyy [lo-
(3) limyq [|[F}py — F*[Jo = 0.
(4) lim, 1 fpo log™® [Flpldmee = [1. log™ [F*[dme.
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It is worth mentioning that when F' only depends on single variable,
the equality (2) in Proposition 2.11 is another common definition for the
Smirnov class N, (D).

To prove Proposition 2.11, the the general Lebesgue’s dominated conver-
gence theorem [12, Theorem 2.8.8] is needed.

LEMMA 2.12 (General Lebesgue’s dominated convergence theorem). —
Let (X, M, i) be a measure space and {fn}21, {gn}>2, two sequences of
measurable functions on X that converge to f, g almost everywhere on X,
respectively. Assume that for every n € N, g, > 0, and |f,| < g, on X. If
g € LY(X, ) and

lim [ gn,dp = / gdp,
X X

n—oo

then

lim fndu = fdu.

n—oo X X
Furthermore, this conclusion remain valid if “convergence almost every-
where” is replaced by “convergence in measure”.

The following lemma immediately follows.

LEMMA 2.13. — Let 0 < p < o0 and {h,}52, be a sequence in LP(T)
that converges to h € LP(T*°) almost everywhere on T°°. Then ||k, —h||, —
0 if and only if ||hy ||, — ||k, as n — oco.

Proof. — We prove this lemma by using the general Lebesgue’s domi-
nated convergence theorem. It suffices to show that ||hy|l, — [|h||, implies
||n — R, — 0. Write

I = log (14 |hy, —hl), p=0,
" b = BPP, p>0,

and
_ Jlog (1 + |hn|) +log(1 + |A]), p=0,
"t 2 (hal R, p>0.
For every n € N, it is clear that 0 < f,, < g, on T*. Applying Lemma 2.12

to sequences { f, }°2; and {gn }22, shows that ||h,—h||, = 0asn = co. O

It is worth mentioning that when 0 < p < oo, [39, pp. 73, Exercise 17]
presents two proofs for Lemma 2.13 using Egoroff’s theorem and Fatou’s
lemma, respectively.
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Recall that a subset A of L!(T*) is uniformly integrable if and only if
there is a non-decreasing convex function ¢ : R — [0, 00) satisfying “p(t) —
oo as t — 400, called strongly convex function, such that {¢ o |f\}fe A ls
bounded in L!(T*), see [12, Theorem 4.5.9].

We now present the proof of Proposition 2.11.

Proof of Proposition 2.11. (1)=(2): When F' € N, (D{°), the family of
functions {log(1 + |F};|) }o<r<1 is uniformly integrable over T*°. Applying
Lebesgue-Vitali’s theorem [12, Theorem 4.5.4], we conclude that ||Fj,[lo —
|E*]|o as r — 1.

(2)=(3): It immediately follows from Lemma 2.13.

(3)=(4): By the inequality

(2.12) |log x —log™ y‘ log(1+|z—1y|), =zy=>0,

we have
'/ log™ [ Flyy| dimoc */ log™ |F*|dmoo| < ||y = F7[|, =0 (r— 1),
Toe Too

which implies (4).

(4)=(1): Let {r,}22, be an increasing sequence in (0, 1) with r, — 1 as
n — 00. By (4) and Lemma 2.13, the sequence {log™ |F}, j|}52, converges
to log® |[F*| in L'(T*). Then it follows from Lebesgue-Vitali’s theorem
that {log™ |F},,)|}5, is uniformly integrable over T°. Therefore, there
is a strongly convex function ¢ such that {¢(log™ |F}, j[)}52; is bounded
in L'(T*). By the co—subharmonicity of ¢(log™ |F|), applying Proposi-
tion 2.1 shows that {¢(log® | Fj,j|) Yo<r<1 is also bounded in L' (T*). There-
fore, the family {log™ |Flr|}o<r<1 is uniformly integrable, which implies
F € N, (D). O

The following Proposition immediately follows from Proposition 2.11.
PROPOSITION 2.14. — N, (D$°) is a closed subclass of N(Dg°).

Proof. — Assume that {G,}52, is a sequence in N,(D$°), and ||G,, —
Gllo — 0 for some G € N(D{°) as n — oo. To prove G € N,(D$°), let
0 <r<1andn €N, then

G = &"lly < [1G1 = (@)plly + [[(Gn)y = Glly + 167 = Gy
<2Gn = Gllo+ |(Gn)im — Gl -
Since G,, € N,(D§°), combining the above inequality with Proposition 2.11
shows that

limsup |G,y — G*HO < 2||Gy — Gllo-
r—1

TOME 0 (0), FASCICULE 0



18 Kunyu GUO, Jiaqi NI & Qi ZHOU

Letting n — oo, we see that ||G[,) — G*|lo — 0 as 7 — 1. Again by Propo-
sition 2.11, G € N, (D{°). O

Applying the inequality
log(1 + zy) < log(l+ ) +1log(l+y), z,y=0

yields that the Nevanlinna class N(D$°) is an algebra, and the Smirnov
class N, (ID{°) is its subalgebra. Unfortunately, as shown in [19, 41] for one-
variable case, the Nevanlinna class N (D) is not a topological linear space
since the scalar multiplication is not continuous. However, the following
proposition shows that the Smirnov class N,(D$°) is in fact a topological
algebra.

PROPOSITION 2.15. — If {F,}52, and {G,}52, are two sequences in
N, (D) that converge to F,G in N,(D{°), respectively, then {F,G,}>>,
converges to F'G in N, (D{°).

Proof. — From Proposition 2.11, we have ||F} — F*||o — 0, and |G} —
G*|lo — 0 as n — oo. Passing to subsequences, assume that {F}°2 ; and
{G7 1}, converge almost everywhere to F* and G* on T, respectively.
Write

fo =log (1 + |G, — F*GT)
and
gn =log(1+|F}|) +1og(1+ |G — G*|) +1og(1+ |EF; — F*|) +1log(1+ |G*]).
It is easy to verify that for every n € N, 0 < f, < g, on T°. Apply-
ing Lemma 2.12 to sequences {f,}52; and {g,}5>, shows that ||F}G} —
F*G*||p — 0 as n — co. Then by Proposition 2.11, |F,,G,, — FG|lo — 0 as
n — 0o, which completes the proof. O

By Proposition 2.8, for every F' € N(D°), log|F| has an oo-harmonic
majorant in ~!(D$°). The following proposition shows that if, furthermore,
F € N,(D$°), the co-harmonic majorant can be taken as P[log |F*|dmo].
The finite-variable version of this proposition is presented in [38].

PROPOSITION 2.16. — Suppose that F € N(D$°). Then F € N,(D{°)
if and only if for every ¢ € D°,

(2.13) log |F(C)] < / P log [F*|dm...

Proof. — We first assume that F' € N,(ID$°). Then for each 0 < r < 1,
Fi,) € A(D*°), and (2.8) implies that for ¢ € D{°,

(2.14) log |Fj,1(Q)] < /Tm P log |Fjy| dme.
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Since F € N,(Df°) and P¢ € C(T*), the family {P¢log™ |Fjj[}o<ret is
uniformly integrable. By Lebesgue—Vitali’s theorem [12, Theorem 4.5.4],

(2.15) lim [ Pclog" | Fyy| dmo. = /T P log" |F*| dims.

T

On the other hand, it follows from Fatou’s lemma that
(2.16) lim inf/ Pclog™ |Fy| dme > / P.log™ [F*|dm,
r—1 Too Toe
where log™ 2 = — min{0, log 2} for z > 0. By (2.15) and (2.16) we see that

limsup/ P, log|F[T]| dMeo g/ P log |[F*| dmeo.
Too Too

r—1

Letting 7 — 1 in (2.14) shows that

log |F(¢)] <limsup/ Pclog‘F[r]‘dmoo </ P, log |F*|dme.
r—1 Too Too

Conversely, suppose that F' # 0 and (2.13) holds for every ¢ € D$°, then
for each 0 < r <1 and w € T,

log{F[T](w)‘ </ Pyw log | F*|dmieo,
']I‘OO

where r x w € D$° by definition (2.5). Since log |F*| € L*(T*), there is
a strongly convex function ¢ such that ¢(log|F*|) € L'(T*). As done in
finite-variable cases by Rudin [38], applying the convexity of ¢ and Fubini’s
theorem, we obtain that for 0 < r < 1,

@17 [ o (log|Fyf)
< [ o([Prnt@tog P ©ldma©) ) o)
<[] Praateretiog | ©)Ddmee (€)dmac ()
= [ ([ Prea@mact)) wlion | hamac )

= /T o(log |F*|)dmeso .
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Let E. be the set of points w € T* such that |Fj,j(w)| < 1, and Ej the
complement of E, with respect to T®. Then (2.17) implies that

/TOO © (log+ ’F[T]D dMee = / ©(0)dmeo —I—/ © (10g ‘F[T]D dmeo

E, Es

(2.18) < <p(0)+/T  (log | Fiy)|) dmog

<wm+/<m%wmw%.

oo

Therefore, the family {log™ |Flr1l}o<r<1 is uniformly integrable over T°°,
which implies F' € N, (D$°). O
Motivated by Proposition 2.16, we ask when the inequality in this propo-

sition attains an equality at some point, and such a nonzero function is
called an outer function.

PROPOSITION 2.17. — If F' is a nonzero function in N,(D$°), then the
following statements are equivalent:

(1) F is outer.
(2) For every ¢ € D3, log |F(¢)| = [ Pclog | F*|dm.
(3) log | F(0) = fy.. log | F*|dm.

To prove Proposition 2.17, the maximum principle of co-subharmonic
functions is needed.

LEMMA 2.18 (The maximum principle). — Let u be an co-subharmonic
function on D$°, and a € R. If u < a on D§° and u(n) = a for some n € DJ°,
then u = a on DY°.

Proof. — For every n € N, set
un(z) = U(Zl, ceey Zny Nin4-15MIn4-25 - - ) ) z = (Zla ) Z’n) S D",
Then u,, < a is subharmonic in variables z1, ..., 2, separately, and

Un(M1 -y ) = a.

By using the subharmonicity successively in each variable, we see that
Uy, = a on D™. Now it follows from the upper semicontinuity of u that for
every ¢ € D3°,

u(¢) = limsupu (€1, - -+, Cny Mnt1s Mut2, ---) = limsupuy, ((1, ..., () = a,
n— oo n— o0
which leads to the desired conclusion. O
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Proof of Proposition 2.17. It suffices to show that (1) implies (2).
Put

p(¢) =108 |F(Q)| = | _Pclog|F*ldmec, ¢ €DF.

Since log |F*| € LY(T*), p is co-subharmonic on D$°. By Proposition 2.16,
p < 0 on D$°. Noticing that p(§) = 0 for some £ € D5°, it follows from
Lemma 2.18 that p is identically zero on D°, as desired. O

For every nonzero function F' € N,(D$°) and ¢ € D{°, P.log |F*| €
LY(T®°). A combination of this fact and Proposition 2.17 immediately gives
the following result.

COROLLARY 2.19. — If F € N, (D) is outer, then F is zero-free in D°.

For 0 < p < oo, the proof of Proposition 2.16 implies that H?(Dg°) C
N, (Dg°). Therefore, when F' € HP(D3°) is outer, F' is zero-free in D5°. In
fact, it is also zero-free in D5°.

COROLLARY 2.20. — Let 0 < p < oo. If F € HP(D3®) is outer, then F
is zero-free in DS°.
Proof. — Assume that there exists ¢ € D3° such that F'(¢) = 0. Choose
1 € D and an integer N such that
(n_lcla R 77_1<Na 2<N+17 2CN+27 .. ) € ]D)go

For each n € N and z = (21, 22) € D?, set
on(2) = F (zin "1, ooy 2 'O, 2200N 415 -+ -5 2228400 0 - )

and

¢(Z) =F (Zl’r]ilcl, R 217771<N7222<N+172Z2CN+25 .. ) .

Then ¢,, is holomorphic on D?, and {¢, }5°; converges uniformly to ¢ on
each compact subset of D2. Therefore, ¢ is holomorphic on D2. Since F is
zero-free in D$°, ¢, is zero-free in D?. Noticing that ¢(n, 3) = 0, Hurwitz’s
theorem [29, pp. 310, Exercise 3] implies that ¢ is identically zero on D?
and hence

F(Cl’ ) CN7O7 "') = ¢(n’0) :O7
a contradiction to that F' is zero-free in D{°. O

The following corollary will be used in Section 3.

COROLLARY 2.21. — If F € N,(D{°) is outer, then + € N,(Df°) is

outer.
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Proof. — Since F' is outer, it follows from Corollary 2.19 that F' is zero-
free in D$°. Hence by Proposition 2.3, - € N(D$°). On the other hand, for
every ¢ € D3°,

log|F(C)|:/T P, log |F*|dme.,

and hence

cm)’ = /m Pclog’;‘* dmeo.
Combining this equality and Proposition 2.16 gives % € N, (D$°) is outer,
as desired. g
In what follows we consider cyclic vectors. A closed subspace S C N,
(D$°) is said to be invariant, if for every F' € S and ¢ € Po, ¢F € S.
We say that a function F' € N, (D$°) is cyclic, if the invariant subspace
generated by F' is exactly N,(D$°). For 0 < p < oo, cyclic vectors in the
Hardy space HP(D$°) can be defined similarly.
The following theorem gives a quantitative description of cyclic vectors in
N, (Dg°). Although its proof is similar as in [38, Theorem 4.4.6], we present
it here for completeness.

log

THEOREM 2.22. — FEach cyclic vector in N, (D$°) is outer.

Proof. — For a nonzero function F' € N,(D$°), set
I'F= / log | F*|dmess — log | F(0)].

Then Proposition 2.17 yields that F'is outer if and only if I'F' = 0. We claim
that I" is upper semicontinuous on N, (D$°)\{0}. Indeed, let {G,,}22; be
a sequence in N,(D$*)\{0} and G € N,(D5°)\{0} such that for all n € N,
I'G, > ¢ > 0, and ||G,, — Gllop — 0 as n — oo. Hence by (2.12) and
Proposition 2.11,

/ log™ |G| dmisg —/ log™ |G| dmoo' <|GL =Gl = 1Gn = Gllo,
oo ’H‘OO
and thus

(2.19) lim logt |G |[dmee = / log™ |G*|dmoe .
’]I‘OO

n—00 oo

On the other hand, by the convergence of {G7}2° , in L°(T*), there exists
a subsequence {G7, }7, converging to G* almost everywhere on T°°. Then
it follows from Fatou’s lemma that

(2.20) / log™ |G*| dms < liminf / log™ |G}, | dmee.
o k—o00 oo

ANNALES DE L’INSTITUT FOURIER



NEVANLINNA CLASS, DIRICHLET SERIES AND SZEG(’S PROBLEM 23

A combination of (2.19) and (2.20) shows that

/ log |G*| dmwso > lim Sup/ log |Gy, | dmsc.
oo k oo

— 00

Noticing that |G, — G|l — 0 as n — 0o, Lemma 2.10 gives G,,(0) — G(0)
as n — 00. Therefore, I'G > limsup,_, ., I'G,, > ¢, and hence the claim
holds.

Now we assume that F' is cyclic in N, (ID°), then there is a sequence of
polynomials {g, }5°; in Pu such that ||g,F — 1||o = 0 (n — 00). Hence

0=T1>limsupI'(¢,F) > limsupTq, + T'F > T'F,
n—oo

n— oo

forcing I'F' = 0, and thus F' is outer. O
We mention that for every 0 < p < oo, there is a constant C}, > 0 such
that
(2.21) I£llo < Coll FlIp™1, f e LP(T™).
Hence for every F' € H?(D5®) C N, (Dg°),
Fllo = su Fqll,. <C, su Eqll = CullF||»-
1710 = s [Figlly < G sup, [Fial, = Gyl
A combination of this fact and Theorem 2.22 gives the following corollary.

COROLLARY 2.23. — If0 < p < oo, then each cyclic vector in HP(D3°)
is outer.

However, not every outer function is cyclic in H?(D$°), see [38, pp. 75-78]
for a counterexample. We also conjecture that not every outer function is
cyclic in N, (D$°), but we still cannot construct a counterexample, even in
finite-variable setting.

2.2. Correspondence between N, (T*) and N, (D5°)

The purpose of this subsection is to show that there is a canonical isomet-
ric isomorphism between N, (T°) and N, (D$°). We refer readers to [3, 18]
for cases of the Hardy spaces in infinitely many variables.

Recall that the Smirnov class N, (T°) over the infinite torus is defined to
be the closure of P, in LO(T>). A similar argument as in Proposition 2.15
shows that N, (T) is a topological algebra. By (2.21), for every 0 < p < o0,
the space HP(T°) is contained in N,(T). For each point ¢ € D and
q € P, it follows from Lemma 2.10 that

l08(1+10(O)) < [Pcll [ 1o(1 + [adms.

TOME 0 (0), FASCICULE 0



24 Kunyu GUO, Jiaqi NI & Qi ZHOU

This means that the evaluation functional E. : ¢ + ¢(¢) is continuous
on the dense subspace Py, of N,(T>), and hence E, can be continuously
extended to the whole space N, (T), still denoted by E.. For every f €
N, (T*°) and ¢ € D$°, set f(() = E¢f. Then fdeﬁnes a function on DS°,
and

@2) 1o (1+[FQO]) < IPcll [ 1081+ |1,

When ¢ € Poo, ¢ = g on DI°, so we will no longer distinguish between ¢
and ¢.

For 0 < r < 1 and M > 0, the domain V, 5 in ¢! is defined by (2.1).
The following lemma is obvious by using (2.22). It will be used not only in
the proof of Propostion 2.25, but also in Section 3.

LEMMA 2.24. — Suppose that {f,}5°, is a sequence in N,(T). If
| f — fllo = O for some f € N,(T*) as n — oo, then {f,}32, converges

to f uniformly on each V, .
We now establish the correspondence between N, (T*°) and N, (D).
PROPOSITION 2.25. — If f € N,(T>), then f € N,(D$°).

Proof. — We first show that fis holomorphic on D$°. Choose a sequence
of polynomials {¢,, }° ; such that ||¢,— f|lo — 0asn — co. By Lemma 2.24,
{gn}52, converges uniformly to fon each V;. 7, and thus fis holomorphic
on D°. It remains to show {log(1 + |.]?[r]|)}0<r<1 forms a uniformly inte-
grable family. Since ||g, — f|lo — 0 as n — oo, applying Lebesgue-Vitali’s
theorem [12, Theorem 4.5.4] shows that {log(l + |¢,|)}22; is uniformly
integrable. Therefore, there exists a strongly convex function ¢ such that

sup / ¢(log(1 + [gn]))dmes < oc.
n €N JTee

By Fatou’s lemma, we have

(2.23) /m 0 (1og (1 n ‘fm

)i

< liminf/ ¢ (log (14 [(gn)])) dmec-
TOO

n— oo

For every n € N, since ¢(log(1 + |gn|)) is continuous on D™, and oco-
subharmonic on D°, applying Corollary 2.2 gives that for every 0 < r < 1,

/ o (log (1+ |(gn)p]) dmes < / o(10g(1 + ga]))dms.
Toe Too
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Taking this inequality back into (2.23) yields

su log (1+ ‘ NT
0<r81/0080( g( f[]
which ensures the uniform integrability of {log(1 + |]7[T] N}o<r<i- O

Recall that for every F' € N,(D§°), F’s “boundary function”
F*(w) = lim Fy(w)

)) dme < sup | ollog(1+ faa))dmee < .
neN oo

exists for almost every w € T*. In fact, this “boundary function” belongs
to the Smirnov class N, (T°) over the infinite torus.

PROPOSITION 2.26. — If F € N, (DS°), then F* € N, (T*) and | Fllo =
1E o

Proof. — The equality [|F|lo = [|[F"*[|o immediately follows from Propo-
sition 2.11. Given € > 0, again by Proposition 2.11, there exists 0 < r < 1
such that [|Fj,) — F*|lo < e. Since Fj,y € A(T*), we can find a polyno-
mial ¢ € Py satisfying [|g — Fjyjllec < €® — 1, and hence |lg — Fj,llo < €.
Therefore,

la = F"llo < lla = Finllg + || Fy =
which implies F* € N, (T). O
By Proposition 2.26, the algebra homomorphism defined by

A N,(D°) — N (T®), F s F*,

0<2<€7

is a linear isometry. The main theorem of this subsection is stated as follows.
THEOREM 2.27 (Generalized Fatou’s theorem). — The map
A N,(DP°) — N, (T*)
is an isometric algebra isomorphism, and its inverse map
A7 NL(T®) — N,(D5°)
is given by f +— f
Proof. — Tt suffices to show that for every f € N,(T), Af: f- Choos-

ing a sequence of polynomials {g,}52; satisfying

(2.24) lgn = Fllo = 0 (n = o)

and applying Lemma 2.24 lead that {g,}3%, converges to f pointwise on
D$°. On the other hand, (2.24) also implies that {g,}52 is a Cauchy se-
quence in N, (D), and hence ||¢, — G|l — 0 for some G € N,(D{°) as
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n — 0o. By using Lemma 2.10, {g,}22; converges to G pointwise on D5°,
therefore G = f. We conclude from Proposition 2.26 that

00— AF| = lla. = AGH, = llaw = Glly 0 (n = 00).

From this and (2.24), Af = f, which yields the desired conclusion. O

For 0 < p < oo, every function in H?(T*), by evaluation functional, can
be extended to a holomorphic function on D$°. Comparison of this fact and
Theorem 2.27 leads us to ask the following question.

QUESTION 2.28. — Does there exist a function in N,(T°) which can
not be extended to a function holomorphic on Dg°?

As an application of the generalized Fatou’s theorem, we obtain Corol-
lary 2.29, which will be used in Section 3.

COROLLARY 2.29. — If0 < p < 00, then N, (T*°)NLP(T>) = HP(T*).

Proof. — Clearly, H?(T*) C N,(T*) N LP(T>). Conversely, for every
f € N.(T>) N LP(T*), we will show that f € HP(T>). Write F' = A~ f,
then F' € N,(D$°), and F* = f. By Proposition 2.16, for each ¢ € D5°,

(2.25) log |F(¢)] < /

P.log | F*|dmec.
'IFQC

When 0 < p < oo, by (2.25), taking ¢(t) = exp(pt) and applying the
reasoning as in (2.17) show that

r—1

lim [ |Fjy|" dme < / |F*[Pdme.
TOC TOC

On the other hand, we infer from Fatou’s lemma that

/ |F*|Pdmooghm/ |F|” dimo,
oo r—1 Too

and hence ||F*[|, = lim, 1 ||F};1||p- Then by Lemma 2.13, || F},) — F*|, — 0
as r — 1. Noticing that for 0 < r < 1, Fj,; € A(T*®), we see f = F* €
HP(T).

When p = oo, by (2.25) and Jensen’s inequality, for every ¢ € D5°,

|F(¢)| < exp </T P, logF*dmw> < /T P |F*|dmos < || F* |0 < 00,

which implies that F' is a bounded holomorphic function on D°. By the
argument in [26, pp. 7-8], F' can be extended to a bounded holomorphic
function on D3°, still denoted by F. Then F € H>®(D$°), and thus f =
F* € H>®(T*). O
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3. Szegd’s problem in infinitely many variables

In this section, we will apply function theory of the Smirnov class to
discuss Szegd’s problem in infinitely many variables. Write Py for the set
of polynomials ¢ € Py for which ¢(0) = 0. In what follows we assume
that 1 < p < oo, and K € L'(T*) is a nonnegative function with log K €
LY(T*°). Without loss of generality, suppose that ||[K|; = 1. Motivated
by Szeg6’s theorem mentioned in Introduction, one is naturally concerned
with the following quantity:

S(K) = inf/ |1 — ¢P Kdmeo.

Obviously, S(K) < 1. On the other hand, it follows from Jensen’s inequality
and (2.8) that for every ¢ € Py,

(3.1) / |1 — ¢PKdmeo

> exp </ log |1 — g|Pdmeo +/ longmoo)

> exp <log 1 —q(0)|” +/ log Kdmoo)

= exp </ longmoo) .

Therefore, S(K) falls into the closed interval [exp ( Jpee longmoo) ,1].
Then it is natural to ask for which K, S(K) attains the lower bound
exp ([po log Kdmeg) or the upper bound 1, and this is called Szeg8’s prob-
lem.

oo

When p = 2, Nakazi gave an answer to Szegé’s problem in two-variable
setting [31]. His proof heavily depends on the fact that if K € L!(T?)
is a nonnegative function with log K in the RP class over T?, then there
exists an outer function h € H?(T?) such that K = |h|?, see [38, p. 77].
In what follows, we will give a unifying treatment for Szegdé’s problem as
an application of function theory developed in the previous section, which
works for both finite-variable and infinite-variable setting.

We first study when S(K) attains the lower bound exp (fﬂroc log Kdmoo).
The next theorem gives the answer.

THEOREM 3.1. — The equality

(3.2) S(K) = exp ( / log Kdmoo>

holds if and only if K = |h|P for some cyclic vector h € HP(T).
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Before proving Theorem 3.1, we need the following proposition, which
states that the weighted Hardy space HP(Kdm,), the closure of Py, in
LP(Kdmy), is a subset of the Smirnov class N, (T).

PROPOSITION 3.2. — HP(Kdmes) C N.(T*).

Proof. — For every h € HP(Kdm.,), there is a sequence of polynomials
{qn}22; for which

(3.3) / |gn — RIPKdme — 0 (n — 00).

Then there is a subsequence {gy, }2, that converges to h almost every-
where on T°. Moreover, by the inequality log(1+z) < « (z > 0) and (3.3),
we have

/ log (1 + |gn, — hPK)dme — 0 (k — 00).
TOO
Write

f’mc = log (1 =+ |QTLk - h|p) ’

gny, =10g (1 + [qn,, — h[PK) +log(1 + K) — log K.
For every k € N, it is easy to verify that 0 < f,,, < gn, on T*. Applying
Lemma 2.12 to sequences { f,, }7>, and {gn, }3>,, we obtain

(3.4) / log (1 + |gn, — hP)dme — 0 (k — 00).

Let Ej be the set of points w € T* such that |g,, (w) —h(w)| < 1, and Ef
the complement of E}, with respect to T°°. Write x g, for the characteristic
function of Ej. Then for every k € N, 0 < xg,|gn, — h| < 1 on T™. It
follows from Lebesgue’s dominated convergence theorem that

(3.5) / log (1 + |qn, — h|) dmeo = / log (1 + xE&,|Gn, — h|)dme — 0
Ey Toe
as k — oo. On the other hand, by inequalities

/ log (1 + |qn, — h|) dmeo < / log (1 + |gn,, — h|P) dms
E¢ E¢
< / log (1 + |¢n, — h|P) dm,
we conclude from (3.4) that
/ log (14 |qn, — h|)dme — 0 (k — o).
B

Combining this with (3.5) gives |lgn, — hllo — 0 as k¥ — oo, and thus
h € N,(T>), as desired. O
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Recall that to every f € N,(T°) corresponds a holomorphic function f €
N, (D$°) whose radial limit is f. We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first assume K = |h|P for some cyclic vector
h € HP(T*°). To prove (3.2), it suffices to show that

(3.6) Aﬂkjgema</mbngmm).

By the cyclicity of h, it is not difficult to verify that h — h(0) belongs to
the closure of {gh € HP(T*°) : ¢ € Py} in HP(T). Therefore,

S(K) = in7fJ / |h — qh|Pdme
q€Po oo
(3.7) T ’p

</Tw ’h— (h—ﬁ(O))‘ dmeo = ’E(o)

Since h € HP(T*) is outer, that is,

|h(0)[P = exp (/T log |h|pdmoo) = exp (/ log Kdmoo> ,

we deduce from this and (3.7) that K satisfies (3.6).

Conversely, we assume that (3.2) holds. Since HP(Kdmy,) is reflexive,
there exists a function ¢ belonging to the closure of Py in HP(Kdm) such
that

(3.8) SMj:/ 1 — P Kdme..

Choose a sequence of polynomials {g,}52; in Py satisfying

(3.9) / lgn — @|PKdmo, — 0 (n — 00).

It follows from Proposition 3.2 that ¢ € N,.(T*), and the proof of this
proposition also implies that there is a subsequence {gn, }?2; for which

llgn, — ¢llo = 0 as k — oco. Hence by Lemma 2.24, {g,, } 3, converges to
¢ pointwise on D$°, and thus @(0) = 0. We see from Proposition 2.16 that

(3.10) / log |1 — p[Pdme. > log |1 — G(0)[? = 0.

By Jensen’s inequality,

(3.11) / |1 — p|PKdms > exp (/ log |1 — ¢|? —i—longmoo) ,
Too Too
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and the equality holds if and only if |1 — ¢|PK is a constant. Combin-
ing (3.10) with (3.11) shows that

/ |1 — @[P Kdmeo > exp </ longmoo) )

By (3.2) and (3.8), this inequality is actually an equality, forcing (3.10)
and (3.11) to be equalities. This means that 1 — ¢ € N, (T) is outer, and
there is a constant C' > 0 such that |1 — p|PK = CP.

We claim that ﬁ € HP(T*). Indeed, since 1 —¢ € N,(T*) is outer, by
Corollary 2.21 and the generalized Fatou’s theorem, ﬁ € N,(T*), and
it is outer. On the other hand, since ﬁ = %, we have ﬁ € LP(T).
Then by Corollary 2.29, 12— € H?(T*), and the claim holds.

Write h = & € HP(T*), then K = |h[P. We proceed to prove that h
is cyclic by (3.9). Noticing that

lgn — P K = |(1 = gn) = (L = @)[P[2[" = |(1 = gn)h = C7,
hence by (3.9),

/ (1= gu)h — CJF dme, = / lgn — QP Kdma — 0 (n—> o0).
('S} 'JI‘OO

The above reasoning shows that the constant function C is in the invariant
subspace of HP(T°) generated by h. Therefore, h is cyclic, and the proof
of Theorem 3.1 is complete. 0

As it is clear, Szegd’s problem is closely related to cyclic vectors in Hardy
spaces. In fact, its connection with cyclicity is more than the external pre-
sentation. We will show this via a special case K = |f|P, where 1 < p < o0
and f € HP(T*). By Theorem 2.4, log K = plog|f| € L*(T°°). Write

M) = exp ([ tog i)
TOO
Then it follows from (3.1) and Proposition 2.16 that

sy = M) = [fo)

where f € HP(D$) denotes the holomorphic function corresponding to f. It
seems interesting to ask when two among these three quantities are equal.
The complete answer will be given in Proposition 3.3 below. For p = 2,
Nakazi considered when S(|f|?) = M(|f|?) in the case of two variables,
see [32]. In the same setting, Guo and Zhou [24] solved the problem when

S(|£]?) = |f(0)]?, but their methods do not apply for p # 2, since HP(T?)
is not a Hilbert space.
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A function n € H*°(T*°) is said to be inner, if || = 1 almost everywhere
on T° [18]. Since there is a canonical isometric isomorphism from H®°(T)
onto H*°(Dg°), we see that if n is inner, then |77(¢)| < 1 for all ¢ € D$°. By
Corollary 2.29, it is easy to verify that a function 7 is inner if n € N, (T)
and is of modulus 1 almost everywhere on T°°.

PROPOSITION 3.3. — Suppose that 1 < p < co and f € HP(T*), then:

(1) M(|f?) = |f(0)? if and only if f is outer.

(2) S(|f?) = M(|f|?) if and only if f = nh, where 1 is inner and h is
a cyclic vector in HP(T°).

(3) S(|f|P) = |f(0)|P if and only if f is cyclic.

Proof. — (1) This is a direct conclusion of Proposition 2.17.

(2) If f = nh, then it follows from Theorem 3.1 that S(|f|?) = M(|f|?).
Conversely, suppose that S(|f|P) = M(|f[?). By Theorem 3.1, there is a
cyclic vector h € HP(T*) such that |f|P = |h[P. Since h € HP(T*>) is
cyclic, Corollary 2.23 implies that h is outer, and hence

(3.12) tog [A(<)| :/T Pclog [hldme, ¢ €D

by Proposition 2.17. On the other hand, Proposition 2.16 states that
(3.13) oz | (0] < | _Peloglfldmec. ¢ eDF.

Combining (3.12), (3.13) and the fact |f| = |h| yields that for all ¢ € D$°,
|f(§ )| < |E(C )|- By the continuity of fand hon D3°, this inequality remains
valid for ¢ € D3°. It follows from Corollary 2.20 that h is zero-free in Dse,
so F = L € H*(D$°). Therefore, F* = % € H>(T*) is of modulus 1

h
almost everywhere on T, which implies that F'* is inner and f = F*h.

(3) By (1) and (2), it is clear that S(|f|?) = |f(0)|? if and only if f is an
outer function with factorization f = nh, where 7 is inner and h is a cyclic
vector in HP(T®°). In this case, it will be shown that 7 is a constant func-
tion, and hence f is cyclic. Since f is outer, it follows from Corollary 2.21
that % € N, (T*). As mentioned before, N, (T) is a topological algebra,
S0 % = % -h € N.(T*). Noticing that 7 is inner, % is of modulus 1 almost

everywhere on T, which implies that % is also inner. Then

1
QI <1, == <1, (eDbf.
7(C)] 2
Therefore, |7(¢)| = 1 for all ¢ € D$°, and thus 7] is a constant function, as
desired. m
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We continue to discuss when S(K) attains the upper bound 1. Let Zg
be the set of all finitely supported sequences of integers. Recall that for
every o € Z3°, the Fourier coefficient K («) of K is defined to be

K(a)= | Kéodme,
Toe
where
eo(w) =witws?---, weT™.
THEOREM 3.4. — S(K) =1 if and only if
(3.14) K(a)=K(—a)=0, 0#aeNF,

where N3° denotes the set of all finitely supported sequences of nonnegative
integers.

Proof. — Let HY (Kdmy) denote the closure of Py in LP(Kdme). Ap-
plying Hahn-Banach theorem shows that the quotient space
Q = LP(Kdme)/HY (Kdms)

is of the dual space Q* as follows:

Q*:{gELq(Kdmoo): fgKdmes =0 for fEHg(KdmOO)},

Toe

where % + % = 1. Therefore,

S(K)= inf / 11— fPPKdmes
feHY (Kdmoo) Jroo
(3.15) P
[ —— / gKdm..| |
geBNQ* [JTee

where 7 is the quotient map of LP(Kdm) onto Q, and B is the closed
unit ball of L4(Kdme).
When (3.14) holds, it is easy to verify that 1 € BN Q*. Then by (3.15),
geEBN O~

P
/ gKdm
TOO
forcing S(K) = 1.

Conversely, we assume that S(K) = 1. Since L1(Kdm«,) is reflexive,
BN Q* is weakly compact. Hence by (3.15) there exists a ¢ € BN Q* such
that

p

S(K)= sup > =1,

=

Kdms
TOC

p

VK dmeo
’]I‘oc

1=S8(K) =
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Noticing that ||[¢||Le(kdm.) < 1, Holder’s inequality gives that ¢ = 1, and
hence 1 € Q*. For each 0 # a € Ng°, it follows from e, € H{ (Kdm) that

(3.16) K(—a) = | Keqdme :/ 1-eqKdmas = 0.
TOO oo

Since K is nonnegative, the conjugate of (3.16) gives that

K(o)= | Kéadmes =0,
TOC

and the proof of Theorem 3.4 is complete. O

4. Nevanlinna functions and Dirichlet series

It is well known that there exists a fascinating connection between func-
tions in infinitely many variables and Dirichlet series via Bohr correspon-
dence. As in cases of the Nevanlinna class and the Smirnov class in the
infinite-variable setting, there exist analogies for Dirichlet series. In this
section, we will develop the Nevanlinna—Dirichlet class A and the Smirnov-
Dirichlet class N, for Dirichlet series. Moreover, the relationships between
N and N(D5°), N, and N, (D5°) will be established, respectively.

First, we briefly recall some elements from the theory of Dirichlet series.
A Dirichlet series is a series of the following form:

fls) = Zann_s,
n=1

where s is the complex variable. Let R be the real line and R = RU {00}
the extended real line. When o € R, set C, = {z € C: Re z > o}. For each
Dirichlet series f(s) = Y .-, a,n™*, its abscissa of uniform convergence

ou(f) is defined as

oy (f) = inf {0 eR: Z apn”® converges uniformly on (CG} €R,

n=1

see [20, p. 10]. When o € R, write
fa(s) — Z ann*(s+0)7
n=1

then o, (fy) = ou(f) — 0.
Recall that a subset S of R is relatively dense in R, if there exists a
constant L > 0 such that each closed interval of length L intersects S.
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A function f: R — C is called almost periodic, if for each ¢ > 0, there is a
relatively dense set E. C R satisfying

sup [f(t+71) — f(t)| <e, V7TeE..
teR

We mention that when f is almost periodic, the limit limp_, % fTT f)de
exists. Let f be a Dirichlet series with o, (f) < 0, then ¢ — f(it) is almost
periodic. Furthermore, if h is a non-decreasing continuous function on the
half real line Rt = [0, 00), then h(]f(it)|) is almost periodic, see [10, 37].
Let p; be the j th prime number. For every n € N, there exists a unique
prime factorization n = p{*---p* and set a(n) = (a1, ..., ag,0,...).
When ¢ = ((1, (o, -..) is a sequence of complex numbers, we write ¢l =
it -- (%, From Bohr’s point of view [13], each Dirichlet series f(s) =
> ayn~* can be associated with a formal power series in infinitely many
variables as follows:

(Bf)(C) = Z anca(n)-

It is easy to verify that if o,,(f) < 0, then the partial sums of Bf converge
uniformly on T, and Bf € A(T), see [26, 37].

This section contains two parts. In the first part, we define the Nevanli-
nna-Dirichlet class N, and discuss the relationship between this class and
the Nevanlinna clagss N(D$°). The main result is Theorem 4.1. The second
part is devoted to proving this theorem.

4.1. The Nevanlinna—Dirichlet class N

Before defining the Nevanlinna-—Dirichlet class N, let us start with a
smaller class, the Smirnov-Dirichlet class N.

Let f be a Dirichlet series with o, (f) < 0, then ¢ — log(1 + |f(it)]) is
almost periodic, and hence the limit

T
1o = lim — / log(1 + | £(it)|dt

exists. Note that Bf € A(T*). Applying Birkhoff-Oxtoby theorem [37,
Theorem 6.5.1] yields

(11) I£1lo = | 1081+ 1B7dma = 1571

Let Pp denote the set of all Dirichlet polynimials, then for every @ € Pp,
0,(Q) = —o0. Hence ||Q||o is well defined and ||Q||o = ||BQ||o. We define the
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Smirnov—Dirichlet class N, to be the completion of Pp in the metric || - [|o.
Then there exists a natural algebraic structure on N,. When 0 < p < oo,
there is a constant C, > 0 such that

IQllo < GyllQUF™PY, Q€ Pp.

Hence all Hardy-Dirichlet spaces H” (0 < p < oo) are contained in N.
As defined in Introduction, the Smirnov class N, (T) is the closure of Py
in L°(T*). Hence the Bohr transform B : Pp — Ps can be extended
to an isometric isomorphism from N, onto N,(T®), still denoted by B.
Furthermore, B is also an algebra isomorphism.

For a fixed k£ € N, let = be the multiplicative subsemigroup of N gener-
ated by the first k prime numbers p1, ..., px. When f is a Dirichlet series of
the form f(s) = >, =, ann™?, then (Bf)(() = >, c=, anC®™ only de-
pends on the first k variables (1, ..., (x. If Bf is holomorphic on D¥, then
f(s) = (Bf)(pi®,...,p; ") converges uniformly on each C, (¢ > 0), and
thus o, (f) < 0. This inspires us to consider the class N,, of Dirichlet series
f with o, (f) < 0and limsup,_,o+ || fo|lo < c0. By (2.4), this coincides with
Brevig and Perfekt’s definition [15] mentioned in Introduction. A similar
argument as in the proof of Proposition 2.1 gives that if f is a Dirichlet
series with o, (f) < 0, then ||f,||o defines a non-increasing function of o,
which is also mentioned in [15]. Thus we have

limsup [ fo[ly = sup [ fo o -
o—0+ >0
It is clear that A, is a linear space. We define
[fllo=sup|[folly, [ €N
>0

Then
dO(.f).g):”f_gHOv f’ge-/\/'u

defines a metric on A,. Unfortunately, the class N, does not contain the
familiar Hardy-Dirichlet space H2. For example, put a, = (y/nlogn)~!,
then the Dirichlet series fo(s) = > o, ann™* belongs to H?, and 0,,(fs) =
3. Hence fq ¢ N,. So we define the Nevanlinna-Dirichlet class A to be
the completion of AV, in the metric || - ||o. Since Pp is contained in N, we
see that N, is contained in N. In conclusion, we have

HECHICHP CN.,CN (0<p<qg<o).

The following is the main result of this section, which will be proved in
Subsection 4.2.
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THEOREM 4.1. — Let f(s) = >.°7, a,n~* be a Dirichlet series in N,,.

n=1
Then the formal power series (Bf)(¢) = 300, a, (™™ converges in Df°.
Moreover, we have Bf € N(D$°), and ||Bf|lo = || f|lo. Therefore, the Bohr
transform B can be extended to an isometry from N to N(D5°), still de-

noted by B.

For a general Dirichlet series f with o, (f) < 0, the conclusion of Theo-
rem 4.1 fails. Here is an example.

Example 4.2. — Let pj, be the &*" prime number and {pk; }52, a subse-
quence of {py}72, satisfying px;,, > 2py, for all j € N. Write

o0

log px,
fls) = Z%
=1 Py

Let o > 0, then there is a constant M, > 0 such that for each j € N,
log pr; < Mypj, . Therefore,

o0 oo

log py,. >© B o
3 S € Mgy 32 <o
j =1

j=1 j=1

Since o is arbitrary, we see that o,(f) < 0. However, {logpy;}52; is un-
bounded, which implies that (Bf)(¢) = E;’;l(log Pr; )Gk, diverges for some
¢ € Df°.

The following example implies that N, is a proper subclass of N.

Example 4.3. — Write ¢(z) = exp(12), z € D. It is easy to see that
¢ € N(D), but ¢ ¢ N.(D). Let a, denote the n'" Taylor’s coefficient
of ¢, and put f(s) = > 7 a,27"%. Then for every ¢ € D$°, we have
(Bf)(¢) = ¢((1), and hence Bf ¢ N,.(D?°). Note that Bf is a holomorphic
function on D. As we mentioned before, o,,(f) < 0. On the other hand, it

follows from (4.1) that
sup || follo = sup [|Bfxllo = sup/ log (1 + ‘<p(2_"/\)’) dmq(\) < oo,
o>0 o>0 o>0JT

which implies f € N,. Now we claim that f ¢ N,. Indeed, if f € N,
then there exists a sequence of Dirichlet polynomials {Q,}52; such that
|Qn — fllo = 0 as n — co. By Theorem 4.1, ||BQ,, — Bf]|lo — 0 as n — oo,
which gives that Bf € N,(D$°), a contradiction.

Let 0 < p < ¢ < oo. We draw up the following figure to show rela-
tions between all spaces, where “~” denotes that the corresponding spaces
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are canonically isometrically isomorphic, and “—” denotes that the for-
mer space can be isometrically embedded into the latter. It remains to be
clarified whether B : N'— N(D$°) is surjective.

H>® < H? < HP < N, C N

R R R R {
H>Ds°) ¢ HYD3*) C HP(DF) C N.(Df°) C N(DF)

4.2. Proof of Theorem 4.1

This subsection is mainly dedicated to proving Theorem 4.1. To prove
this theorem, a series of preparations is needed.
Let F be a holomorphic function on the polydisk D*. For each o > 0,
write
Fioy(w) = F (pf"wl, e p,:”wk) , we Tk,

where p; denotes the 4" prime number. Then by the subharmonicity of
log(1 + |F]) in each variable separately,

(4.2) sup/ log (1 + ‘F{U}D dmy = sup / log (1 + ’F[T]D dmy,
o>0.JTk 0<r<1JTk

where my, denotes the normalized Lebesgue measure on T*. Moreover, in-
tegrals in the left side of this equality decrease with o.
Suppose that f(s) = >, a,n~* is a Dirichlet series in N,. We first

consider Bohr’s kte Abschnitt
Bef)(C) = Y an™™

nE€Zg
of Bf. It is a formal power series only depending on the first k variables
(1 -, (k- We have the following proposition.

PROPOSITION 4.4. — If f € N, then for every k € N, the formal power

series By, f converges in D*, and it defines a function in the Nevanlinna class
N(D*) over DF.

Proof. — Let f(s) = >_-~, ann~* be a Dirichlet series in N, then for

every o > 0, 0,(f,) < 0, and thus Bf, € A(T*). Applying Lebesgue’s
dominated convergence theorem gives

(43) kl;rrgo - log (14 |Brfo|) dme = /]I“X’ log (14 |Bf,]) dmeso
= ”BfUHO'
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It follows from Corollary 2.2 that the integrals in the left side of (4.3)
increase with k. Therefore we have

sup sup/ log (1 + By fo]) dmeo
keN o>0.JT=

— sup sup / log (1 + |Bufy|) dmeo = sup 1B lo-
oc>0 keN o o>0

By (4.1), for every o > 0, |Bfs|lo = ||f+lo, and hence
sup sup/ log (14 |Bifol|) dmeo

(44) keNo>0
= sup [|Bfslo = sup [ follo = [|.fllo < o0.
o>0 a>0

For a fixed k € N, the family {B}, f, } >0 is contained in the polydisk algebra
A(DF). Tt follows from Lemma 2.10 that for each ¢ € D¥,

log (1 + |(Br fo)(O]) < [[Pelloo /TOO log (1 + |Bifo|) dmoo < [[P¢lloollfo-

This implies that {Bg fo }»>0 is uniformly bounded on each compact subset
of D*. By Montel’s theorem [35, Theorem 1.5, there is a sequence o, —
0% (m — 00) and a function G holomorphic on D such that {By fo,, }2°_;
converges to G}, uniformly on each compact subset of D¥. Let

Gr(Q)= Y buC*™, (eDF
nE€Zg
be the Taylor expansion of Gi. Since for every m € N,
(Bifs,) Q)= Y apm™m¢™™, ¢ eDF,
neEZ
the uniform convergence implies that

b, = lim a,n " =a,, n€ I,
m—00

and hence (Bxf)(¢) = >, c=, anC®™ converges in D¥. Noticing that for
every 0 > 0, By fo = (Bi.f){o}, and combining (4.2) with (4.4) show that

(4.5)  sup / log (1 + [(Brf)m]) dmeo
0<r<1 JTee

- su%/ log (1 + |Bif|) dimss < [|fl0 < o0,
o> Toe

which implies B f € N (D). O
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For every k € N, N(DF) can be regarded as a subset of N(D5°). Hence
by Proposition 4.4, when f € N, {Bif}32, is a sequence in N (D$°). Then
it follows from Lemma 2.10 and (4.5) that for each ¢ € D5°,

log (1 +[(Brf) () < PclloolIBrfllo < [IPcllooll flo-

Therefore we have

COROLLARY 4.5. — If f € N, then the sequence { By, f}72, is uniformly
bounded on each domain V;. 5y (0 < 7 < 1,M > 0) defined by (2.1).

We need the following result.

PROPOSITION 4.6. — If f € N,, then the sequence {Bj, f}32., converges
pointwise on D{°, and

(BA)(¢) = lim (Bif)(¢), ¢ €D
defines a holomorphic function on D°.
The following lemma is used in the proof of Proposition 4.6.

LEMMA 4.7. — If {a,}52, € (', then there exist {b,};>; € ¢* and
{en}22, € ¢o such that a, = bycn,, n = 1,2, ..., where ¢y denotes the
Banach space of null sequences.

Proof. — Without loss of generality, we may assume that {a,}52; has
infinitely many nonzero entries. It suffices to show that there is a sequence
{An}22, such that A\, — oo as n — oo, and > -, lapA,| < oo. Write
A=3%"lan| and

k J
. 6A 1 .
kj:mln{kENS;an>ﬂ_2n_1n2}, ]EN
Then there is a subsequence {ks, }32, of {k;}32, such that ks, < ks, <---,
and for each j € N, we have

k. k k 1 R

i 6A L1 Sj+1 Si+2 64 22 1
Dolanl=> 5 5 D el < Y el <5 D
n=1 n=1 n=1 n=1 n=1

and hence
ks . )
Si+1 Sj+2
6A 1
(4.6) Z |an| < ) Z POR
n:ksj+1 n=s;+1
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Ifksj +1<n< ksj+1, set A\, = /s; +1. Then A, — 0o as n — oo, and
by (4.6),

o0 J+1
ORI S SN
n=ks, +1 j=1n=ks +1
o0 k Sji+1
=2 VEEL Dl
7j=1 n=kg +1
A Sj+2
< TZ\/SJ B
n=s; +1
Sj+2

N
5, g:
]
3

—
3

< 00,
which completes the proof of Lemma 4.7. O
We now present the proof of Proposition 4.6.
Proof of Proposition 4.6. We first show that {Byf}%2, converges
pointwise on D°. For a fixed ¢ € D7°, it follows from Lemma 4.7 that
there exist a € D$° and 3 € By such that Cn = anfn, n=1,2, ..., where

By denotes the open unit ball of ¢y. By Corollary 4.5, {Bpf}32, is umformly
bounded on A, = a1D x -+ X @D X -+ -. Set

Co= sup [(Bef)(v)|+1.
keN,veE A,

For any € > 0, there exists an index K for which if ¥ > K, then |f| < ﬁ
By a similar argument as in [26, 27], we conclude that {(Bxf)({)}n2, is
Cauchy. Indeed, for k > 1> K and 2z = (21, ..., zx_;) € D*7! set

F(Z) = (ka) (alﬂl, ey alﬂl,al+121, ey akzk,l) .
We see that F' is holomorphic on D*~!, and sup, ¢ pr—1 |F(2)| < C4. By

Schwarz’s lemma [35, Theorem 1.9], we have

[(Brf)(C) = B )OI = [F(Breas - Br) — F(0)] < 2C, max |55 <e,

I+1<j<k

which implies that {(B f)(¢)}32, is Cauchy, and hence {Bj f}72 | converges
pointwise on D$°. Write

(4.7) (BA)(¢) = lim (Bif)(Q), ¢ €D,
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Then Corollary 4.5 implies that B. f is locally bounded. In what follows we
show that gf is holomorphic on D$°. For fixed ¢ € D§° and & € £, there
exists an open domain @ C Csuch that 0 € Q and {(+A: A€ Q} C V. i
for some 0 < r <1, M > 0. For each k € N, let

Gr(A) = (Brf)(C+AE), Aef

Then {Gy}72, is sequence of holomorphic functions on 2, and by Corol-
lary 4.5, it is uniformly bounded on 2. Applying Montel’s theorem, there
is a subsequence that converges uniformly on each compact subset of €.
By combining this with (4.7), (Bf)(¢ + A¢) is holomorphic in parameter
A € Q, and hence B, f is holomorphic on D3°. O

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first prove that (Bf)(¢) = Y250, a, (™™

n=1
converges to a holomorphic function on D°. By Proposition 4.6, the se-

quence {By f}72, converges to a holomorphic function B f. Let
(4.8) B = eaC®™, ¢eDf®
n=1

be the monomial expansion of B. f. For a fixed k € N, Bohr’s kte Abschnitt
Ar(Bf) is holomorphic on D, and

Ax(BF)(C) = D> ™™, (eDF

n e Zg

On the other hand, by the definition (4.7) of Bf, we have
A(BF)(Q) = (Bef)(C) = Y ang®™, ¢ eDF.
nezg

It follows from the uniqueness of Taylor expansion that for all n € Zy,
an = ¢n, and hence a, = ¢, for all n € N by the arbitrariness of k.
Comparison of this and (4.8) shows that

BHO) =Y an™ =3 e,c0
n=1

n=1

converges in D$°, and Bf = l?f
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We next show that Bf € N(D$°) and ||Bfl|lo = ||fllo- Since Bf is holo-
morphic on D3°, (Bf)},) € A(T*) for all 0 < r < 1, and thus

157l = sw [ tor (14 |B)p)) done
0<r<1 JTee

= sup sup/ log(l—i—}(ka)[T]deoo.
0<r<1l keNJTe

By interchanging the order of taking supremum for r and k, we have

(4.9) IBfllo=sup sup / log(l—l-}(ka)[T]deoo.
keN 0<r<1.)Te

Since for k € N, By f is holomorphic on D¥, it follows from (4.2) that

sup/ log(l—l—|(l§7;¢f)[1ﬂ]’)dmoo:swi];(;/Tr log (1 + | Bk fs|) dmso-

0<r<1

Substituting this into (4.9) yields

o>

|Bflly = sup supo/ log (14 |Bifo|) dmso
(4.10) ke =

—sup sup [ log (14 [Bufel) dm.
o>0 kEN oo

Note that for every o > 0, Bf, € A(T*). Then

sup/ log<1+\6kfg|>dmoo=/ log (1 + [Bf, ) oo = 1Bfollo -
keNJTee Too

We conclude from this equality, (4.1) and (4.10) that
1Bfllo = sup [[Bfsllg = sup [ f5llg = [ Fllo < oo
>0 >0

The proof of Theorem 4.1 is complete. |
Let f(s) = .o, a,n~* be a Dirichlet series with o, (f) < 0. Exam-

n=1
ple 4.2 shows that (Bf)(¢) = 3.°° | a,¢*(™ does not need to converge at

n=1
all points in D3°. However, for every 0 < r < 1, the power series

- a(n)
B)Q) = (s o )
n=1
converges in D, and B,f € A(D>®). Indeed, let p, be the n'* prime
number, then the prime number theorem implies that nling ~ —lasn—
oo [4, Theorem 4.5]. Therefore, for a fixed 0 < r < 1, there exists ¢ > 0

such that for all n € N, ™ < p- 7, and hence

(4.11) DX - xr"Dx - CprDx - xp, D x -

n
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As mentioned in [26], the partial sums of Bf, converge uniformly on D™.
That is, for any € > 0, there is an index N for which if My > M; > N,
then

Mo
Z an (pf"(l, ceey p,;"(k,...)a(n) <,
n=M, o
where || - ||oo denotes the uniform norm in Banach algebra C(D”). From
(4.11), we have
Mo
Z an (TCl, ey rka, .. .)a(n)
n=M; oo
Mo
< Z an (pf”(l, Y ...)a(n) <,
n=M,

oo

and thus the partial sums of B, f converge uniformly on D™. This gives
B.f € A(D*) as desired. By this fact and a similar argument as in the
proof of Theorem 4.1, we have the following conclusion.

PROPOSITION 4.8. — Let f be a Dirichlet series with o, (f) < 0. Then

sup | lo = sup / log (1 + |B,|) dmec
o>0 o>0 o

= sup/ log (1 + |B,f|) dmeo-
0<r<1 o
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