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NEVANLINNA CLASS, DIRICHLET SERIES AND
SZEGŐ’S PROBLEM

by Kunyu GUO, Jiaqi NI & Qi ZHOU (*)

Abstract. — This paper is associated with Nevanlinna class, Dirichlet series
and Szegő’s problem in infinitely many variables. As we will see, there is a natural
connection between these topics. The paper first introduces the Nevanlinna class
and the Smirnov class in this context, and generalizes the classical theory in finitely
many variables to the infinite-variable setting. These results applied to Szegő’s
problem on Hardy spaces in infinitely many variables. Moreover, this paper is also
devoted to the study of the correspondence between the Nevanlinna functions and
Dirichlet series.

Résumé. — Cet article est associé à la classe de Nevanlinna, aux séries de Di-
richlet et au problème de Szegő en un nombre infini de variables. Comme nous
le verrons, il existe une connexion naturelle entre ces sujets. L’article introduit
d’abord la classe de Nevanlinna et la classe de Smirnov dans ce contexte, et gé-
néralise la théorie classique en un nombre fini de variables au cadre des variables
infinies. Ces résultats sont ensuite appliqués au problème de Szegő dans les espaces
de Hardy en un nombre infini de variables. De plus, cet article est également consa-
cré à l’étude de la correspondance entre les fonctions de Nevanlinna et les séries de
Dirichlet.

1. Introduction

This paper is of three purposes. The first is to study the function theory
of the Nevanlinna class and the Smirnov class in infinitely many variables,
the second is to consider Szegő’s problem in infinitely many variables, and
the third is to discuss the relationship between Dirichlet series and these
functions by the Bohr correspondence.

The function theory in infinitely many variables has received attention
in recent years, see [3, 14, 17, 33, 34]. We begin with the familiar Hardy

Keywords: Nevanlinna class, Smirnov class, Dirichlet series, Szegő’s problem, infinitely
many variables.
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spaces. Let T∞ = T × T × · · · denote the cartesian product of countably
infinitely many unit circles T, equipped with the product topology. Then
T∞ is a compact group with the Haar measure dm∞ = dθ1

2π × dθ2
2π × · · · . By

a polynomial we mean that it is an analytic polynomial only depending on
finitely many complex variables. Let P∞ denote the ring consisting of all
polynomials. For 0 < p < ∞, the Hardy space Hp(T∞) is defined to be the
closure of P∞ in Lp(T∞). Therefore, when 1 ⩽ p < ∞, Hp(T∞) is a Banach
space with the norm of Lp(T∞), and when 0 < p < 1, Hp(T∞) is complete
in the metric dp(f, g) =

∫
T∞ |f − g|pdm∞. It is clear that the Hardy space

Hp(Tn) over the n-torus Tn can be viewed as a closed subspace of Hp(T∞).
Assume 0 < p < ∞. In finite-variable setting, it is known that Hp(Tn)

is canonically isometrically isomorphic to the Hardy space Hp(Dn) over
the polydisk Dn. We now turn to the infinite-variable setting. Let D∞ =
D×D×· · · be the cartesian product of countably infinitely many open unit
disks D. Cole and Gamelin [17] showed that every function f ∈ Hp(T∞),
by evaluation functional, can be extended to a function f̃ holomorphic on
D∞

2 = ℓ2 ∩ D∞, a domain in the Hilbert space ℓ2 of all square-summable
sequences. In particular, for 1 ⩽ p < ∞, this holomorphic function can be
represented by taking Poisson integrals [17]. On the other hand, the Hardy
space Hp(D∞

2 ) over D∞
2 is defined as follows:

Hp(D∞
2 )

=
{
F is holomorphic on D∞

2 : ∥F∥p
p = sup

0<r<1

∫
T∞

|F[r]|pdm∞ < ∞
}
,

where

F[r](w) = F (rw1, . . . , r
nwn, . . .) , w = (w1, w2, · · · ) ∈ T∞,

see [14, 18]. As the same in the finite-variable setting, for every nonzero
function F ∈ Hp(D∞

2 ), the radial limit F ∗(w) = limr→1 F[r](w) exists for
almost every w ∈ T∞, and log |F ∗| ∈ L1(T∞) [3, 15]. Furthermore, the
map F 7→ F ∗ gives a canonical isometric isomorphism from Hp(D∞

2 ) onto
Hp(T∞), and its inverse is given by f 7→ f̃ , f ∈ Hp(T∞), see [3, 14, 18, 33,
34].

Hardy spaces in infinitely many variables are also closely related to spaces
formed by Dirichlet series. Let PD be the set of all Dirichlet polynomials
Q(s) =

∑N
n=1 ann

−s. For 0 < p < ∞ and Q ∈ PD, it follows from the
almost periodicity of the function t 7→ |Q(it)|p that

∥Q∥p
p = lim

T →∞

1
2T

∫ T

−T

|Q(it)|pdt

ANNALES DE L’INSTITUT FOURIER
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exists, see [10], or [37, Theorem 1.5.6]. The Hardy–Dirichlet space Hp is
defined to be the completion of PD in the metric ∥ · ∥p [7]. Bohr’s vision
below [13] allows us to investigate Hp via the Hardy space Hp(T∞). Let
N = {1, 2, . . .} be the set of positive integers and pj the jth prime number.
With each n ∈ N is associated a unique prime factorization n = pα1

1 · · · pαk

k ,
and set α(n) = (α1, . . . , αk, 0, . . .). For a sequence of complex numbers
ζ = (ζ1, ζ2, . . .), write ζα(n) = ζα1

1 · · · ζαk

k . The Bohr correspondence

B :
N∑

n=1
ann

−s 7→
N∑

n=1
anζ

α(n)

is an algebraic isomorphism from PD onto P∞. Then by Birkhoff–Oxtoby
theorem [37, Theorem 6.5.1], for every Q ∈ PD, ∥Q∥p

p =
∫
T∞ |BQ|pdm∞,

and hence the Bohr correspondence can be extended to an isometric iso-
morphism from Hp onto Hp(T∞).

When p = ∞, let H∞(T∞) be the weak∗-closure of P∞ in L∞(T∞).
As done in [5, 17, 27], there is a canonical isometric isomorphism from
H∞(T∞) onto H∞(D∞

2 ), the Banach algebra consisting of all bounded
holomorphic functions on D∞

2 , by taking Poisson integrals. In addition, the
Hardy space H∞(T∞) can be identified with the Hardy–Dirichlet space
H∞ by the Bohr correspondence, see works of Hedenmalm, Lindqvist and
Seip [26]. For some recent works on the Hardy–Dirichlet spaces Hp (0 <

p ⩽ ∞), we refer the reader to [2, 8, 9, 14, 16, 36].
The above statements briefly sketch some background material of both

Hp and Hp in the case 0 < p ⩽ ∞. This paper is intended as an attempt
to develop the theory of limit function spaces in two cases of both Hp and
Hp as p → 0+. We first consider the case Hp as p → 0+, which is parallel
to the finite-variable setting [38]. For 0 < p < ∞ and f ∈ Lp(T∞), write

∥f∥p =
(∫

T∞
|f |pdm∞

) 1
p

,

then when 0 < p < q ⩽ ∞, Lq(T∞) ⊂ Lp(T∞). As well known, if f ∈
Lr(T∞) for some 0 < r ⩽ ∞, then ∥f∥p tends to exp

(∫
T∞ log |f |dm∞

)
as

p → 0+, where exp(−∞) is defined to be zero. An observation is that if
f is a complex measurable function on T∞, then exp

(∫
T∞ log |f |dm∞

)
is

finite if and only if exp
(∫

T∞ log(1 + |f |)dm∞
)

is finite, and the latter is
equivalent to

∥f∥0 =
∫
T∞

log(1 + |f |)dm∞ < ∞.

TOME 0 (0), FASCICULE 0
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So the limit space of Lp(T∞) as p → 0+, denoted by L0(T∞), is defined
to be the set of all complex measurable functions f on T∞ for which ∥f∥0
is finite. Then L0(T∞) is a topological vector space with the complete
metric d0(f, g) = ∥f − g∥0. The limit space of Hp(T∞) as p → 0+, denoted
by N∗(T∞), is defined to be the closure of P∞ in L0(T∞), so-called the
Smirnov class over T∞. It is shown that each function in N∗(T∞) can
be uniquely analytically extended to a domain D∞

1 of ℓ1, where D∞
1 =

ℓ1 ∩ D∞ is a domain in the Banach space ℓ1 of summable sequences. This
leads to bring in the Smirnov class N∗(D∞

1 ) for holomorphic functions on
D∞

1 . Section 2 will be concerned with the Smirnov class N∗(D∞
1 ) and the

Nevanlinna class N(D∞
1 ), a larger class than N∗(D∞

1 ). It is shown that
there is a natural correspondence between the class N∗(T∞) and the class
N∗(D∞

1 ). For functions in the class N(D∞
1 ), there exists an analogue of

the classical Fatou’s theorem, that is, for every function F ∈ N(D∞
1 ), the

radial limit F ∗(w) = limr→1 F (rw1, . . . , r
nwn, . . .) exists for almost every

w ∈ T∞. Furthermore, if F ̸= 0, then log |F ∗| ∈ L1(T∞).
In Section 3, we apply the preceding results to Szegő’s problem in in-

finitely many variables. Let us first recall Szegő’s theorem in one variable
case [23, 28, 43]. Assume that K is a nonnegative function in L1(T) with
logK ∈ L1(T), and m1 is the normalized Lebesgue measure on T. Write
C[z] for the ring of all one-variable analytic polynomials, and C0[z] for the
set of polynomials q ∈ C[z] with q(0) = 0. Szegő’s theorem states that
when 1 < p < ∞, the following equality holds:

inf
q ∈ C0[z]

∫
T

|1 − q|pKdm1 = exp
(∫

T
logKdm1

)
.

In fact, this holds because such K is exactly the modulus of an outer func-
tion [28]. Szegő’s theorem has a profound influence in many areas, especially
in the theory of orthogonal polynomials on the unit circle [11, 42, 43], and
it can be regarded as the cornerstone of the development of the invariant
subspace theory [23]. For more works relating to Szegő’s theorem, we refer
the reader to [1, 6, 24, 25, 30, 40]. When p = 2, Nakazi gave an analogous
version of Szegő’s theorem in two-variable setting [31]. Whereas in the case
of infinitely many variables, things become much more complicated. Let K
be a nonnegative function in L1(T∞) with logK ∈ L1(T∞). Without loss
of generality, we assume that ∥K∥1 = 1. Write

S(K) = inf
q ∈ P0

∫
T∞

|1 − q|pKdm∞,

ANNALES DE L’INSTITUT FOURIER
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where P0 denotes the set of polynomials q ∈ P∞ with q(0) = 0. It is easy
to verify that S(K) falls into the closed interval [exp(

∫
T∞ logKdm∞), 1].

Naturally, the problem arises which is called Szegő’s problem: For which
function K, S(K) attains the lower bound exp(

∫
T∞ logKdm∞) or the up-

per bound 1? We will give a complete answer to this problem in Theo-
rem 3.1 and Theorem 3.4 by applying the previous results. It is worth
pointing out this paper provides a general method which also applies to
the finite-variable setting for Szegő’s problem.

As in cases of the Nevanlinna class and the Smirnov class in the infinite-
variable setting, there exist analogies for Dirichlet series, that is, we are
concerned with the limit Hardy–Dirichlet space in the situation p → 0+.
In Section 4, we introduce the Smirnov–Dirichlet class N∗, which is defined
to be the completion of PD in the metric

∥Q∥0 = lim
T →∞

1
2T

∫ T

−T

log(1 + |Q(it)|)dt, Q ∈ PD.

Then N∗ can be viewed as the limit space of Hp when p → 0+. More-
over, we draw a conclusion that there exists a canonical isometric algebra
isomorphism from N∗ onto the Smirnov class N∗(D∞

1 ) by the Bohr corre-
spondence. In order to study composition operators on spaces of Dirichlet
series, Brevig and Perfekt [15] defined the class Nu of Dirichlet series f
with the abscissa of uniform convergence σu(f) ⩽ 0 and

lim sup
σ→0+

lim
T →∞

1
2T

∫ T

−T

log+ |f(σ + it)|dt < ∞,

where log+ x = max{0, log x} for x > 0. This leads to an introduction of
the Nevanlinna–Dirichlet class N , the completion of Nu in the metric

∥f∥0 = lim sup
σ→0+

lim
T →∞

1
2T

∫ T

−T

log(1 + |f(σ + it)|)dt, f ∈ Nu.

We will prove that the Nevanlinna–Dirichlet class N can be isometrically
embedded into the Nevanlinna class N(D∞

1 ) by the Bohr correspondence.

Acknowledgments
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2. The Nevanlinna class and the Smirnov class

This section is devoted to introducing the Nevanlinna class and the
Smirnov class in infinitely many variables.

2.1. The Nevanlinna class and the Smirnov class over D∞
1

We begin with ∞-subharmonic functions on D∞
1 . Motivated by [38], an

upper semicontinuous function u : D∞
1 → [−∞,∞) is called ∞-subharmo-

nic, if u is subharmonic in each variable separately. As the same in sin-
gle variable, if u : D∞

1 → [−∞,∞) is ∞-subharmonic, and φ is a non-
decreasing convex function on the real line R, then φ◦u is ∞-subharmonic
(setting φ(−∞) = limt→−∞ φ(t)).

For each function F on D∞
1 and 0 < r < 1, the function F[r] over the

infinite torus T∞ is defined by

F[r](w) = F (rw1, . . . , r
nwn, . . .) , w ∈ T∞.

The following result will be used frequently in this paper.

Proposition 2.1. — If u is ∞-subharmonic on D∞
1 , then integrals

Ir =
∫
T∞

u[r]dm∞ (0 ⩽ r < 1)

increase with r. Therefore, if {rn}∞
n=1 is an increasing sequence in (0, 1)

with rn → 1 as n → ∞, then sup0 < r < 1 Ir = supn ∈ N Irn
.

Proof. — Given 0 ⩽ r ⩽ s < 1, it suffices to prove that Ir ⩽ Is. For each
n ∈ N, write

u[r,s,n](w) = u
(
sw1, . . . , s

nwn, r
n+1wn+1, r

n+2wn+2, . . .
)
, w ∈ T∞.

Using subharmonicity successively in the first n variables, we obtain

Ir ⩽
∫
T∞

u[r,s,n]dm∞.

Note that sD × · · · × snD × · · · is compact in ℓ1, where D denotes the
closed unit disk. The upper semicontinuity of u implies that {u[r,s,n]}∞

n=1 is
uniformly bounded above on T∞. Therefore, it follows from Fatou’s lemma
that

Ir ⩽ lim sup
n→∞

∫
T∞

u[r,s,n]dm∞ ⩽
∫
T∞

lim sup
n→∞

u[r,s,n]dm∞ ⩽ Is,

as desired. □

ANNALES DE L’INSTITUT FOURIER
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Let D∞ = D×D×· · · denote the cartesian product of countably infinitely
many closed unit disks D, then it is compact with respect to the product
topology. The set of all continuous functions on D∞, denoted by C(D∞), is
a Banach algebra with the uniform norm. The following corollary is useful.

Corollary 2.2. — Let u ∈ C(D∞). If u is ∞-subharmonic on D∞
1 ,

then for every 0 < r < 1,

u(0) ⩽
∫
T∞

u[r]dm∞ ⩽
∫
T∞

udm∞.

Proof. — By Proposition 2.1, for each r < s < 1, we have

u(0) ⩽
∫
T∞

u[r]dm∞ ⩽
∫
T∞

u[s]dm∞.

The desired corollary follows from Lebesgue’s dominated convergence the-
orem by letting s → 1. □

Recall that a complex-valued function F defined on an open subset V
of a Banach space X is called holomorphic [22], if F satisfies the following
two conditions: (i) F is locally bounded. (ii) For each x0 ∈ V and x ∈ X,
the function F (x0 + zx) is holomorphic in parameter z for x0 + zx ∈ V .
One easily checks that holomorphic functions are continuous.

In this paper, we mainly concern with holomorphic functions on the
domain D∞

1 ⊂ ℓ1. For every 0 < r < 1 and M > 0, set

(2.1) Vr,M =
{
ζ ∈ ℓ1 : ∥ζ∥1 < M and for each n ∈ N, |ζn| < r

}
,

then Vr,M are domains in ℓ1 which increase to D∞
1 as r ↑ 1 and M ↑ ∞. As

we will see later, when discussing holomorphic functions on D∞
1 , the role

of the domains Vr,M in D∞
1 is similar to rD in D.

It is also worth mentioning that every function F holomorphic on D∞
1

has a unique monomial expansion

(2.2) F (ζ) =
∞∑

n=1
cnζ

α(n),

and the series converges uniformly and absolutely on compact subsets of
D∞

1 for which we refer readers to [21].
Now we introduce the Nevanlinna class over D∞

1 . Let F be a holomor-
phic function on D∞

1 . Since φ(x) = max{0, x} is a non-decreasing convex
function on R, φ(log |F |) = log+ |F | is ∞-subharmonic. Hence by Proposi-
tion 2.1,

(2.3) sup
0<r<1

∫
T∞

log+ |F[r]|dm∞ = lim
r→1

∫
T∞

log+ |F[r]|dm∞.

TOME 0 (0), FASCICULE 0
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The Nevanlinna class N(D∞
1 ) over D∞

1 is defined to be the class of all
holomorphic functions F on D∞

1 such that the value of (2.3) is finite. The
following proposition is needed in the sequel.

Proposition 2.3. — Let F be a nonzero holomorphic function on D∞
1 .

Then the following statements are equivalent:
(1) F ∈ N(D∞

1 ).
(2) sup0<r<1 ∥F[r]∥0 < ∞.
(3) lim supr→1 ∥ log |F[r]|∥1 < ∞.

To prove Proposition 2.3, we need to introduce the infinite polydisk al-
gebra [17]. The infinite polydisk algebra A(D∞) is defined to be the closure
of P∞ in C(D∞). It is worth mentioning that if F is a nonzero holomor-
phic function on D∞

1 , then for every 0 < r < 1, F[r] ∈ A(D∞), and hence
log |F[r]| ∈ L1(T∞) [3, 15]. On the other hand, we can also understand the
infinite polydisk algebra by “boundary functions”. Let A(T∞) be the norm-
closure of P∞ in C(T∞), the Banach space of all continuous functions on
T∞. Since the infinite polydisk algebra A(D∞) is of the Shilov boundary
T∞, one naturally identifies A(D∞) with A(T∞) by the restriction map.

Proof of Proposition 2.3. (1)⇔(2): By inequalities

(2.4) log+ x ⩽ log(1 + x) ⩽ log+ x+ log 2, x ⩾ 0,

we see that (1) is equivalent to (2).
(1)⇔(3): It suffices to show (1) implies (3). Given 0 < r0 < 1, since F is

a nonzero function, log |F[r0]| ∈ L1(T∞). Then for every r0 < r < 1,∥∥ log
∣∣F[r]

∣∣ ∥∥
1 = 2

∫
T∞

log+ ∣∣F[r]
∣∣ dm∞ −

∫
T∞

log
∣∣F[r]

∣∣ dm∞

⩽ 2
∫
T∞

log+ ∣∣F[r]
∣∣ dm∞ −

∫
T∞

log
∣∣F[r0]

∣∣ dm∞,

and hence

lim sup
r→1

∥∥ log
∣∣F[r]

∣∣ ∥∥
1

⩽ 2 lim
r→1

∫
T∞

log+ ∣∣F[r]
∣∣ dm∞ −

∫
T∞

log
∣∣F[r0]

∣∣ dm∞ < ∞,

as desired. □

Let F be a function on D∞
1 . For each n ∈ N, we denote by AnF Bohr’s

nte Abschnitt of F , which is defined by

(AnF )(ζ) = F (ζ1, . . . , ζn, 0, . . .), ζ ∈ D∞
1 .

ANNALES DE L’INSTITUT FOURIER
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Since AnF does not depend on variables ζj (j > n), we may consider it as
a function defined on the polydisk Dn. For each w ∈ T∞, the slice function
of F at w is defined by

Fw(z) = F (zw1, . . . , z
nwn, . . .) , z ∈ D.

If F is holomorphic on D∞
1 , and w ∈ T∞, then for every n ∈ N,

(AnF )w(z) = F (zw1, . . . , z
nwn, 0, . . .) , z ∈ D

is holomorphic on D. Note that {(AnF )w}∞
n=1 converges to Fw uniformly

on each compact subset of D. It implies that Fw is holomorphic on D.
Let N(D) be the Nevanlinna class over the open unit disk, then for every

F ∈ N(D), the radial limit F ∗(λ) = limr→1 F (rλ) exists for almost every
λ ∈ T, see [39, p. 346]. Now we give the following theorem for which its
second part is an analogue of the classical Fatou’s theorem.

Theorem 2.4. — Let F be a nonzero function in N(D∞
1 ), then for

almost every w ∈ T∞, Fw ∈ N(D). Furthermore, for almost every w ∈ T∞,
the radial limit

F ∗(w) = lim
r→1

F[r](w)

exists, and log |F ∗| ∈ L1(T∞).

The next corollary implies that every function F ∈ N(D∞
1 ) can be

uniquely determined by its “boundary function” F ∗.

Corollary 2.5. — Let F ∈ N(D∞
1 ). If F ∗ vanishes on some subset of

T∞ with positive measure, then F = 0.

For every z ∈ D and ζ ∈ D∞, set

(2.5) z ⋆ ζ = (zζ1, . . . , z
nζn, . . .) ∈ D∞

.

To prove Theorem 2.4, we need the following lemma, an analogue of [38,
Lemma 3.3.2].

Lemma 2.6. — Let f be a nonnegative measurable function on T∞.
Then ∫

T∞
f(w)dm∞(w) =

∫
T∞

∫
T
f(λ ⋆ w)dm1(λ)dm∞(w).

Proof. — Since the Haar measure m∞ is rotation-invariant, for every
λ ∈ T, ∫

T∞
f(w)dm∞(w) =

∫
T∞

f(λ ⋆ w)dm∞(w).

TOME 0 (0), FASCICULE 0
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Integrating with respect to λ over T and applying Fubini’s theorem yield
that ∫

T∞
f(w)dm∞(w) =

∫
T

∫
T∞

f(λ ⋆ w)dm∞(w)dm1(λ)

=
∫
T∞

∫
T
f(λ ⋆ w)dm1(λ)dm∞(w),

which completes the proof. □

Proof of Theorem 2.4. We use ideas from [38, Theorem 3.3.3] to com-
plete the proof. For every fixed w ∈ T∞, log+ |Fw| is subharmonic on D,
and hence the integrals

Iw,r =
∫
T

log+ |Fw(rλ)|dm1(λ) (0 < r < 1)

increase with r. Then the monotone convergence theorem gives

(2.6)
∫
T∞

(
sup

0<r<1
Iw,r

)
dm∞(w)

= sup
0<r<1

∫
T∞

∫
T

log+ |Fw(rλ)| dm1(λ)dm∞(w)

= sup
0<r<1

∫
T∞

∫
T

log+ ∣∣F[r](λ ⋆ w)
∣∣ dm1(λ)dm∞(w).

Applying Lemma 2.6 to log+ |F[r]|, we have

sup
0<r<1

∫
T∞

∫
T

log+ ∣∣F[r](λ ⋆ w)
∣∣ dm1(λ)dm∞(w)

= sup
0<r<1

∫
T∞

log+ ∣∣F[r](w)
∣∣ dm∞(w) < ∞.

And hence by (2.6), for almost every w ∈ T∞, sup0<r<1 Iw,r is finite, which
implies that Fw ∈ N(D) for such w.

Let E be the set of points w ∈ T∞ for which F ∗(w) = limr→1 F[r](w)
exists. Then E is a measurable set. Put

S =
{
w ∈ T∞ : lim

r→1
Fw(rλ) exists for almost every λ ∈ T

}
.

Since for almost every w ∈ T∞, Fw ∈ N(D), we see that S is a measurable
set, and m∞(S) = 1. Furthermore, for every fixed w ∈ S, λ ⋆ w ∈ E for
almost every λ ∈ T, and thus∫

T
χE(λ ⋆ w)dm1(λ) = 1,
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where χE denotes the characteristic function of E. Moreover, applying
Lemma 2.6 to χE gives

m∞(E) =
∫
T∞

χE(w)dm∞(w)

=
∫
T∞

∫
T
χE(λ ⋆ w)dm1(λ)dm∞(w)

⩾
∫

S

∫
T
χE(λ ⋆ w)dm1(λ)dm∞(w)

=
∫

S

1dm∞(w)

= 1,

forcing m∞(E) = 1. Then for almost every w ∈ T∞,

F ∗(w) = lim
r→1

F[r](w)

exists, and it follows from Proposition 2.3 and Fatou’s lemma that∥∥ log |F ∗|
∥∥

1 ⩽ lim inf
r→1

∥∥ log
∣∣F[r]

∣∣ ∥∥
1 < ∞,

which implies that log |F ∗| ∈ L1(T∞). □

As done in the finite-variable setting, we characterize Nevanlinna func-
tions via the ∞-harmonic majorant. Motivated by [38], a continuous func-
tion u : D∞

1 → C is called ∞-harmonic, if u is harmonic in each variable
separately. The harmonic Hardy space h1(D∞

1 ) over D∞
1 is defined to be

h1(D∞
1 )

=
{
F is ∞-harmonic on D∞

1 : ∥F∥h = sup
0<r<1

∫
T∞

∣∣F[r]
∣∣ dm∞ < ∞

}
.

As in finite-variable cases, each function in h1(D∞
1 ) can be represented by

the Poisson integral of a complex regular Borel measure on T∞. To show
this, we recall some notions of Poisson kernels in infinitely many variables,
see [17]. For each ζ ∈ D∞

1 , the Poisson kernel at ζ is defined to be

Pζ(w) =
∞∏

n=1
Pζn(wn), w ∈ T∞,

where

Pζn
(wn) = 1 − |ζn|2

|ζn − wn|2
, n ∈ N

TOME 0 (0), FASCICULE 0
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are Poisson kernels for the unit disk. It is easy to prove that when ζ ∈ D∞
1 ,

Pζ is continuous on T∞. Furthermore, if u ∈ C(D∞) is ∞-harmonic on
D∞

1 , then for every ζ ∈ D∞
1 ,

(2.7) u(ζ) =
∫
T∞

Pζudm∞.

Let M(T∞) denote the Banach space of all complex regular Borel measures
µ on T∞ with the norm ∥µ∥M = |µ|(T∞). For every µ ∈ M(T∞), set

P[dµ](ζ) =
∫
T∞

Pζdµ, ζ ∈ D∞
1 .

Then P[dµ] is ∞-harmonic on D∞
1 , and by Fubini’s theorem, ∥P[dµ]∥h

⩽ ∥µ∥M < ∞, and hence P[dµ] ∈ h1(D∞
1 ). Moreover, P[dµ] = 0 implies

µ = 0.

Proposition 2.7. — The Poisson integral µ 7→ P[dµ] establishes an
isometric isomorphism from M(T∞) onto h1(D∞

1 ), and hence h1(D∞
1 ) is a

Banach space.

Proof. — By the arguments above, the map µ 7→ P[dµ] is a one-to-one
contraction. On the other hand, for every F ∈ h1(D∞

1 ) and 0 < r < 1,
write dµr = F[r]dm∞. Then it follows from Banach–Alaoglu theorem that
there exist a sequence rn → 1 (n → ∞) and a complex Borel measure µF

on T∞ such that {µrn}∞
n=1 converges to µF in the weak∗-topology, in the

dual space of C(T∞). Combining this fact with (2.7) shows that for every
ζ ∈ D∞

1 ,

P[dµF ](ζ) =
∫
T∞

PζdµF = lim
n→∞

∫
T∞

PζF[rn]dm∞ = lim
n→∞

F[rn](ζ) = F (ζ),

which implies that F = P[dµF ], and thus the map µ 7→ P[dµ] is onto.
Furthermore, we have

∥µF ∥M ⩽ lim inf
n→∞

∥µrn∥M ⩽ sup
0<r<1

∫
T∞

∣∣F[r]
∣∣ dm∞ = ∥F∥h,

and hence the map µ 7→ P[dµ] is an isometry. □

Recall that Pζdm∞ is a Jensen measure for ζ ∈ D∞
1 with respect to

A(D∞), that is,

(2.8) log |F (ζ)| ⩽
∫
T∞

Pζ log |F |dm∞, F ∈ A(D∞),

see [17]. This says that

G(ζ) =
∫
T∞

Pζ log |F |dm∞, ζ ∈ D∞
1
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is an ∞-harmonic majorant of log |F |. The next proposition gives a char-
acterization of functions in N(D∞

1 ) via ∞-harmonic majorant.

Proposition 2.8. — Let F be a holomorphic function on D∞
1 . Then

the following statements are equivalent:
(1) F ∈ N(D∞

1 ).
(2) log |F | has an ∞-harmonic majorant in h1(D∞

1 ). That is, there is a
function H ∈ h1(D∞

1 ) such that log |F | ⩽ H on D∞
1 .

Proof. — (1)⇒(2): For every 0 < r < 1, set dνr = log |F[r]|dm∞. Then
it follows from (3) of Proposition 2.3 and Banach–Alaoglu theorem that
there is a sequence rn → 1 (n → ∞) and a complex Borel measure ν on
T∞, such that {νrn}∞

n=1 converges to ν in the weak∗-topology, in the dual
space of C(T∞). Since for every n ∈ N, F[rn] ∈ A(D∞), we see from (2.8)
that

log
∣∣F[rn](ζ)

∣∣ ⩽ ∫
T∞

Pζ log
∣∣F[rn]

∣∣ dm∞, ζ ∈ D∞
1 .

Letting n → ∞ yields that

log |F (ζ)| ⩽
∫
T∞

Pζdν, ζ ∈ D∞
1 ,

and the right side of this inequality gives an ∞-harmonic majorant of log |F |
in h1(D∞

1 ).
(2)⇒(1): By assumptions, we have

sup
0<r<1

∫
T∞

log+ ∣∣F[r]
∣∣ dm∞ ⩽ sup

0<r<1

∫
T∞

H+
[r]dm∞

⩽ sup
0<r<1

∫
T∞

∣∣H[r]
∣∣ dm∞ < ∞,

which gives F ∈ N(D∞
1 ). □

We next consider the metric in the class N(D∞
1 ). Writing φ(x) = log(1+

ex), then it is a non-decreasing convex function on R. Therefore, for ev-
ery F ∈ N(D∞

1 ), φ(log |F |) = log(1 + |F |) is ∞-subharmonic. Hence by
Proposition 2.1, integrals∫

T∞
log

(
1 +

∣∣F[r]
∣∣) dm∞ (0 < r < 1)

increase with r. As done in [19, 41, 44] for finite-variable cases, we define

∥F∥0 = sup
0<r<1

∫
T∞

log
(
1 +

∣∣F[r]
∣∣) dm∞ = lim

r→1

∫
T∞

log
(
1 +

∣∣F[r]
∣∣) dm∞

for F ∈ N(D∞
1 ) and

d0(F,G) = ∥F −G∥0, F,G ∈ N(D∞
1 ),

TOME 0 (0), FASCICULE 0



14 Kunyu GUO, Jiaqi NI & Qi ZHOU

then d0 is a translation-invariant metric on the space N(D∞
1 ). In fact, we

have

Proposition 2.9. — N(D∞
1 ) is complete with respect to the metric d0.

To prove Proposition 2.9, we need Lemma 2.10, which implies that the
evaluation functional at ζ ∈ D∞

1 on N(D∞
1 ) is continuous, and will be used

frequently in the sequel.
Recall that for any ζ ∈ D∞, the Möbius map over the infinite-dimensional

polydisk is defined as

Φζ(w) =
(
ζ1 − w1

1 − ζ1w1
,
ζ2 − w2

1 − ζ2w2
, . . .

)
, w ∈ D∞

.

Then Φζ maps D∞ and T∞ onto themselves, respectively. Moreover, a
direct verification shows that Φζ maps D∞

1 onto itself if and only if ζ ∈ D∞
1 .

When ζ ∈ D∞
1 , an observation is that for every nonnegative continuous

function f on T∞,

(2.9)
∫
T∞

f ◦ Φζdm∞ =
∫
T∞

fPζdm∞ ⩽ ∥Pζ∥∞

∫
T∞

fdm∞.

Lemma 2.10. — If ζ ∈ D∞
1 , then for every F ∈ N(D∞

1 ),

log(1 + |F (ζ)|) ⩽ ∥Pζ∥∞ ∥F∥0.

Proof. — For each 0 < r < 1, log(1 + |F[r] ◦ Φζ |) ∈ C(D∞) is ∞-
subharmonic on D∞

1 . By Corollary 2.2,
log

(
1 +

∣∣F[r](ζ)
∣∣) = log

(
1 +

∣∣(F[r] ◦ Φζ

)
(0)

∣∣)
⩽

∫
T∞

log
(
1 +

∣∣F[r] ◦ Φζ

∣∣) dm∞.
(2.10)

Applying the inequality (2.9) to log(1 + |F[r]|), we have∫
T∞

log
(
1 +

∣∣F[r] ◦ Φζ

∣∣) dm∞ ⩽ ∥Pζ∥∞

∫
T∞

log
(
1 +

∣∣F[r]
∣∣) dm∞.

Combining this with (2.10) yields that

log
(
1 +

∣∣F[r](ζ)
∣∣) ⩽ ∥Pζ∥∞

∫
T∞

log
(
1 +

∣∣F[r]
∣∣) dm∞.

Letting r → 1 gives the desired conclusion. □

As defined earlier, for every 0 < r < 1 and M > 0, the domain

Vr,M =
{
ζ ∈ ℓ1 : ∥ζ∥1 < M and for each n ∈ N, |ζn| < r

}
.

One can easily check that {Pζ}ζ ∈ Vr,M
is a bounded set in L∞(T∞). We

now present the proof of Proposition 2.9.
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Proof of Proposition 2.9. Suppose that {Fn}∞
n=1 is a Cauchy sequence

in N(D∞
1 ). By Lemma 2.10, for each ζ ∈ D∞

1 and k, l ∈ N,

log (1 + |(Fk − Fl)(ζ)|) ⩽ ∥Pζ∥∞∥Fk − Fl∥0.

Note that for each 0 < r < 1 and M > 0, {Pζ}ζ ∈ Vr,M
is bounded in

L∞(T∞). It follows that {Fn}∞
n=1 converges uniformly to a holomorphic

function on each Vr,M , and hence there exists a holomorphic function F on
D∞

1 , such that {Fn}∞
n=1 converges to F uniformly on each Vr,M . It remains

to prove F ∈ N(D∞
1 ) and ∥Fk − F∥0 → 0 as k → ∞. Given ε > 0, choose

N large enough such that for k, l > N , ∥Fk − Fl∥0 < ε. Then for each
0 < r < 1, ∫

T∞
log

(
1 +

∣∣(Fk − Fl)[r]
∣∣) dm∞ < ε.

Note that {Fl}∞
l=1 converges to F uniformly on rD×· · ·×rnD×· · · . Letting

l → ∞ yields that when k > N ,

(2.11)
∫
T∞

log
(
1 +

∣∣(Fk − F )[r]
∣∣) dm∞ ⩽ ε,

and hence for all 0 < r < 1,∫
T∞

log
(
1 +

∣∣F[r]
∣∣) dm∞ ⩽ ε+

∫
T∞

log
(
1 +

∣∣(Fk)[r]
∣∣) dm∞

⩽ ε+ ∥Fk∥0 < ∞.

This shows F ∈ N(D∞
1 ). Furthermore, by (2.11), we have ∥Fk − F∥0 ⩽ ε,

which means that N(D∞
1 ) is complete with respect to d0. □

An important subclass of N(D∞
1 ) is the Smirnov class N∗(D∞

1 ), which
consists of all functions F ∈ N(D∞

1 ) for which {log+ |F[r]|}0<r<1 forms
a uniformly integrable family. When F ∈ N(D∞

1 ), (2.4) implies that F ∈
N∗(D∞

1 ) if and only if {log(1+|F[r]|)}0<r<1 is uniformly integrable over T∞.
By Fatou’s lemma, for every function F ∈ N(D∞

1 ), using the metric in
L0(T∞),

∥F ∗∥0 ⩽ lim
r→1

∥∥F[r]
∥∥

0 .

This inequality inspires the following characterization of functions in the
Smirnov class N∗(D∞

1 ). For finite-variable cases, see [19, 41, 44].

Proposition 2.11. — Let F be a function in N(D∞
1 ). Then the follow-

ing statements are equivalent:
(1) F ∈ N∗(D∞

1 ).
(2) ∥F ∗∥0 = limr→1 ∥F[r]∥0.
(3) limr→1 ∥F[r] − F ∗∥0 = 0.
(4) limr→1

∫
T∞ log+ |F[r]|dm∞ =

∫
T∞ log+ |F ∗|dm∞.
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It is worth mentioning that when F only depends on single variable,
the equality (2) in Proposition 2.11 is another common definition for the
Smirnov class N∗(D).

To prove Proposition 2.11, the the general Lebesgue’s dominated conver-
gence theorem [12, Theorem 2.8.8] is needed.

Lemma 2.12 (General Lebesgue’s dominated convergence theorem). —
Let (X,M, µ) be a measure space and {fn}∞

n=1, {gn}∞
n=1 two sequences of

measurable functions on X that converge to f , g almost everywhere on X,
respectively. Assume that for every n ∈ N, gn ⩾ 0, and |fn| ⩽ gn on X. If
g ∈ L1(X,µ) and

lim
n→∞

∫
X

gndµ =
∫

X

gdµ,

then

lim
n→∞

∫
X

fndµ =
∫

X

fdµ.

Furthermore, this conclusion remain valid if “convergence almost every-
where” is replaced by “convergence in measure”.

The following lemma immediately follows.

Lemma 2.13. — Let 0 ⩽ p < ∞ and {hn}∞
n=1 be a sequence in Lp(T∞)

that converges to h ∈ Lp(T∞) almost everywhere on T∞. Then ∥hn−h∥p →
0 if and only if ∥hn∥p → ∥h∥p as n → ∞.

Proof. — We prove this lemma by using the general Lebesgue’s domi-
nated convergence theorem. It suffices to show that ∥hn∥p → ∥h∥p implies
∥hn − h∥p → 0. Write

fn =
{

log (1 + |hn − h|) , p = 0,
|hn − h|p, p > 0,

and

gn =
{

log (1 + |hn|) + log(1 + |h|), p = 0,
2p (|hn|p + |h|p) , p > 0.

For every n ∈ N, it is clear that 0 ⩽ fn ⩽ gn on T∞. Applying Lemma 2.12
to sequences {fn}∞

n=1 and {gn}∞
n=1 shows that ∥hn−h∥p → 0 as n → ∞. □

It is worth mentioning that when 0 < p < ∞, [39, pp. 73, Exercise 17]
presents two proofs for Lemma 2.13 using Egoroff’s theorem and Fatou’s
lemma, respectively.
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Recall that a subset Λ of L1(T∞) is uniformly integrable if and only if
there is a non-decreasing convex function φ : R → [0,∞) satisfying φ(t)

t →
∞ as t → +∞, called strongly convex function, such that {φ ◦ |f |}f ∈ Λ is
bounded in L1(T∞), see [12, Theorem 4.5.9].

We now present the proof of Proposition 2.11.
Proof of Proposition 2.11. (1)⇒(2): When F ∈ N∗(D∞

1 ), the family of
functions {log(1 + |F[r]|)}0<r<1 is uniformly integrable over T∞. Applying
Lebesgue–Vitali’s theorem [12, Theorem 4.5.4], we conclude that ∥F[r]∥0 →
∥F ∗∥0 as r → 1.

(2)⇒(3): It immediately follows from Lemma 2.13.
(3)⇒(4): By the inequality

(2.12)
∣∣log+ x− log+ y

∣∣ ⩽ log(1 + |x− y|), x, y ⩾ 0,

we have∣∣∣∣∫
T∞

log+ ∣∣F[r]
∣∣ dm∞ −

∫
T∞

log+ |F ∗| dm∞

∣∣∣∣ ⩽ ∥∥F[r] − F ∗∥∥
0 → 0 (r → 1),

which implies (4).
(4)⇒(1): Let {rn}∞

n=1 be an increasing sequence in (0, 1) with rn → 1 as
n → ∞. By (4) and Lemma 2.13, the sequence {log+ |F[rn]|}∞

n=1 converges
to log+ |F ∗| in L1(T∞). Then it follows from Lebesgue–Vitali’s theorem
that {log+ |F[rn]|}∞

n=1 is uniformly integrable over T∞. Therefore, there
is a strongly convex function φ such that {φ(log+ |F[rn]|)}∞

n=1 is bounded
in L1(T∞). By the ∞−subharmonicity of φ(log+ |F |), applying Proposi-
tion 2.1 shows that {φ(log+ |F[r]|)}0<r<1 is also bounded in L1(T∞). There-
fore, the family {log+ |F[r]|}0<r<1 is uniformly integrable, which implies
F ∈ N∗(D∞

1 ). □

The following Proposition immediately follows from Proposition 2.11.

Proposition 2.14. — N∗(D∞
1 ) is a closed subclass of N(D∞

1 ).

Proof. — Assume that {Gn}∞
n=1 is a sequence in N∗(D∞

1 ), and ∥Gn −
G∥0 → 0 for some G ∈ N(D∞

1 ) as n → ∞. To prove G ∈ N∗(D∞
1 ), let

0 < r < 1 and n ∈ N, then∥∥G[r] −G∗∥∥
0 ⩽

∥∥G[r] − (Gn)[r]
∥∥

0 +
∥∥(Gn)[r] −G∗

n

∥∥
0 + ∥G∗

n −G∗∥0

⩽ 2∥Gn −G∥0 +
∥∥(Gn)[r] −G∗

n

∥∥
0 .

Since Gn ∈ N∗(D∞
1 ), combining the above inequality with Proposition 2.11

shows that
lim sup

r→1

∥∥G[r] −G∗∥∥
0 ⩽ 2∥Gn −G∥0.
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Letting n → ∞, we see that ∥G[r] −G∗∥0 → 0 as r → 1. Again by Propo-
sition 2.11, G ∈ N∗(D∞

1 ). □

Applying the inequality

log(1 + xy) ⩽ log(1 + x) + log(1 + y), x, y ⩾ 0

yields that the Nevanlinna class N(D∞
1 ) is an algebra, and the Smirnov

class N∗(D∞
1 ) is its subalgebra. Unfortunately, as shown in [19, 41] for one-

variable case, the Nevanlinna class N(D∞
1 ) is not a topological linear space

since the scalar multiplication is not continuous. However, the following
proposition shows that the Smirnov class N∗(D∞

1 ) is in fact a topological
algebra.

Proposition 2.15. — If {Fn}∞
n=1 and {Gn}∞

n=1 are two sequences in
N∗(D∞

1 ) that converge to F,G in N∗(D∞
1 ), respectively, then {FnGn}∞

n=1
converges to FG in N∗(D∞

1 ).

Proof. — From Proposition 2.11, we have ∥F ∗
n − F ∗∥0 → 0, and ∥G∗

n −
G∗∥0 → 0 as n → ∞. Passing to subsequences, assume that {F ∗

n}∞
n=1 and

{G∗
n}∞

n=1 converge almost everywhere to F ∗ and G∗ on T∞, respectively.
Write

fn = log (1 + |F ∗
nG

∗
n − F ∗G∗|)

and

gn = log(1 + |F ∗
n |) + log(1 + |G∗

n −G∗|) + log(1 + |F ∗
n −F ∗|) + log(1 + |G∗|).

It is easy to verify that for every n ∈ N, 0 ⩽ fn ⩽ gn on T∞. Apply-
ing Lemma 2.12 to sequences {fn}∞

n=1 and {gn}∞
n=1 shows that ∥F ∗

nG
∗
n −

F ∗G∗∥0 → 0 as n → ∞. Then by Proposition 2.11, ∥FnGn −FG∥0 → 0 as
n → ∞, which completes the proof. □

By Proposition 2.8, for every F ∈ N(D∞
1 ), log |F | has an ∞-harmonic

majorant in h1(D∞
1 ). The following proposition shows that if, furthermore,

F ∈ N∗(D∞
1 ), the ∞-harmonic majorant can be taken as P[log |F ∗|dm∞].

The finite-variable version of this proposition is presented in [38].

Proposition 2.16. — Suppose that F ∈ N(D∞
1 ). Then F ∈ N∗(D∞

1 )
if and only if for every ζ ∈ D∞

1 ,

(2.13) log |F (ζ)| ⩽
∫
T∞

Pζ log |F ∗|dm∞.

Proof. — We first assume that F ∈ N∗(D∞
1 ). Then for each 0 < r < 1,

F[r] ∈ A(D∞), and (2.8) implies that for ζ ∈ D∞
1 ,

(2.14) log
∣∣F[r](ζ)

∣∣ ⩽ ∫
T∞

Pζ log
∣∣F[r]

∣∣ dm∞.
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Since F ∈ N∗(D∞
1 ) and Pζ ∈ C(T∞), the family {Pζ log+ |F[r]|}0<r<1 is

uniformly integrable. By Lebesgue–Vitali’s theorem [12, Theorem 4.5.4],

(2.15) lim
r→1

∫
T∞

Pζ log+ ∣∣F[r]
∣∣ dm∞ =

∫
T∞

Pζ log+ |F ∗| dm∞.

On the other hand, it follows from Fatou’s lemma that

(2.16) lim inf
r→1

∫
T∞

Pζ log− ∣∣F[r]
∣∣ dm∞ ⩾

∫
T∞

Pζ log− |F ∗| dm∞,

where log− x = − min{0, log x} for x > 0. By (2.15) and (2.16) we see that

lim sup
r→1

∫
T∞

Pζ log
∣∣F[r]

∣∣ dm∞ ⩽
∫
T∞

Pζ log |F ∗| dm∞.

Letting r → 1 in (2.14) shows that

log |F (ζ)| ⩽ lim sup
r→1

∫
T∞

Pζ log
∣∣F[r]

∣∣ dm∞ ⩽
∫
T∞

Pζ log |F ∗|dm∞.

Conversely, suppose that F ̸= 0 and (2.13) holds for every ζ ∈ D∞
1 , then

for each 0 < r < 1 and w ∈ T∞,

log
∣∣F[r](w)

∣∣ ⩽ ∫
T∞

Pr⋆w log |F ∗|dm∞,

where r ⋆ w ∈ D∞
1 by definition (2.5). Since log |F ∗| ∈ L1(T∞), there is

a strongly convex function φ such that φ(log |F ∗|) ∈ L1(T∞). As done in
finite-variable cases by Rudin [38], applying the convexity of φ and Fubini’s
theorem, we obtain that for 0 < r < 1,

(2.17)
∫
T∞

φ
(
log

∣∣F[r]
∣∣) dm∞

⩽
∫
T∞

φ

(∫
T∞

Pr⋆w(ξ) log |F ∗(ξ)|dm∞(ξ)
)
dm∞(w)

⩽
∫
T∞

∫
T∞

Pr⋆w(ξ)φ(log |F ∗(ξ)|)dm∞(ξ)dm∞(w)

=
∫
T∞

(∫
T∞

Pr⋆w(ξ)dm∞(w)
)
φ(log |F ∗(ξ)|)dm∞(ξ)

=
∫
T∞

φ(log |F ∗|)dm∞.
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Let Er be the set of points w ∈ T∞ such that |F[r](w)| < 1, and Ec
r the

complement of Er with respect to T∞. Then (2.17) implies that∫
T∞

φ
(
log+ ∣∣F[r]

∣∣) dm∞ =
∫

Er

φ(0)dm∞ +
∫

Ec
r

φ
(
log

∣∣F[r]
∣∣) dm∞

⩽ φ(0) +
∫
T∞

φ
(
log

∣∣F[r]
∣∣) dm∞

⩽ φ(0) +
∫
T∞

φ(log |F ∗|)dm∞.

(2.18)

Therefore, the family {log+ |F[r]|}0<r<1 is uniformly integrable over T∞,
which implies F ∈ N∗(D∞

1 ). □

Motivated by Proposition 2.16, we ask when the inequality in this propo-
sition attains an equality at some point, and such a nonzero function is
called an outer function.

Proposition 2.17. — If F is a nonzero function in N∗(D∞
1 ), then the

following statements are equivalent:
(1) F is outer.
(2) For every ζ ∈ D∞

1 , log |F (ζ)| =
∫
T∞ Pζ log |F ∗|dm∞.

(3) log |F (0)| =
∫
T∞ log |F ∗|dm∞.

To prove Proposition 2.17, the maximum principle of ∞-subharmonic
functions is needed.

Lemma 2.18 (The maximum principle). — Let u be an ∞-subharmonic
function on D∞

1 , and a ∈ R. If u ⩽ a on D∞
1 and u(η) = a for some η ∈ D∞

1 ,
then u ≡ a on D∞

1 .

Proof. — For every n ∈ N, set

un(z) = u (z1, . . . , zn, ηn+1, ηn+2, . . .) , z = (z1, . . . , zn) ∈ Dn.

Then un ⩽ a is subharmonic in variables z1, . . . , zn separately, and

un(η1 . . . , ηn) = a.

By using the subharmonicity successively in each variable, we see that
un ≡ a on Dn. Now it follows from the upper semicontinuity of u that for
every ζ ∈ D∞

1 ,

u(ζ) ⩾ lim sup
n→∞

u (ζ1, . . . , ζn, ηn+1, ηn+2, . . .) = lim sup
n→∞

un (ζ1, . . . , ζn) = a,

which leads to the desired conclusion. □
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Proof of Proposition 2.17. It suffices to show that (1) implies (2).
Put

ρ(ζ) = log |F (ζ)| −
∫
T∞

Pζ log |F ∗|dm∞, ζ ∈ D∞
1 .

Since log |F ∗| ∈ L1(T∞), ρ is ∞-subharmonic on D∞
1 . By Proposition 2.16,

ρ ⩽ 0 on D∞
1 . Noticing that ρ(ξ) = 0 for some ξ ∈ D∞

1 , it follows from
Lemma 2.18 that ρ is identically zero on D∞

1 , as desired. □

For every nonzero function F ∈ N∗(D∞
1 ) and ζ ∈ D∞

1 , Pζ log |F ∗| ∈
L1(T∞). A combination of this fact and Proposition 2.17 immediately gives
the following result.

Corollary 2.19. — If F ∈ N∗(D∞
1 ) is outer, then F is zero-free in D∞

1 .

For 0 < p ⩽ ∞, the proof of Proposition 2.16 implies that Hp(D∞
2 ) ⊂

N∗(D∞
1 ). Therefore, when F ∈ Hp(D∞

2 ) is outer, F is zero-free in D∞
1 . In

fact, it is also zero-free in D∞
2 .

Corollary 2.20. — Let 0 < p ⩽ ∞. If F ∈ Hp(D∞
2 ) is outer, then F

is zero-free in D∞
2 .

Proof. — Assume that there exists ζ ∈ D∞
2 such that F (ζ) = 0. Choose

η ∈ D and an integer N such that(
η−1ζ1, . . . , η

−1ζN , 2ζN+1, 2ζN+2, . . .
)

∈ D∞
2 .

For each n ∈ N and z = (z1, z2) ∈ D2, set

ϕn(z) = F
(
z1η

−1ζ1, . . . , z1η
−1ζN , 2z2ζN+1, . . . , 2z2ζN+n, 0, . . .

)
,

and

ϕ(z) = F
(
z1η

−1ζ1, . . . , z1η
−1ζN , 2z2ζN+1, 2z2ζN+2, . . .

)
.

Then ϕn is holomorphic on D2, and {ϕn}∞
n=1 converges uniformly to ϕ on

each compact subset of D2. Therefore, ϕ is holomorphic on D2. Since F is
zero-free in D∞

1 , ϕn is zero-free in D2. Noticing that ϕ(η, 1
2 ) = 0, Hurwitz’s

theorem [29, pp. 310, Exercise 3] implies that ϕ is identically zero on D2,
and hence

F (ζ1, . . . , ζN , 0, . . .) = ϕ(η, 0) = 0,
a contradiction to that F is zero-free in D∞

1 . □

The following corollary will be used in Section 3.

Corollary 2.21. — If F ∈ N∗(D∞
1 ) is outer, then 1

F ∈ N∗(D∞
1 ) is

outer.
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Proof. — Since F is outer, it follows from Corollary 2.19 that F is zero-
free in D∞

1 . Hence by Proposition 2.3, 1
F ∈ N(D∞

1 ). On the other hand, for
every ζ ∈ D∞

1 ,

log |F (ζ)| =
∫
T∞

Pζ log |F ∗|dm∞,

and hence
log

∣∣∣∣ 1
F (ζ)

∣∣∣∣ =
∫
T∞

Pζ log
∣∣∣∣ 1
F ∗

∣∣∣∣ dm∞.

Combining this equality and Proposition 2.16 gives 1
F ∈ N∗(D∞

1 ) is outer,
as desired. □

In what follows we consider cyclic vectors. A closed subspace S ⊂ N∗
(D∞

1 ) is said to be invariant, if for every F ∈ S and q ∈ P∞, qF ∈ S.
We say that a function F ∈ N∗(D∞

1 ) is cyclic, if the invariant subspace
generated by F is exactly N∗(D∞

1 ). For 0 < p < ∞, cyclic vectors in the
Hardy space Hp(D∞

2 ) can be defined similarly.
The following theorem gives a quantitative description of cyclic vectors in

N∗(D∞
1 ). Although its proof is similar as in [38, Theorem 4.4.6], we present

it here for completeness.

Theorem 2.22. — Each cyclic vector in N∗(D∞
1 ) is outer.

Proof. — For a nonzero function F ∈ N∗(D∞
1 ), set

ΓF =
∫
T∞

log |F ∗|dm∞ − log |F (0)|.

Then Proposition 2.17 yields that F is outer if and only if ΓF = 0. We claim
that Γ is upper semicontinuous on N∗(D∞

1 )\{0}. Indeed, let {Gn}∞
n=1 be

a sequence in N∗(D∞
1 )\{0} and G ∈ N∗(D∞

1 )\{0} such that for all n ∈ N,
ΓGn ⩾ c ⩾ 0, and ∥Gn − G∥0 → 0 as n → ∞. Hence by (2.12) and
Proposition 2.11,∣∣∣∣∫

T∞
log+ |G∗

n| dm∞ −
∫
T∞

log+ |G∗| dm∞

∣∣∣∣ ⩽ ∥G∗
n −G∗∥0 = ∥Gn −G∥0,

and thus

(2.19) lim
n→∞

∫
T∞

log+ |G∗
n|dm∞ =

∫
T∞

log+ |G∗|dm∞.

On the other hand, by the convergence of {G∗
n}∞

n=1 in L0(T∞), there exists
a subsequence {G∗

nk
}∞

k=1 converging to G∗ almost everywhere on T∞. Then
it follows from Fatou’s lemma that

(2.20)
∫
T∞

log− |G∗| dm∞ ⩽ lim inf
k→∞

∫
T∞

log− ∣∣G∗
nk

∣∣ dm∞.
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A combination of (2.19) and (2.20) shows that∫
T∞

log |G∗| dm∞ ⩾ lim sup
k→∞

∫
T∞

log
∣∣G∗

nk

∣∣ dm∞.

Noticing that ∥Gn −G∥0 → 0 as n → ∞, Lemma 2.10 gives Gn(0) → G(0)
as n → ∞. Therefore, ΓG ⩾ lim supk→∞ ΓGnk

⩾ c, and hence the claim
holds.

Now we assume that F is cyclic in N∗(D∞
1 ), then there is a sequence of

polynomials {qn}∞
n=1 in P∞ such that ∥qnF − 1∥0 → 0 (n → ∞). Hence

0 = Γ1 ⩾ lim sup
n→∞

Γ(qnF ) ⩾ lim sup
n→∞

Γqn + ΓF ⩾ ΓF,

forcing ΓF = 0, and thus F is outer. □

We mention that for every 0 < p < ∞, there is a constant Cp > 0 such
that

(2.21) ∥f∥0 ⩽ Cp∥f∥min{p,1}
p , f ∈ Lp(T∞).

Hence for every F ∈ Hp(D∞
2 ) ⊂ N∗(D∞

1 ),

∥F∥0 = sup
0<r<1

∥∥F[r]
∥∥

0 ⩽ Cp sup
0<r<1

∥∥F[r]
∥∥

p
= Cp∥F∥p.

A combination of this fact and Theorem 2.22 gives the following corollary.

Corollary 2.23. — If 0 < p < ∞, then each cyclic vector in Hp(D∞
2 )

is outer.

However, not every outer function is cyclic in Hp(D∞
2 ), see [38, pp. 75-78]

for a counterexample. We also conjecture that not every outer function is
cyclic in N∗(D∞

1 ), but we still cannot construct a counterexample, even in
finite-variable setting.

2.2. Correspondence between N∗(T∞) and N∗(D∞
1 )

The purpose of this subsection is to show that there is a canonical isomet-
ric isomorphism between N∗(T∞) and N∗(D∞

1 ). We refer readers to [3, 18]
for cases of the Hardy spaces in infinitely many variables.

Recall that the Smirnov class N∗(T∞) over the infinite torus is defined to
be the closure of P∞ in L0(T∞). A similar argument as in Proposition 2.15
shows that N∗(T∞) is a topological algebra. By (2.21), for every 0 < p < ∞,
the space Hp(T∞) is contained in N∗(T∞). For each point ζ ∈ D∞

1 and
q ∈ P∞, it follows from Lemma 2.10 that

log(1 + |q(ζ)|) ⩽ ∥Pζ∥∞

∫
T∞

log(1 + |q|)dm∞.
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This means that the evaluation functional Eζ : q 7→ q(ζ) is continuous
on the dense subspace P∞ of N∗(T∞), and hence Eζ can be continuously
extended to the whole space N∗(T∞), still denoted by Eζ . For every f ∈
N∗(T∞) and ζ ∈ D∞

1 , set f̃(ζ) = Eζf . Then f̃ defines a function on D∞
1 ,

and

(2.22) log
(

1 +
∣∣∣f̃(ζ)

∣∣∣) ⩽ ∥Pζ∥∞

∫
T∞

log(1 + |f |)dm∞.

When q ∈ P∞, q̃ = q on D∞
1 , so we will no longer distinguish between q

and q̃.
For 0 < r < 1 and M > 0, the domain Vr,M in ℓ1 is defined by (2.1).

The following lemma is obvious by using (2.22). It will be used not only in
the proof of Propostion 2.25, but also in Section 3.

Lemma 2.24. — Suppose that {fn}∞
n=1 is a sequence in N∗(T∞). If

∥fn − f∥0 → 0 for some f ∈ N∗(T∞) as n → ∞, then {f̃n}∞
n=1 converges

to f̃ uniformly on each Vr,M .

We now establish the correspondence between N∗(T∞) and N∗(D∞
1 ).

Proposition 2.25. — If f ∈ N∗(T∞), then f̃ ∈ N∗(D∞
1 ).

Proof. — We first show that f̃ is holomorphic on D∞
1 . Choose a sequence

of polynomials {qn}∞
n=1 such that ∥qn−f∥0 → 0 as n → ∞. By Lemma 2.24,

{qn}∞
n=1 converges uniformly to f̃ on each Vr,M , and thus f̃ is holomorphic

on D∞
1 . It remains to show {log(1 + |f̃ [r]|)}0<r<1 forms a uniformly inte-

grable family. Since ∥qn − f∥0 → 0 as n → ∞, applying Lebesgue-Vitali’s
theorem [12, Theorem 4.5.4] shows that {log(1 + |qn|)}∞

n=1 is uniformly
integrable. Therefore, there exists a strongly convex function φ such that

sup
n ∈ N

∫
T∞

φ
(

log(1 + |qn|)
)
dm∞ < ∞.

By Fatou’s lemma, we have

(2.23)
∫
T∞

φ
(

log
(

1 +
∣∣∣f̃ [r]

∣∣∣))
dm∞

⩽ lim inf
n→∞

∫
T∞

φ
(
log

(
1 +

∣∣(qn)[r]
∣∣))

dm∞.

For every n ∈ N, since φ(log(1 + |qn|)) is continuous on D∞, and ∞-
subharmonic on D∞

1 , applying Corollary 2.2 gives that for every 0 < r < 1,∫
T∞

φ
(
log

(
1 +

∣∣(qn)[r]
∣∣))

dm∞ ⩽
∫
T∞

φ(log(1 + |qn|))dm∞.
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Taking this inequality back into (2.23) yields

sup
0<r<1

∫
T∞

φ
(

log
(

1 +
∣∣∣f̃ [r]

∣∣∣))
dm∞ ⩽ sup

n ∈ N

∫
T∞

φ(log(1 + |qn|))dm∞ < ∞,

which ensures the uniform integrability of {log(1 + |f̃ [r]|)}0<r<1. □

Recall that for every F ∈ N∗(D∞
1 ), F ’s “boundary function”

F ∗(w) = lim
r→1

F[r](w)

exists for almost every w ∈ T∞. In fact, this “boundary function” belongs
to the Smirnov class N∗(T∞) over the infinite torus.

Proposition 2.26. — If F ∈ N∗(D∞
1 ), then F ∗ ∈ N∗(T∞) and ∥F∥0 =

∥F ∗∥0.

Proof. — The equality ∥F∥0 = ∥F ∗∥0 immediately follows from Propo-
sition 2.11. Given ε > 0, again by Proposition 2.11, there exists 0 < r < 1
such that ∥F[r] − F ∗∥0 < ε. Since F[r] ∈ A(T∞), we can find a polyno-
mial q ∈ P∞ satisfying ∥q − F[r]∥∞ < eε − 1, and hence ∥q − F[r]∥0 < ε.
Therefore,

∥q − F ∗∥0 ⩽
∥∥q − F[r]

∥∥
0 +

∥∥F[r] − F ∗∥∥
0 < 2ε,

which implies F ∗ ∈ N∗(T∞). □

By Proposition 2.26, the algebra homomorphism defined by

Λ : N∗(D∞
1 ) → N∗(T∞), F 7→ F ∗,

is a linear isometry. The main theorem of this subsection is stated as follows.

Theorem 2.27 (Generalized Fatou’s theorem). — The map

Λ : N∗(D∞
1 ) → N∗(T∞)

is an isometric algebra isomorphism, and its inverse map

Λ−1 : N∗(T∞) → N∗(D∞
1 )

is given by f 7→ f̃ .

Proof. — It suffices to show that for every f ∈ N∗(T∞), Λf̃ = f . Choos-
ing a sequence of polynomials {qn}∞

n=1 satisfying

(2.24) ∥qn − f∥0 → 0 (n → ∞)

and applying Lemma 2.24 lead that {qn}∞
n=1 converges to f̃ pointwise on

D∞
1 . On the other hand, (2.24) also implies that {qn}∞

n=1 is a Cauchy se-
quence in N∗(D∞

1 ), and hence ∥qn − G∥0 → 0 for some G ∈ N∗(D∞
1 ) as
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n → ∞. By using Lemma 2.10, {qn}∞
n=1 converges to G pointwise on D∞

1 ,
therefore G = f̃ . We conclude from Proposition 2.26 that∥∥∥qn − Λf̃

∥∥∥
0

= ∥qn − ΛG∥0 = ∥qn −G∥0 → 0 (n → ∞).

From this and (2.24), Λf̃ = f , which yields the desired conclusion. □

For 0 < p < ∞, every function in Hp(T∞), by evaluation functional, can
be extended to a holomorphic function on D∞

2 . Comparison of this fact and
Theorem 2.27 leads us to ask the following question.

Question 2.28. — Does there exist a function in N∗(T∞) which can
not be extended to a function holomorphic on D∞

2 ?

As an application of the generalized Fatou’s theorem, we obtain Corol-
lary 2.29, which will be used in Section 3.

Corollary 2.29. — If 0 < p ⩽ ∞, then N∗(T∞)∩Lp(T∞) = Hp(T∞).

Proof. — Clearly, Hp(T∞) ⊂ N∗(T∞) ∩ Lp(T∞). Conversely, for every
f ∈ N∗(T∞) ∩ Lp(T∞), we will show that f ∈ Hp(T∞). Write F = Λ−1f ,
then F ∈ N∗(D∞

1 ), and F ∗ = f . By Proposition 2.16, for each ζ ∈ D∞
1 ,

(2.25) log |F (ζ)| ⩽
∫
T∞

Pζ log |F ∗|dm∞.

When 0 < p < ∞, by (2.25), taking φ(t) = exp(pt) and applying the
reasoning as in (2.17) show that

lim
r→1

∫
T∞

∣∣F[r]
∣∣p
dm∞ ⩽

∫
T∞

|F ∗|pdm∞.

On the other hand, we infer from Fatou’s lemma that∫
T∞

|F ∗|pdm∞ ⩽ lim
r→1

∫
T∞

∣∣F[r]
∣∣p
dm∞,

and hence ∥F ∗∥p = limr→1 ∥F[r]∥p. Then by Lemma 2.13, ∥F[r] −F ∗∥p → 0
as r → 1. Noticing that for 0 < r < 1, F[r] ∈ A(T∞), we see f = F ∗ ∈
Hp(T∞).

When p = ∞, by (2.25) and Jensen’s inequality, for every ζ ∈ D∞
1 ,

|F (ζ)| ⩽ exp
(∫

T∞
Pζ log |F ∗|dm∞

)
⩽

∫
T∞

Pζ |F ∗|dm∞ ⩽ ∥F ∗∥∞ < ∞,

which implies that F is a bounded holomorphic function on D∞
1 . By the

argument in [26, pp. 7-8], F can be extended to a bounded holomorphic
function on D∞

2 , still denoted by F . Then F ∈ H∞(D∞
2 ), and thus f =

F ∗ ∈ H∞(T∞). □
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3. Szegő’s problem in infinitely many variables

In this section, we will apply function theory of the Smirnov class to
discuss Szegő’s problem in infinitely many variables. Write P0 for the set
of polynomials q ∈ P∞ for which q(0) = 0. In what follows we assume
that 1 < p < ∞, and K ∈ L1(T∞) is a nonnegative function with logK ∈
L1(T∞). Without loss of generality, suppose that ∥K∥1 = 1. Motivated
by Szegő’s theorem mentioned in Introduction, one is naturally concerned
with the following quantity:

S(K) = inf
q ∈ P0

∫
T∞

|1 − q|pKdm∞.

Obviously, S(K) ⩽ 1. On the other hand, it follows from Jensen’s inequality
and (2.8) that for every q ∈ P0,

(3.1)
∫
T∞

|1 − q|pKdm∞

⩾ exp
(∫

T∞
log |1 − q|pdm∞ +

∫
T∞

logKdm∞

)
⩾ exp

(
log |1 − q(0)|p +

∫
T∞

logKdm∞

)
= exp

(∫
T∞

logKdm∞

)
.

Therefore, S(K) falls into the closed interval [exp
(∫

T∞ logKdm∞
)
, 1].

Then it is natural to ask for which K, S(K) attains the lower bound
exp

(∫
T∞ logKdm∞

)
or the upper bound 1, and this is called Szegő’s prob-

lem.
When p = 2, Nakazi gave an answer to Szegő’s problem in two-variable

setting [31]. His proof heavily depends on the fact that if K ∈ L1(T2)
is a nonnegative function with logK in the RP class over T2, then there
exists an outer function h ∈ H2(T2) such that K = |h|2, see [38, p. 77].
In what follows, we will give a unifying treatment for Szegő’s problem as
an application of function theory developed in the previous section, which
works for both finite-variable and infinite-variable setting.

We first study when S(K) attains the lower bound exp
(∫

T∞ logKdm∞
)
.

The next theorem gives the answer.

Theorem 3.1. — The equality

(3.2) S(K) = exp
(∫

T∞
logKdm∞

)
holds if and only if K = |h|p for some cyclic vector h ∈ Hp(T∞).
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Before proving Theorem 3.1, we need the following proposition, which
states that the weighted Hardy space Hp(Kdm∞), the closure of P∞ in
Lp(Kdm∞), is a subset of the Smirnov class N∗(T∞).

Proposition 3.2. — Hp(Kdm∞) ⊂ N∗(T∞).

Proof. — For every h ∈ Hp(Kdm∞), there is a sequence of polynomials
{qn}∞

n=1 for which

(3.3)
∫
T∞

|qn − h|pKdm∞ → 0 (n → ∞).

Then there is a subsequence {qnk
}∞

k=1 that converges to h almost every-
where on T∞. Moreover, by the inequality log(1+x) ⩽ x (x ⩾ 0) and (3.3),
we have ∫

T∞
log (1 + |qnk

− h|pK) dm∞ → 0 (k → ∞).

Write

fnk
= log (1 + |qnk

− h|p) ,
gnk

= log (1 + |qnk
− h|pK) + log(1 +K) − logK.

For every k ∈ N, it is easy to verify that 0 ⩽ fnk
⩽ gnk

on T∞. Applying
Lemma 2.12 to sequences {fnk

}∞
k=1 and {gnk

}∞
k=1, we obtain

(3.4)
∫
T∞

log (1 + |qnk
− h|p) dm∞ → 0 (k → ∞).

Let Ek be the set of points w ∈ T∞ such that |qnk
(w) −h(w)| ⩽ 1, and Ec

k

the complement of Ek with respect to T∞. Write χEk
for the characteristic

function of Ek. Then for every k ∈ N, 0 ⩽ χEk
|qnk

− h| ⩽ 1 on T∞. It
follows from Lebesgue’s dominated convergence theorem that

(3.5)
∫

Ek

log (1 + |qnk
− h|) dm∞ =

∫
T∞

log (1 + χEk
|qnk

− h|) dm∞ → 0

as k → ∞. On the other hand, by inequalities∫
Ec

k

log (1 + |qnk
− h|) dm∞ ⩽

∫
Ec

k

log (1 + |qnk
− h|p) dm∞

⩽
∫
T∞

log (1 + |qnk
− h|p) dm∞,

we conclude from (3.4) that∫
Ec

k

log (1 + |qnk
− h|) dm∞ → 0 (k → ∞).

Combining this with (3.5) gives ∥qnk
− h∥0 → 0 as k → ∞, and thus

h ∈ N∗(T∞), as desired. □
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Recall that to every f ∈ N∗(T∞) corresponds a holomorphic function f̃ ∈
N∗(D∞

1 ) whose radial limit is f . We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first assume K = |h|p for some cyclic vector
h ∈ Hp(T∞). To prove (3.2), it suffices to show that

(3.6) S(K) ⩽ exp
(∫

T∞
logKdm∞

)
.

By the cyclicity of h, it is not difficult to verify that h − h̃(0) belongs to
the closure of {qh ∈ Hp(T∞) : q ∈ P0} in Hp(T∞). Therefore,

S(K) = inf
q ∈ P0

∫
T∞

|h− qh|pdm∞

⩽
∫
T∞

∣∣∣h−
(
h− h̃(0)

)∣∣∣p

dm∞ =
∣∣∣h̃(0)

∣∣∣p

.

(3.7)

Since h ∈ Hp(T∞) is outer, that is,

|h̃(0)|p = exp
(∫

T∞
log |h|pdm∞

)
= exp

(∫
T∞

logKdm∞

)
,

we deduce from this and (3.7) that K satisfies (3.6).
Conversely, we assume that (3.2) holds. Since Hp(Kdm∞) is reflexive,

there exists a function φ belonging to the closure of P0 in Hp(Kdm∞) such
that

(3.8) S(K) =
∫
T∞

|1 − φ|pKdm∞.

Choose a sequence of polynomials {qn}∞
n=1 in P0 satisfying

(3.9)
∫
T∞

|qn − φ|pKdm∞ → 0 (n → ∞).

It follows from Proposition 3.2 that φ ∈ N∗(T∞), and the proof of this
proposition also implies that there is a subsequence {qnk

}∞
k=1 for which

∥qnk
− φ∥0 → 0 as k → ∞. Hence by Lemma 2.24, {qnk

}∞
k=1 converges to

φ̃ pointwise on D∞
1 , and thus φ̃(0) = 0. We see from Proposition 2.16 that

(3.10)
∫
T∞

log |1 − φ|pdm∞ ⩾ log |1 − φ̃(0)|p = 0.

By Jensen’s inequality,

(3.11)
∫
T∞

|1 − φ|pKdm∞ ⩾ exp
(∫

T∞
log |1 − φ|p + logKdm∞

)
,
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and the equality holds if and only if |1 − φ|pK is a constant. Combin-
ing (3.10) with (3.11) shows that∫

T∞
|1 − φ|pKdm∞ ⩾ exp

(∫
T∞

logKdm∞

)
.

By (3.2) and (3.8), this inequality is actually an equality, forcing (3.10)
and (3.11) to be equalities. This means that 1 −φ ∈ N∗(T∞) is outer, and
there is a constant C > 0 such that |1 − φ|pK = Cp.

We claim that 1
1−φ ∈ Hp(T∞). Indeed, since 1−φ ∈ N∗(T∞) is outer, by

Corollary 2.21 and the generalized Fatou’s theorem, 1
1−φ ∈ N∗(T∞), and

it is outer. On the other hand, since 1
|1−φ|p = K

Cp , we have 1
1−φ ∈ Lp(T∞).

Then by Corollary 2.29, 1
1−φ ∈ Hp(T∞), and the claim holds.

Write h = C
1−φ ∈ Hp(T∞), then K = |h|p. We proceed to prove that h

is cyclic by (3.9). Noticing that

|qn − φ|pK = |(1 − qn) − (1 − φ)|p|h|p = |(1 − qn)h− C|p,

hence by (3.9),∫
T∞

|(1 − qn)h− C|p dm∞ =
∫
T∞

|qn − φ|pKdm∞ → 0 (n → ∞).

The above reasoning shows that the constant function C is in the invariant
subspace of Hp(T∞) generated by h. Therefore, h is cyclic, and the proof
of Theorem 3.1 is complete. □

As it is clear, Szegő’s problem is closely related to cyclic vectors in Hardy
spaces. In fact, its connection with cyclicity is more than the external pre-
sentation. We will show this via a special case K = |f |p, where 1 < p < ∞
and f ∈ Hp(T∞). By Theorem 2.4, logK = p log |f | ∈ L1(T∞). Write

M(|f |p) = exp
(∫

T∞
log |f |pdm∞

)
.

Then it follows from (3.1) and Proposition 2.16 that

S(|f |p) ⩾M(|f |p) ⩾
∣∣∣f̃(0)

∣∣∣p

,

where f̃ ∈ Hp(D∞
2 ) denotes the holomorphic function corresponding to f . It

seems interesting to ask when two among these three quantities are equal.
The complete answer will be given in Proposition 3.3 below. For p = 2,
Nakazi considered when S(|f |2) = M(|f |2) in the case of two variables,
see [32]. In the same setting, Guo and Zhou [24] solved the problem when
S(|f |2) = |f̃(0)|2, but their methods do not apply for p ̸= 2, since Hp(T2)
is not a Hilbert space.
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A function η ∈ H∞(T∞) is said to be inner, if |η| = 1 almost everywhere
on T∞ [18]. Since there is a canonical isometric isomorphism from H∞(T∞)
onto H∞(D∞

2 ), we see that if η is inner, then |η̃(ζ)| ⩽ 1 for all ζ ∈ D∞
2 . By

Corollary 2.29, it is easy to verify that a function η is inner if η ∈ N∗(T∞)
and is of modulus 1 almost everywhere on T∞.

Proposition 3.3. — Suppose that 1 < p < ∞ and f ∈ Hp(T∞), then:
(1) M(|f |p) = |f̃(0)|p if and only if f is outer.
(2) S(|f |p) = M(|f |p) if and only if f = ηh, where η is inner and h is

a cyclic vector in Hp(T∞).
(3) S(|f |p) = |f̃(0)|p if and only if f is cyclic.

Proof. — (1) This is a direct conclusion of Proposition 2.17.
(2) If f = ηh, then it follows from Theorem 3.1 that S(|f |p) = M(|f |p).

Conversely, suppose that S(|f |p) = M(|f |p). By Theorem 3.1, there is a
cyclic vector h ∈ Hp(T∞) such that |f |p = |h|p. Since h ∈ Hp(T∞) is
cyclic, Corollary 2.23 implies that h is outer, and hence

(3.12) log
∣∣∣h̃(ζ)

∣∣∣ =
∫
T∞

Pζ log |h|dm∞, ζ ∈ D∞
1

by Proposition 2.17. On the other hand, Proposition 2.16 states that

(3.13) log
∣∣∣f̃(ζ)

∣∣∣ ⩽ ∫
T∞

Pζ log |f |dm∞, ζ ∈ D∞
1 .

Combining (3.12), (3.13) and the fact |f | = |h| yields that for all ζ ∈ D∞
1 ,

|f̃(ζ)| ⩽ |h̃(ζ)|. By the continuity of f̃ and h̃ on D∞
2 , this inequality remains

valid for ζ ∈ D∞
2 . It follows from Corollary 2.20 that h̃ is zero-free in D∞

2 ,
so F = f̃

h̃
∈ H∞(D∞

2 ). Therefore, F ∗ = f
h ∈ H∞(T∞) is of modulus 1

almost everywhere on T∞, which implies that F ∗ is inner and f = F ∗h.
(3) By (1) and (2), it is clear that S(|f |p) = |f̃(0)|p if and only if f is an

outer function with factorization f = ηh, where η is inner and h is a cyclic
vector in Hp(T∞). In this case, it will be shown that η is a constant func-
tion, and hence f is cyclic. Since f is outer, it follows from Corollary 2.21
that 1

f ∈ N∗(T∞). As mentioned before, N∗(T∞) is a topological algebra,
so 1

η = 1
f · h ∈ N∗(T∞). Noticing that η is inner, 1

η is of modulus 1 almost
everywhere on T∞, which implies that 1

η is also inner. Then

|η̃(ζ)| ⩽ 1, 1
|η̃(ζ)| ⩽ 1, ζ ∈ D∞

2 .

Therefore, |η̃(ζ)| = 1 for all ζ ∈ D∞
2 , and thus η̃ is a constant function, as

desired. □
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We continue to discuss when S(K) attains the upper bound 1. Let Z∞
0

be the set of all finitely supported sequences of integers. Recall that for
every α ∈ Z∞

0 , the Fourier coefficient K̂(α) of K is defined to be

K̂(α) =
∫
T∞

Kēαdm∞,

where
eα(w) = wα1

1 wα2
2 · · · , w ∈ T∞.

Theorem 3.4. — S(K) = 1 if and only if

(3.14) K̂(α) = K̂(−α) = 0, 0 ̸= α ∈ N∞
0 ,

where N∞
0 denotes the set of all finitely supported sequences of nonnegative

integers.

Proof. — Let Hp
0 (Kdm∞) denote the closure of P0 in Lp(Kdm∞). Ap-

plying Hahn–Banach theorem shows that the quotient space

Q = Lp(Kdm∞)/Hp
0 (Kdm∞)

is of the dual space Q∗ as follows:

Q∗ =
{
g ∈ Lq(Kdm∞) :

∫
T∞

fgKdm∞ = 0 for f ∈ Hp
0 (Kdm∞)

}
,

where 1
p + 1

q = 1. Therefore,

(3.15)
S(K) = inf

f ∈ Hp
0 (Kdm∞)

∫
T∞

|1 − f |pKdm∞

= ∥π(1)∥p
Q = sup

g ∈ B ∩ Q∗

∣∣∣∣∫
T∞

gKdm∞

∣∣∣∣p

,

where π is the quotient map of Lp(Kdm∞) onto Q, and B is the closed
unit ball of Lq(Kdm∞).

When (3.14) holds, it is easy to verify that 1 ∈ B ∩ Q∗. Then by (3.15),

S(K) = sup
g ∈ B ∩ Q∗

∣∣∣∣∫
T∞

gKdm∞

∣∣∣∣p

⩾

∣∣∣∣∫
T∞

Kdm∞

∣∣∣∣p

= 1,

forcing S(K) = 1.
Conversely, we assume that S(K) = 1. Since Lq(Kdm∞) is reflexive,

B ∩ Q∗ is weakly compact. Hence by (3.15) there exists a ψ ∈ B ∩ Q∗ such
that

1 = S(K) =
∣∣∣∣∫

T∞
ψKdm∞

∣∣∣∣p

.
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Noticing that ∥ψ∥Lq(Kdm∞) ⩽ 1, Hölder’s inequality gives that ψ = 1, and
hence 1 ∈ Q∗. For each 0 ̸= α ∈ N∞

0 , it follows from eα ∈ Hp
0 (Kdm∞) that

(3.16) K̂(−α) =
∫
T∞

Keαdm∞ =
∫
T∞

1 · eαKdm∞ = 0.

Since K is nonnegative, the conjugate of (3.16) gives that

K̂(α) =
∫
T∞

Kēαdm∞ = 0,

and the proof of Theorem 3.4 is complete. □

4. Nevanlinna functions and Dirichlet series

It is well known that there exists a fascinating connection between func-
tions in infinitely many variables and Dirichlet series via Bohr correspon-
dence. As in cases of the Nevanlinna class and the Smirnov class in the
infinite-variable setting, there exist analogies for Dirichlet series. In this
section, we will develop the Nevanlinna–Dirichlet class N and the Smirnov-
Dirichlet class N∗ for Dirichlet series. Moreover, the relationships between
N and N(D∞

1 ), N∗ and N∗(D∞
1 ) will be established, respectively.

First, we briefly recall some elements from the theory of Dirichlet series.
A Dirichlet series is a series of the following form:

f(s) =
∞∑

n=1
ann

−s,

where s is the complex variable. Let R be the real line and R = R∪ {±∞}
the extended real line. When σ ∈ R, set Cσ = {z ∈ C : Re z > σ}. For each
Dirichlet series f(s) =

∑∞
n=1 ann

−s, its abscissa of uniform convergence
σu(f) is defined as

σu(f) = inf
{
σ ∈ R :

∞∑
n=1

ann
−s converges uniformly on Cσ

}
∈ R,

see [20, p. 10]. When σ ∈ R, write

fσ(s) =
∞∑

n=1
ann

−(s+σ),

then σu(fσ) = σu(f) − σ.
Recall that a subset S of R is relatively dense in R, if there exists a

constant L > 0 such that each closed interval of length L intersects S.
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A function f : R → C is called almost periodic, if for each ε > 0, there is a
relatively dense set Eε ⊂ R satisfying

sup
t ∈ R

|f(t+ τ) − f(t)| < ε, ∀ τ ∈ Eε.

We mention that when f is almost periodic, the limit limT →∞
1

2T

∫ T

−T
f(t)dt

exists. Let f be a Dirichlet series with σu(f) < 0, then t 7→ f(it) is almost
periodic. Furthermore, if h is a non-decreasing continuous function on the
half real line R+ = [0,∞), then h(|f(it)|) is almost periodic, see [10, 37].

Let pj be the j th prime number. For every n ∈ N, there exists a unique
prime factorization n = pα1

1 · · · pαk

k and set α(n) = (α1, . . . , αk, 0, . . .).
When ζ = (ζ1, ζ2, . . .) is a sequence of complex numbers, we write ζα(n) =
ζα1

1 · · · ζαk

k . From Bohr’s point of view [13], each Dirichlet series f(s) =∑∞
n=1 ann

−s can be associated with a formal power series in infinitely many
variables as follows:

(Bf)(ζ) =
∞∑

n=1
anζ

α(n).

It is easy to verify that if σu(f) < 0, then the partial sums of Bf converge
uniformly on T∞, and Bf ∈ A(T∞), see [26, 37].

This section contains two parts. In the first part, we define the Nevanli-
nna–Dirichlet class N , and discuss the relationship between this class and
the Nevanlinna class N(D∞

1 ). The main result is Theorem 4.1. The second
part is devoted to proving this theorem.

4.1. The Nevanlinna–Dirichlet class N

Before defining the Nevanlinna–Dirichlet class N , let us start with a
smaller class, the Smirnov–Dirichlet class N∗.

Let f be a Dirichlet series with σu(f) < 0, then t 7→ log(1 + |f(it)|) is
almost periodic, and hence the limit

∥f∥0 = lim
T →∞

1
2T

∫ T

−T

log(1 + |f(it)|)dt

exists. Note that Bf ∈ A(T∞). Applying Birkhoff–Oxtoby theorem [37,
Theorem 6.5.1] yields

(4.1) ∥f∥0 =
∫
T∞

log(1 + |Bf |)dm∞ = ∥Bf∥0.

Let PD denote the set of all Dirichlet polynimials, then for every Q ∈ PD,
σu(Q) = −∞. Hence ∥Q∥0 is well defined and ∥Q∥0 = ∥BQ∥0. We define the
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Smirnov–Dirichlet class N∗ to be the completion of PD in the metric ∥ · ∥0.
Then there exists a natural algebraic structure on N∗. When 0 < p < ∞,
there is a constant Cp > 0 such that

∥Q∥0 ⩽ Cp∥Q∥min{p,1}
p , Q ∈ PD.

Hence all Hardy–Dirichlet spaces Hp (0 < p ⩽ ∞) are contained in N∗.
As defined in Introduction, the Smirnov class N∗(T∞) is the closure of P∞
in L0(T∞). Hence the Bohr transform B : PD → P∞ can be extended
to an isometric isomorphism from N∗ onto N∗(T∞), still denoted by B.
Furthermore, B is also an algebra isomorphism.

For a fixed k ∈ N, let Ξk be the multiplicative subsemigroup of N gener-
ated by the first k prime numbers p1, . . . , pk. When f is a Dirichlet series of
the form f(s) =

∑
n ∈ Ξk

ann
−s, then (Bf)(ζ) =

∑
n ∈ Ξk

anζ
α(n) only de-

pends on the first k variables ζ1, . . . , ζk. If Bf is holomorphic on Dk, then
f(s) = (Bf)(p−s

1 , . . . , p−s
k ) converges uniformly on each Cσ (σ > 0), and

thus σu(f) ⩽ 0. This inspires us to consider the class Nu of Dirichlet series
f with σu(f) ⩽ 0 and lim supσ→0+ ∥fσ∥0 < ∞. By (2.4), this coincides with
Brevig and Perfekt’s definition [15] mentioned in Introduction. A similar
argument as in the proof of Proposition 2.1 gives that if f is a Dirichlet
series with σu(f) ⩽ 0, then ∥fσ∥0 defines a non-increasing function of σ,
which is also mentioned in [15]. Thus we have

lim sup
σ→0+

∥fσ∥0 = sup
σ>0

∥fσ∥0 .

It is clear that Nu is a linear space. We define

∥f∥0 = sup
σ>0

∥fσ∥0 , f ∈ Nu.

Then
d0(f, g) = ∥f − g∥0, f, g ∈ Nu

defines a metric on Nu. Unfortunately, the class Nu does not contain the
familiar Hardy–Dirichlet space H2. For example, put an = (

√
n logn)−1,

then the Dirichlet series fa(s) =
∑∞

n=2 ann
−s belongs to H2, and σu(fa) =

1
2 . Hence fa /∈ Nu. So we define the Nevanlinna–Dirichlet class N to be
the completion of Nu in the metric ∥ · ∥0. Since PD is contained in Nu, we
see that N∗ is contained in N . In conclusion, we have

H∞ ⊂ Hq ⊂ Hp ⊂ N∗ ⊂ N (0 < p < q < ∞).

The following is the main result of this section, which will be proved in
Subsection 4.2.
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Theorem 4.1. — Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series in Nu.

Then the formal power series (Bf)(ζ) =
∑∞

n=1 anζ
α(n) converges in D∞

1 .
Moreover, we have Bf ∈ N(D∞

1 ), and ∥Bf∥0 = ∥f∥0. Therefore, the Bohr
transform B can be extended to an isometry from N to N(D∞

1 ), still de-
noted by B.

For a general Dirichlet series f with σu(f) ⩽ 0, the conclusion of Theo-
rem 4.1 fails. Here is an example.

Example 4.2. — Let pk be the kth prime number and {pkj
}∞

j=1 a subse-
quence of {pk}∞

k=1 satisfying pkj+1 > 2pkj
for all j ∈ N. Write

f(s) =
∞∑

j=1

log pkj

ps
kj

.

Let σ > 0, then there is a constant Mσ > 0 such that for each j ∈ N,
log pkj ⩽Mσp

σ
kj

. Therefore,
∞∑

j=1

log pkj

p2σ
kj

⩽Mσ

∞∑
j=1

p−σ
kj

⩽Mσp
−σ
k1

∞∑
j=1

2−(j−1)σ < ∞.

Since σ is arbitrary, we see that σu(f) ⩽ 0. However, {log pkj }∞
j=1 is un-

bounded, which implies that (Bf)(ζ) =
∑∞

j=1(log pkj )ζkj diverges for some
ζ ∈ D∞

1 .

The following example implies that N∗ is a proper subclass of N .

Example 4.3. — Write φ(z) = exp( 1+z
1−z ), z ∈ D. It is easy to see that

φ ∈ N(D), but φ /∈ N∗(D). Let an denote the nth Taylor’s coefficient
of φ, and put f(s) =

∑∞
n=0 an2−ns. Then for every ζ ∈ D∞

1 , we have
(Bf)(ζ) = φ(ζ1), and hence Bf /∈ N∗(D∞

1 ). Note that Bf is a holomorphic
function on D. As we mentioned before, σu(f) ⩽ 0. On the other hand, it
follows from (4.1) that

sup
σ>0

∥fσ∥0 = sup
σ>0

∥Bfσ∥0 = sup
σ>0

∫
T

log
(
1 +

∣∣φ(2−σλ)
∣∣) dm1(λ) < ∞,

which implies f ∈ Nu. Now we claim that f /∈ N∗. Indeed, if f ∈ N∗,
then there exists a sequence of Dirichlet polynomials {Qn}∞

n=1 such that
∥Qn − f∥0 → 0 as n → ∞. By Theorem 4.1, ∥BQn − Bf∥0 → 0 as n → ∞,
which gives that Bf ∈ N∗(D∞

1 ), a contradiction.

Let 0 < p < q < ∞. We draw up the following figure to show rela-
tions between all spaces, where “≃” denotes that the corresponding spaces
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are canonically isometrically isomorphic, and “↪→” denotes that the for-
mer space can be isometrically embedded into the latter. It remains to be
clarified whether B : N → N(D∞

1 ) is surjective.
H∞ ⊂ Hq ⊂ Hp ⊂ N∗ ⊂ N≃ ≃ ≃ ≃ ↪→

H∞(D∞
2 ) ⊂ Hq(D∞

2 ) ⊂ Hp(D∞
2 ) ⊂ N∗(D∞

1 ) ⊂ N(D∞
1 )

4.2. Proof of Theorem 4.1

This subsection is mainly dedicated to proving Theorem 4.1. To prove
this theorem, a series of preparations is needed.

Let F be a holomorphic function on the polydisk Dk. For each σ > 0,
write

F{σ}(w) = F
(
p−σ

1 w1, . . . , p
−σ
k wk

)
, w ∈ Tk,

where pj denotes the jth prime number. Then by the subharmonicity of
log(1 + |F |) in each variable separately,

(4.2) sup
σ>0

∫
Tk

log
(
1 +

∣∣F{σ}
∣∣) dmk = sup

0<r<1

∫
Tk

log
(
1 +

∣∣F[r]
∣∣) dmk,

where mk denotes the normalized Lebesgue measure on Tk. Moreover, in-
tegrals in the left side of this equality decrease with σ.

Suppose that f(s) =
∑∞

n=1 ann
−s is a Dirichlet series in Nu. We first

consider Bohr’s kte Abschnitt

(Bkf)(ζ) =
∑

n ∈ Ξk

anζ
α(n)

of Bf . It is a formal power series only depending on the first k variables
ζ1, . . . , ζk. We have the following proposition.

Proposition 4.4. — If f ∈ Nu, then for every k ∈ N, the formal power
series Bkf converges in Dk, and it defines a function in the Nevanlinna class
N(Dk) over Dk.

Proof. — Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series in Nu, then for

every σ > 0, σu(fσ) < 0, and thus Bfσ ∈ A(T∞). Applying Lebesgue’s
dominated convergence theorem gives

lim
k→∞

∫
T∞

log (1 + |Bkfσ|) dm∞ =
∫
T∞

log (1 + |Bfσ|) dm∞

= ∥Bfσ∥0 .

(4.3)
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It follows from Corollary 2.2 that the integrals in the left side of (4.3)
increase with k. Therefore we have

sup
k ∈ N

sup
σ>0

∫
T∞

log (1 + |Bkfσ|) dm∞

= sup
σ>0

sup
k ∈ N

∫
T∞

log (1 + |Bkfσ|) dm∞ = sup
σ>0

∥Bfσ∥0.

By (4.1), for every σ > 0, ∥Bfσ∥0 = ∥fσ∥0, and hence

sup
k ∈ N

sup
σ>0

∫
T∞

log (1 + |Bkfσ|) dm∞

= sup
σ>0

∥Bfσ∥0 = sup
σ>0

∥fσ∥0 = ∥f∥0 < ∞.
(4.4)

For a fixed k ∈ N, the family {Bkfσ}σ>0 is contained in the polydisk algebra
A(Dk). It follows from Lemma 2.10 that for each ζ ∈ Dk,

log (1 + |(Bkfσ)(ζ)|) ⩽ ∥Pζ∥∞

∫
T∞

log (1 + |Bkfσ|) dm∞ ⩽ ∥Pζ∥∞∥f∥0.

This implies that {Bkfσ}σ>0 is uniformly bounded on each compact subset
of Dk. By Montel’s theorem [35, Theorem 1.5], there is a sequence σm →
0+ (m → ∞) and a function Gk holomorphic on Dk such that {Bkfσm}∞

m=1
converges to Gk uniformly on each compact subset of Dk. Let

Gk(ζ) =
∑

n ∈ Ξk

bnζ
α(n), ζ ∈ Dk

be the Taylor expansion of Gk. Since for every m ∈ N,

(Bkfσm
) (ζ) =

∑
n ∈ Ξk

ann
−σmζα(n), ζ ∈ Dk,

the uniform convergence implies that

bn = lim
m→∞

ann
−σm = an, n ∈ Ξk,

and hence (Bkf)(ζ) =
∑

n ∈ Ξk
anζ

α(n) converges in Dk. Noticing that for
every σ > 0, Bkfσ = (Bkf){σ}, and combining (4.2) with (4.4) show that

(4.5) sup
0<r<1

∫
T∞

log
(
1 +

∣∣(Bkf)[r]
∣∣) dm∞

= sup
σ>0

∫
T∞

log (1 + |Bkfσ|) dm∞ ⩽ ∥f∥0 < ∞,

which implies Bkf ∈ N(Dk). □
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For every k ∈ N, N(Dk) can be regarded as a subset of N(D∞
1 ). Hence

by Proposition 4.4, when f ∈ Nu, {Bkf}∞
k=1 is a sequence in N(D∞

1 ). Then
it follows from Lemma 2.10 and (4.5) that for each ζ ∈ D∞

1 ,

log (1 + |(Bkf)(ζ)|) ⩽ ∥Pζ∥∞∥Bkf∥0 ⩽ ∥Pζ∥∞∥f∥0.

Therefore we have

Corollary 4.5. — If f ∈ Nu, then the sequence {Bkf}∞
k=1 is uniformly

bounded on each domain Vr,M (0 < r < 1,M > 0) defined by (2.1).

We need the following result.

Proposition 4.6. — If f ∈ Nu, then the sequence {Bkf}∞
k=1 converges

pointwise on D∞
1 , and

(B̂f)(ζ) = lim
k→∞

(Bkf)(ζ), ζ ∈ D∞
1

defines a holomorphic function on D∞
1 .

The following lemma is used in the proof of Proposition 4.6.

Lemma 4.7. — If {an}∞
n=1 ∈ ℓ1, then there exist {bn}∞

n=1 ∈ ℓ1 and
{cn}∞

n=1 ∈ c0 such that an = bncn, n = 1, 2, . . ., where c0 denotes the
Banach space of null sequences.

Proof. — Without loss of generality, we may assume that {an}∞
n=1 has

infinitely many nonzero entries. It suffices to show that there is a sequence
{λn}∞

n=1 such that λn → ∞ as n → ∞, and
∑∞

n=1 |anλn| < ∞. Write
A =

∑∞
n=1 |an| and

kj = min
{
k ∈ N :

k∑
n=1

|an| ⩾ 6A
π2

j∑
n=1

1
n2

}
, j ∈ N.

Then there is a subsequence {ksj
}∞

j=1 of {kj}∞
j=1 such that ks1 < ks2 < · · · ,

and for each j ∈ N, we have
ksj∑
n=1

|an| ⩾ 6A
π2

sj∑
n=1

1
n2 ,

ksj+1∑
n=1

|an| ⩽
ksj+2 −1∑

n=1
|an| ⩽ 6A

π2

sj+2∑
n=1

1
n2 ,

and hence

(4.6)
ksj+1∑

n=ksj
+1

|an| ⩽ 6A
π2

sj+2∑
n=sj+1

1
n2 .
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If ksj
+ 1 ⩽ n ⩽ ksj+1 , set λn =

√
sj + 1. Then λn → ∞ as n → ∞, and

by (4.6),
∞∑

n=ks1 +1
|anλn| =

∞∑
j=1

ksj+1∑
n=ksj

+1
|anλn|

=
∞∑

j=1

√
sj + 1

ksj+1∑
n=ksj

+1
|an|

⩽
6A
π2

∞∑
j=1

√
sj + 1

sj+2∑
n=sj+1

1
n2

⩽
6A
π2

∞∑
j=1

sj+2∑
n=sj+1

1
n

√
n

⩽
12A
π2

∞∑
n=1

1
n

√
n

< ∞,

which completes the proof of Lemma 4.7. □

We now present the proof of Proposition 4.6.
Proof of Proposition 4.6. We first show that {Bkf}∞

k=1 converges
pointwise on D∞

1 . For a fixed ζ ∈ D∞
1 , it follows from Lemma 4.7 that

there exist α ∈ D∞
1 and β ∈ B0 such that ζn = αnβn, n = 1, 2, . . ., where

B0 denotes the open unit ball of c0. By Corollary 4.5, {Bkf}∞
k=1 is uniformly

bounded on ∆α = α1D × · · · × αnD × · · · . Set

Cα = sup
k ∈ N, υ ∈ ∆α

|(Bkf)(υ)| + 1.

For any ε > 0, there exists an index K for which if k > K, then |βk| < ε
2Cα

.
By a similar argument as in [26, 27], we conclude that {(Bkf)(ζ)}∞

k=1 is
Cauchy. Indeed, for k > l > K and z = (z1, . . . , zk−l) ∈ Dk−l, set

F (z) = (Bkf) (α1β1, . . . , αlβl, αl+1z1, . . . , αkzk−l) .

We see that F is holomorphic on Dk−l, and supz ∈ Dk−l |F (z)| ⩽ Cα. By
Schwarz’s lemma [35, Theorem 1.9], we have

|(Bkf)(ζ) − (Blf)(ζ)| = |F (βl+1, . . . , βk) − F (0)| ⩽ 2Cα max
l+1⩽j⩽k

|βj | < ε,

which implies that {(Bkf)(ζ)}∞
k=1 is Cauchy, and hence {Bkf}∞

k=1 converges
pointwise on D∞

1 . Write

(4.7) (B̂f)(ζ) = lim
k→∞

(Bkf)(ζ), ζ ∈ D∞
1 .
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Then Corollary 4.5 implies that B̂f is locally bounded. In what follows we
show that B̂f is holomorphic on D∞

1 . For fixed ζ ∈ D∞
1 and ξ ∈ ℓ1, there

exists an open domain Ω ⊂ C such that 0 ∈ Ω and {ζ+λξ : λ ∈ Ω} ⊂ Vr,M

for some 0 < r < 1, M > 0. For each k ∈ N, let

Gk(λ) = (Bkf)(ζ + λξ), λ ∈ Ω.

Then {Gk}∞
k=1 is sequence of holomorphic functions on Ω, and by Corol-

lary 4.5, it is uniformly bounded on Ω. Applying Montel’s theorem, there
is a subsequence that converges uniformly on each compact subset of Ω.
By combining this with (4.7), (B̂f)(ζ + λξ) is holomorphic in parameter
λ ∈ Ω, and hence B̂f is holomorphic on D∞

1 . □

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first prove that (Bf)(ζ) =
∑∞

n=1 anζ
α(n)

converges to a holomorphic function on D∞
1 . By Proposition 4.6, the se-

quence {Bkf}∞
k=1 converges to a holomorphic function B̂f . Let

(4.8) (B̂f)(ζ) =
∞∑

n=1
cnζ

α(n), ζ ∈ D∞
1

be the monomial expansion of B̂f . For a fixed k ∈ N, Bohr’s kte Abschnitt
Ak(B̂f) is holomorphic on Dk, and

Ak(B̂f)(ζ) =
∑

n ∈ Ξk

cnζ
α(n), ζ ∈ Dk.

On the other hand, by the definition (4.7) of B̂f , we have

Ak(B̂f)(ζ) = (Bkf)(ζ) =
∑

n ∈ Ξk

anζ
α(n), ζ ∈ Dk.

It follows from the uniqueness of Taylor expansion that for all n ∈ Ξk,
an = cn, and hence an = cn for all n ∈ N by the arbitrariness of k.
Comparison of this and (4.8) shows that

(Bf)(ζ) =
∞∑

n=1
anζ

α(n) =
∞∑

n=1
cnζ

α(n)

converges in D∞
1 , and Bf = B̂f .
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We next show that Bf ∈ N(D∞
1 ) and ∥Bf∥0 = ∥f∥0. Since Bf is holo-

morphic on D∞
1 , (Bf)[r] ∈ A(T∞) for all 0 < r < 1, and thus

∥Bf∥0 = sup
0<r<1

∫
T∞

log
(
1 +

∣∣(Bf)[r]
∣∣) dm∞

= sup
0<r<1

sup
k ∈ N

∫
T∞

log
(
1 +

∣∣(Bkf)[r]
∣∣) dm∞.

By interchanging the order of taking supremum for r and k, we have

(4.9) ∥Bf∥0 = sup
k ∈ N

sup
0<r<1

∫
T∞

log
(
1 +

∣∣(Bkf)[r]
∣∣) dm∞.

Since for k ∈ N, Bkf is holomorphic on Dk, it follows from (4.2) that

sup
0<r<1

∫
T∞

log
(
1 +

∣∣(Bkf)[r]
∣∣) dm∞ = sup

σ>0

∫
T∞

log (1 + |Bkfσ|) dm∞.

Substituting this into (4.9) yields

∥Bf∥0 = sup
k ∈ N

sup
σ>0

∫
T∞

log (1 + |Bkfσ|) dm∞

= sup
σ>0

sup
k ∈ N

∫
T∞

log (1 + |Bkfσ|) dm∞.

(4.10)

Note that for every σ > 0, Bfσ ∈ A(T∞). Then

sup
k ∈ N

∫
T∞

log (1 + |Bkfσ|) dm∞ =
∫
T∞

log (1 + |Bfσ|) dm∞ = ∥Bfσ∥0 .

We conclude from this equality, (4.1) and (4.10) that

∥Bf∥0 = sup
σ>0

∥Bfσ∥0 = sup
σ>0

∥fσ∥0 = ∥f∥0 < ∞.

The proof of Theorem 4.1 is complete. □

Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series with σu(f) ⩽ 0. Exam-

ple 4.2 shows that (Bf)(ζ) =
∑∞

n=1 anζ
α(n) does not need to converge at

all points in D∞
1 . However, for every 0 < r < 1, the power series

(Brf)(ζ) =
∞∑

n=1
an

(
rζ1, . . . , r

kζk, . . .
)α(n)

converges in D∞, and Brf ∈ A(D∞). Indeed, let pn be the nth prime
number, then the prime number theorem implies that pn

n log n → 1 as n →
∞ [4, Theorem 4.5]. Therefore, for a fixed 0 < r < 1, there exists σ > 0
such that for all n ∈ N, rn ⩽ p−σ

n , and hence

(4.11) rD × · · · × rnD × · · · ⊂ p−σ
1 D × · · · × p−σ

n D × · · · .
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As mentioned in [26], the partial sums of Bfσ converge uniformly on D∞.
That is, for any ε > 0, there is an index N for which if M2 > M1 > N ,
then ∥∥∥∥∥

M2∑
n=M1

an

(
p−σ

1 ζ1, . . . , p
−σ
k ζk, . . .

)α(n)
∥∥∥∥∥

∞

< ε,

where ∥ · ∥∞ denotes the uniform norm in Banach algebra C(D∞). From
(4.11), we have∥∥∥∥∥

M2∑
n=M1

an

(
rζ1, . . . , r

kζk, . . .
)α(n)

∥∥∥∥∥
∞

⩽

∥∥∥∥∥
M2∑

n=M1

an

(
p−σ

1 ζ1, . . . , p
−σ
k ζk, . . .

)α(n)
∥∥∥∥∥

∞

< ε,

and thus the partial sums of Brf converge uniformly on D∞. This gives
Brf ∈ A(D∞) as desired. By this fact and a similar argument as in the
proof of Theorem 4.1, we have the following conclusion.

Proposition 4.8. — Let f be a Dirichlet series with σu(f) ⩽ 0. Then

sup
σ>0

∥fσ∥0 = sup
σ>0

∫
T∞

log (1 + |Bfσ|) dm∞

= sup
0<r<1

∫
T∞

log (1 + |Brf |) dm∞.
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