Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs
[Asymptotique des valeurs propres et prolongement unique des fonctions propres sur un graphe planaire]
Annales de l'Institut Fourier, Online first, 43 p.

Dans ce travail, nous étudions les graphes planaires à courbure négative grande en dehors d’un ensemble fini et plus précisément la théorie spectrale d’opérateurs de Schrödinger sur de tels graphes. Nous obtenons des estimées du premier et du second ordre pour l’asymptotique des valeurs propres. Nous prouvons de plus un résultat de continuation unique ainsi que des propriétés de décroissance des fonctions propres. Les preuves sont basées sur une analyse fine de la géométrie et utilisent une procédure de “copier-coller” qui repose elle-même sur le théorème de Gauß–Bonnet.

We study planar graphs with large negative curvature outside of a finite set and the spectral theory of Schrödinger operators on these graphs. We obtain estimates on the first and second order term of the eigenvalue asymptotics. Moreover, we prove a unique continuation result for eigenfunctions and decay properties of general eigenfunctions. The proofs rely on a detailed analysis of the geometry which employs a Copy-and-Paste procedure based on the Gauß–Bonnet theorem.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3695
Classification : 47A75, 05C10, 05C63
Keywords: planar graph, Gauß–Bonnet Theorem, Schrödinger operator, eigenvalues asymptotics, unique continuation
Mots-clés : Graphe planaire, Théorème de Gauß–Bonnet, Opérateur de Schrödinger, Asymptotique de valeurs propres, continuation unique

Bonnefont, Michel 1 ; Golénia, Sylvain 1 ; Keller, Matthias 2

1 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence (France)
2 Universität Potsdam, Institut für Mathematik, 14476 Potsdam (Germany)
@unpublished{AIF_0__0_0_A134_0,
     author = {Bonnefont, Michel and Gol\'enia, Sylvain and Keller, Matthias},
     title = {Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3695},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Bonnefont, Michel
AU  - Golénia, Sylvain
AU  - Keller, Matthias
TI  - Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3695
LA  - en
ID  - AIF_0__0_0_A134_0
ER  - 
%0 Unpublished Work
%A Bonnefont, Michel
%A Golénia, Sylvain
%A Keller, Matthias
%T Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3695
%G en
%F AIF_0__0_0_A134_0
Bonnefont, Michel; Golénia, Sylvain; Keller, Matthias. Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs. Annales de l'Institut Fourier, Online first, 43 p.

[1] Bauer, Frank; Hua, Bobo; Keller, Matthias On the l p spectrum of Laplacians on graphs, Adv. Math., Volume 248 (2013), pp. 717-735 | DOI | MR | Zbl

[2] Baues, Oliver; Peyerimhoff, Norbert Curvature and geometry of tessellating plane graphs, Discrete Comput. Geom., Volume 25 (2001) no. 1, pp. 141-159 | DOI | MR | Zbl

[3] Baues, Oliver; Peyerimhoff, Norbert Geodesics in non-positively curved plane tessellations, Adv. Geom., Volume 6 (2006) no. 2, pp. 243-263 | DOI | MR | Zbl

[4] Benjamini, Itai; Schramm, Oded Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 403-419 | DOI | MR | Zbl

[5] Bonnefont, Michel; Golénia, Sylvain; Keller, Matthias Eigenvalue asymptotics for Schrödinger operators on sparse graphs, Ann. Inst. Fourier, Volume 65 (2015) no. 5, pp. 1969-1998 | DOI | Numdam | MR | Zbl

[6] Chen, Beifang; Chen, Guantao Gauss–Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces, Graphs Comb., Volume 24 (2008) no. 3, pp. 159-183 | DOI | MR | Zbl

[7] DeVos, Matt; Mohar, Bojan An analogue of the Descartes–Euler formula for infinite graphs and Higuchi’s conjecture, Trans. Am. Math. Soc., Volume 359 (2007) no. 7, pp. 3287-3300 | DOI | MR | Zbl

[8] Friedman, Joel; Pippenger, Nicholas J. Expanding graphs contain all small trees, Combinatorica, Volume 7 (1987), pp. 71-76 | DOI | MR | Zbl

[9] Froese, Richard; Hasler, David; Spitzer, Wolfgang Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs, J. Funct. Anal., Volume 230 (2006) no. 1, pp. 184-221 | DOI | MR | Zbl

[10] Golénia, Sylvain Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians, J. Funct. Anal., Volume 266 (2014) no. 5, pp. 2662-2688 | DOI | MR | Zbl

[11] Haeseler, Sebastian; Keller, Matthias Generalized solutions and spectrum for Dirichlet forms on graphs, Random walks, boundaries and spectra (Progress in Probability), Volume 64, Springer, 2011, pp. 181-199 | DOI | MR | Zbl

[12] Haeseler, Sebastian; Keller, Matthias; Wojciechowski, Radosł aw K. Volume growth and bounds for the essential spectrum for Dirichlet forms, J. Lond. Math. Soc., Volume 88 (2013) no. 3, pp. 883-898 | DOI | MR | Zbl

[13] Higuchi, Yusuke Combinatorial curvature for planar graphs, J. Graph Theory, Volume 38 (2001) no. 4, pp. 220-229 | DOI | MR | Zbl

[14] Hua, Bobo; Jost, Jürgen Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. II, Trans. Am. Math. Soc., Volume 367 (2015) no. 4, pp. 2509-2526 | DOI | MR | Zbl

[15] Hua, Bobo; Jost, Jürgen; Liu, Shiping Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature, J. Reine Angew. Math., Volume 700 (2015), pp. 1-36 | DOI | MR | Zbl

[16] Keller, Matthias The essential spectrum of the Laplacian on rapidly branching tessellations, Math. Ann., Volume 346 (2010) no. 1, pp. 51-66 | DOI | MR | Zbl

[17] Keller, Matthias Curvature, geometry and spectral properties of planar graphs, Discrete Comput. Geom., Volume 46 (2011) no. 3, pp. 500-525 | DOI | MR | Zbl

[18] Keller, Matthias Curvature and spectrum on graphs, Oberwolfach Rep., Volume 02 (2012), pp. 52-55 | DOI

[19] Keller, Matthias; Lenz, Daniel Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom., Volume 5 (2010) no. 4, pp. 198-224 | DOI | MR | Zbl

[20] Keller, Matthias; Peyerimhoff, Norbert Cheeger constants, growth and spectrum of locally tessellating planar graphs, Math. Z., Volume 268 (2011) no. 3-4, pp. 871-886 | DOI | MR | Zbl

[21] Keller, Matthias; Peyerimhoff, Norbert; Pogorzelski, Felix Sectional curvature of polygonal complexes with planar substructures, Adv. Math., Volume 307 (2017), pp. 1070-1107 | DOI | MR | Zbl

[22] Keller, Matthias; Pogorzelski, Felix Agmon estimates for Schrödinger operators on graphs (2021) (to appear in Journal d’Analyse Mathématique) | arXiv

[23] Klassert, Steffen; Lenz, Daniel; Peyerimhoff, Norbert; Stollmann, Peter Elliptic operators on planar graphs: unique continuation for eigenfunctions and nonpositive curvature, Proc. Am. Math. Soc., Volume 134 (2006) no. 5, pp. 1549-1559 | DOI | MR | Zbl

[24] Oh, Byung-Geun Duality properties of strong isoperimetric inequalities on a planar graph and combinatorial curvatures, Discrete Comput. Geom., Volume 51 (2014) no. 4, pp. 859-884 | DOI | MR | Zbl

[25] Reed, Michael; Simon, Barry Methods of modern mathematical physics. I, II, IV, Academic Press Inc., 1980 (Functional analysis) | MR | Zbl

[26] Stone, David A. A combinatorial analogue of a theorem of Myers, Ill. J. Math., Volume 20 (1976) no. 1, pp. 12-21 | MR | Zbl

[27] Woess, Wolfgang A note on tilings and strong isoperimetric inequality, Math. Proc. Camb. Philos. Soc., Volume 124 (1998) no. 3, pp. 385-393 | DOI | MR | Zbl

[28] Wojciechowski, Radosł aw K. Stochastic completeness of graphs, Ph. D. Thesis, University of New York, USA (2008), 87 pages (https://www.proquest.com/docview/304670648) | MR

[29] Zhang, Lili A result on combinatorial curvature for embedded graphs on a surface, Discrete Math., Volume 308 (2008) no. 24, pp. 6588-6595 | DOI | MR | Zbl

Cité par Sources :