[Asymptotique des valeurs propres et prolongement unique des fonctions propres sur un graphe planaire]
Dans ce travail, nous étudions les graphes planaires à courbure négative grande en dehors d’un ensemble fini et plus précisément la théorie spectrale d’opérateurs de Schrödinger sur de tels graphes. Nous obtenons des estimées du premier et du second ordre pour l’asymptotique des valeurs propres. Nous prouvons de plus un résultat de continuation unique ainsi que des propriétés de décroissance des fonctions propres. Les preuves sont basées sur une analyse fine de la géométrie et utilisent une procédure de “copier-coller” qui repose elle-même sur le théorème de Gauß–Bonnet.
We study planar graphs with large negative curvature outside of a finite set and the spectral theory of Schrödinger operators on these graphs. We obtain estimates on the first and second order term of the eigenvalue asymptotics. Moreover, we prove a unique continuation result for eigenfunctions and decay properties of general eigenfunctions. The proofs rely on a detailed analysis of the geometry which employs a Copy-and-Paste procedure based on the Gauß–Bonnet theorem.
Révisé le :
Accepté le :
Première publication :
Keywords: planar graph, Gauß–Bonnet Theorem, Schrödinger operator, eigenvalues asymptotics, unique continuation
Mots-clés : Graphe planaire, Théorème de Gauß–Bonnet, Opérateur de Schrödinger, Asymptotique de valeurs propres, continuation unique
Bonnefont, Michel 1 ; Golénia, Sylvain 1 ; Keller, Matthias 2
@unpublished{AIF_0__0_0_A134_0, author = {Bonnefont, Michel and Gol\'enia, Sylvain and Keller, Matthias}, title = {Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3695}, language = {en}, note = {Online first}, }
TY - UNPB AU - Bonnefont, Michel AU - Golénia, Sylvain AU - Keller, Matthias TI - Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3695 LA - en ID - AIF_0__0_0_A134_0 ER -
%0 Unpublished Work %A Bonnefont, Michel %A Golénia, Sylvain %A Keller, Matthias %T Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3695 %G en %F AIF_0__0_0_A134_0
Bonnefont, Michel; Golénia, Sylvain; Keller, Matthias. Eigenvalue asymptotics and unique continuation of eigenfunctions on planar graphs. Annales de l'Institut Fourier, Online first, 43 p.
[1] On the spectrum of Laplacians on graphs, Adv. Math., Volume 248 (2013), pp. 717-735 | DOI | MR | Zbl
[2] Curvature and geometry of tessellating plane graphs, Discrete Comput. Geom., Volume 25 (2001) no. 1, pp. 141-159 | DOI | MR | Zbl
[3] Geodesics in non-positively curved plane tessellations, Adv. Geom., Volume 6 (2006) no. 2, pp. 243-263 | DOI | MR | Zbl
[4] Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 403-419 | DOI | MR | Zbl
[5] Eigenvalue asymptotics for Schrödinger operators on sparse graphs, Ann. Inst. Fourier, Volume 65 (2015) no. 5, pp. 1969-1998 | DOI | Numdam | MR | Zbl
[6] Gauss–Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces, Graphs Comb., Volume 24 (2008) no. 3, pp. 159-183 | DOI | MR | Zbl
[7] An analogue of the Descartes–Euler formula for infinite graphs and Higuchi’s conjecture, Trans. Am. Math. Soc., Volume 359 (2007) no. 7, pp. 3287-3300 | DOI | MR | Zbl
[8] Expanding graphs contain all small trees, Combinatorica, Volume 7 (1987), pp. 71-76 | DOI | MR | Zbl
[9] Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs, J. Funct. Anal., Volume 230 (2006) no. 1, pp. 184-221 | DOI | MR | Zbl
[10] Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians, J. Funct. Anal., Volume 266 (2014) no. 5, pp. 2662-2688 | DOI | MR | Zbl
[11] Generalized solutions and spectrum for Dirichlet forms on graphs, Random walks, boundaries and spectra (Progress in Probability), Volume 64, Springer, 2011, pp. 181-199 | DOI | MR | Zbl
[12] Volume growth and bounds for the essential spectrum for Dirichlet forms, J. Lond. Math. Soc., Volume 88 (2013) no. 3, pp. 883-898 | DOI | MR | Zbl
[13] Combinatorial curvature for planar graphs, J. Graph Theory, Volume 38 (2001) no. 4, pp. 220-229 | DOI | MR | Zbl
[14] Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. II, Trans. Am. Math. Soc., Volume 367 (2015) no. 4, pp. 2509-2526 | DOI | MR | Zbl
[15] Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature, J. Reine Angew. Math., Volume 700 (2015), pp. 1-36 | DOI | MR | Zbl
[16] The essential spectrum of the Laplacian on rapidly branching tessellations, Math. Ann., Volume 346 (2010) no. 1, pp. 51-66 | DOI | MR | Zbl
[17] Curvature, geometry and spectral properties of planar graphs, Discrete Comput. Geom., Volume 46 (2011) no. 3, pp. 500-525 | DOI | MR | Zbl
[18] Curvature and spectrum on graphs, Oberwolfach Rep., Volume 02 (2012), pp. 52-55 | DOI
[19] Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom., Volume 5 (2010) no. 4, pp. 198-224 | DOI | MR | Zbl
[20] Cheeger constants, growth and spectrum of locally tessellating planar graphs, Math. Z., Volume 268 (2011) no. 3-4, pp. 871-886 | DOI | MR | Zbl
[21] Sectional curvature of polygonal complexes with planar substructures, Adv. Math., Volume 307 (2017), pp. 1070-1107 | DOI | MR | Zbl
[22] Agmon estimates for Schrödinger operators on graphs (2021) (to appear in Journal d’Analyse Mathématique) | arXiv
[23] Elliptic operators on planar graphs: unique continuation for eigenfunctions and nonpositive curvature, Proc. Am. Math. Soc., Volume 134 (2006) no. 5, pp. 1549-1559 | DOI | MR | Zbl
[24] Duality properties of strong isoperimetric inequalities on a planar graph and combinatorial curvatures, Discrete Comput. Geom., Volume 51 (2014) no. 4, pp. 859-884 | DOI | MR | Zbl
[25] Methods of modern mathematical physics. I, II, IV, Academic Press Inc., 1980 (Functional analysis) | MR | Zbl
[26] A combinatorial analogue of a theorem of Myers, Ill. J. Math., Volume 20 (1976) no. 1, pp. 12-21 | MR | Zbl
[27] A note on tilings and strong isoperimetric inequality, Math. Proc. Camb. Philos. Soc., Volume 124 (1998) no. 3, pp. 385-393 | DOI | MR | Zbl
[28] Stochastic completeness of graphs, Ph. D. Thesis, University of New York, USA (2008), 87 pages (https://www.proquest.com/docview/304670648) | MR
[29] A result on combinatorial curvature for embedded graphs on a surface, Discrete Math., Volume 308 (2008) no. 24, pp. 6588-6595 | DOI | MR | Zbl
Cité par Sources :