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EIGENVALUE ASYMPTOTICS AND UNIQUE
CONTINUATION OF EIGENFUNCTIONS ON PLANAR

GRAPHS

by Michel BONNEFONT,
Sylvain GOLÉNIA & Matthias KELLER

Abstract. — We study planar graphs with large negative curvature outside
of a finite set and the spectral theory of Schrödinger operators on these graphs.
We obtain estimates on the first and second order term of the eigenvalue asymp-
totics. Moreover, we prove a unique continuation result for eigenfunctions and decay
properties of general eigenfunctions. The proofs rely on a detailed analysis of the
geometry which employs a Copy-and-Paste procedure based on the Gauß–Bonnet
theorem.

Résumé. — Dans ce travail, nous étudions les graphes planaires à courbure né-
gative grande en dehors d’un ensemble fini et plus précisément la théorie spectrale
d’opérateurs de Schrödinger sur de tels graphes. Nous obtenons des estimées du
premier et du second ordre pour l’asymptotique des valeurs propres. Nous prouvons
de plus un résultat de continuation unique ainsi que des propriétés de décroissance
des fonctions propres. Les preuves sont basées sur une analyse fine de la géométrie
et utilisent une procédure de “copier-coller” qui repose elle-même sur le théorème
de Gauß–Bonnet.

1. Introduction

In recent years consequences of curvature bounds on the geometry and
spectral theory of graphs have been intensively studied. For planar graphs
a notion of curvature was introduced by Stone [26] going back to ideas
to Alexandrov and even Descartes. Recently, the study of this curvature
gained some m omentum. For positive and non-negative curvature geomet-
ric consequences and harmonic functions were studied in [6, 7, 14, 15, 26,

Keywords: planar graph, Gauß–Bonnet Theorem, Schrödinger operator, eigenvalues
asymptotics, unique continuation.
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29]. On the other hand, the geometry of negative and non-positive cur-
vature was investigated in [2, 3, 13, 17, 20, 24, 27] as well as for spectral
consequences see [1, 16, 17, 23]. For more recent work on sectional curvature
of polygonal complexes see [21].

The subject of this paper are planar graphs with large negative curvature
outside a finite set and we are interested in the spectral theory of the
Laplacian or more general that of Schrödinger operators. Especially, we
study the asymptotics of eigenvalues, existence of eigenfunctions of compact
support and decay properties of eigenfunctions in general.

Let us discuss the results of the paper in the light of the existing litera-
ture. In [16] it was proven that if the curvature tends to negative infinity
uniformly then the spectrum of the Laplacian is purely discrete. The first
order term of the eigenvalue asymptotics was obtained [5, 10] for so called
sparse graphs which include planar graphs. Here we get a hold on the sec-
ond order term of the asymptotics of the eigenvalues in the case of planar
graphs with uniformly decreasing curvature, see Theorem 1.6 and Corol-
lary 1.8.

Next, we turn to eigenfunctions. In [17, 23] unique continuation results
for graphs under non-positive curvature were shown. However, the relevant
curvature notion is the one of corner curvature, see Formula (C) below,
and these results are rather delicate. For example they fail to hold for
the Kagome lattice which has non-positive vertex curvature only, see [23].
Moreover, we also present an example showing that the failure of the curva-
ture assumption on a finite set can lead to the existence of infinitely many
compactly supported eigenfunctions, see Section 3.7. On the other hand,
we show that if the curvature is sufficiently negative outside a finite set,
then compactly supported eigenfunctions can occur in a finite region only,
see Theorem 1.9.

Finally, we prove Agmon estimates as they were recently obtained in [22]
to give decay results on general eigenfunctions, Theorem 1.11.

To prove these results we carefully study the geometry of graphs with
large degree outside a finite set. The underlying philosophy (which is made
precise later in the paper) is that we can continue such a planar graph to
a tessellation with non-positive corner curvature after generously removing
the set of positive curvature.

While the geometric results are mainly phrased without mentioning cur-
vature the proofs make use of the Gauß–Bonnet theorem – which essentially
involves curvature. Firstly, the geometric results include statements about
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the sphere structure of the graph sufficiently far outside. These considera-
tions yield immediately a Cartan–Hadarmard type result about continua-
tion of geodesics, see Theorem 1.1 for these results. While we also recover
some of the results of [2, 3] our approach is independent of theirs. Secondly
we investigate the existence of spanning trees that are in some sense close
to the original graphs. In particular, we show that there exist spanning
trees that are bounded perturbations of the original graph, Theorem 1.2.

These geometric results are then applied to the study of the spectral
theory of Schrödinger operators in the following.

The paper is structured as follows. In the next subsection we introduce
the basic notions and in the following two subsections we present the geo-
metric and spectral results. The proof of the geometric result relies heavily
on a so called Copy-and-Paste procedure presented in Section 2. Next, we
closely study the case of triangulations in Section 3. Then the geometric
results follow rather directly from considering triangulation supergraphs.
A result about spanning trees is proven in Subsection 4.1 and the result
about continuing a graph with negative curvature outside a finite set to a
non-positively curved tessellation is shown in Section 4. The unique con-
tinuation result is also proven in this section. Finally, in Section 5 we prove
the results about discrete spectrum, the asymptotics of eigenvalues and the
decay of eigenfunctions.

1.1. Set up and definitions

Let an infinite connected simple graph G = (V,E) be given. The degree
deg(v) of a vertex v ∈ V is the number of adjacent vertices. We assume
2 ⩽ deg(v) < ∞ for all v ∈ V . We call a sequence of vertices (v0, . . . , vn)
a walk of length n if v0 ∼ . . . ∼ vn, where v ∼ w denotes that v and w are
adjacent.

We denote by d the natural graph distance on G which is the length of
the shortest walk between two vertices.

We fix a vertex o ∈ V which we call the root. For r ⩾ 0, we define the
sphere with respect the natural graph distance by

Sr := Sr(o) := {v ∈ V | d(o, v) = r} .

The distance balls are defined as

Br := Br(o) := {v ∈ V | d(o, v) ⩽ r} .

TOME 0 (0), FASCICULE 0



4 Michel BONNEFONT, Sylvain GOLÉNIA & Matthias KELLER

For a vertex v ∈ Sr, r ⩾ 0, we call w ∈ Sr±1, v ∼ w a forward/backward
neighbor and denote

deg±(v) := |{w ∈ Sr±1 |w ∼ v}| and deg0(v) := |{w ∈ Sr |w ∼ v}| ,

where |A| denotes the number of elements of a set A ⊆ V .
We assume that G is a planar graph which is embedded into an orientable

topological surface S homeomorphic to R2 or the sphere S2. We assume that
the embedding of G is locally finite, that is for every point in S there is a
neighborhood which intersects only finitely many edges.

From now on, when we speak about planar graphs we always assume
to have an infinite connected simple planar graph which admits a locally
finite embedding.

We associate to G the set of faces F whose elements are defined as
the closures of the connected components of S \

⋃
E, i.e., the connected

components of S after removing the edge segments. The boundary of a face
f is defined as the elements of V whose image belongs to f . A boundary
walk of f is a closed walk which visits every vertex of f . The length of the
shortest boundary walk is called the degree deg(f) of the face f ∈ F and if
no closed boundary walk exists we say that f has infinite degree. In what
follows we do not distinguish between the graph and its embedding.

The set of corners C(G) is given as the set of pairs (v, f) ∈ V × F such
that v is contained in f . The degree |(v, f)| of a corner (v, f) is the minimal
number of times the vertex v is met by a boundary walk of f . The corner
curvature κC : C(G) → R is given by

κC(v, f) := 1
deg(v) − 1

2 + 1
deg(f) .(C)

This quantity was first introduced in [2, 3] for tessellations and in [17] for
general planar graphs. Summing over all corners of a vertex gives the vertex
curvature κ : V → R

κ(v) :=
∑

(v,f)∈C(G)

|(v, f)|κC(v, f).

This quantity was first defined in [26] for tessellations following ideas of
Alexandrov and for general planar graphs in [17]. In [17, Proposition 1]
(or [2] for tessellations) a Gauß–Bonnet formula for this curvature is shown
which reads for a connected finite planar graph embedded in S2 as∑

v∈V
κ(v) = χ

(
S2) = 2,(GB)

ANNALES DE L’INSTITUT FOURIER
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where the χ(S2) is the Euler characteristic of S2. Moreover, it is shown
in [17], that since deg(v) =

∑
f ∋ v |(v, f)|, for all v ∈ V , one has

κ(v) = 1 − deg(v)
2 +

∑
f∈F, f∋v

|(v, f)| 1
deg(f) .

The most interesting examples are tessellations which are discussed in a
slightly more general form in Section 3.7.

We continue by introducing some more notation needed for the paper.
For two walks p = (v0, . . . , vn) and q = (w0, . . . , wm) with vn = w0 or
v0 = wm, we denote by p+ q the walk (v0, . . . , vn, w1, . . . , wm) if vn = w0
or (v1, . . . , vn, wm−1, . . . , w0) if vn = wm. A walk (v0, . . . , vn) is called
a path if the vertices in a walk are pairwise different except for possibly
v0 = vn. We say that n is the length of the path. Moreover, a walk (vn)
is called a geodesic if d(v0, vn) = n for all n. For a walk p = (v0, . . . , vn),
we denote its vertex set by V (p) = {v0, . . . , vn} and call it the trace of
p. We call the vertices v1, . . . , vn−1 the inner vertices and v0, vn the outer
vertices of the walk p. We call p closed if v0 = vn. Note that the definition
of a path does not allow repetition of vertices apart from the beginning and
the ending vertex. To stress this we sometimes refer to closed paths also as
simply closed paths.

Each simply closed path p in the graph induces a simply closed curve
with image γ(p) in the surface S where the graph is embedded. By Jordan’s
curve theorem, this induces a partition of S as

S = B(p) ∪ γ(p) ∪ U(p),

where B(p) and U(p) are respectively the bounded and the unbounded
connected component of S \ γ(p).

For a subset W ⊆ V , let GW be the induced subgraph (W,EW ), where
EW ⊆ E is the set of edges with beginning and end vertex in W . We say
that GW has a closed boundary path if there is a closed path p within the
graph GW such that B(p) ∩ V = W . Every vertex in W not contained in a
boundary path is called an interior vertex of GW . Indeed, boundary walks
are unique up to enumeration.

When we consider two planar graphs G and G′ at the same time we
denote the degree on G′ by deg′ or deg(G′), the curvatures by κ′

C or κ(G′)
C ,

κ′ or κ(G′) and the natural graph distance by d′ or d(G′).

TOME 0 (0), FASCICULE 0



6 Michel BONNEFONT, Sylvain GOLÉNIA & Matthias KELLER

1.2. Geometric results

In this work we first show that planar graphs with vertex degree large
outside a finite set are in some sense really close to tree graphs. We shall
consider two situations. First, we consider deg ⩾ 6 for all vertices except
possibly for the root and secondly deg ⩾ 7 outside a finite set.

The first theorem is a Cartan–Hadarmard type theorem. This says that
(sufficiently long) geodesics can be continued indefinitely which is equiva-
lent to the function d(o, ·) not having local maxima (outside a finite set). In
the literature this is also referred to as absence or emptiness of the cut-locus
(which is the set where d(o, ·) attains its local maxima), [2, 3].

Furthermore the theorem includes a remarkable structural statement
about distance spheres. To this end, we say a subset W of a planar graph
G can be cyclically ordered if there is a planar supergraph G′ of G such
that W is the trace of a simply closed path of G′.

Theorem 1.1. — Let G = (V,E) be a planar graph, such that one of
the following conditions hold:

(a) deg ⩾ 6 outside the root o.
(b) deg ⩾ 7 outside some finite set.

Then, there exists a finite set K ⊆ V (which can be chosen to be K = {o}
in case (a)) such that for all v ∈ V \K

deg0(v) ⩽ 2 and 1 ⩽ deg−(v) ⩽ 2.

In particular, any geodesic reaching V \K from o can be continued indefi-
nitely. Furthermore, all the spheres outside V \K can be cyclically ordered.

Observe that (a) is already included in [2, 3] since deg ⩾ 6 implies
κC ⩽ 0 but our proof follows a completely different strategy. However, our
techniques also allow us to change our graphs by replacing a finite set with
a vertex such that they become graphs with κC ⩽ 0 everywhere. This is
discussed in detail in Section 3.7.

The second result is that planar graphs with large vertex degree are
close to some of their spanning trees in the sense that it is a bounded
perturbation. Two graphs over the same vertex set have the same sphere
structure if for a fixed root the distance spheres are the same sets for both
graphs.

Theorem 1.2. — Let G be a planar graph, such that one of the follow-
ing conditions hold:

(a) deg ⩾ 6 outside the root o.

ANNALES DE L’INSTITUT FOURIER
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(b) deg ⩾ 7 outside some finite set.
Then, there exists a spanning tree T of G such that outside a finite set the
vertex degrees of T and G differ at most by 4, where the finite set is empty
in case (a). Furthermore, T and G have the same sphere structure.

Remark 1.3. — The existence of spanning trees with certain properties
is also treated in [4, 8].

Remark 1.4. — Our techniques of proof allow us to quantify the finite set
in the theorems, Theorem 1.1 and Theorem 1.2. In fact, given the radius of
the ball out of which the degree is larger than 7, one can give an estimate
on the radius of the ball such that outside this ball the statements hold.

Remark 1.5. — It would be interesting to study whether the criteria
deg ⩾ 6 outside the root or deg ⩾ 7 outside a finite set can be replaced by
a weaker curvature type assumption. In the case of triangulations deg ⩾ 6
is equivalent to κC ⩽ 0 and deg ⩾ 7 is equivalent to κC < 0. It remains
an open question which of the results still hold for deg ⩾ 6 outside a finite
set.

The proof of the geometrical results above for general planar graphs is
given in Section 4. It will follow from the case of planar triangulations by
an embedding into a triangulation supergraph. The case of triangulation
is investigated in Section 3. It uses a Copy-and-Paste procedure given in
Section 2 and a fine study of an adapted new sphere structure.

1.3. Spectral consequences

In this section, we turn to some spectral consequences for the Laplacian
on ℓ2(V ). We introduce some notation first.

Denote the space of square summable real valued functions by ℓ2(V ), the
corresponding scalar product by ⟨·, ·⟩ and the norm by ∥ · ∥.

We consider the Laplace operator ∆ = ∆G defined as

D(∆) :=
{
φ ∈ ℓ2(V )

∣∣∣∣∣ (v 7→
∑
w∼v

(φ(v) − φ(w))) ∈ ℓ2(V )
}

∆φ(v) :=
∑
w∼v

(φ(v) − φ(w)).

The operator is positive and selfadjoint (confer [28, Theorem 1.3.1.]).

TOME 0 (0), FASCICULE 0
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For a function g : V → R, we denote with slight abuse of notation the
operator of multiplication again by g, as well as the corresponding quadratic
form

g(φ) := ⟨gφ, φ⟩ =
∑
v∈V

g(v)φ(v)2

and for φ ∈ Cc(V ) (which are the real valued functions of compact support).
For two self-adjoint operators A and A′ on ℓ2(V ) and a subspace D0 ⊆

D(A) ∩D(A′) we write A ⩽ A′ on D0 if ⟨Aφ,φ⟩ ⩽ ⟨A′φ,φ⟩ for φ ∈ D0.
For a function q, we let the positive and negative part be given by q± =

max{±q, 0}. We denote by Kα, α ∈ (0, 1], the class of potentials q : V → R
such that there is C ⩾ 0 such that

q− ⩽ α(∆ + q+) + C, on Cc(V ).

As the operator (∆ + q)|Cc(V ) is symmetric and bounded from below for q
in Kα, α ∈ (0, 1], it admits a Friedrich’s extension which we also denote by
∆ + q.

For a self-adjoint operator A which is bounded from below, we denote the
discrete eigenvalues below the bottom of the essential spectrum by λn(A)
in increasing order counted with multiplicity for all n ⩾ 0 for which they
exist. We denote

dn = λn(deg +q), n ⩾ 0.

Furthermore, we use the Landau notation o(an) for a sequences (bn) such
that bn/an → 0 as n → ∞.

The following theorem is the main result about the asymptotics of eigen-
values.

Theorem 1.6. — Let G be a planar graph and q ∈ Kα, α ∈ (0, 1).
Then the spectrum of ∆ + q is purely discrete if and only if

sup
K⊂V finite

inf
v∈V \K

(−κ(v) + q(v)) = ∞.

In this case and if q ⩾ 0

dn − 2
√
dn − o

(√
dn

)
⩽ λn(∆ + q) ⩽ dn + 2

√
dn + o

(√
dn

)
.

Remark 1.7.
(a) The first part of the theorem above was announced in [18] and is a

unification of [16, Theorem 3] and [19, Corollary 21] for Schrödinger
operators on planar graphs. The second part improves the consid-
erations of [5, 10] by giving the second order term on the eigenvalue
asymptotics.

ANNALES DE L’INSTITUT FOURIER
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(b) For potentials q in
⋂
α∈(0,1) Kα instead of q ⩾ 0, one has still the

same first term of the eigenvalue asymptotics, see [5].

In the case of planar graphs with constant face degree we can even prove
bounds with an even more geometric flavor. For k ⩾ 3, denote

γ(k) := 2π 2(k − 2)
k

,

that is, if a face f ∈ F with deg(f) = k is a regular k-gon, then γ(k) is the
inner angle of f . Moreover, denote

κn = −λn(−κ), n ⩾ 0,

and in case there are infinitely many κn (which are a decreasing sequence)
we let

κ∞ = lim
n→∞

κn.

Corollary 1.8. — Let G be a planar graph whose face degree is con-
stantly k outside some finite set. The operator ∆ has purely discrete spec-
trum if and only if

κ∞ = −∞.

In this case, κn ⩽ 0 for large n and

− 2π
γ(k)κn − 2

√
− 2π
γ(k)κn − o (

√
κn)

⩽ λn(∆) ⩽ − 2π
γ(k)κn + 2

√
− 2π
γ(k)κn + o (

√
κn) .

The proofs of the preceding theorems and corollaries are given in Sec-
tion 5.

From the results above we learn that in the case of uniformly unbounded
curvature the spectrum consists of discrete eigenvalues. The following corol-
lary is a unique continuation result telling us that outside a compact set
eigenfunctions have unbounded support.

Theorem 1.9. — Let G be a planar graph. Assume

κ∞ = −∞.

Then, outside a finite set there are no eigenfunctions of compact support of
∆ + q for all q ∈ K1. In particular, there are at most finitely many linearly
independent eigenfunctions of compact support.

TOME 0 (0), FASCICULE 0
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Remark 1.10.
(a) In [23, Theorem 1], [17, Theorem 9] it is proven for tessellations and

locally tessellating graphs that κC ⩽ 0 implies absence of compactly
supported eigenfunctions for the operator ∆+q. We emphasize that
Theorem 1.9 is not a simple perturbation result of [17, 23]. Indeed,
unique continuation is a rather subtle issue on discrete spaces. For
example there are spaces with κ ⩽ 0 and which admit compactly
supported eigenfunctions see e.g. [2]. See also Example 3.18 in Sec-
tion 3.6.

(b) Validity of the theorem does not depend on the particular choice of
∆ + q but holds for arbitrary nearest neighbor operators (i.e., with
arbitrary complex coefficients for the edges and arbitrary complex
potentials), see Theorem 3.15 in Section 3.6.

(c) From the proof of Theorem 1.9, we can deduce an explicit estimate
on the size of the set where compactly supported eigenfunctions can
be supported, see Theorem 4.3.

For the other eigenfunctions we obtain a result on the decay which is
based on Agmon type estimates as they are developed in [22]. In Section 5,
we give a simplified proof which is adapted to the situation of planar graphs.

Theorem 1.11. — Let G be a planar graph. Assume

κ∞ = −∞.

Then, any eigenfunction u ∈ D(∆) of ∆ satisfies

αd(o,·)u ∈ ℓ2(X,deg),

for all 0 < α < 1 +
√

2.

2. Copy-and-Paste Lemma

In this section we prove a lemma that shows that certain subgraphs
imply the presence of positive curvature. The proof works by making several
copies of the subgraph and pasting them along the boundary path. The
resulting graph can be embedded in the two dimensional sphere. We then
apply a discrete Gauß–Bonnet theorem. Similar ideas can be found in [17].

Lemma 2.1 (Copy-and-Paste Lemma). — Let G′ = (V ′, E′) be a sub-
graph of a planar graph G = (V,E) with a simply closed boundary path
p in G′ such that there are (at most) three vertices v0, v1, v2 ∈ V (p) such
that

ANNALES DE L’INSTITUT FOURIER
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(a) deg′(v) ⩾ 4 for all v ∈ V (p) \ {v0, v1, v2},
(b) deg′(v0) ⩾ 3,
(c) deg′(v1),deg′(v2) ⩾ 2.

Then, there is v ∈ V ′ \ V (p) such that

κ(v) = κ′(v) > 0.

Proof. — The proof uses a copy and paste procedure applied to G′ with
boundary path p = p0 + p1 + p2 which is illustrated in Figure 2.1.

We denote the subpath of p from v1 to v2 by p0, the subpath of p
from v2 to v0 by p1 the one from v0 to v1 by p2. We make two copies
G(1), G(2) of G′ and denote the corresponding copies of pj by p(1)

j and p(2)
j ,

j = 0, 1, 2. We paste G(1) and G(2) along p(1)
0 and p(2)

0 (after reflecting G(2)

– where reflecting always means with respect to the path along the graphs
are pasted). We denote the resulting graph by G1. We denote the boundary
path of G1 in the following way: Denote p(1)

1 by q4, p(2)
1 by q3, p(2)

2 by q2

and p
(1)
2 by q1.

Let us keep track of the vertex degrees in G1:
• All vertices in the glued path of p(1)

0 and p
(2)
0 have degree at least

6 in G1.
• The copies of the vertices v1 and v2 in G(1) and G(2) that are merged

have now vertex degree at least 3 in G1.
• The two copies of v0 in G1 have still vertex degree at least 3.
• All other vertices in the boundary path have degree at least 4.

Next, we make seven copies G(j)
1 , j = 0, . . . , 6, of G1 and we denote the

corresponding subpaths of the boundary by q
(j)
1 , . . . , q

(j)
4 , j = 0, . . . , 6.

We paste:
• G

(0)
1 to G(1)

1 along q(0)
1 and q

(1)
1 (after reflecting G(1)

1 ),
• G

(0)
1 to G(2)

1 along q(0)
2 and q

(2)
2 (after reflecting G(2)

1 ),
• G

(1)
1 to G(2)

1 along q(1)
2 and q

(2)
1 (which is possible as q(1)

2 and q
(2)
1

both originate from p1),
• G

(2)
1 to G(3)

1 along q(2)
3 and q

(3)
3 (after rotating G(3)

1 ),
• G

(0)
1 to G(4)

1 along q(0)
3 and q

(4)
3 (after reflecting G(4)

1 ),
• G

(3)
1 to G(4)

1 along q(3)
2 and q

(4)
2 ,

• G
(0)
1 to G(5)

1 along q(0)
4 and q

(5)
4 (after reflecting G(5)

1 ),
• G

(4)
1 to G(5)

1 along q(4)
4 and q

(5)
3 (which is possible as q(4)

4 and q
(5)
3

both originate from p2),
• G

(5)
1 to G(6)

1 along q(5)
1 and q

(6)
1 (after rotating G(6)

1 ),
• G

(1)
1 to G(6)

1 along q(1)
4 and q

(6)
4 .
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Figure 2.1. An illustration of the copy and paste procedure. (The
arrows only indicate the orientation of the subpaths.)
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We denote the resulting graph by G2 and the boundary path q(3)
1 +q(4)

1 +
q

(5)
2 +q

(6)
2 by r1 and q(6)

3 +q
(1)
3 +q

(2)
4 +q

(3)
4 by r2. We summarize some facts

about the vertex degrees in G2:

• All vertices in G2 that are not in the boundary path of G2 but
were in the boundary paths of G(0)

1 , . . . , G
(6)
1 have vertex degree

at least 6. (The inner vertices of q(j)
1 , . . . q

(j)
4 , j = 0, . . . , 6, had

vertex degree at least 4 before being pasted. The outer vertices of
q

(j)
1 , . . . q

(j)
4 , which are originating from the vertices u, u′ and v,

had vertex degree at least 3 before and each is pasted to at least
three copies.)

• The vertex in the boundary path in the intersection of q(3)
1 and q(3)

4
from G

(3)
1 (which originated from a copy of v) has vertex degree at

least 3. The same applies to the vertex in the intersection of q(6)
2

and q
(6)
3 from G

(6)
1 .

• All other vertices in the boundary path of G2 have vertex degree at
least 4.

Next, we make four copies G(1)
2 , . . . , G

(4)
2 of G2. We paste:

• G
(1)
2 to G(2)

2 along r(1)
2 and r

(2)
2 (after reflecting G(2)

2 ),
• G

(2)
2 to G(3)

2 along r(2)
1 and r

(3)
1 ,

• G
(3)
2 to G(4)

2 along r(3)
2 and r

(4)
2 (after reflecting G(4)

2 )
• after embedding the resulting graph into the two dimensional sphere
S2 we paste G(1)

2 to G(4)
2 along r(1)

1 and r
(4)
1 .

The resulting graph G3 = (V3, E3) is a planar graph that can be embed-
ded in the sphere S2. By the Gauß–Bonnet formula, (GB) which is taken
from [17, Proposition 1] (or [2] for tessellations),∑

v∈V3

κ(G3)(v) = 2.

Denote the vertices in G3 that result from copies of vertices in V (p) of
the original subgraph G′ by V

(p)
3 . By our construction they have degree

at least 6 in G3. Thus, κ(G3)(v) ⩽ 0 for any such vertex v ∈ V3 \ V (p)
3 .

(Note that the minimal face degree is 3 due to triangles and, therefore,
κ

(G3)
C (v, f) ⩽ 1/6−1/2+1/3 = 0 which implies κ(G3)(v) ⩽ 0). On the other

hand, for every vertex v′ ∈ V ′ \V (p) there are 56 = 2·7·4 copies in V3 \V (p)
3

and for any such copy v of v′ we have κ(G3)(v) = κ(G′)(v) = κ(G)(v). In
conclusion, we have
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14 Michel BONNEFONT, Sylvain GOLÉNIA & Matthias KELLER

2 =
∑
v∈V3

κ(G3)(v) ⩽
∑

v∈V3\V (p)
3

κ(G3)(v) = 56
∑

v∈V ′\V (p)

κ(G′)(v),

which implies the statement. □

There is an immediate corollary which will plays a major role in the
considerations below.

Corollary 2.2. — Let G′ = (V ′, E′) be a subgraph of a planar graph
G = (V,E) with a simply closed boundary path such that every interior
vertex has degree larger or equal to 6 in G′ and all but two vertices in the
boundary path have degree at least 3. Then, there are at least four vertices
in the boundary path that have vertex degree at most 3 in G′.

Proof. — Suppose all but three vertices in the boundary path have de-
gree larger or equal to 4. Then, the assumptions of the lemma above are
fulfilled and, therefore, there exists a vertex in the interior with positive
curvature. This however is impossible by the assumption that the vertex
degrees of the interior vertices are larger or equal to 6 as this implies κ ⩽ 0
by the definition of the curvature, see Formula (C) and the formulas be-
low. □

3. Triangulations

In this section we begin by proving Theorem 1.1 and its consequences in
the simpler case of triangulations. The case of general planar graphs will
be investigated in Section 4.

To phrase the result in the special case of triangulations we need some
notation first. We denote by Br the embedding of the vertices and the edges
of the distance balls Br, confer Section 1.1, into S. Since Br is a compact
set, S\Br admits only one unbounded connected component that we denote
by Ur. We also denote

Ur := V ∩ Ur.
Observe that in general V only strictly includes the union Br ∪Ur as there
can be vertices in Br which distance larger than r from the root which are
however enclosed by vertices in Br.

Theorem 3.1. — Let G = (V,E) be a planar triangulation such that
one of the following assumptions holds:

(a) deg ⩾ 6 outside the root o.
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(b) deg ⩾ 7 outside Br for some r ⩾ 0.
Let v ∈ SR ∩ Ur with R > r + log2 |Sr|, (where r = 0 in case (a)). Then,

deg0(v) = 2 and 1 ⩽ deg−(v) ⩽ 2.

In particular, any geodesic reaching such a vertex v from o can be continued
indefinitely. Furthermore, all spheres SR ∩ Ur are given by a cyclic path.

Remark 3.2. — In Section 3.4 we show that we can extend our techniques
so that the results also hold for all v ∈ SR instead of SR ∩ Ur. However,
the result as stated above is enough to prove our main results.

To prove the theorem we employ the copy and paste procedures above.
But before we have to introduce a new sphere structure that reflects the
fact that geodesics might not be continued to infinity.

3.1. A new sphere structure

We first introduce some notation. Recall that each simply closed path p

in the graph induces a simply closed curve with image γ(p) in the surface
S where the graph is embedded. Furthermore, recall that Jordan’s curve
theorem induces a partition of S as

S = B(p) ∪ γ(p) ∪ U(p),

with B(p) and U(p) being respectively the bounded and the unbounded
connected component of S \ γ(p).

We also denote

B(p) := V ∩ B(p) = V ∩ (B(p) ∪ γ(p)) and U(p) := V ∩ U(p).

Furthermore, recall that we denoted V (p) := V ∩ γ(p).

Lemma 3.3. — LetG be a planar triangulation and r ⩾ 0. The subgraph
induced by Ur is connected and infinite. Moreover if w ∼ w′ with w ∈ Ur
and w′ /∈ Br, then w′ ∈ Ur.

Proof. — First since Ur is unbounded, the fact that the subgraph induced
by G on Ur is infinite is clear. Let v, w ∈ Ur. First, let γ be a simply
closed curve in S such that v, w are on γ and Br lies in the open bounded
region enclosed by γ. Let f1, . . . , fn be a path of faces which γ passes
through from v to w, i.e., two subsequent faces intersect in exactly one
edge which is crossed by γ. These edges have at least one vertex outside
Br which we denote by v1, . . . , vn. Two subsequent vertices vj and vj+1
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16 Michel BONNEFONT, Sylvain GOLÉNIA & Matthias KELLER

are connected by a path of boundary vertices of fj which are not included
in Br, j = 1, . . . , n− 1. This induces a path in the graph between v and w
in Ur. The last statement is easy: indeed if w ∼ w′, w ∈ Ur and w′ /∈ Br,
the edges joining w to w′ gives a curve in S \ Br. Thus w and w′ are in the
same connected component of S \ Br and the statement follows. □

Note that since the other connected components of S \ Br are bounded,
the other induced graphs are finite.

The following definition turns to be an important object in our study.

Vr := {v ∈ Br | there is w ∈ Ur such that v ∼ w} .

Lemma 3.4. — Let G be a planar triangulation. For every r ⩾ 1, there
exists a simply closed path of vertices pr such that Vr = V (pr). Moreover,
one has

Br ⊆ B(pr), and Ur = U(pr) ⊆ V \Br.

Furthermore, one also has

Vr = {v ∈ Sr | there is w ∈ Ur such that v ∼ w}
= {v ∈ B(pr) | there is w ∈ Ur such that v ∼ w} .

Proof. — We show ∅ ̸= Vr ⊆ Sr: Since the graph is connected, Vr is not
empty. Moreover, by construction, Ur ⊆ V \Br. So, for a vertex in Vr to be
connected to Ur it cannot be in Br−1. Thus, we have Vr ⊆ (V \Br−1) ∩Br
= Sr.

Existence of a simply closed path pr with V (pr) ⊆ Vr: We now claim that
for every vertex in v ∈ Vr, there are (at least) two distinct adjacent vertices
in Vr. This easily follows by considering the combinatorial neighborhood
of v ∈ Sr which includes a neighbor v− in Sr−1 and v+ in Sr+1 ∩ Ur and
using that G is a triangulation. Since Sr is finite, there necessarily exists a
simply closed path pr of vertices in Vr.

We show that the root o is in B(pr): By construction of the simply
closed path pr, and its image γ(pr) which is a simply closed curve in S,
there exist two vertices v− ∈ Sr−1 and v+ ∈ Sr+1 ∩Ur which do not belong
to the same connected component of S \ γ(pr). Since V (pr) ⊆ Sr ⊆ Br,
one has Ur ⊆ U(pr). Thus, v+ ∈ U(pr) and v− ∈ B(pr). Furthermore, all
the vertices on the geodesic between the root o and v− belong to the same
connected component and, therefore, belong to B(pr).

We show U(pr) ⊆ V \ Br and Br ⊆ B(pr): The two statements are
equivalent by taking the complement. Let us prove the first statement. Let
v ∈ U(pr) and consider a geodesic from o to v. By connectedness, it has
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to cross the simply closed curve γ(pr) arising from pr and must contain
a vertex in V (pr), necessarily different from v. Since V (pr) ⊆ Sr, one has
d(o, v) ⩾ r + 1. Thus, v is not in Br.

We show Vr = V (pr): Since we constructed pr such that V (pr) ⊆ Vr,
we are left to show Vr ⊆ V (pr). Let v ∈ Vr and w ∈ Ur such that v ∼ w.
Consider a geodesic p from o to v. Thus, adding w to the end of p is
a geodesic between o and w which, by connectedness, must cross V (pr),
since o ∈ B(pr) and w ∈ Ur ⊆ U(pr). Recalling V (pr) ⊆ Sr, this implies
v ∈ V (pr).

We show Ur = U(pr): We already noticed that Ur ⊆ U(pr). The reverse
inclusion follows from the following general connectedness result: Let A ⊆
B ⊆ E in a topological space E and let OA be an arc-connected component
of E\A such thatOA ⊆ E\B. Then,OA is also an arc-connected component
of E \B.

Finally, we turn to the last two equalities concerning Vr. The first equality
is clear, since we already know Vr ⊆ Sr. We turn to the second equality.
Let v ∈ B(pr) and w ∈ Ur = U(pr) such that v ∼ w. Let p be any path
form o to v. Since o ∈ B(pr), w ∈ U(pr) and v ∼ w, there is u ∈ V (p)
such that u ∈ V (pr). Consider the last vertex u in the path pr with this
property. Then this vertex and all the following vertices including v must
be in V (pr) ∪ U(pr). Since v ̸∈ U(pr), we conclude v ∈ V (pr) = Vr. □

We define inductively Σ0 = S0 = {o} and

Σr := B(pr) \ Σr−1 and ∂Σr := V (pr), r ⩾ 1.

This gives a decomposition of V into a “new sphere structure”. This new
sphere structure is also called a “1-dimensional decomposition” in the lit-
erature. We denote

B(Σ)
r :=

r⋃
k=0

Σk

for r ⩾ 0. Note that B(Σ)
r = B(pr) for r ⩾ 1.

Lemma 3.5. — Let G be a planar triangulation. Let r, r′ ⩾ 0 and v ∈
Σr, w ∈ Σr′ such that v ∼ w, then

|r′ − r| ⩽ 1.

Proof. — Let r ⩾ 0, l ⩾ 1 and v ∈ Σr, w ∈ Σr+l such that v ∼ w. Since
by construction B(pr) = B

(Σ)
r , we deduce w ∈ U(pr) = Ur (where pr is

taken from Lemma 3.4). By definition of Vr and v ∼ w, we obtain v ∈
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Vr = ∂Σr ⊆ Sr and, therefore, w ∈ Sr+1. Hence, w ∈ B
(Σ)
r+1 as Br+1 ⊆ V ∩

B(pr+1) = B
(Σ)
r+1. Thus, w ∈ Σr+1 that is l = 1 and the result follows. □

Next, we analyze this new sphere structure more closely. To this end, we
denote by deg(Σ)

± (v) (respectively deg(Σ)
0 (v)) the number of neighbors of a

vertex v ∈ Σr in Σr±1 (respectively in Σr).

Lemma 3.6. — In a planar triangulation we have

∂Σr = Vr,

for all r ⩾ 1. Moreover, on ∂Σr,

deg+ ⩾ deg(Σ)
+ ⩾ 1, deg− = deg(Σ)

− ⩾ 1 and 2 ⩽ deg0 ⩽ deg(Σ)
0

and, on Σr \ ∂Σr,

deg(Σ)
+ = 0.

Proof. — The first statement ∂Σr = Vr follows directly from Lemma 3.4
and the definition of ∂Σr. We first consider the case of v ∈ ∂Σr = Vr.

We show deg+(v) ⩾ deg(Σ)
+ (v) ⩾ 1 for v ∈ ∂Σr: We first claim

{w ∈ Sr+1 |w ∼ v} ⊇ {w ∈ Σr+1 |w ∼ v} ≠ ∅.

Vertices in Vr have (at least) one neighbor in Ur = U(pr) = V \B(pr). By
definition of Σr+1 these neighbors are exactly the neighbors of v in Σr+1
and we have already seen in Lemma 3.4 that they must belong to Sr+1.
Thus,we obtain deg+(v) ⩾ deg(Σ)

+ (v) ⩾ 1.
We show deg−(v) = deg(Σ)

− (v) ⩾ 1 for v ∈ ∂Σr:To this end, we claim

{w ∈ Σr−1 |w ∼ v} = {w ∈ ∂Σr−1 |w ∼ v} = {w ∈ Sr−1 |w ∼ v} ≠ ∅.

To see this, we first note that by connectedness ∂Σr ⊆ Ur−1. Thus, if
w ∈ Sr−1 is a neighbor of v ∈ ∂Σr, then w ∈ Vr−1 = ∂Σr−1 by definition
and, therefore, w ∈ Σr−1. On the other hand, if w ∈ Σr−1 is a neighbor of
v ∈ ∂Σr, then it must belong to ∂Σr−1 and as noticed before to Sr−1.

We show 2 ⩽ deg0 ⩽ deg(Σ)
− v ∈ ∂Σr:The second inequality follows from

the first two inequalities. Furthermore, v ∈ ∂Σr = Vr has two neighbors in
Vr = V (pr) ⊆ Sr.

We show deg(Σ)
+ (v) = 0 for v ∈ Σr \ ∂Σr: If v ∈ Σr \ ∂Σr, then v does

not admit any neighbor in Ur. Thus, v has no neighbors in Σr+1 since
Σr+1 ⊆ Ur from which deg(Σ)

+ (v) = 0 follows.
This finishes the proof. □
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Figure 3.1. An example of a part of Σr and Σr+1, where the horizontal
lines indicate the boundary edges connecting ∂Σr−1, ∂Σr and ∂Σr+1.
The thick lines enclose the elementary cells and different types of ele-
mentary cells for the vertices v, w, x, y are illustrated.

3.2. Elementary cells

In this section we define elementary cells associated to the new sphere
structure introduced above. More precisely, we define the elementary cells
Cv,w and Cv associated to vertices v, w ∈ ∂Σr with v ∼ w.

Let Er be the set of edges e1, . . . , eN connecting vertices in ∂Σr to
vertices ∂Σr−1, where the enumeration is in cyclic order with respect to
the boundary path pr from Lemma 3.4. In particular, each vertex in ∂Σr is
contained in at least one of these edges by the definition of Vr which equals
V (pr) = ∂Σr by the lemmas above. Now, the subgraph (Σr \ Σr−1) ∪
∂Σr−1 can be decomposed into N subgraphs W1, . . . , WN that have a
closed boundary path with edges of ∂Σr, ∂Σr−1 and Er and such that Wj

and Wj+1 intersect precisely in ej for j = 1, . . . , N (modulo N). Note that
each Wj contains exactly one or two vertices of ∂Σr.

If there are two vertices v, w ∈ ∂Σr contained in Wj we denote Cv,w :=
Wj and call Cv,w an elementary cell of type (EC1). We denote the neighbors
of v and w in ∂Σr−1 by the edges ej and ej+1 by v′ and w′ (while it might
very well happen that v′ = w′).

On the other hand, if there is only one vertex v ∈ ∂Σr contained in
Wj , then v is contained in more than one edge of Er, say ei, . . . , ei+n. We
denote the union of Wi+1, . . . , Wi+n by Cv and call Cv an elementary cell
type (EC2).

See Figure 3.1 for an illustration of the definition.
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3.3. The induction and the proof for triangulations

In this section, we give the proof of Theorem 3.1 which deals with the
case of triangulations. Our strategy is to show that if a triangulation has
large vertex degree (outside a finite set) then all the elementary cells (at
least outside some other finite set) must have empty interior.

This will yield the results on the degree and the Cartan–Hadarmard type
result. Moreover, this will also give that the graph has a nice structure since
(at least outside some finite set) the sphere are composed exactly by a cyclic
closed path.

We introduce the set ZR ⊆ ∂ΣR ⊆ SR by

ZR :=
{
v ∈ ∂ΣR

∣∣∣ deg(Σ)
+ (v) = 1

}
, R ⩾ 0.

Our strategy is to show that if ZR is non-empty for some R then ZR
grows as R decays. The underlying idea is that vertices in ZR have a lot of
“backward” neighbors due to the large vertex degree which then inductively
yields vertices in ZR−1.

We first consider the case deg ⩾ 6 outside of a finite set. The case deg ⩾ 7
outside a finite set will need somewhat more effort.

3.3.1. The case deg ⩾ 6.

Lemma 3.7. — Let G = (V,E) be a triangulation such that deg ⩾ 6
outside Σr for some r ⩾ 0. If there are v, w ∈ ∂ΣR, v ∼ w, R > r, such that
one of the induced elementary cells Cv and Cv,w does not have an empty
interior, then this elementary cell contains points in ZR−1 and

ZR−1 ̸= ∅.

In particular, if there is R > r such that ΣR \ ∂ΣR ̸= ∅, then ZR−1 ̸= ∅.

Proof. — Let v, w ∈ ∂ΣR, v ∼ w, and consider the elementary cell Cv,w.
Assume the interior of the elementary cell Cv,w is non-empty. Since we are
in a triangulation, non-emptiness of Cv,w implies that each of the vertices
v, w,w′, v′ has vertex degree at least 3 in Cv,w. Moreover, by Lemma 3.6
any other boundary vertex u of Cv,w (in ∂ΣR−1) has deg(Σ)

+ (u) ⩾ 1. So,
every vertex in the boundary path of Cv,w has degree at least 3 in Cv,w.
We distinguish two cases:

Case 1: One of the vertices v, w,w′, v′ has degree at least 4 in Cv,w. Since
every vertex in the boundary of Cv,w has degree at least 3 and every in-
terior vertex of Cv,w has degree at least 6 by assumption, we can apply
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Corollary 2.2. This yields that there are at least four vertices in the bound-
ary with degree at most 3. Since at least one of the vertices v, w,w′, v′ has
degree 4 there is another boundary vertex with degree at most 3. Since the
only vertices in Cv,w ∩ ∂ΣR are v, w this vertex is in ΣR−1 and, therefore,
this vertex is in ZR−1.

Case 2: The vertices v, w,w′, v′ have all degree 3 in Cv,w. Since we are
in a triangulation, the vertices share a unique common neighbor which we
denote by u. The subgraph G′ induced by Cv,w \ {v, w} has the boundary
p′ = (w′, u, v′) + q, where q is the subpath of the boundary path p of Cv,w
such that p = (w′, w, v, v′) + q. Note that by the assumption deg ⩾ 6, we
infer that u has degree at least 4 in G′. If every inner vertex in the subpath q
has vertex degree at least 4 in Cv,w, then G′ satisfies the assumption of the
Copy-and-Paste Lemma, Lemma 2.1. Hence, there is an interior vertex with
positive curvature in G′. This is, however, impossible by the assumption
deg ⩾ 6. Thus, there is at least one inner vertex in the boundary path q

that has vertex degree strictly less than 4 in Cv,w. Since all vertices in q

are in ∂ΣR−1, they have vertex degree exactly 3 and, thus, this vertex is
in ZR−1.

Consider now the elementary cell Cv. If the interior is not empty, then
v has vertex degree at least 3 with in Cv. By the Copy-and-Paste Lemma,
Lemma 2.1 and a similar argument as above this implies that there is a
vertex in ZR−1.

The “in particular” is clear since if v ∈ ΣR\∂ΣR ̸= ∅, then v must belong
to the interior of some elementary cell. □

Lemma 3.8 (The base case). — Let G = (V,E) be a triangulation with
deg ⩾ 6 outside Sr for r ⩾ 0. If there is a vertex v ∈ ∂ΣR, R > r, such that

deg(Σ)
− (v) + deg(Σ)

0 (v) ⩾ 5,

then

ZR−1 ̸= ∅.

In particular, if ZR ̸= ∅, then ZR−1 ̸= ∅.

Proof. — The assumption on v implies deg(Σ)
− (v) ⩾ 3 or deg(Σ)

0 (v) ⩾ 3.
First assume deg(Σ)

0 (v) ⩾ 3. As ∂ΣR = V (pR) by definition and pR is a
simply closed path by Lemma 3.4, the vertex v has at most two neighbors
in ∂ΣR. Thus, there is another neighbor of v in ΣR \ ∂ΣR. By Lemma 3.7
we infer ZR−1 ̸= ∅.
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Now, if deg(Σ)
− (v) ⩾ 3, then the elementary cell Cv which has three

vertices in ∂ΣR−1 in its boundary and at least one of them (i.e., the ones
in the middle) belong to ZR−1.

The “in particular” is clear since for v ∈ ZR we have by definition
deg(Σ)

+ (v) = 1 and, therefore, deg(Σ)
− (v) + deg(Σ)

0 (v) ⩾ 5. Thus, ZR−1 ̸= ∅.
□

The proof of Theorem 3.1 now follows directly from the following lemma
in which we show that emptiness of ZR implies the statement of Theo-
rem 3.1.

Lemma 3.9. — Let G = (V,E) be a triangulation such deg ⩾ 6 outside
Br and Zr = ∅ for some r ⩾ 0. Then, for all R > r

ΣR = ∂ΣR = SR ∩ Ur.

Furthermore, the following statements hold:
(a) For all v ∈ Ur

deg0(v) = 2 and 1 ⩽ deg−(v) ⩽ 2.

(b) SR ∩ Ur is given by a cyclic path for each R > r.

Proof. — We first show that ΣR = ∂ΣR for all R > r. Assume by contra-
diction that there is R > r such that ΣR \ ∂ΣR ̸= ∅. Then, by Lemma 3.7,
this implies that ZR−1 ̸= ∅. By induction we infer Zr ̸= ∅ which contradicts
the assumption. Thus, ΣR = ∂ΣR.

We now introduce the two following partitions of Ur

Ur =
⋃

R⩾r+1
ΣR and Ur =

⋃
R⩾r+1

SR ∩ Ur.

The first one follows since, by construction, B(Σ)
r = B(pr) and the second

one since Ur ⊆ V \Br. Thus, using ΣR = ∂ΣR and Lemma 3.6, we obtain

ΣR = ∂ΣR = VR ⊆ SR ∩ Ur.

Necessarily, as the disjoint union over R on both sides gives Ur, we infer
the equality ΣR = ∂ΣR = VR = SR ∩ Ur.

Statement (b) follows directly since VR is a cyclic path by Lemma 3.6.
We now turn to statement (a). Let v ∈ Ur. By the considerations above,

there is R > r such that v ∈ ΣR. Since ΣR = ∂ΣR = V (pR) for some closed
path pR, the vertex v has exactly two neighbors in ΣR and deg(Σ)

0 (v) = 2.
So, we infer by Lemma 3.6

2 = deg(Σ)
0 (v) ⩾ deg0(v) ⩾ 2.
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The inequality deg−(v) ⩾ 1 is obvious. Now, we prove by contradiction
that deg−(v) ⩽ 2. Indeed, if deg−(v) ⩾ 3, we have by Lemma 3.6

deg(Σ)
0 (v) + deg(Σ)

− (v) = deg0(v) + deg−(v) ⩾ 5.

Lemma 3.8 therefore implies ZR−1 ̸= ∅ and by induction Zr ̸= ∅. This
contradicts the assumption and we infer deg−(v) ⩽ 2. □

We can now proceed to deduce the first geometrical results in the case
of triangulations from the two lemmas above.

Proof of Theorem 3.1(a). — Assume deg ⩾ 6 outside the root. Obvi-
ously, Z0 = ∅ since deg+(o) = deg(o) ⩾ 3 in a triangulation for the root
vertex o. Thus, the “in particular” of Lemma 3.8 implies

ZR = ∅

by induction for all R ⩾ 1. Hence, the statements of Theorem 3.1(a) follow
directly from Lemma 3.9(a) and (b) as well as the observation that U0 =
V \ {o}. □

3.3.2. The case deg ⩾ 7

In the case deg ⩾ 7, we estimate how the size of Zr increases exponen-
tially as r decays.

Lemma 3.10 (The induction step). — Let G = (V,E) be a triangulation
such deg ⩾ 7 outside Σr, r ⩾ 0. Then, for R > r

|ZR| ⩾ 2|ZR+1|.

Proof. — Assume ZR+1 ̸= ∅. We show that any vertex in v ∈ ZR+1
induces two vertices in ZR. To this end consider the two distinct neighbors
w,w′ ∈ ∂ΣR+1 such that w ∼ v ∼ w′ which exist as ∂ΣR+1 = V (pR+1),
confer Lemma 3.4. Say w is to the left and w′ is to the right of v. We now
construct paths from v in Cv,w and Cv,w′ to vertices in ∂ΣR. Since we are in
a triangulation v and w are contained in a triangle in Cv,w which is induced
by a common neighbor w1 in ΣR+1 ∪ ∂ΣR. If w1 ∈ ∂ΣR we set u = w1 and
denote the path p = (v, u). Otherwise, since deg(w1) ⩾ 7, there are at least
5 neighbors of w1 in Cv,w. Starting from v and counting the vertices along
the edges around w1 clockwise, we pick the third vertex w2 (such that there
are two more edges between the edge (w1, v) and (w1, w2)). If w2 is not in
∂ΣR, then we continue inductively by choosing vertices w1, w2, . . . , wm
in the same manner until we reach ∂ΣR. That is having chosen wj we
pick wj+1 to be the third neighbor of wj starting from wj−1 and counting
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clockwise. We then set p = (v, w1, . . . , wm) and u = wm. Analogously,
we choose a path w′

1, . . . , w
′
n in Cv,w′ with difference of choosing w′

j+1 to
be the third neighbor of w′

j counter clockwise (instead of clockwise) and
set w′

n = u′. Finally we pick the path between u and u′ in ∂ΣR within
Cv,w ∪Cv,w′ and denote it by q. Thus, the paths p, p′ and q enclose a finite
subgraph Gv within Cv,w ∪ Cv,w′ such that all interior vertices within the
paths p and p′ have degree at least 4 in Gv by construction. Moreover, also
v has degree at least 4 within G′ and any vertex of Gv which is not in the
boundary path has degree at least 7 within Gv Thus, by Corollary 2.2 there
are at least 4 vertices in the boundary of Gv with degree 3 or less in Gv.
By the consideration about the degrees above, these vertices must be in q.
Thus, other than u, u′ there are at least two more vertices x, y ∈ V (q) with
degree 3 or less in Gv. Since x, y ∈ ∂ΣR they must have degree 3 and,
therefore, x, y ∈ ZR.

To finish the proof we observe that for two distinct vertices v, ṽ ∈ ZR+1
the subgraphs Gv and Gṽ intersect at most in the boundary paths p, p′ and
p̃, p̃′ and, therefore, the vertices x, y ∈ ZR and x̃, ỹ ∈ ZR are distinct.

Thus, any vertex in ZR+1 induces at least two vertices in ZR and, there-
fore, |ZR| ⩾ 2|ZR+1| follows. □

The proof of Theorem 3.1 for the case deg ⩾ 7 outside a finite set uses
the same idea as the proof in the case deg ⩾ 6.

Proof of Theorem 3.1(b). — Assume deg ⩾ 7 outside Br. By definition
we have Zr ⊆ ∂Σr ⊆ Sr. Then, we obtain for any R > r + log2 |Sr| by
Lemma 3.10 and a direct induction

|ZR| ⩽ |Zr|
2R−r < 1.

Thus,
ZR = ∅,

for R > r+log2 |Sr|. Now, the statements of Theorem 3.1(b) follow directly
from Lemma 3.9(a) and (b). □

3.4. Other connected components of V \Br

In this section we show how to extend the statement of Theorem 3.1(b)
to all v ∈ SR with R > r + log2 |Sr| if deg ⩾ 7 outside Br. Previously, we
did this only for vertices in the unbounded connected component Ur. Now,
we look at the other connected components of V \Br and discuss how the
same arguments as above apply.
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Here, we discuss briefly the other finitely many finite connected compo-
nents. We show that BR ∩ Br = ∅ for R > r + log2 |Sr|.

Let r0 ⩾ 0. Observe that V \Br0 has finitely many connected components
which are finite. We fix one such connected component and denote it by
Cr0 . Inductively, we choose a decreasing sequence C = (Cr)r⩾ r0

Cr+1 ⊆ Cr ⊆ Cr0

of finite connected components of V \ Br, r ⩾ r0. By finiteness of Cr0 , we
have Cr = ∅ for r large enough.

For r ⩾ r0, we introduce

V (C)
r := {v ∈ Br | there is w ∈ Cr such that v ∼ w} .

Observe that V (C)
r ⊆ Cr0 for r > r0.

Indeed, with the same analysis as in Lemma 3.4 we can show that each
V

(C)
r is induced by a simple cyclic path p

(C)
r such that

V (C)
r = V

(
p(C)
r

)
.

However, a fundamental difference is that the unbounded component
U(p(C)

r ) of S \ γ(p(C)
r ) now includes o and, moreover,

Br ∪ Ur ⊆ V ∩ U
(
p

(C)
r

)
=: U

(
p(C)
r

)
and Cr = V ∩ B

(
p(C)
r

)
=: B̊

(
p(C)
r

)
for R ⩾ 1. One can now define a similar new sphere structure Σ(C)

r , r ⩾ r0,
on Cr0 by letting

Σ(C)
r0

= V \ Cr0 = U
(
p(C)
r0

)
, ∂Σ(C)

r0
= V

(
p(C)
r0

)
and

Σ(C)
r = (Br ∩ Cr0) \ Σ(C)

r−1, ∂Σ(C)
r = V

(
p(C)
r

)
,

for r > r0. As in Lemma 3.5 we can show that, for r, r′ ⩾ r0 and v ∈ Σ(C)
r

and w ∈ Σ(C)
r′ with v ∼ w, we have

|r − r′| ⩽ 1.

Furthermore, to obtain a similar result as in Lemma 3.6 we denote by
deg(C)

± (v) (respectively deg(C)
0 (v)) the number of neighbors of v ∈ Σ(C)

r in
ΣCr±1 (respectively in Σ(C)

r ). Then, following the arguments given in the
proof of Lemma 3.6 we obtain for r > r0

∂Σ(C)
r = V (C)

r
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and on ∂Σ(C)
r

deg+ ⩾ deg(C)
+ ⩾ 1, deg− = deg(C)

− ⩾ 1 and 2 ⩽ deg0 ⩽ deg(C)
0

and on Σ(C)
r \ ∂Σ(C)

r ,
deg(C)

+ = 0.

This does not stand in contradiction to the finiteness of C since ∂Σ(C)
r =

V (p(C)
r ) = ∅ for large r.

On Σ(C)
r , we can also define the elementary cells C

(C)
v and C

(C)
v,w for

v, w ∈ ∂Σ(C)
r with v ∼ w as above in Section 3.2. Finally, one defines the

set Z(C)
r of vertices v in ∂Σ(C)

r with deg(C)
+ = 1. In the case, where deg ⩾ 7

outside Br0 we show as in Lemma 3.10∣∣∣Z(C)
R

∣∣∣ ⩾ 2
∣∣∣Z(C)
R+1

∣∣∣
for R ⩾ r0 and, therefore,

Z
(C)
R = ∅

for R > r0 + log2 |Sr0 |. As in Lemma 3.8, one sees that deg(C)
0 (v) +

deg(C)
− (v) ⩾ 5 for v ∈ ΣR+1 implies Z(C)

R ̸= ∅. So there cannot be ver-
tices of degree larger deg ⩾ 7 in BR ∩ C for R > r0 + log2 |Sr0 |. In other
words

BR ∩ Cr0 = ∅
for R > r0 + log2 |Sr0 |.

Thus, we have proven SR = SR∩Ur for R > r0 +log2 |Sr0 | and, therefore,
we deduce the following generalization of Theorem 3.1 directly from these
theorems.

Theorem 3.11. — Let G = (V,E) be a planar triangulation. If deg ⩾ 7
outside Br0 for some r0 ⩾ 0. Then, for all v ∈ SR such that R > r0 +
log2 |Sr0 |,

deg0(v) = 2 and 1 ⩽ deg−(v) ⩽ 2

and SR is a simple cyclic path.

Remark 3.12. — In order to deduce a conclusion similar to Theorem 3.1
(b) in the case deg ⩾ 6 outside a finite ball Br, it is sufficient to prove
that there is R ⩾ r such that ZR = ∅. Whether it is possible to prove
this remains an open question. In Section 3.7 we present an example that
satisfies deg ⩾ 6 outside B1 and Z1 = ∅. Thus, if we continue this example
outside B2 in any graph H, such that it is still a planar triangulation with
deg ⩾ 6 outside B1, then H will satisfies the conclusion of Theorem 3.1(a).
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3.5. Spanning trees for triangulations

In this section, we prove Theorem 1.2 on spanning trees for planar tri-
angulations.

Recall the new sphere structure ΣR introduced in Section 3.1. Given a
vertex v ∈ ΣR and w ∈ V such that v ∼ w, we say that w is a forward
(respectively horizontal and backward) neighbor if w ∈ ΣR+1 (respectively
ΣR and ΣR−1).

Theorem 3.13. — Let G be a planar triangulation. Assume one of the
following assumptions:

(a) deg ⩾ 6 outside the root.
(b) deg ⩾ 7 outside a finite set.

Then, then there exists a spanning tree T of G such the vertex degrees of T
and G differ at most by 4 outside a finite set, where the finite set is empty
in case (a). Furthermore, T and G have the same sphere structure.

Proof. — Let r = 0 in the case (a) and let r be such that deg ⩾ 7 outside
Br in the case (b).

We construct the spanning tree inductively and assume we already have
chosen a spanning tree of BR in G for R > log2 |Sr|+r (which means R > 0
in case (a)).

By Theorem 3.11, we know that every sphere SR ∩ Ur is a simple cyclic
path for R > r + log2 |Sr| and by choosing R even larger we have SR =
SR ∩ Ur. (Alternatively one can also apply Theorem 3.11 so one does not
have increase R further.)

This implies that every vertex has two neighbors in the same sphere. For
these we remove the connecting edges. Since S is oriented, for some fixed
v ∈ ΣR, we can identify the most left and the most right forward neighbor
in the next sphere ΣR+1. By planarity, only the most left and the most
right forward of these neighbors ΣR+1 have more than one (and thus two)
backward neighbors. We remove the edge between v and the most right
forward neighbor. See Figure 3.2 for an illustration.

For any given vertex we therefore remove at most two horizontal edges,
one edge to a forward neighbor and one edge to a backward neighbor. More-
over after this procedure, every vertex has exactly one backward neighbor
and no horizontal edges, meaning that the graph obtained by removing
these edges is a tree. □

Remark 3.14. — Using Theorem 3.11 for which we above sketched the
proof allows us to quantify the finite set which is excluded as the ball BR
with R = r + log2 |Sr|, where r is such that deg ⩾ 7 outside Br.
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Figure 3.2. The dashed edges are removed from the vertices in the
Rth step of the procedure.

3.6. Unique continuation of eigenfunctions for triangulations

In this section, we study the unique continuation of eigenfunctions. Our
result is not limited to the Laplacian but holds for general nearest neighbor
operators. We start with a definition.

Let a locally finite graph G = (V,E) be given. A linear operator A de-
fined on a subspace of C(V ) = CV is called a nearest neighbor operator
associated to G, if if has a matrix representation with respect to the stan-
dard basis which is given by some a : V × V → C such that for v ̸= w,

a(v, w) ̸= 0 if and only if v ∼ w.

In this case, A acts as

(Aφ)(v) =
∑
w∈V

a(v, w)φ(w) = a(v, v)φ(v) +
∑
v∼w

a(v, w)φ(w)

where the sum is finite due to local finiteness of the graph. Moreover, the
compactly supported function are included in the domain of definition of
A as A allows a matrix representation with respect to the standard basis.

The following theorem is a unique continuation result for eigenfunctions
in the case of triangulations.

Theorem 3.15. — Let G be a planar triangulation such that deg ⩾ 7
outside a finite set and let A be a nearest neighbor operator. Then, there are
only finitely many linearly independent eigenfunctions of compact support.

Remark 3.16. — By the use of Theorem 3.11, one can even quantify the
set where the compactly supported eigenfunctions are supported. Indeed,
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if deg ⩾ 7 outside Br, then all compactly supported eigenfunctions are
supported in BR with R = r + log2 |Sr|.

To prove Theorem 3.15 we introduce the polar coordinate representation
of nearest neighbor operators as it is used in [9, 17]. For a function φ ∈
C(V ), let φr be the restriction of φ to C(Sr) and let sr = |Sr|, r ⩾ 0. For a
nearest neighbor operator A, let the matrices Er ∈ Csr+1×sr , Dr ∈ Csr×sr ,
E+
r ∈ Csr×sr+1 be given such that

(Aφ)r = −Er−1φr−1 +Drφr − E+
r φr+1,

for all φ in the domain of A. In particular, the matrix Dr is the restriction
of A to C(Sr).

The key point is to prove the matrices Er are injective. This comes from
the following geometric lemma.

Lemma 3.17. — Let G be a planar triangulation. Assume that ΣR =
∂ΣR for all R > r and that deg ⩾ 7 outside of B(Σ)

r . Then for all R > r

and all v ∈ ΣR, there exists w ∈ ΣR+1 with v ∼ w and

deg−(w) = 1.

In particular, for any nearest neighbor operator associated to G and all
R ⩾ r, the matrices ER are injective.

Proof. — Note that the assumption implies that deg(Σ)
± = deg± and

deg(Σ)
0 = deg0 outside B(Σ)

r . Let v ∈ ΣR for some R > r. By Theorem 3.1,
we have deg−(v) + deg0(v) ⩽ 4. Hence, deg(Σ)

+ (v) = deg+(v) ⩾ 3 by the
assumption deg ⩾ 7 outside B[Σ)

R0
. Since all the elementary cells are empty,

this means that v ∈ ∂ΣR has at least 3 neighbors in ΣR+1. Recall here
that ΣR+1 = ∂ΣR+1 is a cyclic closed path. Since G is a triangulation,
for the vertex v ∈ ∂ΣR the forward neighbors induce a path in ∂ΣR+1 of
length ⩾ 2. By planarity, the inner vertices in the path cannot have another
neighbor in ∂ΣR different from v.

As a consequence, the matrix ER−1 is injective. Indeed, let φR−1 be a
non trivial function on ∂ΣR−1. That is, there exists v ∈ ∂ΣR−1 such that
φR−1(v) ̸= 0. As a consequence, with w ∈ ΣR, w ∼ v and deg−(w) = 1 as
above

ER−1φR−1(w) = a(v, w)φR−1(v) ̸= 0,

and the conclusion follows. □

With the help of the lemma above the proof of Theorem 3.15 is along
the lines of the proof of [17, Theorem 9].
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1

-1

1 1
-1

1

-1

-1

Figure 3.3. Two illustrations of the first 6 distance spheres of the
same tessellation allowing for infinitely many linearly independent
compactly supported eigenfunctions.

Proof of Theorem 3.15. — Let G be a triangulation which satisfies
deg ⩾ 7 outside a ball and let R0 ⩾ r0 + log2 |Sr0 |. By Lemma 3.17
the matrices ER are injective for R ⩾ R0. Let R ⩾ R0 + 1. Suppose there
is an eigenfunction φ of A such that φR−1 ̸≡ 0. Rewriting the eigenvalue
equation (Aφ)R = λφR on the Rth sphere, one gets

ER−1φR−1 = (DR − λ)φR − E+
RφR+1.

Since ER−1 is injective, either φR or φR+1 must be non-zero. Hence, if an
eigenfunction is supported on a sphere SR with R > R0, then it has infinite
support.

Since the space of functions supported on a ball is finite dimensional,
there can be at most finitely many linearly independent eigenfunctions of
compact support. □

3.7. Counter-example and continuation to tessellations

In this section, we give an example showing, that deg ⩾ 6 or even κC ⩽ 0
outside a finite set is not enough to exclude the existence of infinitely many
compactly supported eigenfunctions such as it was shown in Theorem 3.15.

Example 3.18. — The planar graph whose ball B6 are pictured in Fig-
ure 3.3 is given such that the root vertex in the middle is adjacent to
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8 triangles, the vertices in the first sphere are adjacent to 5 triangles and
all further vertices are adjacent to exactly 6 triangles. Hence, deg = 6 and
κC = 0 outside B1. However, there are eigenfunctions to the eigenvalue 8
for ∆ supported on any sphere Sr, r ⩾ 1. One eigenfunction is illustrated
on the right hand side of Figure 3.3 in the third sphere.

In [23] it is shown that κC ⩽ 0 everywhere implies the absence of compact
supported eigenfunction. The example above underscores clearly that our
results are not merely simple perturbation results of [23] but the issue in
question is much more subtle.

Furthermore, we conclude that graphs as the one above cannot be chan-
ged on a finite set such that one obtains a graph with κC ⩽ 0. We finish
this section to show that such a procedure is indeed possible if one has
deg ⩾ 7 outside a finite set.

To this end, we recall the notion of strictly locally tessellating graphs
from [17] which slightly more general than tessellations as they allow for
unbounded faces. We call a planar locally finite graph G strictly locally
tessellating if the following three assumptions are satisfied:

(T1) Every edge is included in two faces.
(T2) Every two faces are either disjoint or intersect in one vertex or one

edge.
(T3) Every face is homeomorphic to a closed disc or to the half space.

In a strictly locally tessellating graph the vertex curvature can be seen to
be equal to (confer [17, Lemma 3])

κ(v) = 1 − deg(v)
2 +

∑
f∈F, f∋v

1
deg(f) .

In [2, 3] tessellations are considered, that are strictly locally tessellating
graphs with the following stronger assumption replacing (T3)
(T3*) Every face is homeomorphic to a closed disc.

We show that a planar graph with deg ⩾ 7 outside a finite set can be
embedded modified on a finite set such that one obtains a strictly locally
tessellating graph with non-positive corner curvature. This is uselful as for
non-positively corner curved graphs various subtle structural results are
known, see e.g. [2, 3, 17].

Theorem 3.19. — Let G = (V,E) be a planar graph such deg ⩾ 7
outside Br for some r ⩾ 0. Then, there is a strictly locally tessellating
graph G′ = (V ′, E′) and R ⩾ log2 |Sr| + r + 1 such that

(a) κ′
C ⩽ 0.
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(b) V ′ = (V \BR) ∪ {o} and G′
V ′\{o} = GV \BR

.
(c) d′(·, o) +R = d(·, o),

Moreover, there is a tessellation G′′ = (V ′, E′′) and R ⩾ r such that (a),
(c) and E′ ⊆ E′′.

The theorem above directly follows from the next lemma (valid for any
planar graphs) as deg′ ⩾ 6 implies κ′

C ⩽ 0. The underlying idea is to
replace a ball around the set with small degree by a single vertex. Since
outside this ball the backward degrees are at most two one changes the
overall degree at most by one at these vertices.

Lemma 3.20. — Let N ⩾ 7 and a planar graph G = (V,E) be given
such that deg ⩾ N and deg− + deg0 ⩽ 4 outside a ball Br. Then, there
exists r + 1 ⩽ R ⩽ r + 1 + ⌈log2(N − 1)⌉ and a strictly locally tessellating
graph G′ = (V ′, E′) such that

(a) deg′ ⩾ N − 1.
(b) V ′ = (V \BR) ∪ {o} and G′

V ′\{o} = GV \BR
.

(c) d(·, o) = d′(·, o) +R.
Moreover, there is a tessellation G′′ = (V ′, E′′) with E′ ⊆ E′′ and R ⩾ r

such that (a), (c) hold.

Proof. — We may assume |Sr+1| ⩾ N − 1 and let R = r. (Otherwise, we
observe that |Sr+2| = 2|Sr+1| since deg+ = deg−(deg−+deg0) ⩾ N−4 ⩾ 3.
Therefore, we can continue with R = r + ⌈log2(N − 1)⌉.)

Now, we remove all vertices in BR(o) except for o, all edges starting
and ending in BR(o) and connect o to all vertices in SR+1 by an edge.
We denote this graph by G′ = (V ′, E′). Then V \ BR(o) = V ′ \ {o}.
Notice that d′(o, ·) + R = d(o, ·) on this set. The vertex degrees agree
on V \ BR+1(o) and V ′ \ B′

1(o), so, deg′ ⩾ N on V ′ \ B′
R(o). Moreover,

deg′(v) ⩾ (deg(v) − 2) + 1 ⩾ N − 1 for v ∈ S′
1(o) and deg′(o) ⩾ N . This

shows that deg′ ⩾ N − 1 on G′. Since N − 1 ⩾ 6, we have κC ⩽ 0. By [17,
Theorem 1] we conclude that G′ is strictly locally tessellating. This shows
the first part of the theorem.

For the “moreover” part, we note that a strictly locally tessellating graph
can be easily continued to a tessellation by closing unbounded faces by
horizontal edges (i.e., edges connecting vertices in the same sphere). □

4. General planar graphs

In this section we show how to carry over the result of Section 3 from
triangulations to general planar graphs.
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4.1. Triangulation supergraphs

The results of this section are based on next lemma. It says that ev-
ery planar graphs has a triangulating supergraph with the same sphere
structure.

Lemma 4.1. — Let G = (V,E) be a locally finite, connected, planar
graph and o ∈ V . There is a locally finite, planar triangulation G′ = (V,E′)
with E ⊆ E′ and the same sphere structure, i.e., d(v, o) = d′(v, o), v ∈ V .

Proof. — Adding an edge between the vertices v, w ∈ V , v ̸= w and
v ̸∼ w changes the sphere structure of a graph with respect to o if and only
if |d(v, o)−d(w, o)| ⩾ 2. Thus, the result can be deduced from the following
claim.

Claim 4.2. — For every face f in a planar graph which is not a triangle
there exist vertices v0, v1 ∈ V ∩ f with v0 ̸∼ v1 and |d(v0, o) − d(v1, o)| ⩽ 1.
In the case of an unbounded face there are infinitely many such pairs of
distinct vertices.

Proof of the Claim. — For a face f which is not a triangle let v ∈ V ∩ f
be such that d(v, o) = min{d(w, o) | w ∈ V ∩ f}. Let v0, v1 ∈ V ∩ f be
adjacent to v. Then, d(v, o) ⩽ d(vi, o) ⩽ d(v, o) + 1, i = 0, 1 and, thus,
v0, v1 satisfy the assertion. In the case of an infinite face f , there is a two
sided infinite sequence where succeeding vertices are adjacent and every
vertex of f is visited. We say that this the boundary walk of f . By the
local finiteness in each sphere there are at most finitely many vertices of
this boundary walk. Hence, for a given n > min{d(w, o) | w ∈ V ∩ f} there
is at least one vertex in Sn(o) on each side of the boundary walk and these
two are therefore also not adjacent. This proves the claim. □

4.2. Proofs of the geometric results for general planar graphs

By Lemma 4.1, a planar graph G with deg ⩾ 6 or deg ⩾ 7 has a trian-
gulation supergraph G′ that satisfies deg′ ⩾ 6 or deg′ ⩾ 7.

We first to turn to the proof of Cartan–Hadamard type result, Theo-
rem 1.1, which we conclude from Theorem 3.1.

Proof of Theorem 1.1. — Given a planar graph G, we consider the tri-
angulation supergraph G′ given by Lemma 4.1 above which has the same
vertex set V . Let r = 0 for (a) and r being the radius such that deg ⩾ 7 out-
side Br. For this triangulation G, we have 1 ⩽ deg′

0 ⩽ 2 and 1 ⩽ deg′
− ⩽ 2
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on SR ∩ Ur with R > r + log |Sr|. Now, we choose R even larger such
that SR ∩ Ur = SR which is possible since V \ Ur is a finite set and let
K = V \ BR. Since the supergraph G′ has the same sphere structure as
G, we have deg− ⩽ deg′

− and deg0 ⩽ deg′
0. Note also that since the graph

is connected, deg− ⩾ 1 on V \ {o}. Thus, the statement deg0 ⩽ 2 and
1 ⩽ deg− ⩽ 2 follows on V \ K. This readily gives that geodesics can
be continued as deg+ = deg − deg0 − deg− ⩾ 3 outside K. Finally, spheres
outside K in the triangulation supergraph G′ are given by cyclic path which
gives that the spheres in G are cyclically ordered. □

Next we turn to the proof of Theorem 1.2 which says that one obtains
spanning tree by changing the vertex degree at most by 4 outside a finite
set.

Proof of Theorem 1.2. — The proof follows along the lines for the cor-
responding proof for triangulations. Let the finite set K be chosen as in
Theorem 1.1. Then spheres are cyclically ordered outside K. We first re-
move the vertices within the spheres which by Theorem 1.1 changes the
vertex degree at most by 2. Now the cyclic ordering of the spheres allows
us to speak of the most right and the most left forward neighbor of a vertex
v in a sphere SR for large R. By planarity only these two vertices can have
more than one backward neighbor. If the most right forward neighbor has
more than one backward neighbor, call it w, we remove this edge, confer
Figure 3.2 above. On the other hand, any vertex w in SR′ with backward
degree more than 1 is a most right forward of some vertex in SR′−1. By
Theorem 1.1, such a vertex w satisfies deg−(w) ⩽ 2. By this procedure we
remove all cycles in this way without changing the sphere structure of the
graph. In summary for each vertex we have removed at most two edges
within the same sphere, one edge to a forward and one edge to a backward
neighbor which makes at most 4. This proves the statement. □

We next come to the unique continuation statement for eigenfunctions
on general planar graphs. To this end we recall the definition of a nearest
neighbor operator from Section 3.6.

Theorem 4.3. — Let G be a planar graph such that deg ⩾ 7 outside
a finite set and let A be a nearest neighbor operator. Then, there are only
finitely many linearly independent eigenfunctions of compact support.

Proof. — Consider the triangulation supergraph G′ of G given by
Lemma 4.1. Now, for a vertex v ∈ SR for sufficiently large R there is a
forward neighbor w such that deg′

−(w) = 1 by Lemma 3.17. Since v is
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the only backward neighbor of w in G′, it must also be a backward neigh-
bor in G (otherwise d(o, w) < d′(o, w) contradicting Lemma 4.1). Thus,
following the argument as in the proof of Theorem 3.15 we conclude the
statement. □

From this theorem we can immediately deduce that the operator ∆ + q

admits at most finitely many linearly independent eigenfunctions whenever
κ∞ = −∞.

Proof of Theorem 1.9. — Obviously ∆+q is a nearest neighbor operator
and κ∞ = −∞ implies deg ⩾ 7 outside a finite set. Hence, the statement
follows from Theorem 4.3. □

5. Discrete spectrum, eigenvalue asymptotics and decay of
eigenfunctions

In this section we prove Theorem 1.6, Corollary 1.8 and Theorem 1.11. To
this end we extend the inequalities presented in [5, 10] for planar graphs.
Here, we use that Laplacians of planar graphs with large vertex degree
outside a finite set are bounded perturbations of a Laplacian of a tree. In
particular, an immediate consequence of Theorem 1.2 is the following.

Corollary 5.1. — Let G = (V,E) be a planar graph such deg ⩾ 7
outside Br for some r ⩾ 0. Then, there is a tree T = (V,E′) with E′ ⊆ E

such that ∆T is a bounded perturbation of ∆G.

From Corollary 5.1, we derive the following inequality which improves
the considerations of [5] for planar graphs. These inequalities might be of
interest in their own rights.

Theorem 5.2. — Let G be a planar graph such that deg ⩾ 6 outside
the root or deg ⩾ 7 outside a finite set and q : V → [0,∞). Then, there is
C ⩾ 0 such that

(a) for all ε > 0

(1 − ε)(deg +q) − 1
ε

− C ⩽ ∆ + q ⩽ (1 + ε)(deg +q) + 1
ε

+ C,

(b) for all φ ∈ Cc(V ), ∥φ∥ = 1, we additionally have

⟨φ, (deg +q)φ⟩ − 2
√

⟨φ, (deg +q)φ⟩ − C ⩽ ⟨φ, (∆ + q)φ⟩

⩽ ⟨φ, (deg +q)φ⟩ + 2
√

⟨φ, (deg +q)φ⟩ + C.
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Remark 5.3.

(a) The constant C in the theorem above depends only on the norm of
the Laplacian on a neighborhood of the finite set outside which we
have deg ⩾ 7. In particular, if deg ⩾ 7 everywhere the constant can
be chosen C = 0.

(b) The considerations of [5] yield an estimate that has ±3/ε instead
of the constants ±(1/ε+ C) in (a).

The essential step in the proof of Theorem 5.2 is to combine Theorem 1.2
with techniques developed in [5, 10]. Our rather special situation allows
for a very transparent and non-technical treatment. For sake of being self-
contained and to illustrate the core of the techniques of both [10] and [5] we
obtain (a) by the Hardy inequality techniques of [10] and (b) by the isoperi-
metric techniques of [5]. Observe that one could also derive (a) from (b)
using some technical estimates of [5].

Proof of Theorem 5.2. — By Corollary 5.1 there is a tree T = (V,E′)
such that for the Laplacian ∆T on the tree there is C ⩾ 0 such that
∆T − C ⩽ ∆ ⩽ ∆T + C. Denote the vertex degree in T by degT and
observe that by Theorem 1.2 we have degT ⩽ deg ⩽ degT +4.

(a) For a positive function m : V → (0,∞) let qm : V → R be given by

qm(v) = deg(v) −
∑
w∼v

m(w)
m(v) .

By direct calculation, which is sometimes refereed to as the ground state
representation, (confer [10, Proposition 1.1] or [11, Proposition 3.2]) we
obtain for φ ∈ Cc(V )

⟨φ,∆Tφ⟩ = 1
2
∑
v∼w

(φ(v) − φ(w))2

= 1
2
∑
v∼w

m(v)m(w)
(
φ(v)
m(v) − φ(w)

m(w)

)2
+
∑
v∈V

qm(v)φ(v)2

and, therefore, ∆T ⩾ qm on Cc(V ). Now, for ε > 0, we choosem(v) = εd(v,o)

and observe qm = (1 − ε) degT −1/ε. Thus,

(1 − ε) degT −1
ε
⩽ ∆T

on Cc(V ). Since T is a tree, the operator ∆T is unitarily equivalent to the
operator 2 deg −∆T (the unitary operator is multiplication by (−1)d(·,o)).
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Hence, we conclude

∆T ⩽ 2 degT −∆T ⩽ (1 + ε) degT +1
ε

on Cc(V ). Statement (a) follows now from ∆T − C ⩽ ∆ ⩽ ∆T + C and
degT ⩽ deg ⩽ degT +4 discussed in the beginning of the proof and the
assumption q ⩾ 0.

(b) By Theorem 3.19 the tree T has degree larger than 2 outside a finite
set K. Since T is a spanning tree and, hence, connected it has degree greater
or equal to 1 everywhere. We define

dT = degT +q′ with q′ = q + 1K .

By the discussion above dT ⩾ degT +1K ⩾ 2. We further notice that on a
tree any subgraph TW = (W,E′

W ) of T = (V,E′) induced by a finite set
W ⊆ V satisfies |E′

W | ⩽ |W | (confer [5, Lemma 6.2]). This implies

dT (1W ) = 2|E′
W | + |∂W | + q′(1W ) ⩽ 2|W | + |∂W | + q′(1W ),

where ∂W = {(v, w) ∈ W ×V \W | v ∼ w} and q′(φ) =
∑
v ∈V φ(v)2q′(v),

φ ∈ Cc(V ). Let φ ∈ Cc(V ), ∥φ∥ = 1. Using an area and a co-area formula
(cf. [19, Theorem 12 and Theorem 13]) with Ωt := {v ∈ V | |φ(v)|2 > t},
and the discussion above, we obtain

⟨φ, (dT − 2)φ⟩ =
∫ ∞

0

(
dT (1Ωt

) − 2|Ωt|
)
dt ⩽

∫ ∞

0
|∂Ωt| + q′(1Ωt

)dt

= 1
2
∑
v∼w

∣∣φ(v)2 − φ(w)2∣∣+ q′(φ)

= 1
2
∑
v∼w

∣∣(φ(v) − φ(w))(φ(v) + φ(w))
∣∣+ q′(φ)

⩽
1
2

(∑
v∼w

|φ(v) − φ(w)|2 + 2q′(φ)
)1/2(∑

v∼w
|φ(v) + φ(w)|2 + 2q′(φ)

)1/2

=
〈
φ, (∆T + q′)φ

〉 1
2
(
2⟨φ, dTφ⟩ −

〈
φ, (∆T + q′)φ

〉) 1
2 .

Since dT ⩾ 2, we have ⟨φ, (dT − 2)φ⟩ ⩾ 0 and, thus, we can square
both sides of the inequality to obtain after reordering the terms,

⟨φ, (∆T + q′)φ⟩2 − 2⟨φ, dTφ⟩⟨φ, (∆T + q′)φ⟩ + ⟨φ, (dT − 2)φ⟩2 ⩽ 0.

Resolving the inequality and using ∥φ∥ = 1 yields

⟨φ, dTφ⟩ − 2
√

⟨φ, dTφ⟩ − 1 ⩽ ⟨φ, (∆T + q′)φ⟩

⩽ ⟨dTφ,φ⟩ + 2
√

⟨φ, dTφ⟩ − 1.
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Now, we further observe that√
⟨φ, dTφ⟩ − 1 =

√
⟨φ, (degT +q + 1K)φ⟩ − 1 ⩽

√
⟨φ, (degT +q)φ⟩.

Thus, (b) follows from the inequalities subtracting ⟨φ, 1Kφ⟩ from the in-
equalities and using ∆T −C ⩽ ∆ ⩽ ∆T +C and dT ⩽ deg +q ⩽ dT +C. □

Next, we turn to the proof of Theorem 1.6.
Proof of Theorem 1.6. — For a potential q ∈ Kα, α ∈ (0, 1), there is Cα

such that q− ⩽ α(∆+q+)+Cα. We deduce from Theorem 5.2(a) (confer [5,
Lemma A.3])

(1 − α)(1 − ε)
(1 − α(1 − ε)) (deg +q) − (1 − α)(1/ε+ C) + εCα

(1 − α(1 − ε)) ⩽ ∆ + q, on Cc(X)

for all ε > 0.
By an application of the Min-Max-Principle, Theorem A.1, the spectrum

of ∆ + q is purely discrete if the spectrum of deg +q is purely discrete. On
the other hand, if there are vertices vn such that (deg +q)(vn) ⩽ C for
some C, then ⟨∆1{vn}, 1{vn}⟩ = (deg +q)(vn) ⩽ C, n ⩾ 0. By a Persson-
type theorem, [12, Proposition 2.1] we conclude that the bottom of the
essential spectrum of ∆+q is bounded from above by C. Hence, the essential
spectrum of ∆+q is non-empty. We summarize that the spectrum of ∆+q

is purely discrete if and only if supK⊂V finite infv ∈V (deg(v) + q(v)) = ∞.
Since

−deg(v)
2 ⩽ κ(v) ⩽ 1 − deg(v)

6
(due to deg(f) ⩾ 3), this in turn is equivalent to

sup
K ⊂V finite

inf
v ∈V

(−κ(v) + q(v)) = ∞.

Next, we assume q ⩾ 0. The eigenvalue asymptotics follow directly from
Theorem 5.2(b) and the Min-Max-Principle, Theorem A.1 as x 7→ x−2

√
x

is continuous and monotone increasing on [1,∞) and λ0(deg +q) ⩾ 1. □

Now, we turn to the proof of Corollary 1.8.
Proof of Corollary 1.8. — If the face degree is constantly k outside a

compact set K ⊆ X, then

κ(v) = 1 − k − 2
2k deg(v),

for v ∈ V \K. The eigenvalue asymptotics follow now from Theorem 1.6. □

Finally, we prove Theorem 1.11 on the decay of eigenfunctions. The proof
we give here is similar to the techniques developed of [22]. However, for the
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convenience of the reader we include a short proof. Indeed, in our situation
of planar graphs with large degree, the proof simplifies even substantially.

Proof of Theorem 1.11. — A direct computation, often referred to as the
ground state representation as used in the proof of Theorem 5.2 above (con-
fer [10, Proposition 1.1] or [11, Proposition 3.2]), gives for φ with compact
support, u ∈ D(∆) and the basic estimate 2ab ⩽ a2 + b2

1
2
∑

x,y, y∼x
u(x)2(φ(x) − φ(y))2 ⩾

1
2
∑

x,y, x∼y
u(x)u(y)(φ(x) − φ(y))2

= ⟨φu,∆(φu)⟩ −
〈
φ2u,∆u

〉
.

If u ∈ D(∆) is an eigenvector of ∆ with eigenvalue λ, we estimate together
with the form bound from Theorem 5.2(a)

1
2
∑

x,y, y∼x
u(x)2(φ(x) − φ(y))2 ⩾

〈
((1 − ε) deg −Cε − λ)φu, φu

〉
for 0 < ε < 1 and with Cε = 1/ε+ C some C ⩾ 0. We define for N ⩾ 0

φN = 1BN
αd(·,o) + 1B2N \BN

α2N−d(·,o)

with α =
√

2(1 − ε)+1 and observe that for ε > 0 small enough,
1
2
∑
y, y∼·

(φN (·) − φN (y))2 ⩽ (1 − ε)2φ2
N deg +1

21S2N+1 deg−,

where we used that φN (x) − φN (y) = 1 for x ∈ S2N and y ∈ S2N+1.
Combining this with the estimate above, we obtain after reordering the
terms

1
2

∑
x∈S2N+1

deg−(x)u(x)2 ⩾
〈
(ε(1 − ε) deg −Cε − λ)φNu, φNu

〉
.

Since we assumed that deg becomes arbitrarily large outside finite sets,
there is a finite set K and a constant cε > 0 such that ε(1 − ε) deg −Cε −
λ ⩾ cε deg outside K. Furthermore, by Theorem 1.1, deg− is a bounded
function. Thus, there is C ′ = C ′

ε such that for all N

C ′∥u∥2 ⩾
∑
x∈X

deg(x)φ2
N (x)u2(x) ⩾

∑
x∈BN

deg(x)α2d(o,x)u2(x).

By monotone convergence, we conclude

C ′∥u∥2 ⩾
∑
x∈X

deg(x)α2d(o,x)u2(x).

This finishes the proof. □
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Appendix A. Applications of the Min-Max-Principle

In this appendix we shortly discuss an application of the Min-Max-
Principle to (non-linear) functions of operators.

Let H be a Hilbert space with norm ∥ · ∥. For a quadratic form Q,
denote the form norm by ∥·∥Q :=

√
Q(·) + ∥ · ∥2. For a selfadjoint operator

A which is bounded from below, we denote the bottom of the essential
spectrum by λess

0 (A). Let n(A) ∈ N0 ∪ {∞} be the dimension of the range
of the spectral projection of the interval (−∞, λess

0 (A)). Whenever λ0(A) <
λess

0 (A), we denote the eigenvalues below λess
0 (A) by λn(A), for 0 ⩽ n ⩽

n(A), in increasing order counted with multiplicity.

Theorem A.1. — Let (Q1, D(Q1)) and (Q2, D(Q2)) be closed symmet-
ric non-negative quadratic forms with a common form core D0 and let the
corresponding selfadjoint operators be denoted by A1 and A2. Assume there
are continuous monotone increasing functions f1, f2 : [λ0(A2),∞) → R
such for all φ ∈ D0 with ∥φ∥ = 1

f1(Q2(φ)) ⩽ Q1 ⩽ f2(Q2(φ)).

Then, for 0 ⩽ n ⩽ min(n(A1), n(A2)),

f1(λn(A2)) ⩽ λn(A1) ⩽ f2(λn(A2)).

Moreover, if limr→∞ f1(r) = limr→∞ f2(r) = ∞, then σess(A1) = ∅ if and
only if σess(A2) = ∅.

Proof. — Letting

µn(A) := sup
φ1, ..., φn∈H

inf
ψ∈{φ1, ..., φn}⊥∩D0, ∥ψ∥=1

Q(ψ),

for a selfadjoint operator A with form Q and D0 ⊆ D(Q), we have by the
Min-Max-Principle [25, Chapter XIII.1] µn(A) = λn(A) if µn(A) < λess

0 (A)
and µn(A) = λess

0 (A) otherwise, n ⩾ 0. Now, observe that for a continuous
monotone increasing function f : [0,∞) → R and a function g : X → [0,∞)
defined on an arbitrary set X we have

inf
x∈X

f(g(x)) = f

(
inf
x∈X

g(x)
)
.

Now, assume n ⩽ min{n(A1), n(A2)} and let φ(j)
0 , . . . , φ

(j)
n be the eigen-

functions of Aj to λ0(Aj), . . . , λn(Aj) and denote

U
(n)
j :=

{
φ

(j)
1 , . . . , φ(j)

n

}⊥
∩ {ψ ∈ D0 | ∥ψ∥ = 1}, j = 1, 2.
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We apply the discussion above with f = f1 and

g = g1 : U (n)
2 → [0,∞), ψ 7→ Q2(ψ),

first and f = f2 and

g = g2 : U (n)
1 → [0,∞), ψ 7→ Q2(ψ),

later on, to obtain

f1(λn(A2)) = f1

(
inf

ψ∈U(n)
2

Q2(ψ)
)

= inf
ψ∈U(n)

2

f1

(
Q2(ψ)

)
⩽ inf
ψ∈U(n)

2

Q1(ψ)

⩽ µn(A1) = λn(A1) = inf
ψ∈U(n)

2

Q1(ψ) ⩽ inf
ψ∈U(n)

2

f2

(
Q2(ψ)

)
= f2

(
inf

ψ∈U(n)
2

Q2(ψ)
)

⩽ f2(µn(A2)) = f2(λn(A2)).

This directly implies the first statement. Assuming now λess
0 (A2) = ∞

implies n(A2) = ∞ and limn→∞ λn(A2) = ∞ and, therefore, we get
limn→∞ f1(λn(A2)) = ∞, by the assumption on f1. Hence, by the above
we get λess

0 (A1) = ∞. The other implication follows analogously. □
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