[Une formule de type Caporaso–Harris pour les invariants raffinés relatifs]
En 2015, G. Mikhalkin a introduit un compte raffiné des courbes rationnelles réelles dans les surfcaes toriques passant par certains points situés sur le bord de cette dernière. Le raffinement est apporté par la valeur d’un certain indice quantique. Le compte introduit s’avère ne pas dépendre de du choix des points, donnant lieu à un invariant. Il est alors possible de les calculer à la limite tropicale en utilisant le théorème de correspondance et la multiplicité de Block–Göttsche. Dans ce papier on donne une formule récursive qui permet de calculer ces invariants, ce qui donne un algorithme de calcul.
In 2015, G. Mikhalkin introduced a refined count for real rational curves in a toric surface which pass through some points on the toric boundary of the surface. The refinement is provided by the value of a so-called quantum index. Moreover, he proved that the result of this refined count does not depend on the choice of the points. The correspondence theorem allows one to compute these invariants using the tropical geometry approach and the refined Block–Göttsche multiplicities. In this paper we give a recursive formula for these invariants, that leads to an algorithm to compute them.
Révisé le :
Accepté le :
Première publication :
Keywords: enumerative geometry, tropical refined invariants
Mots-clés : géométrie énumérative, invariants raffinés tropicaux, formule récursive
Blomme, Thomas 1
@unpublished{AIF_0__0_0_A141_0, author = {Blomme, Thomas}, title = {A {Caporaso{\textendash}Harris} type formula for relative refined invariants}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3693}, language = {en}, note = {Online first}, }
Blomme, Thomas. A Caporaso–Harris type formula for relative refined invariants. Annales de l'Institut Fourier, Online first, 27 p.
[1] Refined curve counting with tropical geometry, Compos. Math., Volume 152 (2016) no. 1, pp. 115-151 | DOI | MR | Zbl
[2] Computation of refined toric invariants II (2020) (to be published in Geometry & Topology) | arXiv
[3] An imaginary refined count for some real rational curves, Beitr. Algebra Geom. (2022), pp. 1-31 | DOI | Zbl
[4] Counting plane curves of any genus, Invent. Math., Volume 131 (1998) no. 2, pp. 345-392 | DOI | MR | Zbl
[5] The Caporaso–Harris formula and plane relative Gromov-Witten invariants in tropical geometry, Math. Ann., Volume 338 (2007) no. 4, pp. 845-868 | DOI | MR | Zbl
[6] The numbers of tropical plane curves through points in general position, J. Reine Angew. Math., Volume 2007 (2007) no. 602, pp. 155-177 | DOI | MR | Zbl
[7] Refined curve counting on complex surfaces, Geom. Topol., Volume 18 (2014) no. 4, pp. 2245-2307 | DOI | MR | Zbl
[8] On Block–Göttsche multiplicities for planar tropical curves, Int. Math. Res. Not., Volume 2013 (2013) no. 23, pp. 5289-5320 | DOI | MR | Zbl
[9] Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., Volume 164 (1994) no. 3, pp. 525-562 | DOI | MR | Zbl
[10] Stability structures, motivic Donaldson-Thomas invariants and cluster transformations (2008) | arXiv
[11] Enumerative tropical algebraic geometry in R, J. Am. Math. Soc., Volume 18 (2005) no. 2, pp. 313-377 | DOI | MR | Zbl
[12] Quantum indices and refined enumeration of real plane curves, Acta Math., Volume 219 (2017) no. 1, pp. 135-180 | DOI | MR | Zbl
[13] Patchworking singular algebraic curves, non-Archimedean amoebas and enumerative geometry (2002) | arXiv
[14] A tropical calculation of the Welschinger invariants of real toric del Pezzo surfaces (2004) | arXiv
[15] Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math., Volume 162 (2005) no. 1, pp. 195-234 | DOI | MR | Zbl
Cité par Sources :