A globalisation of Jones and Alexander polynomials constructed from a graded intersection of two Lagrangians in a configuration space
[Une globalisation des polynômes de Jones et d’Alexander construite à partir de l’intersection graduée de deux lagrangiens dans un espace de configurations]
Annales de l'Institut Fourier, Online first, 48 p.

Nous considérons deux polynômes de Laurent à deux variables associés à une tresse, donnés par des intersections graduées entre lagrangiens fixes dans un espace de configurations. Afin d’obtenir des invariants d’entrelacs, on remarque qu’il faut faire le quotient par une relation quadratique. Ensuite nous prouvons par des outils topologiques que cette relation est suffisante et la première intersection graduée donne un invariant qui est le polynôme de Jones. Cela montre un modèle topologique pour le polynôme de Jones et une preuve topologique directe qu’il s’agit d’un invariant bien défini. L’autre modèle d’intersection dans le quotient est un invariant qui globalise les polynômes de Jones et d’Alexander. Cette globalisation dans l’anneau quotient est donnée par une interpolation spécifique entre les polynômes d’Alexander et de Jones.

We consider two Laurent polynomials in two variables associated to a braid, given by graded intersections between fixed Lagrangians in configuration spaces. In order to get link invariants, we notice that we have to quotient by a quadratic relation. Then we prove by topological tools that this relation is sufficient and the first graded intersection gives an invariant which is the Jones polynomial. This shows a topological model for the Jones polynomial and a direct topological proof that it is a well-defined invariant. The other intersection model in the quotient turns out to be an invariant globalising the Jones and Alexander polynomials. This globalisation in the quotient ring is given by a specific interpolation between the Alexander and Jones polynomials.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3692
Classification : 20C08, 20C12, 20F36, 55N25, 55R80, 57M10
Keywords: Quantum invariants, Topological models, Graded intersections, Symmetric powers
Mots-clés : Invariants quantiques, Modèles topologiques, Intersections graduées, Puissances symétriques

Anghel, Cristina Ana-Maria 1, 2

1 University of Geneva, Section de mathématiques, Rue du Conseil-Général 7-9, Geneva CH 1205, Switzerland
2 Institute of Mathematics “Simion Stoilow”, Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania
@unpublished{AIF_0__0_0_A153_0,
     author = {Anghel, Cristina Ana-Maria},
     title = {A globalisation of {Jones} and {Alexander} polynomials constructed from a graded intersection of two {Lagrangians} in a configuration space},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3692},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Anghel, Cristina Ana-Maria
TI  - A globalisation of Jones and Alexander polynomials constructed from a graded intersection of two Lagrangians in a configuration space
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3692
LA  - en
ID  - AIF_0__0_0_A153_0
ER  - 
%0 Unpublished Work
%A Anghel, Cristina Ana-Maria
%T A globalisation of Jones and Alexander polynomials constructed from a graded intersection of two Lagrangians in a configuration space
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3692
%G en
%F AIF_0__0_0_A153_0
Anghel, Cristina Ana-Maria. A globalisation of Jones and Alexander polynomials constructed from a graded intersection of two Lagrangians in a configuration space. Annales de l'Institut Fourier, Online first, 48 p.

[1] Akutsu, Yasuhiro; Deguchi, Tetsuo; Ohtsuki, Tomotada Invariants of colored links, J. Knot Theory Ramifications, Volume 1 (1992) no. 2, pp. 161-184 | DOI | MR | Zbl

[2] Anghel, Cristina Ana-Maria U q (sl(2))-quantum invariants unified via intersections of embedded Lagrangians (2020) (https://arxiv.org/abs/2010.05890v1)

[3] Anghel, Cristina Ana-Maria U q (sl(2))-quantum invariants from an intersection of two Lagrangians in a symmetric power of a surface, Trans. Am. Math. Soc., Volume 376 (2023) no. 10, pp. 7139-7185 | DOI | MR | Zbl

[4] Anghel, Cristina Ana-Maria Coloured Jones and Alexander polynomials as topological intersections of cycles in configuration spaces, Adv. Math., Volume 459 (2024), 109993 | DOI | MR | Zbl

[5] Anghel, Cristina Ana-Maria; Palmer, Martin Lawrence-Bigelow representations, bases and duality (2020) (https://arxiv.org/abs/2011.02388)

[6] Ben Aribi, Fathi Link invariants from L2-Burau maps of braids (2021) (https://arxiv.org/abs/2101.01678v3)

[7] Bigelow, Stephen A homological definition of the Jones polynomial, Invariants of knots and 3-manifolds (Geometry and Topology Monographs), Volume 4, Geometry and Topology Publications, 2002, pp. 29-41 | Zbl

[8] Dowlin, Nathan A spectral sequence from Khovanov homology to knot Floer homology (2018) (https://arxiv.org/abs/1811.07848v1)

[9] Lawrence, Ruth J. A functorial approach to the one-variable Jones polynomial, J. Differ. Geom., Volume 37 (1993) no. 3, pp. 689-710 | DOI | MR | Zbl

[10] Rasmussen, Jacob Some differentials on Khovanov-Rozansky homology, Geom. Topol., Volume 19 (2015) no. 6, pp. 3031-3104 | DOI | MR | Zbl

[11] Reshetikhin, Nikolai Yu.; Turaev, Vladimir G. Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 | DOI | MR | Zbl

[12] Seidel, Paul; Smith, Ivan A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J., Volume 134 (2006) no. 3, pp. 453-514 | DOI | MR | Zbl

Cité par Sources :