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A GLOBALISATION OF JONES AND ALEXANDER
POLYNOMIALS CONSTRUCTED FROM A GRADED

INTERSECTION OF TWO LAGRANGIANS IN A
CONFIGURATION SPACE

by Cristina Ana-Maria ANGHEL (*)

Abstract. — We consider two Laurent polynomials in two variables associated
to a braid, given by graded intersections between fixed Lagrangians in configura-
tion spaces. In order to get link invariants, we notice that we have to quotient by a
quadratic relation. Then we prove by topological tools that this relation is sufficient
and the first graded intersection gives an invariant which is the Jones polynomial.
This shows a topological model for the Jones polynomial and a direct topological
proof that it is a well-defined invariant. The other intersection model in the quo-
tient turns out to be an invariant globalising the Jones and Alexander polynomials.
This globalisation in the quotient ring is given by a specific interpolation between
the Alexander and Jones polynomials.

Résumé. — Nous considérons deux polynômes de Laurent à deux variables asso-
ciés à une tresse, donnés par des intersections graduées entre lagrangiens fixes dans
un espace de configurations. Afin d’obtenir des invariants d’entrelacs, on remarque
qu’il faut faire le quotient par une relation quadratique. Ensuite nous prouvons par
des outils topologiques que cette relation est suffisante et la première intersection
graduée donne un invariant qui est le polynôme de Jones. Cela montre un modèle
topologique pour le polynôme de Jones et une preuve topologique directe qu’il
s’agit d’un invariant bien défini. L’autre modèle d’intersection dans le quotient est
un invariant qui globalise les polynômes de Jones et d’Alexander. Cette globalisa-
tion dans l’anneau quotient est donnée par une interpolation spécifique entre les
polynômes d’Alexander et de Jones.
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1. Introduction

Jones and Alexander polynomials are two knot invariants which were de-
fined initially by different tools, but can both be described from skein theory
and also representation theory of the quantum group Uq(sl(2)) [1, 11]. How-
ever, they differ from the geometric perspective: the Alexander polynomial
is well understood in terms of knot complements but there is an important
open problem to describe the Jones polynomial by such means. Further
on, categorifications for these two invariants provided by Khovanov homol-
ogy and Heegaard Floer homology proved to be powerful tools, but which
have different natures. It is an important problem to provide geometric
categorifications for the Jones polynomial and also to relate such theory to
knot Floer homology [8, 10, 12]. Bigelow [7] provided the first topological
model for the Jones polynomial, as a graded intersection of submanifolds in
configuration spaces, using the homological representations of braid groups
introduced by Lawrence [9]. They used plat closures of braids and proved
the invariance of this model for the Jones polynomial using skein relations.

In [3] we constructed a graded intersection pairing in a configuration
space, associated to a braid and taking values in the Laurent polynomial
ring in two variables, which recovers the (coloured) Jones polynomial and
(coloured) Alexander polynomial through specialisations of coefficients to
polynomials in one variable. Based on this result, we pose the following
question: what is the largest ring in which this topological model provides
link invariants? In this paper we show that it is necessary to quotient by
a quadratic relation and in this case this construction provides a topologi-
cal model for an interpolation between Jones and Alexander polynomials,
constructed in a quotient of the Laurent polynomial ring by a quadratic
relation. We work with links seen as braid closures, as opposed to plat
closures, of braids.

1.1. Main result

For n,m ∈ N, we define Cn,m to be the unordered configuration space of
m points in the n-punctured disc Dn. We will construct two graded intersec-
tions in such configuration spaces in the punctured disc: Ω(βn),Ω′(βn) ∈
Z[x±1, d±1] for βn ∈ Bn, which will be parametrised by the intersection
points between two fixed Lagrangian submanifolds, graded in a certain
way. The construction of the Lagrangians is done by fixing a collection of
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GLOBALISING JONES AND ALEXANDER POLYNOMIALS 3

arcs/ circles in the punctured disc, taking their product and considering its
image in the quotient to the unordered configuration space (Figure 1.1).

In order to answer the problem coming from [3], we compute an exam-
ple (Section 4) and remark that in order to obtain invariants from these
topological models we should quotient the Laurent polynomial ring by a
quadratic relation and work in this quotient (denoted by L). Further on we
proceed as follows:

• We prove by topological and homological techniques that the inter-
section form Ω(βn) becomes invariant under the Markov moves in
this quotient L, so it gives a well defined link invariant.

• Then, we compute these two intersection forms Ω′(βn) and Ω(βn)
in this quotient.

The main results that we obtain are the following:
• The open intersection form Ω′ becomes an interpolation between

Jones and Alexander polynomials given directly by a graded in-
tersection of two Lagrangians in a configuration space, over the
quotient ring L.

• We provide an intrinsic homological construction of the Jones poly-
nomial and a purely homological proof that it is a well-defined link
invariant (using the intersection Ω).

• Also, we obtain a general method for checking invariance under the
Markov moves of constructions based on Lawrence type represen-
tations.

1.2. Description of the models

For the first intersection model, Ω(βn), we start with S and T which
are the Lagrangian submanifolds given by the collections of red arcs and
green circles from the left hand side of Figure 1.1, in the configuration
space of n points in the (3n)-punctured disc (we split the set of punctures
of this disc into 2n horizontal black punctures, labeled by {1, .., 2n} and n
diagonal blue punctures labeled by {1, . . . , n-1}). The second intersection
pairing, Ω′(βn), is constructed using the Lagrangian submanifolds encoded
by the collections of red arcs and green circles from the right hand side of
Figure 1.1, S ′ and T ′, seen in the configuration space of n − 1 points in
the (3n− 2)-punctured disc (this time we split the set of punctures of the
disc into 2n − 1 horizontal black punctures, labeled by {1, .., 2n − 1} and
n− 1 diagonal blue punctures labeled by {1, . . . , n-1}).

TOME 0 (0), FASCICULE 0
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S ,T ⊆ Confn(D3n) S ′,T ′ ⊆ Confn−1(D3n−2)

n+11  n 2n

1d

nd

0 1 n-1 n 2n-2

1d

nd
n
       

1   n-1 

      
1   

Figure 1.1. Closed intersection Ω(βn) Open intersection Ω′(βn)

We denote by Im the trivial braid with m strands. For the next part, we
see the braid groups B3n and B3n−2 as the mapping class groups of the
(3n)−punctured disc and (3n − 2)−punctured disc respectively. This will
lead to two well-defined Lagrangians:

(βn ∪ I2n) S ⊆ C3n,n; (βn ∪ I2n−2) S ′ ⊆ C3n−2,n−1

which are associated to a braid βn ∈ Bn. We consider the sets of intersection
points:

(1.1) Iβn = (βn ∪ I2n)S ∩ T ; I ′
βn = (βn ∪ I2n−2)S ′ ∩ T ′.

Then, we present two graded intersections, denoted by ⟨(βn ∪ I2n)S ,T ⟩
and ⟨(βn∪I2n−1)S ′,T ′⟩, which are parametrised by the set of intersection
points between the above Lagrangians and graded using a local system, as
presented in relation (3.11).

The blue punctures from Figure 1.1 play an important role in the grading
procedure, and from the algebraic perspective they correspond to the quan-
tum trace which is associated to the representation theory of the quantum
group Uq(sl(2)).

Definition 1.1 (Graded intersections). — Let us consider the following
polynomials:

Ω(βn)(x, d),Ω′(βn)(x, d) ∈ Z
[
x± 1

2 , d±1
]
,

which are defined from graded intersections using the Lagrangian subman-
ifolds from Figure 1.1:

(1.2)
Ω(βn)(x, d) :=

(
d2x
)w(βn)+n

2 · d−n⟨(βn ∪ I2n)S ,T ⟩

Ω′(βn)(x, d) :=
(
d2x
)w(βn)+n−1

2 · d−(n−1) ⟨(βn ∪ I2n−1)S ′,T ′⟩ .

ANNALES DE L’INSTITUT FOURIER
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Here, w(βn) is the writhe of the braid βn. We call Ω(βn)(x, d) the graded
intersection associated to the closed model and Ω′(βn)(x, d) the graded
intersection corresponding to the open model.

Let J̃(L) be the normalised Jones polynomial and J(L) the un-normalised
Jones polynomial (Notation 2.6). In [3], we have proved that the open inter-
section model recovers the Jones and Alexander polynomials of the closure
of the braid, through the following specialisations of coefficients:

(1.3)
Ω′(βn)(x, d)|x=d−1 = J̃

(
β̂n, x

)
Ω′(βn)|d=−1 = ∆

(
β̂n, x

)
.

Remark 1.2. — The open intersection model Ω′, up to a change of vari-
ables, is precisely the model constructed in [3]. There, the conclusion that
it recovers the Jones and Alexander polynomials was obtained using the
definition of these two invariants coming from representation theory. In the
next part we will see that we can check almost entirely homologically the
skein relations that are satisfied by the two specialisations of Ω′, as pre-
sented in Theorem 1.5, and deduce from this that it recovers the Jones and
Alexander polynomials.

The definition of the closed intersection form Ω is new and introduced in
the current paper. In the following part we will show by a purely topological
proof that it has a specialisation that satisfies the skein relations associated
to the Jones polynomial.

1.3. Invariants in the quotient ring

Here we start with the problem concerning the invariance of the closed
intersection form Ω. Let L := Z[x± 1

2 , d±1]/((d + 1)(dx − 1)) and consider
the quotient morphism:

: Z
[
x± 1

2 , d±1
]

→ Z
[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1)) .

Theorem 1.3 (Invariant in the quotient ring). — The ring L is the
largest quotient of Z[x± 1

2 , d±1] such that the image of the intersection form
Ω(βn) in this quotient becomes a link invariant. More precisely, let us de-
note the image of the graded intersection in this quotient ring by:

(1.4) Ω̄(βn)(x, d) ∈ Z
[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1))

Then Ω̄(L)(x, d) := Ω̄(βn)(x, d) is a well defined link invariant for an ori-
ented link L which is the closure of βn. Also, if L′ is a quotient of the
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Laurent polynomial ring in which Ω(βn) becomes a link invariant then the
quotient onto L′ factors through L.

The proof of this result is topological. We use homological tools in order
to prove that Ω̄(βn) is invariant under the two Markov moves.

1.4. The intersection forms recover the Jones and Alexander
polynomials

In the next part we want to understand this invariant, which takes values
in the quotient of the Laurent polynomial ring. First, we prove that it has
two specialisations, one of which recovers the Jones polynomial and the
other one which vanishes.

Theorem 1.4. — The closed intersection form Ω̄(L) specialises to the
un-normalised Jones polynomial and vanishes for the specialisation of co-
efficients associated to roots of unity:

(1.5)
Ω̄(L)|x=q2,d=q−2 = J(L, q)

Ω̄(L)|d=−1 = 0.

The proof of this model is also topological. Using homological representa-
tions, we show that it is enough to verify two particular skein type relations
and we check this by intersecting curves in the punctured disc.

Secondly, we also prove that the two specialisations of the open intersec-
tion model Ω̄′ satisfy the the skein relations characterising the Jones and
Alexander polynomials.

Theorem 1.5. — The open intersection form Ω̄′(βn) specialises to the
normalised Jones polynomial and the Alexander polynomial of the closure
of the braid, as below:

(1.6)
Ω̄′(βn)|x=q2;d=q−2 = J̃(L, q)

Ω̄′(βn)|d=−1 = ∆(L, x).

For this, we start from the fact that these specialisations are conju-
gacy invariants, which comes from [3]. Then we prove directly by the same
topological techniques as the ones used for Ω̄ that they satisfy the skein
relations. This makes this paper self-contained and independent of all iden-
tifications from [3] (presented in equation (1.3)) except the assumption of
the conjugacy invariance of the specialisations of the open model Ω′.

ANNALES DE L’INSTITUT FOURIER
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1.5. The explicit form of the invariants in the quotient ring

Now we want to understand what the two intersection models in the
quotient ring are. We use algebraic arguments and, starting from the fact
that the two models recover the Jones and Alexander polynomials, we
conclude that in the quotient ring they have to be interpolations between
these two invariants, as below.

Theorem 1.6 (The closed intersection model as the Jones polynomial).
The closed model has the following form in the quotient ring L:

(1.7) Ω̄(L)(x, d) = x
1
2 (d+ 1) · J̃(L)(x).

Theorem 1.7 (The open intersection model interpolates between the
Jones and Alexander polynomials). — The open model is a well defined
invariant in the quotient, which is given by:

(1.8) Ω̄′(L)(x, d) = ∆(L)(x) + (d+ 1) · J̃(L)(x) − ∆(L)(x)
(x−1 + 1) in L.

1.6. Further work

Categorifications. One motivation for this research direction concerns
the description of geometrical type categorifications for Jones and Alexan-
der polynomials and relations between them (such as spectral sequences [8,
10, 12]). We expect that there is a categorification procedure from the spe-
cialised open model Ω̄′(L)d=−1 which gives knot Floer homology (for knots,
the geometric supports of the Lagrangians from our picture are Heegaard
diagrams). We are interested in studying this machinery directly at the
interpolation level Ω̄′(L) (over L), where we have a grading for the inter-
section points given by two variables. In particular, we are interested in
investigating the grading for this interpolation model, which is geometri-
cally described as in Section 3, and relating this to the grading from the
Floer homology picture and certain gradings for possible geometrical cate-
gorifications for the Jones polynomial.

Twisted invariants from Lawrence representations. This work is
also part of a wider joint project with Fathi Ben Aribi ([6]) where we aim to
define twisted invariants for knots starting from twisted Lawrence type rep-
resentations. In Section 4 we see that the intersection form Ω̄ is given also
by a sum of traces of Lawrence representations and we prove that this is in
turn invariant under Markov moves. This provides a method for checking

TOME 0 (0), FASCICULE 0
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Markov moves on constructions defined using Lawrence type representa-
tions. This method is a starting point in this joint work, where we aim to
check Markov moves for twisted versions of Lawrence representations.

Structure of the paper

In Section 3 we present the grading procedure and the construction of
the two intersection models in the configuration space. In Section 4, we
compute the closed model Ω for the unknot and stabilised unknot and
deduce that in order to have invariance we need a quadratic relation. Then,
in Section 5 we discuss the relation between these intersection models and
two state sums of Lagrangian intersections, defined using pairings between
Lawrence representations, from [2]. Section 6 is devoted to the proof of the
invariance of the closed intersection form Ω̄ under the Markov moves (in
the quotient ring). After that, in Section 7, we prove topologically that the
specialisations of the two intersection forms Ω̄ and Ω̄′ satisfy appropriate
skein relations and so they are the Jones and Alexander polynomials. In
Section 8 we show that these two models become interpolations of Jones
and Alexander polynomials in the quotient. In the last section we compute
the open intersection model for the trefoil knot and check that it is given
by the above interpolation.

Acknowledgements

I would like to thank Rinat Kashaev very much for discussions concerning
the form of these intersection models in the quotient ring and the conclu-
sion that they are the above interpolations between Jones and Alexander
polynomials. I would also like to thank Emmanuel Wagner for useful dis-
cussions regarding the first version of the paper. I would like to thank very
much the anonymous referee for useful suggestions on a previous version of
this paper.

2. Notations

We start with the quotient ring:

(2.1) L = Z
[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1)) .

ANNALES DE L’INSTITUT FOURIER
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Remark 2.1. — Looking at L as an algebra over Z[x± 1
2 ], we have a basis

given by: {
di
∣∣ 0 ⩽ i ⩽ 1

}
.

In other words, the powers of d which are bigger than 2 can be expressed
in terms of the above basis. For example, we have:

(2.2)
d2 = x−1d− d+ x−1

d3 =
(
x−2 − x−1 + 1

)
d+ x2 − x−1.

Notation 2.2. — For a set of indices ī = (i1, . . . , in) where i1, . . . , in ∈
{0, 1} we denote the symmetric set of indices by:

(2.3) 1 − ī := (1 − in, . . . , 1 − i1).

Also, we will change the coefficients for certain modules, using the following
definition.

Notation 2.3. — Let R be a ring and consider M an R-module which
has a basis B (it is a free R-module). We consider S to be another ring
and let us suppose that we have a specialisation of coefficients, given by a
morphism:

ψ : R → S.

The specialisation of the module M by the morphism ψ is the following
S-module:

M |ψ := M ⊗R S.

It will have a basis described by:

BM |ψ := B ⊗R 1 ∈ M |ψ.

Definition 2.4 (Specialisations of coefficients towards one variable).
We consider two specialisations of coefficients, given by:

(2.4)
ψJ : Z

[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1)) → Z

[
x± 1

2

]
ψJ(d) = x−1;ψJ(x) = x.

(2.5)
ψ∆ : Z

[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1)) → Z

[
x± 1

2

]
ψ∆(d) = −1;ψ∆(x) = x.

We will use these two changes of coefficients ψJ and ψ∆ in order to pass
from the intersection form from the quotient ring in two variables L towards
the Jones polynomial and Alexander polynomial respectively.

TOME 0 (0), FASCICULE 0
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Z
[
x± 1

2

]
Z[x± 1

2 ]

Z
[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1))

d = x−1 d = −1ψ∆ψJ

Definition 2.5 (Specialisations for Lawrence representations). — Let
us denote the quotient morphism to L by:

(2.6) s : Z
[
x±1, d±1] → Z

[
x±1, d±1] /((d− 1)(xd− 1)).

Notation 2.6. — We consider J̃(L) to be the normalised Jones polyno-
mial, whose evaluation on the unknot U is the following:

J̃(U )(x) = 1.

Also, let J(L) be the un-normalised version of the Jones polynomial, which
is given by:

J(U )(x) = x
1
2 + x− 1

2 .

3. Definition of the intersection forms

In this part we introduce the two intersection forms, which are given by
certain graded intersections in the configuration spaces in the punctured
disc.

For n,m ∈ N we consider the unordered configuration space of m points
in the n-punctured disc and denote it by Cn,m := Confm(Dn). We consider
a collection of base points d1, . . . , dm ∈ Dn and the associated base point
in the configuration space d = {d1, . . . , dm} ∈ Cn,m.

1 i n

σi

d1 d2 dm

∧ 1 i n

d1 d2 dm
δ

For the grading procedure, we will use a local system on this configuration
space.

ANNALES DE L’INSTITUT FOURIER
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Notation 3.1. — For this, we start with the abelianisation map ab :
π1(Cn,m) → H1(Cn,m). Then, for any m ⩾ 2 we have:

H1(Cn,m) ≃ Zn ⊕ Z
⟨ab(Σi)⟩ ⟨ab(∆)⟩, i ∈ {1, . . . , n}.

More specifically, the generators of the first group, Zn, are given by classes
of loops defined by the property that their first component goes around the
i-th puncture and the other components are constant:

Σi(t) := {(σi(t), d2, . . . , dm)}, t ∈ [0, 1].

The generator of the second group is the class of a loop ∆ which swaps the
first two base points: ∆(t) := {(δ(t), d3, . . . , dm)}, t ∈ [0, 1].

For the next part we fix l ∈ N such that l ⩽ n. We will next use a
morphism that distinguishes the n punctures, by separating them into two
sets: n− l black punctures and l blue punctures, as in Figure 3.1. Further
on, for orientation purposes, we also fix a number k ∈ {0, . . . , n− l}.

i

 

n-k-l   n-k-l+1i

d1 d2 dm

1 i

d1 d2

l   

dm

n-l

 

1 
  

j 
  

1 n-l

l   

1 
  

j 
  

Figure 3.1. Local system.

Definition 3.2 (Local system). — For l ∈ {1, . . . , n} and k ∈ {0, . . . ,
n− l}, we define the following morphism:

(3.1)

ϕ : π1 (Cn,m) ab→ Zn−l ⊕ Zl ⊕ Z f→ Z ⊕ Z ⊕ Z
⟨[σi]⟩ ⟨[γj ]⟩ ⟨[δ]⟩ ⟨x⟩ ⟨y⟩ ⟨d⟩
i ∈ {1, . . . , n− l}, j ∈ {1, . . . , l}

ϕ = f ◦ ab.

Here, the morphism f is defined as augmentations on the first two sum-
mands as follows:

(3.2)


f(σi) = x, i ∈ {1, . . . , n− k − l}
f(σi) = −x, i ∈ {n− k − l + 1, . . . , n− l}
f(γj) = y, j ∈ {1, . . . , l}
f(δ) = d.

TOME 0 (0), FASCICULE 0
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3.1. The open and closed intersection forms

In the next part we present the grading procedures that will be used for
the definition of the two graded intersections. For Ω, we will work in the
setting from Definition 3.2 where the ambient space and the parameters
n, l, k are: (

C3n,n = Confn(D3n), n → 3n, l → n, k → n
)
.

For Ω′ we will use the following data:(
C3n−2,n−1 = Confn−1(D3n−2), n → 3n− 2, l → n− 1, k → n− 1

)
.

The construction of the graded intersection Ω′ is precisely the one presented
in [3], for the case where the colour N = 2. This is parametrised by the set
of intersection points between the two Lagrangians from Figure 1.1:

(3.3) I ′
βn := (βn ∪ I2n−1)S ′ ∩ T ′

together with a grading coming from a certain local system defined on the
configuration space.

For the closed model Ω, the intersection will be defined in an analog
manner, where we add one particle in our configuration space, as below.

3.1.1. Grading for Ω

Let us fix βn ∈ Bn. Using the property that the braid group is the map-
ping class group of the punctured disc, we act with such a braid (to which
we add 2n trivial strands) on S (presented in Figure 1.1) and consider the
submanifold:

(βn ∪ I2n)S ⊆ C3n,n.

We choose a representative of this action such that it is supported in a
grey disc around the punctures labeled by {1, . . . , n} (as in Figure 3.2),
and also such that the above submanifold is a Lagrangian submanifold, as
discussed in [3, Section 2.2].

Further on, we define the graded intersection pairing, which is generated
by the set of intersection points, denoted by:

(3.4) Iβn := (βn ∪ I2n)S ∩ T

and graded by the above local system. The grading procedure will be done
by associating to each intersection point x̄ a loop lx̄ in the configuration
space, which will be evaluated by the morphism ϕ:

x ∈ Iβn ⇝ lx̄ ⇝ ϕ(lx̄).

ANNALES DE L’INSTITUT FOURIER
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In order to prescribe the loop, we use a base point which is chosen on the
submanifold S , and we denote it as d := (d1, . . . , dn), using Picture 3.2.
Let us denote by sS , sT ⊆ D3n the collections of n red curves and n green
circles which give the geometric supports for S and T .

Definition 3.3 (Paths to the base points). — For the next part, we
fix a set of n paths in the punctured disc which connect the red curves
with the left hand side of the circles, as in Figure 3.2, and denoted them
by η1, . . . , ηn. Similarly, we consider a collection of paths η′

1, . . . , η
′
n which

start from the red curves and end on the right hand side of the circles.

n
  

1   

n+11  n 2n

1d

nd

Figure 3.2. Braid action

Definition 3.4 (Left / right hand side of the disc). — As we have
seen, our braid actions on the punctured disc are supported in the little
grey disc around the punctures {1, .., n} from Figure 3.2. We separate the
big punctured disc into the following two halves:

• (Left hand side of the disc) This is defined to be the half of the disc
from Figure 3.2 that contains the punctures {1, . . . , n}.

• (Right hand side of the disc) We define this to be the half of the
disc from Figure 3.2 that contains the punctures {n + 1, . . . , 2n}
and also {1, . . . , n}.

Remark 3.5. — Using the fact that our braid action is supported in the
little grey disc, this means that the picture associated to

((βn ∪ I2n)S ,T )

in the right hand side of the disc is the same as the picture from figure 3.2 in
the right hand side of the disc. This means that all the changes associated
to this action will occur in the interior of this disc.
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Definition 3.6 (Loop associated to an intersection point). — Let x̄ =
(x1, . . . , xn) ∈ Iβn . The loop, based in d, will be constructed in two steps.

For the first part, we fix k ∈ {1, . . . , n} and use the kth green circle which
goes around the punctures (k, 2n+ 1 − k). There is exactly one component
of x̄, denoted by xι(k), which belongs to this circle.

If xι(k) is in the left hand side of the punctured disc, we define ν̄k to be
the path (in the punctured disc) which starts from dk following ηk and then
continue on the green curve until it reaches the point xι(k), as in figure 3.3.
If xι(k) is on the right hand side of the punctured disc, then we do a similar
procedure and define a path ν̄k by using the path η′

k to begin with, and
then go to the intersection point following part of the green circle.

k 2n+1-k

k  d     ηk η′
k

Figure 3.3. Paths from the base points

Doing this construction for all k ∈ {1, . . . , n} we get a collection of n
paths in the punctured disc. Now we consider the path in the configuration
space from d to x̄ given by the union of these paths:

(3.5) γ̄x̄ :=
{
ν̄1, . . . , ν̄n

}
.

For the second part of the construction, we start from the components
of x̄ and we go back to the base points in the punctures disc using the red
arcs. More precisely, each component xk of x̄ belongs to a unique red arc,
denoted by j(k). Let νk be the path in the punctured disc starting in xk
and ending in dj(k) following the j(k)th red curve. Now, we look at the path
in the configuration space from x̄ to d given by this collection of paths, and
denote it as below:

(3.6) γx̄ :=
{
ν1, . . . , νn

}
.

Now we define the loop associated to the intersection point x̄ (base in d)
as the composition of the two previous paths:

(3.7) lx̄ := γx̄ ◦ γ̄x̄.

ANNALES DE L’INSTITUT FOURIER
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3.2. Graded intersections

In this part we recall the definition of the graded intersection defined
in [3]. After that, we consider a smaller local system and use that to define
the graded intersection which we use for the main result.

Definition 3.7. — We consider a graded intersection ⟨⟨(βn∪I2n)S ,T ⟩⟩
∈ Z[x±1, y±1, d±1], which is parametrised by the intersection points and
graded using the associated loops and the local system as below:

(3.8) ⟨⟨(βn ∪ I2n)S ,T ⟩⟩ :=
∑

x̄∈ Iβn

ϵx1 · · · · · ϵxn · ϕ(lx̄).

In this formula ϵxi is the sign of the local intersection between the circle
and the red curve that xi belongs to, in the punctured disc.

For the grading procedure that we need for this model, we will use a
further quotient which is defined as follows:

(3.9)

F : Z
[
x±1, y±1, d±1] → Z

[
x±1, d±1]{

F (x) = x;
F (y) = −d;F (d) = d.

Definition 3.8 (Change of coefficients). — Let us define the morphism
ϕ̃ which is obtained from ϕ and has the co-domain the group ring Z[Z ⊕
Z ⊕ Z] ≃ Z[x±1, y±1, d±1]:

ϕ̃ : π1(Cn,m) → Z
[
x±1, y±1, d±1] .

Then, we define the morphism obtained from ϕ̃ by taking the quotient
using F :

(3.10)
φ : π1(Cn,m) → Z

[
x±1, d±1]

φ = F ◦ ϕ̃.

Definition 3.9 (Grading). — Let us define the following graded inter-
section:

(3.11)
⟨(βn ∪ I2n)S ,T ⟩ ∈ Z

[
x±1, d±1]

⟨(βn ∪ I2n)S ,T ⟩ :=
∑

x̄∈ Iβn

ϵx1 · · · · · ϵxn · φ(lx̄).

We remark that:

(3.12)
⟨(βn ∪ I2n)S ,T ⟩ = F (⟨⟨(βn ∪ I2n)S ,T ⟩⟩)

= ⟨⟨(βn ∪ I2n)S ,T ⟩⟩|y=−d.
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In the next part we use this graded intersection in order to define two
intersection models: one which is associated to the total closure of a braid
and another one which corresponds to the closure which leaves the first
strand open.

S ,T S ′,T ′

n+11  n 2n

1d

nd

0 1 n-1 n 2n-2

1d

nd
n
       

1   n-1 

      
1   

Figure 3.4. Closed up intersection Ω(βn) Open intersection Ω′(βn)

Definition 3.10 (Graded intersections). — Let us consider the follow-
ing polynomials:

Ω(βn)(x, d),Ω′(βn)(x, d) ∈ Z
[
x± 1

2 , d±1
]
,

which are obtained from graded intersections coming from the the La-
grangian submanifolds form picture 3.4, and are given by the formulas:

(3.13)
Ω(βn)(x, d):=

(
d2x
)w(βn)+n

2 · d−n ⟨(βn ∪ I2n)S ,T ⟩

Ω′(βn)(x, d):=
(
d2x
)w(βn)+n−1

2 · d−(n−1) ⟨(βn ∪ I2n−1)S ,T ⟩ .

We call Ω(βn)(x, d) the graded intersection associated to the closed up
model and Ω′(βn)(x, d) the graded intersection corresponding to the open
model.

4. Unknot and the stabilised unknot

In this section we investigate the necessary conditions on the ring of co-
efficients such that the intersection model leads to a link invariant. Let us
start with the unknot, seen as the closure of the following braids: I1 ∈ B1
and σ ∈ B2. Now we compute the intersection model, which is obtained
from the intersection points between the following Lagrangian submani-
folds:

Computing the grading of these intersection points from the picture, we
obtain the coefficients from below:
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1d
1d

2d

x1x2

x3

x4

z1z2x1x2

Figure 4.1. Unknot Stabilised unknot

x1 x2

d 1

(x1, z1) (x2, z1) (x3, z1) (x4, z2)

d2 d −dx−1 d−1x−1

This means that the intersection form has the following formulas:

(4.1)
Ω(I1) = x

1
2 (1 + d)

Ω(σ) = dx
3
2
(
d2 + d− dx−1 + d−1x−1) .

In order to obtain from Ω a link invariant, this should be the same for these
two braids, which give the same knot by braid closure, so the following
relation should be true:

(4.2) Ω(I1) = Ω(σ).

Using the formulas for the two intersections, we obtain the following rela-
tion:

(4.3) d2x+ dx− d− 1 = 0

which is equivalent to:

(4.4) (d+ 1)(dx− 1) = 0.

This shows that L = Z[x± 1
2 , d±1]/((d+ 1)(dx− 1)) is the largest quotient

in which the intersection form can become a link invariant.
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5. Description of the closed and open graded intersections
in terms of state sums

In order to prove the invariance of our intersection forms with respect to
braid conjugation, we will use a different description of Ω(βn) and Ω′(βn),
as a state sums of Lagrangian intersections following [3]. In the next part
we outline the construction of these state sum invariants, which use homo-
logical representations of braid groups.

5.0.1. Homological representations

We use the structure of certain Lawrence representations which are pre-
sented in [4] and [5]. They are braid group representations on subspaces in
the homology of a Z ⊕ Z-covering of the configuration space Cn,m, which
are generated by explicit homology classes. For the following definitions we
consider the parameter l = 0.

Let us look at the local system ϕ from Definition 3.2, where we replace
the variable d with a variable which we call d′ (this is for a sign reason that
we will see later on), and denote it by ϕ′.

(5.1)
ϕ′ : π1(Cn,m) → Z ⊕ Z

⟨x⟩ ⟨d′⟩

Let C̃n,m be the Z ⊕ Z-covering associated to ϕ′.
Let w be a point on the boundary of the punctured disc and denote by

Cw the part of the boundary of the configuration space Cn,m which is given
by configurations containing w. Let C̄w be the complement of Cw in the
boundary of the configuration space. Then, let π−1(w) be the part of the
boundary of the covering C̃n,m given by the fiber over Cw.

In the next part we consider part of the Borel–Moore homology of this
covering which comes from the Borel–Moore homology of the base space
twisted by the local system ϕ′.

Proposition 5.1 ([4]). — Let H lf
m(C̃n,m, π−1(w);Z) be the Borel–Moo-

re homology of the covering relative to part of the boundary given by
π−1(w), which is a Z[x±1, d′±1]-module via the group of deck transforma-
tions. Then there is a well defined braid group action which is compatible
with the structure of a Z[x±1, d′±1]-module:

Bn ↷ H lf
m

(
C̃n,m, π

−1(x);Z
) (

as a Z
[
x±1, d′±1] -module

)
.
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Notation 5.2. — Let H∂
m(C̃n,m, ∂−;Z) the homology relative to the bo-

undary of C̃n,m which is not in the fiber over w.

Proposition 5.3 ([5, Theorem E]). — Let H lf
m(Cn,m, Cw; Lϕ) and

Hm(C̃n,m, C̄w; Lϕ) be the Borel–Moore homology and the homology of the
base space relative to the boundary, with coefficients in the local system
associated to ϕ′ (which we denote by Lϕ). Then, we have natural injective
maps, which are compatible with the braid group actions as below:

(5.2)
ι : H lf

m (Cn,m, Cw; Lϕ) → H lf
m

(
C̃n,m, π

−1(w);Z
)

ι∂ : Hm

(
C̃n,m, C̄w; Lϕ

)
→ H∂

m

(
C̃n,m, ∂

−;Z
)
.

Notation 5.4 (Our homology groups). — We denote the images of the
maps ι and ι∂ by:

(5.3)
Hn,m ⊆ H lf

m

(
C̃n,m, π

−1(w);Z
)

H∂
n,m ⊆ H∂

m

(
C̃n,m, ∂

−;Z
)
.

Also, let us consider the following set of partitions:

(5.4) En,m =
{
j̄ = (j1, . . . , jn)

∣∣ j1, . . . , jn ∈ Z, j1 + · · · + jn = m
}
.

In the following part we consider a family of homology classes in the above
homology groups, which will be given by lifts of submanifolds in the base
configuration space. These submanifolds will be encoded by “geometric
supports” which are collections of curves in the punctured disc. For this
part, we fix d1, . . . , dm on the boundary of the punctured disc and d :=
(d1, . . . , dm) a base point in the configuration space. Moreover, let us fix
d̃ to be a lift of this base point in the covering C̃n,m.

Definition 5.5 (Homology classes). — Let j̄ = (j1, . . . , jn) ∈ En,m.
The product of ordered configuration spaces on the geometric support from
picture 5.1, whose number of particles is given by the partition j̄, quotiented
to the unordered configuration space Cn,m, gives a submanifold:

Uj̄ ⊆ Cn,m.

Then, in order to lift this submanifold in the covering, we will use “paths to
the base points” which are collections of arcs in the punctured disc, from the
base points towards the geometric support. More precisely, the collection
of dotted paths from the base points towards the arcs from figure 5.1 gives
a path in the configuration space ηj̄ from d̄ to Uj̄ . Then we lift this path
to a path η̃j̄ through the base point d̃. Now, we lift the submanifold Uj̄ to
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a submanifold Ũj̄ through η̃j̄(1). We consider the homology class given by
this submanifold and denote it by:

(5.5) U ′
j1, ..., jn :=

[
Ũj̄
]

∈ Hn,m.

w
1

ηj̄
1 ηj̄

j1
ηj̄

m ηj̄ =
(
ηj̄

1, . . . , η
j̄
m

)

η̃j̄

n

d=

d̃

Confj1 Confjn

Uj̄

Ũj̄

Cn,m

C̃n,m

d1 dj1 dm

Figure 5.1. Generators for the homology group Hn,m

Proposition 5.6 (Version of the Lawrence representation). — Follow-
ing [5], this set of homology classes:

(5.6) BHn,m =
{
U ′
j1, ..., jn

∣∣ j1, . . . , jn ∈ N, j1 + · · · + jn = m
}

forms a basis for Hn,m and there is a braid group action, denoted by:

Ln,m : Bn → AutZ[x±1,d±1] (Hn,m) .

We called this the Lawrence representation.

Proposition 5.7 ([5]). — There is a well defined intersection pairing
between the two homology groups as follows:

⟨⟨⟨ , ⟩⟩⟩ : Hn,m ⊗H∂
n,m → Z

[
x±1, d±1] .

In this formula d should be thought of as −d′ and we make this change for
computational reasons, as we will see below.

This intersection pairing is defined at the level of homology groups, but
it can be computed using the geometric supports, the paths to the base
points and the local system, in the base configuration space. The precise
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formula is presented in [4, Proposition 4.4.2]. For homology classes which
are given by lifts of the geometric supports that we will work with, the
formula for the pairing ⟨⟨⟨, ⟩⟩⟩ at the homological level is actually the same
formula as the one for the graded intersection ⟨⟨, ⟩⟩ from Definition 3.8 in
the situation where l = 0.

5.0.2. Our context

Now we present a way to see our Lagrangian intersection through a state
sum of intersection pairings between homology classes belonging to these
homology groups. This is based on two theorems from [3], which we remind
below. Let us fix n ∈ N.

5.0.3. Open model

First, we work with the configuration space C2n−1,n−1 and the associated
homology groups, where the parameter k = n − 1. For any multi-index
ī = (i1, . . . , in−1), ik ∈ {0, 1}, k ∈ {1, . . . , n − 1} we look at the two
homology classes F ′

ī
∈ H2n−1,n−1,L ′

ī
∈ H∂

2n−1,n−1 obtained by the lifts
of the geometric supports together with the paths to the base points from
the picture below:

F ′
ī ∈ H2n−1,n−1 L ′

ī ∈ H∂
2n−1,n−1.

1  n-1 2n-2    ... ...
in-1  1-in-1 1-i1

d1
dn-1

iF'

dn-1

L'
1

d1

i

 2n-2 n     i1

in-1  1-in-1 1-i1     i1

n n+10 0

ηF
′
ī ηL

′
ī

Figure 5.2. State sum model

Definition 5.8 (Specialisations). — Let c ∈ Z and consider the mor-
phism:

(5.7)
γc,q,λ : Z

[
u±1, x±1, d±1] → Z

[
q±1, q±λ]

γc,q,λ(u) = qcλ; γc,q,λ(x) = q2λ; γc,q,λ(d) = q−2.
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Using the relations (5.13), (5.14) from the proof of [3, Theorem 5.1 and
Theorem 3.2], we have the following model.

Theorem 5.9 (Unified embedded state sum model [3]). — Let L be an
oriented link and βn ∈ Bn such that L = β̂n. Let us consider the polynomial
in 3 variables given by the following state sum:

(5.8) Λ′
2(βn)(u, x, d) := u−w(βn)u−(n−1)

1∑
i1, ..., in−1=0

d
−
n−1∑
k=1

ik

〈〈〈
(βn ∪ In−1)F ′

ī ,L
′
ī

〉〉〉
∈ Z

[
u±1, x±1, d±1] .

Then we have:

(5.9) Ω′(βn) = Λ′
2(βn)|

u=d−1x− 1
2
.

Corollary 5.10 (State sum model for the open intersection). — As a
consequence of the previous formula, we obtain the following sate model
for the open intersection form, in the quotient ring:

(5.10)

Ω̄′(βn)(x, d) = (xd2)
w(βn)+(n−1)

2 ·

1∑
i1, ..., in−1=0

d
−
n−1∑
k=1

ik 〈〈〈
(βn ∪ In−1)F ′

ī ,L
′
ī

〉〉〉∣∣
s

Here, the specialisation s is the one defined in (2.6).

5.0.4. Closed model

For the second model, we work with the configuration space C2n,n and
the homology groups associated to the parameter k = n. For any multi-
index ī = (i1, . . . , in), ik ∈ {0, 1}, k ∈ {1, . . . , n} we consider the homology
classes obtained by the lifts of the following geometric supports:

By a similar method as the one used for Theorem 5.9, we deduce a state
sum description for the closed intersection model, as follows.

Corollary 5.11 (Unified embedded state sum model- closed version).
Let L be an oriented link such that L = β̂n for βn ∈ Bn. Let us consider
the following state sum:

(5.11) Λ2(βn)(u, x, d) := u−w(βn)u−n
1∑

i1, ..., in=0
d

−
n∑
k=1

ik

⟨⟨⟨(βn ∪ In)Fī,Lī⟩⟩⟩ ∈ Z
[
u±1, x±1, d±1] .
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Fī ∈ H2n,n and Lī ∈ H∂
2n,n.

1  n 2n    ... ...
in  1-in 1-i1

d1
dn

iF

dn

L
1

d1

i

 2n n     i1

in  1-in 1-i1     i1

n+1 n+1

ηFī ηLī

Figure 5.3. State sum model-closed version

Then we have:

(5.12) Ω(βn) = Λ2(βn)|
u=d−1x− 1

2
.

Corollary 5.12 (State sum model for the closed intersection). —
From this formula we conclude the following sate model for the closed
intersection form, in the quotient ring:

(5.13)

Ω̄(βn)(x, d) = (xd2)
w(βn)+n

2 ·

1∑
i1, ..., in=0

d
−

n∑
k=1

ik 〈〈〈
(βn ∪ In)F ′

ī ,L
′
ī

〉〉〉∣∣
s

∈ L.

6. Invariance under the Markov moves

In this part we prove Theorem 1.3 and show that it is enough to quotient
towards L in order to have a link invariant. More specifically, we will present
a topological proof of the invariance of the closed model Ω̄(L). We split the
proof into two main steps.

• The first step concerns the invariance with respect to the Markov
II move. For this, we compute the intersection pairing Ω(βn) before
and after pursuing a stabilisation move, and show that the two
formulas become equal if we impose the relation (d+1)(dx−1) = 0
(which means precisely to consider the quotient morphism and work
over L).

• Secondly, we prove that the intersection form is invariant with re-
spect to the Markov I move. We do this by proving that if we pass
to the quotient L, the image Ω̄(βn) can be interpreted as a sum of
traces of braid group representations. Then we conclude that this
sum is invariant with respect to braid conjugation.
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6.1. Markov II

In this part we want to prove that the intersection Ω̄ is invariant under
stabilisations:

(6.1) Ω̄(βn) = Ω̄
(
σ±1
n ◦ βn

)
.

We will do this by checking this move via the state sum Λ2. More precisely,
we compute which relation is needed in order to obtain the same result
before and after the stabilisation. Following relation (5.11) we have:

(6.2)

Λ2(βn)(u, x, d)

= u−w(βn)u−n ·
1∑

i1, ..., in=0
d

−
n∑
k=1

ik 〈〈〈
(βn ∪ In)F ′

ī ,L
′
ī

〉〉〉
.

Λ2
(
σ±1
n ◦ βn

)
(u, x, d) = u−w(σ±1

n ◦βn)u−(n+1)
1∑

i1, ..., in=0
d

−
n∑
k=1

ik

·

·
(〈〈〈(

σ±1
n ◦ βn ∪ In+1

)
F ′
ī,0,L

′
ī,0

〉〉〉
+d−1

〈〈〈(
σ±1
n ◦ βn ∪ In+1

)
F ′
ī,1,L

′
ī,1

〉〉〉)
.

In the next part, for a set of indices j̄ = (j1, , . . . , , jn) we denote their sum
by:

w(j̄) := j1 + · · · + jn.

Now we fix an index ī and we look at the terms from the above state sums
that are associated to this index. Let us denote by m = w(̄i). From the
structure of the homology group H2n,m, presented in Proposition 5.6, there
exists a collection of coefficients αj̄ ∈ Z[x±1, d±1] such that:

(6.3) (βn ∪ In)F ′
ī =

∑
j̄=(j1, ..., jn) ∈En,m

αj̄ · U ′
j̄,1−ī

(here we used Notation 2.2).
Then, in the first state sum, the term associated to the index ī can be

expressed as:

(6.4) d−m
∑

j̄ ∈En,m

αj̄ ·
〈〈〈

U ′
j̄,1−ī,L

′
ī

〉〉〉
.

For the next part we are interested in the intersection with the dual class.
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Proposition 6.1. — We have the following property of the intersection
form:

(6.5)
〈〈〈

U ′
j̄,1−ī,L

′
ī

〉〉〉
=
{

1, if (j1, . . . , jn) = (i1, . . . , in)
0, otherwise.

The proposition follows by an analog argument as the one from [4,
Lemma 7.7.1]. This shows that if〈〈〈

U ′
j̄,1−ī,L

′
ī

〉〉〉
̸= 0

then we have to have j̄ = ī. So, in the first state sum, associated to the
index ī we have:

(6.6) αī ·
〈〈〈

U ′
ī,1−ī,L

′
ī

〉〉〉
.

For the next part we look at the classes from the second state sum (which
are associated to a set of (n+ 1) indices). Using relation (6.3) we have the
decomposition from below:

(6.7) ((βn ∪ I) ∪ In+1) F ′
ī,ϵ

=
∑

j̄=(j1, ..., jn) ∈En,m

αj̄ · U ′
j̄,ϵ,1−ϵ,1−ī,∀ ϵ ∈ {0, 1}.

Then, in the second state sum, the term associated to the index ī has the
following formula:

(6.8) d−m
∑

j̄ ∈En,m

αj̄ ·
(〈〈〈(

σ±1
n ∪ In+1

)
U ′
j̄,0,1,1−ī,L

′
ī,0

〉〉〉
+d−1

〈〈〈(
σ±1
n ∪ In+1

)
U ′
j̄,1,0,1−ī,L

′
ī,1

〉〉〉)
.

We remark that the (σ±1
n ∪In+1)-action on U ′

j̄,0,1,1−ī will be a linear combi-
nation of classes which correspond to indices that have the first components
j1, . . . , jn−1. Just the indices which are associated to the nth and (n+ 1)st

positions can be modified. Since we are intersecting with the dual class
L ′
ī,0, using the property from relation (6.5), we conclude that the above

intersections give a non-trivial term just in the situation where:

(6.9) (j1, . . . , jn−1) = (i1, . . . , in−1).

Since j1 + · · · + jn = i1 + · · · + in = m, we conclude that actually the two
indexing sets have to coincide:

(6.10) (j1, . . . , jn) = (i1, . . . , in), and so j̄ = ī.
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As a conclusion, in the second state sum, corresponding to the index ī we
have:

(6.11) αī ·
(〈〈〈(

σ±1
n ∪ In+1

)
U ′
ī,0,1,1−ī,L

′
ī,0

〉〉〉
+ d−1

〈〈〈(
σ±1
n ∪ In+1

)
U ′
ī,1,0,1−ī,L

′
ī,1

〉〉〉)
.

Putting together relations (6.2), (6.6) and (6.11) we conclude that the in-
variance at the Markov II move is true if for any ī = (i1, . . . , in) with
i1, . . . , in ∈ {0, 1}:

(6.12)
〈〈〈

U ′
ī,1−ī,L

′
ī

〉〉〉
= u∓−1 ·

(〈〈〈(
σ±1
n ∪ In+1

)
U ′
ī,0,1,1−ī,L

′
ī,0

〉〉〉
+ d−1

〈〈〈(
σ±1
n ∪ In+1

)
U ′
ī,1,0,1−ī,L

′
ī,1

〉〉〉)
.

On the other hand, all the coefficients that appear at the intersections〈〈〈(
σ±1
n ∪ In+1

)
U ′
ī,0,1,1−ī,L

′
ī,0

〉〉〉
and 〈〈〈(

σ±1
n ∪ In+1

)
U ′
j̄,1,0,1−ī,L

′
ī,1

〉〉〉
come from the intersection points which belong to the two inner green
circles, all the other points contribute by coefficients which are 1.

From this remark, we conclude that is enough to check the Markov II
move for braids with two strands (which correspond to n = 1). This means
that the following condition should be satisfied:

(6.13)
〈〈〈

U ′
i,1−i,L

′
i

〉〉〉
= u∓−1 ·

(〈〈〈(
σ±1 ∪ I2

)
U ′
i,0,1,1−i,L

′
i,0
〉〉〉

+d−1 〈〈〈(σ±1 ∪ I2
)
U ′
i,1,0,1−i,L

′
i,1
〉〉〉)

.

for any i ∈ {0, 1}. So, we have two conditions:

(6.14)



〈〈〈
U ′

0,1,L
′
0
〉〉〉

=u∓−1 (〈〈〈(σ± ∪ I2
)
U ′

0,0,1,1,L
′
0,0
〉〉〉

+ d−1 〈〈〈(σ±1 ∪ I2
)
U ′

0,1,0,1,L
′
0,1
〉〉〉)

.〈〈〈
U ′

1,0,L
′
1
〉〉〉

=u∓−1 (〈〈〈(σ±1 ∪ I2
)
U ′

1,0,1,0,L
′
1,0
〉〉〉

+ d−1 〈〈〈(σ±1 ∪ I2
)
U ′

1,1,0,0,L
′
1,1
〉〉〉)

.

For the left hand side of the above equations, we have the intersections
from below: In the following part we investigate the conditions from re-
lation (6.14) for two cases, given by positive stabilisation or the negative
stabilisation.
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〈〈〈
U ′

0,1,L
′
0
〉〉〉

= 1
〈〈〈

U ′
1,0,L

′
1
〉〉〉

= 1

Figure 6.1. Coefficients before the stabilisation

6.1.1. Positive stabilisation

We compute the intersections which appear in condition (6.14) for the
case when we act with the positive generator σ. We have the following
intersections:

〈〈〈
(σ ∪ I2)U ′

0,0,1,1,L
′
0,0
〉〉〉

= 1
〈〈〈

(σ ∪ I2)U ′
1,0,1,0,L

′
1,0
〉〉〉

= 0

〈〈〈
(σ ∪ I2)U ′

0,1,1,0,L
′
0,1
〉〉〉

= 1 − x−1 〈〈〈
(σ ∪ I2)U ′

1,1,0,0,L
′
1,1
〉〉〉

= d−1x−1

Figure 6.2. Coefficients of the positive stabilisation

We obtain the system:

(6.15)
{

1 = u−2 (1 + d−1(1 − x−1)
)

1 = u−2d−2x−1.
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This is equivalent to:

(6.16)
{

1 = d2x
(
1 + d−1 (1 − x−1))

u−2 = d2x.

Then, the first condition becomes:

(6.17)
1 = d2x+ dx− d ⇔ d2x− 1 + dx− d = 0

⇔ dx(d+ 1) − (d+ 1) = 0
⇔ (d+ 1)(dx− 1) = 0.

This is precisely the condition that we have in the quotient ring, so this
equation is satisfied. For the second one, we choose u = d−1x− 1

2 , which is
precisely the specialisation used in relation (5.12).

6.1.2. Negative stabilisation

In this part we investigate the invariance at the negative stabilisation
and check relations (6.14) in this situation. We have the coefficients given
by the following intersections:

〈〈〈(
σ−1 ∪ I2

)
U ′

0,0,1,1,L
′
0,0
〉〉〉

= 1
〈〈〈(

σ−1 ∪ I2
)
U ′

1,0,1,0,L
′
1,0
〉〉〉

= 1−x

〈〈〈(
σ−1 ∪ I2

)
U ′

0,1,1,0,L
′
0,1
〉〉〉

= 0
〈〈〈(

σ−1 ∪ I2
)
U ′

1,1,0,0,L
′
1,1
〉〉〉

= dx

Figure 6.3. Coefficients of the negative stabilisation
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We obtain the relations:

(6.18)
{

1 = 1 + d−1 · 0
1 = 1 − x+ d−1(dx).

These are both true, so we conclude that the negative stabilisation is always
satisfied (even before we quotient to the quotient ring).

This concludes the invariance of the intersection Ω̄(βn) with respect to
the second Markov move. For the intersection form Ω′(βn) we can pursue an
analog argument, this time having n−1 particles in the configuration space,
and conclude in a similar way that Ω̄′(βn) is invariant at stabilisations.

6.2. Markov I

In this part we aim to prove the invariance of the form Ω̄ with respect
to braid conjugation. Let βn, γn ∈ Bn. We want to show that:

(6.19) Ω̄ (βn) (x, d) = Ω̄
(
γn ◦ βn ◦ γ−1

n

)
(x, d).

We follow the formula presented in Corollary 5.11, use the intersection
form Λ2(βn)(u, x, d) and prove that after we take the quotient it becomes
invariant under conjugation. We notice that the writhe and number of
strands remain unchanged under conjugation, so the framing part from
Λ2(βn)(u, x, d) (which is given by the power of u) is invariant under conju-
gation. We will show that if we impose the condition (d − 1)(xd − 1) = 0
then Λ2(βn)(u, x, d) is invariant under conjugation.

Our strategy is to prove that this state sum specialised by the above
condition can be seen as a sum of traces of braid group representations,
which in turn are conjugacy invariants.

We start by introducing the following subspace in the Lawrence repre-
sentation.

Definition 6.2. — (Subspace in the Lawrence representation) Let us
consider the set of partitions from En,m with multiplicities at most one:

(6.20) E1
n,m ={

j̄ = (j1, . . . , jn)
∣∣ j1, . . . , jn ∈ Z, j1 + · · · + jn = m, 0 ⩽ j1, . . . , jn ⩽ 1

}
.

Then, we consider the subspace H1
n,m ⊆ Hn,m generated by classes which

are prescribed by such partitions, as below:

(6.21) H1
n,m =

〈
U ′
j1, ..., jn

∣∣ j̄ = (j1, . . . , jn) ∈ E1
n,m

〉
Z[x±1,d±1] .
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As we will see in the next part, this subspace is not preserved by the braid
group action given by the Lawrence representation on Hn,m. However, if
we impose the extra relation, then the subspace will be preserved under
the Bn-action and we will have a well defined sub-representation.

Lemma 6.3 (Sub-representation of the Lawrence representation). — We
consider the quotient morphism

s : Z
[
x±1, d±1] → Z

[
x±1, d±1] /((d− 1)(xd− 1))

from (2.6). Then there is a well defined induced representation of the braid
group on the following subspace:

(6.22) Bn ↷ H1
n,m|s

(here, we use Notation 2.3).

Proof. — We have to prove that for all j̄ = (j1, . . . , jn) ∈ E1
n,m and any

βn ∈ Bn we have:
βnU

′
j1, ..., jn ∈ H1

n,m|s.
It is enough to show this for the generators of the braid group and moreover,
since the action of such generator is local and acts non-trivially just on a
disc around two punctures, it is enough to check this in that punctured
disc with two punctures. Let j0, j1 ∈ {0, 1} and denote j0 + j1 = m. Then
we will prove that:

σU ′
j0,j1

∈ H1
2,m|s.

If j1 = 0, looking directly on the picture we see that we obtain another
basis element associated to a partition without multiplicities. The only
check that needs to be done is for j1 = 1. The only case when we could get
a multiplicity at least 2 is if j0 = 1. Using the structure of H2,m, we know
that in this homology group we have a decomposition:

(6.23) σU ′
1,1 = α1U

′
1,1 + α2U

′
0,2 + α3U

′
2,0.

  
 

  
 

  
 

  
 

σU ′
1,1 U ′

1,1 U ′
0,2 U ′

2,0

Figure 6.4. Coefficients

Now, intersecting with a dual class whose support has two semi-circles
which start from the upper boundary of the disc and go around the first
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puncture, we see that all intersections vanish except the one with the class
U ′

2,0-which is 1. This shows that the coefficient α3 = 0.
In the next part we compute the coefficient α2. We do this by intersecting

with the dual class V given by the following green barcode:

  
 

  
 

  
 

0 1

Figure 6.5. Computing α2

Following relation (6.23), we have:

(6.24)
〈〈〈
σU ′

1,1,V
〉〉〉

= α1
〈〈〈

U ′
1,1,V

〉〉〉
+ α2

〈〈〈
U ′

0,2,V
〉〉〉
.

From the pictures from Figure 6.5, we see that:

(6.25)
〈〈〈

U ′
1,1,V

〉〉〉
= 0〈〈〈

U ′
0,2,V

〉〉〉
= 1.

Now we compute the intersection ⟨⟨⟨σU ′
1,1,V ⟩⟩⟩.

  
 

'

x1 x2

z1 z2

z1 'z2

Figure 6.6. Coefficients σ

For this, we use Figure 6.6, where we see that we have 4 intersection
points, which carry the following gradings:

(x1, z2) (x1, z
′
2) (x2, z1) (x2, z

′
1)

1 −x−1 d −x−1d−1
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It follows that the intersection is:

(6.26)
〈〈〈
σU ′

1,1,V
〉〉〉

= 1 + d−
(
x−1 + x−1d−1) = (1 + d)

(
1 − x−1d−1) .

From this, we obtain the coefficient α2:

(6.27) α2 = (1 + d)
(
1 − x−1d−1) .

In order to compute the coefficient α1, we intersect with the barcode W

from the picture below:

  
 x1

x2

z1 z2

'z2

Figure 6.7. Computing α1

We remark that it has the following intersections with the basis elements:

(6.28)
〈〈〈

U ′
1,1,W

〉〉〉
= 1〈〈〈

U ′
0,2,W

〉〉〉
= 0.

For the intersection t
〈〈〈
σU ′

1,1,W t
〉〉〉

we have 3 intersection points which
carry the gradings from below:

(x1, z2) (x1, z
′
2) (x2, z1)

1 −x−1 d

It follows that t
〈〈〈
σU ′

1,1,W t
〉〉〉

= 1 − x−1 + d, and using the decomposi-
tion (6.23) we conclude that:

(6.29) α1 = 1 − x−1 + d.

So, we have the decomposition:

(6.30) σU ′
1,1 =

(
1 − x−1 + d

)
U ′

1,1 + (1 + d)
(
1 − x−1d−1)U ′

0,2.

It follows that if we impose the relation (1 + d)(1 − x−1d−1), the coeffi-
cient α2 vanishes. This shows that σU ′

1,1 ∈ H1
2,2|s, so we remain in the

homological subspace given by multiplicity free partitions.
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In the next part we do the same procedure for the action of the ele-
mentary braid σ−1. Similar to the previous case, the only situation that
we need to check is given by the action on the class U ′

1,1 and we have a
decomposition as below:

(6.31) σ−1U ′
1,1 = α′

1U
′

1,1 + α′
2U

′
0,2 + α′

3U
′

2,0.

It is clear that we have the coefficient α′
2 = 0, because we cannot get a

geometric support with multiplicity two that ends in the second puncture.
So, we have the following classes that appear in the decomposition:

  
 

  
 

  
 

σ−1U ′
1,1 U ′

1,1 U ′
2,0

Figure 6.8. Coefficients σ−1

First of all, we want to compute α′
1. In order to do this, we intersect with

the barcode W :

  
 

  
 

xd 1

Figure 6.9. Computing α′
1

Computing the coefficients from the two intersections, we obtain:

(6.32)

〈〈〈
σ−1U ′

1,1,W
〉〉〉

= xd〈〈〈
U ′

1,1,W
〉〉〉

= 1〈〈〈
U ′

2,0,W
〉〉〉

= 0.

From relation (6.31) we get:

(6.33) α′
1 = xd.

Further on, we want to find α′
3. We intersect with the following barcode

Z :
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1 + d 1 + d 1

Figure 6.10. Computing α′
3

We have the following intersections:

(6.34)

〈〈〈
σ−1U ′

1,1,Z
〉〉〉

= xd〈〈〈
U ′

1,1,Z
〉〉〉

= 1 + d〈〈〈
U ′

2,0,Z
〉〉〉

= 1.

This together with the decomposition (6.31) show the following relation:

1 + d = (1 + d)α′
1 + α′

3.

Using that α′
1 = xd we conclude:

(6.35) α′
3 = 1 + d− (1 + d)xd = (1 + d)(1 − xd).

We obtain the following decomposition:

(6.36) σ−1U ′
1,1 = xd U ′

1,1 + (1 + d)(1 − xd) U ′
2,0.

This shows that if we pass to the quotient and impose the quadratic
relation, then we remain in the subspace:

σ−1U ′
1,1 ∈ H1

2,2
∣∣
s
.

This concludes the proof that the subspace H1
n,m remains invariant under

the braid group action once we specialise the coefficients via the function s.
□

Notation 6.4 (Lawrence sub-representation). — We denote this well de-
fined sub-representation by:

(6.37) L1
n,m : Bn → Aut

(
H1
n,m

∣∣
s

)
.

Now we are ready to show that the s-specialised intersection form is
invariant under conjugation. We remind the formula from Corollary 5.12:

Ω̄(βn)(x, d) =
(
xd2)w(βn)+n

2 ·
1∑

i1,...,in=0
d−
∑n

k=1
ik
〈〈〈

(βn ∪ In)F ′
ī ,L

′
ī

〉〉〉∣∣
s

∈ L.
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In the next part, we will show that the above state sum can be interpreted
using the Lawrence sub-representations.

Proposition 6.5. — The state sum of intersections is a sum of traces
of Lawrence sub-representations, as below:

(6.38)
1∑

i1, ..., in=0
d

−
n∑
k=1

ik 〈〈〈
(βn ∪ In)F ′

ī ,L
′
ī

〉〉〉∣∣
s

=
n∑

m=0
d−m tr

(
L1
n,m(βn)

)
.

Proof. — The state sum from the left hand side can be expressed as:

(6.39)

1∑
i1, ..., in=0

d
−

n∑
k=1

ik 〈〈〈
(βn ∪ In)F ′

ī ,L
′
ī

〉〉〉
=

n∑
m=0

d−m
∑

ī=(i1, ..., in) ∈E1
n,m

〈〈〈
(βn ∪ In)F ′

ī ,L
′
ī

〉〉〉
.

Now, using the structure of the homology group H2n,m from proposi-
tion 5.6, for ī ∈ E1

n,m there exists a collection of coefficients αj̄ ∈ Z[x±1, d±1]
such that:

(6.40) L2n,m(βn ∪ In)F ′
ī =

∑
j̄=(j1, ..., jn) ∈En,m

αj̄ · U ′
j̄,1−ī

(following notation 2.2).
This comes from the fact that on the last components we act with In, so

we do not change the associated indices of F ′
ī

through this action and so
they remain 1− ī. On the other hand, we will obtain a linear combination of
classes associated to partitions whose first components are j̄ for arbitrary
j̄ = (j1, . . . , jn). Since the Lawrence representation preserves the total sum
of indices, it follows that we will get classes associated to j̄ such that

w(j̄) = w(̄i) = m.

This explains relation (6.40). For the intersection with the dual class, we
remind relation (6.5):

(6.41)
〈〈〈

U ′
j̄,1−ī,L

′
ī

〉〉〉
=
{

1, if (j1, . . . , jn) = (i1, . . . , in)
0, otherwise.
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So, the pairing with the dual class L ′
ī

encodes precisely the diagonal coef-
ficient and for any ī ∈ E1

n,m we have:

(6.42)
〈〈〈

(βn ∪ In)F ′
ī ,L

′
ī

〉〉〉
=

∑
j̄=(j1, ..., jn) ∈En,m

αj̄

〈〈〈
U ′
j̄,1−ī,L

′
ī

〉〉〉
= αī.

On the other hand, we remark that these α-coefficients are the same as the
ones that give the decomposition of the βn-action on the basis element U ′

ī

from the homology group Hn,m:

(6.43) Ln,m(βn)U ′
ī =

∑
j̄=(j1, ..., jn) ∈En,m

αj̄ · U ′
j̄ .

We notice that the above sum is indexed by elements from En,m, not nec-
essarily from E1

n,m.
From the relation (6.42) we see that for any index ī ∈ E1

n,m the pairing〈〈〈
(βn ∪ In)F ′

ī ,L
′
ī

〉〉〉
encodes precisely the coefficient of the homology class U ′

ī
that appear in

the decomposition of Ln,m(βn)U ′
ī
.

Now we specialise through s and use the property that we have a well
defined action L1

n,m on the subspace H1
n,m (which is spanned by all U ′

j̄
for

j̄ ∈ E1
n,m). From these remarks we obtain that:

(6.44)
∑

ī=(i1, ..., in) ∈E1
n,m

〈〈〈
(βn ∪ In)F ′

ī ,L
′
ī

〉〉〉∣∣
s

=
∑

ī=(i1, ..., in) ∈E1
n,m

αī = tr
(
L1
n,m(βn)

)
.

This together with relation (6.39) conclude the trace formula interpretation
for the state sum, as presented in the statement. □

From this, we obtain a trace formula for our intersection form.

Corollary 6.6. — The specialised intersection form Ω̄(βn) is given by
the following sum of traces of Lawrence sub-representations:

(6.45) Ω̄(βn)(x, d) := (xd2)
w(βn)+n

2

n∑
m=0

d−m tr
(
L1
n,m(βn)

)
.

Using the property that the trace is invariant under conjugation, we
conclude that when we impose relation (1 + d)(xd − 1) the intersection
form Ω̄ is invariant at conjugation, so the first Markov move is satisfied.
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The invariance of Ω̄ with respect to the two Markov moves shows that it
is a well-defined link invariant with values in L, and concludes Theorem 1.3.

6.3. Markov I move for specialisations of the open model Ω′(βn)

This subsection concerns the invariance of two specialisations of the form
Ω̄′(x, d) with respect to braid conjugation. All the proofs so far were topo-
logical. This is the only place where we use one result from to our previous
work. More precisely, in [3] we have proved that the open intersection model
recovers the Jones and Alexander polynomials of the closure of the braid,
through the following specialisations of coefficients:

(6.46)
Ω′(βn)(x, d)|x=d−1 = J̃

(
β̂n, x

)
Ω′(βn)|d=−1 = ∆

(
β̂n, x

)
.

We will re-prove this in the next section by checking the skein relation.
However, for that we will use the property that these two specialisations
are invariant under braid conjugation, namely:

(6.47)
Ω′(βn)(x, d)|x=d−1 = Ω′ (γ ◦ βn ◦ γ−1) (x, d)|x=d−1

Ω′(βn)(x, d)|x=−1 = Ω′ (γ ◦ βn ◦ γ−1) (x, d)|x=−1.

for any braid γ ∈ Bn.

7. Identification of the specialisations of the intersection
form with Jones and Alexander invariants, via skein

relations

In this part we aim to prove that the specialisations of the intersection
forms Ω̄′ and Ω̄ recover the Jones and Alexander polynomials, as presented
in Theorem 1.4 and Theorem 1.5. We do this by checking that they satisfy
the skein relations that characterise these two polynomials.

Let L be the closure of βn and suppose that we want to investigate a
crossing change. We denote by L+ and L− the two links obtained from
L by performing a positive or negative crossing change respectively. We
have proved that the intersection form Ω̄ is a link invariant, in particular
it is invariant under conjugation. Also, from (6.47) we know that Ω′ is also
conjugation invariant. So, for both intersection models we can suppose that
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the crossing change is performed at the top of the braid. Let i and i+ 1 be
the two adjacent strands that form this crossing.

Let us denote the two braids obtained from βn by adding a positive/
negative crossing as:

(7.1)
β+
n = (Ii−1 ∪ σi ∪ In−i−1) ◦ βn;

β−
n =

(
Ii−1 ∪ σ−1

i ∪ In−i−1
)

◦ βn.
We will use an argument which is similar to the one presented in section 6,

which permits us to check the skein computation just for two strands.

7.1. Open intersection model

We consider the graded intersections which are associated to the crossing
change and following Corollary 5.10 we have:

(7.2)

Ω̄′(βn)(x, d) =
(
xd2)w(βn)+(n−1)

2 ·

·
1∑

i1, ..., in−1=0
d

−
n−1∑
k=1

ik 〈〈〈
(βn ∪ In−1)F ′

ī ,L
′
ī

〉〉〉∣∣
s

Ω̄′(β+
n )(x, d) =

(
x

1
2 d
) (
xd2)w(βn)+(n−1)

2 ·
1∑

i1, ..., in−1=0
d

−
n−1∑
k=1

ik

·
〈〈〈

((Ii−1 ∪ σi ∪ In−i−1) ∪ In−1)(βn ∪ In−1)F ′
ī ,L

′
ī

〉〉〉∣∣
s

Ω̄′(β−
n )(x, d) =

(
x− 1

2 d−1
) (
xd2)w(βn)+(n−1)

2 ·
1∑

i1, ..., in−1=0
d

−
n−1∑
k=1

ik

·

·
〈〈〈

((Ii−1 ∪ σi ∪ In−i−1) ∪ In−1)(βn ∪ In−1)F ′
ī ,L

′
ī

〉〉〉∣∣
s
.

For a multi-index ī, we have a common part which appears in all these
intersections, namely:

(βn ∪ In−1)F ′
ī |s.

Let us denote the sum of the components of this multi-index by w(̄i) = m.
Using a similar decomposition as the one presented in relation (6.40) for
n− 1 instead of n and the specialisation s, we remark that this homology
class decomposes as a sum of homology classes with total weight (n− 1):

(βn ∪ In−1)F ′
ī |s = L1

2n−1,m(βn ∪ In−1)F ′
ī

=
∑

j̄=(j1, ..., jn) ∈E1
n,m

αj̄ · U ′
j̄,1−ī.

(7.3)

ANNALES DE L’INSTITUT FOURIER



GLOBALISING JONES AND ALEXANDER POLYNOMIALS 39

Ω̄′(β+
n )

I II II IV

(x0, y0) (x0, y1) (x0, y2) (x1, y3)

d2 d −dx−1 d−1x−1

y0y1 x0x1

y0y1

y2

y3

x0x1

y0y1

x2

x0

x1

x3

Ω̄′(βn) Ω̄′(β−
n )

I II III IV

(x0, y0) (x0, y1) (x1, y0) (x1, y1)

d2 d d 1

I III III IV

(x0, y0) (x1, y0) (x2, y0) (x3, y1)

d2 d −dx dx

Figure 7.1. Skein relation

Then, in order to compute Ω̄′(β+
n ) and Ω̄′(β−

n ), for each such j̄ ∈ E1
n,m

we have to act with σ±1
i , which gives the following homology class:

(7.4)
(
Ii−1 ∪ σ±1

i ∪ In−i−1
)
U ′
j̄,1−ī.

This class will be a linear combination of homology classes which have
the same indices as U ′

j̄,1−ī except possibly the indices which are located in
positions i and i+1. Thus, in the three intersection forms that characterise
a crossing change, the only difference occurs when we compute the intersec-
tions associated to the strands i and i+ 1 with the i and i+ 1 green circles
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(all the other terms are evaluated by the same scalar when we intersect
with the dual class).

Based on this, we conclude that it would be enough to check that the
skein relation holds for the intersections associated to any multi-index
ī = (i1, i2) where i1, i2 ∈ {0, 1}. They arise from the following geomet-
ric supports:

(I) U ′
0,0

(II) U ′
1,0

(III) U ′
0,1

(IV) U ′
1,1.

We are going to check the skein relation for each of these four cases. We
will be using the models with arcs and circles, that give the intersections
Ω′(βn), Ω′(β+

n ) and Ω′(β−
n ). In this geometric picture, the four cases can

be distinguished based on the number of components of an intersection
point that are chosen on the right hand side of the picture. More precisely,
each intersection point will have two components in the punctured disc. In
Figure 7.1, we denote the points in the punctured disc that belong to the
right hand side of the disc by x0 and y0. The four cases correspond to the
following situations:

(I) intersection points which have both components x0 and y0 (so it is
the unique point (x0, y0)).

(II) intersection points which have as component x0 but not y0.
(III) intersection points which have as component y0 but not x0.
(IV) intersection points which do not have as component y0 nor x0.

In Figure 7.1, we present the three pictures that are associated to the
intersections Ω(I2), Ω(σ) and Ω(σ−1). In the tables which are next to each
picture we have: the intersection points, their associated gradings and we
also indicate on the first row which of the four cases they belong to.

Taking into account the extra framing contributions, which are x 1
2 d for

Ω̄′(β+
n ) and x− 1

2 d−1 for Ω̄′(β−
n ), we obtain the following coefficients:

Table 7.1. Coefficients of the intersections Ω̄′(βn), Ω̄′(β+
n ), Ω̄′(β−

n ).

I II II IV

Ω̄′(βn) d2 d d 1

Ω̄′(β+
n ) d3x

1
2 d2

(
x

1
2 − x− 1

2

)
x− 1

2

Ω̄′(β−
n ) dx− 1

2 −
(
x

1
2 − x− 1

2

)
x

1
2
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Let us denote: ν := x
1
2 − x− 1

2 .

7.1.1. Jones polynomial

Let us look at the specialisation d = x−1 of these three intersection forms
(denoted by ψJ , as in Definition 2.4). We check the skein relation where
we multiply the coefficients associated to β+

n by x, the ones associated to
β−
n by x−1 and the ones for βn by ν. Doing this using Table 7.1, we obtain

the following coefficients:

Table 7.2. Coefficients of the skein relation for the specialisation ψJ

I II II IV

ν · Ω̄′(βn)|ψJ νx−2 νx−1 νx−1 ν

x · Ω̄′(β+
n )|ψJ x− 3

2 νx−1 x
1
2

x−1 · Ω̄′(β−
n )|ψJ x− 5

2 νx−1 −x− 1
2

Following the columns of this table, we see that the skein relation holds
for each of the four cases I, II, III and IV. Based on this, we conclude that
the link invariant Ω̄′|ψJ (L) satisfies the skein relation:

(7.5) x · Ω̄′|ψJ (L+) − x−1 · Ω̄′|ψJ (L−) =
(
x

1
2 − x− 1

2

)
Ω̄′|ψJ (L).

Also, for the unknot we have:

Ω̄′(U ) = 1.

Remark 7.1. — If we start with the skein relation (7.5) and change the
variable x = q2 we obtain:

q2 · Ω̄′|ψJ (L+) − q−2 · Ω̄′|ψJ (L−) =
(
q − q−1) Ω̄′|ψJ (L).

Next, if we change the variable q to −q−1 we obtain the usual version of
the skein relation for the Jones polynomial:

q−2 · Ω̄′|ψJ (L+) − q2 · Ω̄′|ψJ (L−) =
(
q − q−1) Ω̄′|ψJ (L).

This shows that the specialisation ψJ of the intersection form gives the
normalised Jones polynomial:

(7.6) Ω̄′|d=x−1(L, x) = J̃(L, x).
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7.1.2. Alexander polynomial

In the next part we look at the specialisation ψ∆, given by d = −1. We
multiply the coefficients associated to βn by −ν and the ones associated to
β−
n by −1 and we get:

Table 7.3. Coefficients of the skein relation for the specialisation ψ∆.

I II II IV

(−ν) · Ω̄′(βn)|ψ∆ −ν ν ν −ν

Ω̄′(β+
n )|ψ∆ −x 1

2 ν x− 1
2

-Ω̄′(β−
n )|ψ∆ x− 1

2 ν −x 1
2

This shows us that the associated skein relation is true in all four cases
I, II, III, IV, so we have:

(7.7) Ω̄′|ψ∆(L+) − Ω̄′|ψ∆(L−) =
(
x− 1

2 − x
1
2

)
Ω̄′|ψ∆(L).

Remark 7.2. — The skein relation (7.7) with the change of variable x to
−x gives the usual skein relation for the Alexander polynomial:

Ω̄′|ψ∆(L−) − Ω̄′|ψ∆(L+) =
(
x

1
2 − x− 1

2

)
Ω̄′|ψ∆(L).

Since for the unknot Ω̄′(U ) = 1, we conclude that the specialisation ψ∆
of the intersection form gives the Alexander polynomial:

(7.8) Ω̄′|d=−1(L)(x) = ∆(L, x).

This concludes the relations from Theorem 1.4.

7.2. Closed intersection model

For the closed intersection form, the computation of the relation that is
satisfied by a crossing change follows with the same argument as the one
for the open intersection form, and we obtain:

x · Ω̄|ψJ (L+) − x−1 · Ω̄|ψJ (L−) =
(
x

1
2 − x− 1

2

)
Ω̄|ψJ (L)(7.9)

Ω̄|ψ∆(L+) − Ω̄|ψ∆(L−) =
(
x− 1

2 − x
1
2

)
Ω̄|ψ∆(L).(7.10)

ANNALES DE L’INSTITUT FOURIER



GLOBALISING JONES AND ALEXANDER POLYNOMIALS 43

The difference comes from the evaluation of this invariant on the unknot.
More precisely, in section 4 we computed the value of Ω on the trivial braid:

Ω(I1) = x
1
2 (1 + d) ∈ Z

[
x± 1

2 , d±1
]
.

This means that the invariant Ω̄ evaluated on the unknot U is:

(7.11) Ω̄(U ) = x
1
2 (1 + d) ∈ Z

[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1)) .

Thus, if we look at the specialisation d = x−1 it has the normalisation:

Ω̄|ψJ (U ) = x
1
2
(
1 + x−1c) = x

1
2 + x− 1

2 ∈ Z
[
x± 1

2

]
.

This relation together with the skein relation 7.9 concludes that the ψJ
specialisation of the closed intersection form is the un-normalised Jones
polynomial:

(7.12) Ω̄|ψJ (L)(x) = J(L, x).

On the other hand, following equation (7.11) we remark that the ψ∆ spe-
cialisation (d = −1) of the closed intersection form vanishes for the unknot:

Ω̄|ψ∆(U ) = 0.

On the other hand, it satisfies the skein relation from (7.10). This shows
that the specialisation ψ∆ of this invariant vanishes for any link

(7.13) Ω̄|ψ∆(L) = 0

and concludes the statement from Theorem 1.5.

8. Formulas for these invariants as interpolations of Jones
and Alexander polynomials

This section arose from joint discussions with Rinat Kashaev, and I would
like to thank him for this. In this part, we consider algebraic varieties
which are quotients of the Laurent polynomial ring by the product of two
irreducible factors without multiplicity. Then, if we have an invariant taking
values in this algebraic variety, and we consider its specialisations associated
to the two irreducible factors then this invariant in the variety is forced to
be an interpolation between these two specialisations. Let us make it precise
for our cases.

So far we have the intersection form Ω̄ which we know that it is a link
invariant. We want to describe the precise form of this invariant. We will see
that the fact that Ω̄(βn)(x, d) recovers the Jones polynomial and vanishes
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through the second specialisation of coefficients forces it to be a multiple
of the Jones polynomial.

On the other hand, something interesting happens with the open inter-
section form. In the second part of this section we will see that the fact
that Ω̄′(βn)(x, d) is an element in the quotient ring which recovers the Jones
and Alexander polynomials through the two specialisations forces it to be
a specific interpolation between the Jones and Alexander polynomials.

8.1. The closed model in the quotient ring

Following Theorem 1.4 and Definition 2.4 we have:

0 ∈ Z
[
x±1]J(L)(x) ∈ Z

[
x± 1

2

]

Ω̄(L)(x, d) ∈ Z
[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1))

d = x−1 d = −1ψ∆ψJ

The specialisation ψ∆ gives Ω̄(L)(x, d)|d=−1 = 0, so there exists B(x, d) ∈ L
such that:

(8.1) Ω̄(L)(x, d) = (d+ 1) ·B(x, d).

On the other hand the specialisation ψJ gives Ω̄(L)(x, d)|d=x−1 = J(L)(x).
Using this property combined with the above relation we have:

J(L)(x) =
(
x−1 + 1

)
·B(x, d)|d=x−1 .

In other words, in the ring Z[x± 1
2 ] we have:

J(L)(x)
(x−1 + 1) = B(x, d)|d=x−1 .

This shows that there exists B′(x, d) ∈ L with the property:

(8.2) B(x, d) = J(L)(x)
(x−1 + 1) +B′(x, d) · (xd− 1).

This implies that that in the quotient ring we have:

Ω̄(L)(x, d) = (d+ 1) · J(L)(x)
(x−1 + 1) +B′(x, d) · (d+ 1)(xd− 1)

= (d+ 1) · J(L)(x)
(x−1 + 1) .
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Using the normalised version of the Jones polynomial we obtain:

Ω̄(L)(x, d) = x
1
2 (d+ 1) · J̃(L)(x).

This concludes the relation from Theorem 1.6.

8.2. The open model in the quotient ring

In this part we study which information we get from the fact that the
open intersection form recovers the Jones and Alexander polynomials of
the closure. Let L be a link and we choose a braid representative βn ∈ Bn.
Then, following Theorem 1.4 we have :

∆(L)(x) ∈ Z
[
x±1]J̃(L)(x) ∈ Z

[
x± 1

2

]

Ω̄′(βn)(x, d) ∈ Z
[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1))

d = x−1 d = −1ψ∆ψJ

We start with the specialisation ψ∆ and we know:

(8.3) Ω̄′(βn)(x, d)|d=−1 = ∆(L)(x).

Then this means that the difference between the intersection form and the
Alexander polynomial is in the kernel of the specialisation. More precisely,
there exists A(x, d) ∈ L such that:

Ω̄′(βn)(x, d) − ∆(L)(x) = A(x, d) · (d+ 1).

This is equivalent to:

(8.4) Ω̄′(βn)(x, d) = ∆(L)(x) +A(x, d) · (d+ 1).

Now, we look at the specialisation ψJ and we have

Ω̄′(βn)(x, d)|d=x−1 = J̃(L)(x),

so:
J̃(L)(x) = ∆(L)(x) +A(x, d)|d=x−1 · (x−1 + 1).

This shows that:

(8.5) A(x, d)|d=x−1 = J̃(L)(x) − ∆(L)(x)
(x−1 + 1) .
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This implies that there exists A′(x, d) ∈ L such that:

A(x, d) − J̃(L)(x) − ∆(L)(x)
(x−1 + 1) = A′(x, d) · (xd− 1).

The last relation gives:

(8.6) A(x, d) = J̃(L)(x) − ∆(L)(x)
(x−1 + 1) +A′(x, d) · (xd− 1).

Following the last relation and equation (8.4) we have:

Ω̄′(βn)(x, d)

= ∆(L)(x) + (d+ 1)
(
J̃(L)(x) − ∆(L)(x)

(x−1 + 1) +A′(x, d) · (xd− 1)
)
.

This shows that the open intersection form in the quotient ring is the
following interpolation:

(8.7) Ω̄′(βn)(x, d) = ∆(L)(x) + (d+ 1) J̃(L)(x) − ∆(L)(x)
(x−1 + 1) .

So Ω̄′(βn) is a well-defined link invariant, denoted by Ω̄′(L) which has the
formula:

(8.8) Ω̄′(L)(x, d) = ∆(L)(x) + (d+ 1) J̃(L)(x) − ∆(L)(x)
(x−1 + 1) .

This concludes the statement of Theorem 1.7.

9. Example of computation

9.1. Trefoil knot

Let us compute the intersection model for the trefoil knot T , seen as the
closure of the braid σ3 ∈ B2. We have the following curves in the punctured
disc D5: (

σ3 ∪ I3
)
S ′ ∩ T ′

Then, we compute the gradings of the 5 intersection points as in the
above picture and we obtain:

(9.1) Ω′ (σ3) (x, d) = x2d3 (−x−3 + x−2 − x−1 + 1 + d
)
.

In the next part, we compute the formula for this intersection in the quo-
tient ring:

Ω̄′(T )(x, d) ∈ Z
[
x± 1

2 , d±1
]
/ ((d+ 1)(dx− 1)) .
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-x-1

 -x-3 x-2
 

1

 d

1d

Figure 9.1. Trefoil knot

Replacing d3 in terms of the basis using relation (2.2) we obtain:

(9.2) Ω̄′(T )(x, d)

= x2 ((x−2 − x−1 + 1
)
d+ x2 − x−1) (−x−3 + x−2 − x−1 + 1 + d

)
.

Now, we prove that this expression is an interpolation between the Jones
and Alexander invariants of the trefoil knot, which have the following for-
mulas:

(9.3)
∆(T, x) = x− 1 + x−1

J(T, x) = −x−4 + x−1 + x−3.

This means that we have:

(9.4) Ω̄′(T )(x, d)

= ((∆(T )(x) · xd− x+ 1)
(
−x−3 + x−2 − x−1 + 1 + d

)
=
((

−x−2 + x−1 − 1 + x
)
d+ xd2)∆(T )(x)

+ x−2 − x−1 + 1 − x− dx− x−3 + x−2 − x−1 + 1 + d.

Replacing d2 using formula (2.2) we obtain:

(9.5)

Ω̄′(T )(x, d) = ∆(T )(x) + d
(
1 − x−1) (1 − x−1 + x−2 − x

)
+
(
1 − x−1) (1 − x−1 + x−2 − x

)
=

= ∆(T )(x) + (d+ 1)
(
1 − x−1) (1 − x)

(
1 + x−2) .

On the other hand, the difference between Jones and Alexander polynomi-
als of the trefoil has the expression:

J̃(T )(x) − ∆(T )(x) =
(
1 + x−1) (1 − x−1)(1 − x)

(
1 + x−2) .
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From the previous two relations we conclude the interpolation model:

(9.6) Ω̄′(T )(x, d) = ∆(T )(x) + (d+ 1) · J̃(T )(x) − ∆(T )(x)
(x−1 + 1) .
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