[De la Double Affinisation Quantique : 1. En type ]
Nous définissons la double affinisation quantique de type comme une algèbre de Hopf topologique. Nous démontrons qu’elle admet une sous-algèbre dont la complétion est (bicontinûment) isomorphe à la complétion de l’algèbre quantique toroïdale , elle-même définie comme l’affinisaton quantique (simple) de l’algèbre de Kač–Moody affine non-torsionnée de type , munie d’une certaine topologie héritée de sa -graduation naturelle. L’isomorphisme est construit au moyen d’une action bicontinue par automorphismes d’une version affinisée – techniquement une extension scindée par le réseau des co-poids – du groupe des tresses affine de type sur cette complétion de . Il peut être vu comme une version affinisée de l’isomorphisme de Damiani–Beck, bien connu dans le cadre des algèbres quantiques affines. Nous prouvons finalement la décomposition triangulaire correspondante de et discutons brièvement les conséquences sur la théorie des représentations des algèbres quantiques toroïdales.
We define the double quantum affinization of type as a topological Hopf algebra. We prove that it admits a subalgebra whose completion is (bicontinuously) isomorphic to the completion of the quantum toroidal algebra , defined as the (simple) quantum affinization of the untwisted affine Kač–Moody Lie algebra of type , equipped with a certain topology inherited from its natural -grading. The isomorphism is constructed by means of a bicontinuous action by automorphisms of an affinized version – technically a split extension by the coweight lattice – of the affine braid group of type on that completion of . It can be regarded as an affinized version of the Damiani–Beck isomorphism, familiar from the quantum affine setting. We eventually prove the corresponding triangular decomposition of and briefly discuss the consequences regarding the representation theory of quantum toroidal algebras.
Accepté le :
Première publication :
Keywords: Quantum Affine Algebras, Quantum Toroidal Algebras, Representation Theory
Mots-clés : Algèbres auantiques affines, algèbres quantiques toroïdales, théorie des représentations
Zegers, Robin 1 ; Mounzer, Elie 1
@unpublished{AIF_0__0_0_A149_0, author = {Zegers, Robin and Mounzer, Elie}, title = {On double quantum affinization: 1. {Type} $ \mathfrak{a}_1$}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3691}, language = {en}, note = {Online first}, }
Zegers, Robin; Mounzer, Elie. On double quantum affinization: 1. Type $ \mathfrak{a}_1$. Annales de l'Institut Fourier, Online first, 64 p.
[1] Generalized Knizhnik–Zamolodchikov equation for Ding–Iohara–Miki algebra, Phys. Rev. D, Volume 96 (2017) no. 2, 026021, 19 pages | DOI | MR
[2] Braid group action and quantum affine algebras, Commun. Math. Phys., Volume 165 (1994) no. 3, pp. 555-568 | DOI | MR | Zbl
[3] Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, 2005, xii+434 pages | DOI | MR | Zbl
[4] A basis of type Poincaré–Birkhoff–Witt for the quantum algebra of , J. Algebra, Volume 161 (1993) no. 2, pp. 291-310 | DOI | MR | Zbl
[5] Isomorphism of two realizations of quantum affine algebra , Commun. Math. Phys., Volume 156 (1993) no. 2, pp. 277-300 | DOI | MR | Zbl
[6] Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys., Volume 41 (1997) no. 2, pp. 181-193 | DOI | MR | Zbl
[7] Weyl group extension of quantized current algebras, Transform. Groups, Volume 5 (2000) no. 1, pp. 35-59 | DOI | MR | Zbl
[8]
(unpublished note)[9] Quantum continuous : semiinfinite construction of representations, Kyoto J. Math., Volume 51 (2011) no. 2, pp. 337-364 | DOI | MR | Zbl
[10] Quantum toroidal -algebra: plane partitions, Kyoto J. Math., Volume 52 (2012) no. 3, pp. 621-659 | DOI | MR | Zbl
[11] Quantum toroidal and Bethe ansatz, J. Phys. A. Math. Theor., Volume 48 (2015) no. 24, 244001, 27 pages | DOI | MR | Zbl
[12] Langlands reciprocity for algebraic surfaces, Math. Res. Lett., Volume 2 (1995) no. 2, pp. 147-160 | DOI | MR | Zbl
[13] Coproduct for Yangians of affine Kac-Moody algebras, Adv. Math., Volume 338 (2018), pp. 865-911 | DOI | MR | Zbl
[14] Representations of quantum affinizations and fusion product, Transform. Groups, Volume 10 (2005) no. 2, pp. 163-200 | DOI | MR | Zbl
[15] Quantum toroidal algebras and their representations, Sel. Math., New Ser., Volume 14 (2009) no. 3-4, pp. 701-725 | DOI | MR | Zbl
[16] Lectures on quantum groups, Graduate Studies in Mathematics, 6, American Mathematical Society, 1996, viii+266 pages | DOI | MR | Zbl
[17] Vertex algebras for beginners, University Lecture Series, 10, American Mathematical Society, 1998, vi+201 pages | DOI | MR | Zbl
[18] Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, 2003, x+175 pages | DOI | MR | Zbl
[19] Toroidal braid group action and an automorphism of toroidal algebra , Lett. Math. Phys., Volume 47 (1999) no. 4, pp. 365-378 | DOI | MR | Zbl
[20] A analog of the algebra, J. Math. Phys., Volume 48 (2007) no. 12, 123520, 35 pages | DOI | MR | Zbl
[21] Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Am. Math. Soc., Volume 14 (2001) no. 1, pp. 145-238 | DOI | MR | Zbl
[22] Quantum toroidal and shuffle algebras, R-matrices and a conjecture of Kuznetsov (2013) | arXiv
[23] Drinfeld realization of the elliptic Hall algebra, J. Algebr. Comb., Volume 35 (2012) no. 2, pp. 237-262 | DOI | MR | Zbl
[24] Schur duality in the toroidal setting, Commun. Math. Phys., Volume 182 (1996) no. 2, pp. 469-483 | DOI | MR | Zbl
[25] Weight-finite modules over the quantum affine and double quantum affine algebras of type , Algebr. Represent. Theory, Volume 25 (2022) no. 6, pp. 1631-1684 | DOI | MR | Zbl
Cité par Sources :