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ON DOUBLE QUANTUM AFFINIZATION: 1. TYPE a1

by Robin ZEGERS & Elie MOUNZER

Abstract. — We define the double quantum affinization Üq(a1) of type a1 as a
topological Hopf algebra. We prove that it admits a subalgebra Ü′

q(a1) whose com-
pletion is (bicontinuously) isomorphic to the completion of the quantum toroidal
algebra U̇q(ȧ1), defined as the (simple) quantum affinization of the untwisted affine
Kač–Moody Lie algebra ṡl2 of type ȧ1, equipped with a certain topology inherited
from its natural Z-grading. The isomorphism is constructed by means of a bicon-
tinuous action by automorphisms of an affinized version B̈ – technically a split
extension B̈ ∼= Ḃ ⋉ P ∨ by the coweight lattice P ∨ – of the affine braid group Ḃ
of type ȧ1 on that completion of U̇q(ȧ1). It can be regarded as an affinized version
of the Damiani–Beck isomorphism, familiar from the quantum affine setting. We
eventually prove the corresponding triangular decomposition of Üq(a1) and briefly
discuss the consequences regarding the representation theory of quantum toroidal
algebras.

Résumé. — Nous définissons la double affinisation quantique Üq(a1) de type
a1 comme une algèbre de Hopf topologique. Nous démontrons qu’elle admet une
sous-algèbre Ü′

q(a1) dont la complétion est (bicontinûment) isomorphe à la complé-
tion de l’algèbre quantique toroïdale U̇q(ȧ1), elle-même définie comme l’affinisaton
quantique (simple) de l’algèbre de Kač–Moody affine non-torsionnée ṡl2 de type
ȧ1, munie d’une certaine topologie héritée de sa Z-graduation naturelle. L’isomor-
phisme est construit au moyen d’une action bicontinue par automorphismes d’une
version affinisée B̈ – techniquement une extension scindée B̈ ∼= Ḃ ⋉ P ∨ par le
réseau des co-poids P ∨ – du groupe des tresses affine Ḃ de type ȧ1 sur cette com-
plétion de U̇q(ȧ1). Il peut être vu comme une version affinisée de l’isomorphisme
de Damiani–Beck, bien connu dans le cadre des algèbres quantiques affines. Nous
prouvons finalement la décomposition triangulaire correspondante de Üq(a1) et dis-
cutons brièvement les conséquences sur la théorie des représentations des algèbres
quantiques toroïdales.

1. Introduction

Let g be a simple Lie algebra and denote by ġ the corresponding un-
twisted affine Kač–Moody algebra. Starting from g and ġ or from their
Keywords: Quantum Affine Algebras, Quantum Toroidal Algebras, Representation
Theory.
2020 Mathematics Subject Classification: 17B37, 17B67.



2 Robin ZEGERS & Elie MOUNZER

respective root systems, one can construct two a priori different algebras:
on one hand, the quantum affine algebra Uq(ġ) is the standard Drinfel’d–
Jimbo algebra associated with ġ; whereas on the other hand, the quantum
affinization U̇q(g) of g, which we define as Uq(ġ) in its Drinfel’d current pre-
sentation, is associated with the simple finite root system of g. Now U̇q(g)
and Uq(ġ) are isomorphic by virtue of a theorem established by Damiani
and Beck, [2, 4], which can be regarded as a quantum version of the classic
result that each affine Lie algebra g ⊗ C[t, t−1] ⊕ Cc is isomorphic to the
corresponding untwisted affine Kač–Moody Lie algebra ġ. The situation
can be summarized by the following diagram

(1.1)

g
Classical Affinization−−−−−−−−−−−−−−→ ġ

Quantum Affinization
y yQuantization

U̇q(g) ∼−−−−−−−−−−−−−−→
Damiani–Beck isom.

Uq(ġ)

It turns out that quantum affinization still makes sense for the already
affine Lie algebra ġ, thus yielding a doubly affine quantum algebra known
as the quantum toroidal algebra U̇q(ġ). These originally appeared in type
an in the work of Ginzburg, Kapranov and Vasserot, [12]. Quantum toroidal
algebras have received a lot of attention in the past (see [15] for a review)
and are presently the subject of a renewed interest due to their relevance
for integrable systems (see e.g. [9, 10, 11]) and for 5 dimensional supersym-
metric Yang–Mills theory and related AGT like correspondence (see [1]).
From a more mathematical perspective, it is well known (see [24]) that
they are the Frobenius–Schur duals of Cherednik’s Doubly Affine Hecke
Algebras (DAHA), (see [3, 18] for classic references on the latter).

The purpose of the present work is to reconsider quantum toroidal al-
gebras as topological Hopf algebras. On the one hand, this is only natural
since the existence of an algebraic comultiplication for quantum toroidal al-
gebras is still an essentially open question to this date, (although see [13] for
recent results on algebraic comultiplications for affine Yangians that may
suggest the existence of similar results for quantum toroidal algebras), and
only a topological coalgebra structure is provided by the so-called Drinfel’d
current coproduct, (see [8] or [5] and [6] for the cases of U̇q(an⩾1), as well
as [15] and references therein). On the other hand, the existence of a braid
group action by bicontinuous algebra automorphisms, generalizing those
in [7], provides us with a topological version of the Lusztig symmetries
that prove pivotal in both Damiani’s and Beck’s proofs of Drinfel’d’s cur-
rent presentation. We may therefore expect, in that context, the existence
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ON DOUBLE QUANTUM AFFINIZATION 3

of an alternative presentation for quantum toroidal algebras, in terms of
double current generators. In the same spirit as Drinfel’d’s current presen-
tation, such a presentation could be regarded as defining a new quantum
algebra, namely the double quantum affinization Üq(g) of g (see Section 3),
and (a subalgebra Ü′q(a1) of) Üq(g) should be isomorphic to (the completion
of) U̇q(ġ) through an affinized version of the Damiani–Beck isomorphism
(see Section 4). We therefore expect a diagram of the form

(1.2)

g
Classical Affinization−−−−−−−−−−−−−−→ ġ

Double Quantum
Affinization

y yQuantum Affinization

Ü′q(g) U̇q(ġ)

Completion
y yCompletion

̂̈U′q(g) ∼−−−−−−−−−−−−−−−−−−→
Affine Damiani–Beck isom.

̂̇Uq(ġ)

in which the last line, in the same way as that of diagram (1.1) in the
previous paragraph, should be thought of as a quantum version of the
classical isomorphism

g̈ = ġ ⊗ C[z, z−1] ⊕ CC ∼= g ⊗ C[t, t−1, z, z−1] ⊕ C[z, z−1]c⊕ CC .

In the present paper we prove such results in the particular case where g

is of type a1. It is fairly natural to conjecture that similar results hold for
higher rank root systems, thus yielding

Conjecture 1.1. — Every simple Lie algebra g admits a (unique up to
isomorphisms) double quantum affinization Üq(g) and diagram 1.2 holds.

and

Conjecture 1.2. — Every untwisted affine Kač–Moody Lie algebra ġ

admits a (unique up to isomorphisms) double quantum affinization Üq(ġ).

Note that the latter would naturally provide a definition for the so far
elusive triply affine quantum algebras. The latter are believed to play an
important role in mathematical physics, as the conformal block side of
an AGT type correspondence with 6-dimensional super Yang–Mills theo-
ries, [1].

In any case, Üq(a1) (and presumably other double quantum affinizations
if any) admits a triangular decomposition (Ü−q (a1), Ü0

q(a1), Ü+
q (a1)). The

latter naturally leads to an alternative notion of weight and highest weight
modules that we shall refer to as t-weight and highest t-weight modules.

TOME 0 (0), FASCICULE 0



4 Robin ZEGERS & Elie MOUNZER

Natural analogues of the finite dimensional modules over quantum affine
algebras also appear, that we refer to as weight-finite modules, see Section 3
for definitions. We actually expect that it will be possible to classify simple
weight-finite modules over Üq(a1), by essentially classifying those simple
Ü0

q(a1)-modules that appear as their highest t-weight spaces, see Section 3
for the corresponding discussion. This is the subject of ongoing work.

Quite remarkably, there exists an algebra homomorphism f : Eq−4,q2,q2 →
Ü0+

q (a1), where Ü0+

q (a1) is a closed subalgebra of Ü0
q(a1) and, for every

q1, q2, q3 such that q1q2q3 = 1, Eq1,q2,q3 is the corresponding elliptic Hall al-
gebra, see Section 3. The latter was first defined by Miki in [20] as a (q, γ)-
analogue of the W1+∞ algebra. It reappeared later in [9], as the quantum
continuous gl∞ algebra. Schiffmann then identified it with the Hall algebra
of the category of coherent sheaves on some elliptic curve whose Weil num-
bers are related to q1, q2, q3, [23]. More recently, it also appeared in [10]
and in subsequent works by Feigin et al. as the quantum toroidal alge-
bra associated with gl1. As we shall see, it appears natural to make the
following

Conjecture 1.3. — Ü0+

q (a1) is isomorphic to the completion of
Eq−4,q2,q2 .

If it held true, the above conjecture would have many interesting implica-
tions. On one hand, in view of Schiffmann’s results, it seems reasonable to
expect that the double quantum affinization Üq(a1) admits a K-theoretic
realization, in the spirit of Nakajima’s quiver varieties realization of quan-
tum affine algebras [21], wherein the generators outside of the elliptic Hall
algebras would be realized as correspondences. At the level of representa-
tion theory on the other hand, Conjecture 1.3 would imply that the clas-
sification of the simple Ü0

q(a1)-modules that appear as highest t-weight
spaces of simple weight-finite Üq(a1)-modules would almost entirely reduce
to a classification of the corresponding subclass of simple modules over
the elliptic Hall algebra. Again, we leave these questions for future work
(see [25]).

The paper is organized as follows. In Section 2, we briefly review some
well known facts about quantum toroidal algebras, including their defini-
tion and natural gradings. We endow them with a topology and construct
the corresponding completion. On the latter, we construct a set of auto-
morphisms, including affinized versions of Lusztig’s symmetry. Analogues
of these for simply laced untwisted affine ȧn⩾2-types appeared in the work
of Ding and Khoroshkin [7]. The ȧ1 version we give here plays a crucial role
in Section 4 where we prove the main result of this paper. In Section 3,
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ON DOUBLE QUANTUM AFFINIZATION 5

we define a new quantum algebra called the double quantum affinization of
type a1 and denoted Üq(a1). We prove that there exists an algebra homo-
morphism from the elliptic Hall algebra Eq1,q2,q3 to its subalgebra Ü0

q(a1).
We also elaborate on the consequences at the level of representation theory
and introduce the notions of (highest) t-weights and of weight-finiteness.
Finally, in Section 4, we construct the affinized version of the Damiani–Beck
isomorphism

Ψ̂ : ˙̂Uq(ȧ1) ∼−→ ¨̂U′q(a1) .

The appendix contains a short review of formal distributions as relevant to
the present work. This is already covered in the literature (see e.g. [17]),
however, since our conventions slightly differ from the standard ones, we
included it for the sake of clarity.

Notations and conventions

We let N = {0, 1, . . . } be the set of natural integers including 0. We
denote by N× the set N−{0}. For every m ⩽ n ∈ N, we denote by Jm,nK =
{m,m+ 1, . . . , n}. We also let JnK = J1, nK for every n ∈ N. For every finite
subset Σ ⊂ N with card Σ = N , any n ⩽ N and any m1, . . . ,mn ∈ N
such that m1 + · · · +mn = N , we let P(m1,...,mn)

Σ denote the set of ordered
(m1, . . . ,mn) set n-partitions, i.e. any A = (A(1), . . . , A(n)) ∈ P(m1,...,mn)

Σ
is such that

(i) for every p ∈ JnK, cardA(p) = mp;
(ii) for every p ∈ JnK, A(p) = {A(p)

1 , . . . , A
(p)
mp} ⊂ Σ, with A

(p)
1 < · · · <

A
(p)
mp ;

(iii) A(1) ⊔ · · · ⊔A(n) = Σ.
We let sign : Z → {−1, 0, 1} be defined by setting, for any n ∈ Z,

sign(n) =


−1 if n < 0,
0 if n = 0,
1 if n > 0.

We assume throughout that K is a field of characteristic 0 and we let
F = K(q) denote the field of rational functions over K in the formal variable
q. As usual, we let K× = K−{0} and F× = F−{0}. We make F a topological
field by endowing it with the discrete topology.
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6 Robin ZEGERS & Elie MOUNZER

For every m,n ∈ N, we define the following elements of F

[n]q = qn − q−n

q − q−1 ,(1.3)

[n]!q =
{

[n]q[n− 1]q · · · [1]q if n ∈ N×,
1 if n = 0,

(1.4)

(
n

m

)
q

=
[n]!q

[m]!q[n−m]!q
.(1.5)

We shall let
a[A,B]b = aAB − bBA ,

for any symbols a, b, A and B provided the r.h.s of the above equations
makes sense. At some point we may need the following obvious identities

[[A,B]a, C]b = [[A,C]b, B]a + [A, [B,C]]ab ,(1.6)
[a[A,B], C]b = a[[A,C]b, B] + a[A, [B,C]]b .(1.7)

We refer to the Appendix for conventions and more details on formal dis-
tributions.

The Dynkin diagrams and correponding Cartan matrices in type a1 and
ȧ1 are reminded in the following table.

Type Dynkin diagram Simple roots Cartan matrix

a1

1
Φ = {α1} (2)

ȧ1

0 1
Φ̇ = {α0, α1}

(
2 −2

−2 2

)

2. The quantum toroidal algebra of type a1 and its
completion

2.1. Definition

Let İ = {0, 1} be the above labeling of the nodes of the Dynkin dia-
gram of type ȧ1 and let Φ̇ = {α0, α1} be a choice of simple roots for the
corresponding root system. We denote by (cij)i,j=0,1 the entries of the as-
sociated Cartan matrix. Let Q̇± = Z±α0 ⊕ Z±α1 and let Q̇ = Zα0 ⊕ Zα1
be the type ȧ1 root lattice.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.1. — The quantum toroidal algebra U̇q(ȧ1) is the asso-
ciative F-algebra generated by the generators{

D,D−1, C1/2, C−1/2, k+
i,n, k

−
i,−n, x

+
i,m, x

−
i,m : i ∈ İ ,m ∈ Z, n ∈ N

}
subject to the following relations

(2.1) C±1/2 is central, C±1/2C∓1/2 = 1 , D±1D∓1 = 1 ,

(2.2) Dk±i (z)D−1 = k±i (zq−1) , Dx±i (z)D−1 = x±i (zq−1) ,

(2.3) res
z1,z2

1
z1z2

k±i (z1)k∓i (z2) = 1 ,

(2.4) k±i (z1)k±j (z2) = k±j (z2)k±i (z1) ,

(2.5) k−i (z1)k+
j (z2) = G−ij(C−1z1/z2)G+

ij(Cz1/z2)k+
j (z2)k−i (z1) ,

(2.6) G∓ij(C∓1/2z2/z1)k+
i (z1)x±j (z2) = x±j (z2)k+

i (z1) ,

(2.7) k−i (z1)x±j (z2) = G∓ij(C∓1/2z1/z2)x±j (z2)k−i (z1) ,

(2.8) (z1 − q±cijz2)x±i (z1)x±j (z2) = (z1q
±cij − z2)x±j (z2)x±i (z1) ,

(2.9) [x+
i (z1),x−j (z2)]

= δij

q − q−1

[
δ

(
z1

Cz2

)
k+

i (z1C
−1/2) − δ

(
z1C

z2

)
k−i (z2C

−1/2)
]
,

(2.10)
∑

σ∈S1−cij

1−cij∑
k=0

(−1)k

(
1 − cij

k

)
q

x±i (zσ(1)) · · · x±i (zσ(k))x±j (z)

× x±i (zσ(k+1)) · · · x±i (zσ(1−cij)) = 0 ,

where, for every i ∈ İ, we define the following U̇q(ȧ1)-valued formal distri-
butions

x±i (z) =
∑
m∈Z

x±i,mz
−m ∈ U̇q(ȧ1)[[z, z−1]] ,(2.11)

k±i (z) =
∑
n∈N

k±i,±nz
∓n ∈ U̇q(ȧ1)[[z∓1]] ,(2.12)

TOME 0 (0), FASCICULE 0



8 Robin ZEGERS & Elie MOUNZER

for every i, j ∈ İ, we define the following F-valued formal power series

(2.13) G±ij(z) = q±cij + (q − q−1)[±cij ]q
∑

m∈N×

q±mcijzm ∈ F[[z]]

and

(2.14) δ(z) =
∑
m∈Z

zm ∈ F[[z, z−1]]

is an F-valued formal distribution.

Note that G±ij(z) is invertible in F[[z]] with inverse G∓ij(z), i.e.

(2.15) G±ij(z)G∓ij(z) = 1 ,

and that it can be viewed as the power series expansion of a rational func-
tion of (z1, z2) ∈ C2 as |z2| ≫ |z1|, which we shall denote as follows

(2.16) G±ij(z1/z2) =
(
z1q
∓cij − z2

z1 − q∓cijz2

)
|z2|≫|z1|

.

Observe furthermore that we have the following useful identity in F[[z, z−1]]

(2.17)
G±ij(z) −G∓ij(z−1)

q − q−1 = [±cij ]qδ
(
zq±cij

)
.

Remark 2.2. — In type a1, İ = {0, 1}, cij = 4δij − 2 and we have an
additional identity, namely G±10(z) = G∓11(z). We refer to Section A.3 of
the Appendix for more identities involving the formal power series G±ij(z).

U̇q(ȧ1) is obviously a Z-graded algebra, i.e. we have

(2.18) U̇q(ȧ1) =
⊕
n∈Z

U̇q(ȧ1)n ,

where, for all n ∈ Z, U̇q(ȧ1)n = {x ∈ U̇q(ȧ1) : DxD−1 = qnx}.
It was proven in [14] to admit a triangular decomposition

(U̇−q (ȧ1), U̇0
q(ȧ1), U̇+

q (ȧ1)) ,

where U̇±q (ȧ1) and U̇0
q(ȧ1) are the subalgebras of U̇q(ȧ1) respectively gen-

erated by
{
x±i,m : i ∈ İ ,m ∈ Z

}
and{

C1/2, C−1/2, D,D−1, k+
i,m, k

−
i,m : i ∈ İ ,m ∈ Z

}
.

ANNALES DE L’INSTITUT FOURIER
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Observe that U̇±q (ȧ1) admits a natural gradation over Q̇± that we shall
denote by

(2.19) U̇±q (ȧ1) =
⊕

α∈Q̇±

U̇±q (ȧ1)α .

Of course U̇q(ȧ1) is graded over the root lattice Q̇. We finally remark that
the two Dynkin diagram subalgebras U̇q(a1)(0) and U̇q(a1)(1) of U̇q(ȧ1)
generated by{

D,D−1, C1/2, C−1/2, k+
i,n, k

−
i,−n, x

+
i,m, x

−
i,m : m ∈ Z, n ∈ N

}
,

with i = 0 and i = 1 respectively, are both isomorphic to U̇q(a1) and that
the corresponding inclusion maps thus yield two injective algebra homo-
morphisms ι(i) : U̇q(a1) ∼= U̇q(a1)(i) ↪→ U̇q(ȧ1).

2.2. Automorphisms of U̇q(ȧ1)

Proposition 2.3.
(i) For every Dynkin diagram automorphism π : İ ∼→ İ, there exists a

unique F-algebra automorphism Tπ ∈ Aut(U̇q(ȧ1)) such that

(2.20)
Tπ(C1/2) = C1/2 , Tπ(D) = D ,

Tπ(x±i (z)) = x±π(i)(z) , Tπ(k±i (z)) = k±π(i)(z) .

(ii) For every i ∈ İ, there exists a unique F-algebra automorphism
Tω∨

i
∈ Aut(U̇q(ȧ1)) such that

(2.21)
Tω∨

i
(C1/2) = C1/2 , Tω∨

i
(D) = D ,

Tω∨
i

(x±j (z)) = z±δij x±j (z) , Tω∨
i

(k±j (z)) = C∓δij k±j (z) .

(iii) There exists a unique involutive F-algebra anti-homomorphism η ∈
Aut(U̇q(ȧ1)) such that

(2.22)
η(C1/2) = C1/2 , η(D) = D ,

η(x±i (z)) = x±i (1/z) , η(k±i (z)) = k∓i (1/z) .

(iv) There exists a unique involutive K-algebra anti-homomorphism φ

such that φ(q) = q−1 and

(2.23)
φ(C1/2) = C−1/2 , φ(D) = D−1 ,

φ(x±i (z)) = x∓i (1/z) , φ(k±i (z)) = k∓i (1/z) .

TOME 0 (0), FASCICULE 0



10 Robin ZEGERS & Elie MOUNZER

Proof. — This is easily checked to be compatible with the defining rela-
tions (2.1)–(2.10) of U̇q(ȧ1). □

Remark 2.4. — In the present case, the Dynkin diagram being that of
type ȧ1, İ = {0, 1} and the only nontrivial diagram automorphism is defined
by setting π(0) = 1 and π(1) = 0.

Remark 2.5. — Note that φ restricts as a non-trivial automorphism of
the field F and that, as such, it yields e.g.

(2.24) φ(G±ij(z)) = G∓ij(z) .

2.3. The completions ˙̂Uq(ȧ1) and U̇q(ȧ1)⊗̂m⩾2

Let, for every n ∈ N,

Ωn =
⊕
r⩾n
s⩾n

U̇q(ȧ1) · U̇q(ȧ1)−r · U̇q(ȧ1) · U̇q(ȧ1)s · U̇q(ȧ1) .

Proposition 2.6. — The following hold true:

(i) For every n ∈ N, Ωn is a two-sided ideal of U̇q(ȧ1);
(ii) For every n ∈ N, Ωn ⊇ Ωn+1;
(iii) Ω0 =

⋃
n∈N Ωn = U̇q(ȧ1);

(iv)
⋂

n∈N Ωn = {0};
(v) For every m,n ∈ N, Ωm + Ωn ⊆ Ωmin(m,n);
(vi) For every m,n ∈ N, Ωm · Ωn ⊆ Ωmax(m,n).

Proof. — Points (i) and (ii) are obvious. As sets, it is clear that Ω0 ⊆
U̇q(ȧ1). Now, 1 ∈ U̇q(ȧ1)0 and for every x ∈ U̇q(ȧ1), we can write x =
1 · x · 1 thus proving that x ∈ Ω0. Point (iii)follows. Point (v) is an easy
consequence of point (ii). Point (vi) is obvious given (i). So let us finally
prove point (iv). In order to do so, it suffices to prove that for every x ∈
U̇q(ȧ1) − {0}, there exists a largest integer νx ∈ N such that x ∈ Ωνx ;
for then indeed x /∈ Ωνx+1, whereas obviously 0 ∈ Ωn, for every n ∈ N.
Relations (2.5)–(2.9) respectively imply that, for every i, j ∈ İ, every m ∈ N
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and every n ∈ N×,

k+
i,mk

−
j,−n = k−j,−nk

+
i,m − (qcij − q−cij )(C − C−1)

×
min(m,n)∑

p=1

q−pcijCp − qpcijC−p

q−cijC − qcijC−1 k−j,−n+pk
+
i,m−p ,

k+
i,mx

±
j,−n = q±cijx±j,−nk

+
i,m +(q±cij −q∓cij )

m∑
p=1

C∓p/2q±pcijx±j,−n+pk
+
i,m−p ,

x±i,mk
−
j,−n = q±cijk−j,−nx

±
i,m +(q±cij −q∓cij )

n∑
p=1

C∓p/2q±pcijk−j,−n+px
±
i,m−p ,

x±i,mx
±
j,−n = q±cijx±j,−nx

±
i,m +(q±cij −q∓cij )

min(m,n)−1∑
p=1

q±pcijx±j,−n+px
±
i,m−p

− q±(min(m,n)−1)cijx±j,min(m,n)−nx
±
i,m−min(m,n)

+ q±min(m,n)cijx±i,m−min(m,n)x
±
j,min(m,n)−n ,

x±i,mx
∓
j,−n = x∓j,−nx

±
i,m ± δij

q − q−1


C±

m+n
2 k+

i,m−n if m > n;
−C∓m+n

2 k−i,n−m if m < n;[
C±mk+

i,0 − C∓mk−i,0
]

if m = n.

Now let

B =

ba,m =
−−−→∏
p∈JnK

ξap,mp
: n ∈ N,

a = (a1, . . . , an) ∈ (Φ̇ ⊔ −Φ̇ ⊔ İ)n,

m = (m1, . . . ,mn) ∈ Zn

 ,

where, for every (a,m) ∈ (Φ̇ ⊔ −Φ̇ ⊔ İ) × Z,

ξa,m =
{
x±i,m if a = ±αi ∈ ±Φ̇, i ∈ İ,
k±i,m if a = i ∈ İ and m ∈ Z±.

If we omit C±1/2 and D±1 which are clearly irrelevant for the present
discussion, B is obviously a spanning set for U̇q(ȧ1). Making repeated use
of the above relations, one then easily shows that, for every n ∈ N, every
a ∈ (Φ̇ ⊔ −Φ̇ ⊔ İ)n and every m ∈ Zn,

ba,m − ca,m

−−−→∏
p∈JnK
mp<0

ξap,mp

−−−→∏
p∈JnK
mp⩾0

ξap,mp
∈ ΩN(m)−1 − ΩN(m) ,
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where ca,m ∈ F× and

N(m) = min

−
∑

p∈JnK
mp<0

mp,
∑

p∈JnK
mp⩾0

mp

 .

As a consequence, νba,m ⩽ N(m), which concludes the proof. □

Similarly, making use of the natural Z-grading of the tensor algebras
U̇q(ȧ1)⊗m, m ∈ N×, we let, for every n ∈ N,

Ω(m)
n =

⊕
r⩾n
s⩾n

U̇q(ȧ1)⊗m ·
(
U̇q(ȧ1)⊗m

)
−r

·U̇q(ȧ1)⊗m ·
(
U̇q(ȧ1)⊗m

)
s
·U̇q(ȧ1)⊗m .

One easily checks that for everym ∈ N×, {Ω(m)
n : n ∈ N} has the same prop-

erties as the ones established in Proposition 2.6 for {Ωn = Ω(1)
n : n ∈ N}.

Definition-Proposition 2.7. — We endow U̇q(ȧ1) with the topology
τ whose open sets are either ∅ or nonempty subsets O ⊆ U̇q(ȧ1) such that
for every x ∈ O, x + Ωn ⊆ O for some n ∈ N. These turn U̇q(ȧ1) into a
(separated) topological algebra. We then let ˙̂Uq(ȧ1) denote its completion
and we extend by continuity to ˙̂Uq(ȧ1) all the (anti)-automorphisms defined
over U̇q(ȧ1) in the previous section. Similarly, we endow each tensor power
U̇q(ȧ1)⊗m⩾2 with the topology induced by {Ω(m)

n : n ∈ N} and denote
by U̇q(ȧ1)⊗̂m⩾2 the corresponding completion. Note that the latter admits
a topology induced by

{
Ω̂(m)

n : n ∈ N
}

, where, for every n ∈ N, Ω̂(m)
n de-

notes the closure of Ω(m)
n in U̇q(ȧ1)⊗̂m⩾2, and such that U̇q(ȧ1)⊗m⩾2 injects

densely in U̇q(ȧ1)⊗̂m⩾2 with an induced topology equivalent to its above
defined original topology.

Proof. — The addition is automatically continuous in the above defined
topology of U̇q(ȧ1). The continuity of the multiplication follows from point
(vi) of Proposition 2.6. Point (vi), in turn, implies that U̇q(ȧ1), as a topo-
logical space, is Hausdorff. The continuity of the unit map η : F → U̇q(ȧ1)
is easily checked – remember that F is given the discrete topology. □

Remark 2.8. — It is worth noting that the above topology is actually ul-
trametrizable. In the notations of the previous proof, let indeed, for every
x ∈ U̇q(ȧ1),

∥x∥ =
{

exp (−νx) if x ∈ U̇q(ȧ1) − {0},
0 if x = 0.
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ON DOUBLE QUANTUM AFFINIZATION 13

Since obviously νx+y ⩾ min(νx, νy) for every x, y ∈ U̇q(ȧ1), the ultrametric
inequality for the metric defined by d(x, y) = ∥x− y∥ follows immediately
as a consequence of the inequality ∥x+ y∥ ⩽ max(∥x∥, ∥y∥).

2.4. Continuous Lusztig automorphisms

Following [18] we make the following

Definition 2.9. — The affine braid group Ḃ of type ȧ1 is generated by
t and y subject to the relation ty−1t = y.

The coweight lattice P∨ of ȧ1 is an abelian group whose generators we
shall denote as xλ for every λ ∈ P∨. In particular, we shall write

(2.25) xλxµ = xµxλ = xλ+µ ,

assuming that x0 = 1. There exists a unique group homomorphism Ḃ →
Aut(P∨) defined by letting

(2.26) t(xλ) = xsα1 (λ) , y(xλ) = xλ ,

where sα1 denotes the reflection in the simple root α1, i.e. sα1(λ) = λ −
(α∨1 , λ)α1. This action allows us to make the following

Definition 2.10. — We let B̈ = Ḃ ⋉ P∨, i.e. B̈ is isomorphic to the
group with generators t, y and (xλ)λ∈P ∨ obeying the relations

(2.27) ty−1t = y , txλt
−1 = xsα1 (λ) , xλy = yxλ ,

for every λ ∈ P∨.

We now define an action of B̈ on ˙̂Uq(ȧ1) by bicontinuous algebra auto-
morphisms, i.e. we construct a group homomorphism B̈ → Aut( ˙̂Uq(ȧ1)).
In order to do so, we first describe the image of the latter, following [7].

Proposition 2.11. — There exists a unique bicontinuous algebra au-
tomorphism T ∈ Aut( ˙̂Uq(ȧ1)) such that

(2.28) T (C1/2) = C1/2 , T (D) = D ,

(2.29) T (k±0 (z)) = k±0 (zq2)k±1 (z)k±1 (zq2) , T (k±1 (z)) = k±1 (z)−1 ,

(2.30) T (x+
0 (z)) = 1

[2]q
res

z1,z2
z−1

1 z−1
2[

x+
1 (z1),

[
x+

1 (z2),x+
0 (zq2)

]
G−

10(z2/zq2)

]
G−

11(z1/z2)G−
10(z1/zq2)

,
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14 Robin ZEGERS & Elie MOUNZER

(2.31) T (x−0 (z)) = 1
[2]q

res
z1,z2

z−1
1 z−1

2[[
x−0 (zq2),x−1 (z1)

]
G+

10(zq2/z1) ,x
−
1 (z2)

]
G+

11(z1/z2)G+
10(zq2/z2)

,

(2.32) T (x+
1 (z)) = −x−1 (C−1z)k+

1 (C−1/2z)−1 ,

(2.33) T (x−1 (z)) = −k−1 (C−1/2z)−1x+
1 (C−1z) .

Proof. — It suffices to check all the relations, which is cumbersome but
straightforward, and to observe that T being Z-graded, we have T (Ωn) ⊆
Ω̂n for every n ∈ N, from which it follows that T is continuous. The inverse
automorphism is given by

(2.34) T−1(C1/2) = C1/2 , T−1(D) = D ,

(2.35) T−1(k±0 (z)) = k±0 (zq−2)k±1 (z)k±1 (zq−2) ,

(2.36) T−1(k±1 (z)) = k±1 (z)−1 ,

(2.37) T−1(x+
0 (z)) = 1

[2]q
res

z1,z2
z−1

1 z−1
2[[

x+
0 (zq−2),x+

1 (z1)
]

G−
10(zq−2/z1) ,x

+
1 (z2)

]
G−

11(z1/z2)G−
10(zq−2/z2)

,

(2.38) T−1(x−0 (z)) = 1
[2]q

res
z1,z2

z−1
1 z−1

2[
x−1 (z1),

[
x−1 (z2),x−0 (zq−2)

]
G+

10(z2/zq−2)

]
G+

11(z1/z2)G+
10(z1/zq−2)

,

(2.39) T−1(x+
1 (z)) = −k−1 (C1/2z)−1x−1 (Cz) ,

(2.40) T−1(x−1 (z)) = −x+
1 (Cz)k+

1 (C1/2z)−1 .

The continuity of T−1 is proven in the same way as that of T . □

Remark 2.12. — Making use of the defining relations of U̇q(ȧ1), one easily
shows that indeed[

x+
1 (z1),

[
x+

1 (z2),x+
0 (zq2)

]
G−

10(z2/zq2)

]
G−

11(z1/z2)G−
10(z1/zq2)

(2.41)

= [2]q δ
(

z1

q2z2

)
δ
(z2

z

)
T
(
x+

0 (z)
)
,
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x−0 (zq2),x−1 (z1)

]
G+

10(zq2/z1) ,x
−
1 (z2)

]
G+

11(z1/z2)G+
10(zq2/z2)

(2.42)

= [2]q δ
(
z1q

2

z2

)
δ
(z1

z

)
T (x−0 (z)) .

The following is straightforward but will be useful.

Proposition 2.13. — We have
(i) φ ◦ Tπ = Tπ ◦ φ;
(ii) φ ◦ T = T ◦ φ;
(iii) T−1 = η ◦ T ◦ η.

We have finally,

Theorem 2.14. — The assignement

(2.43) t 7−→ T y 7−→ Y = Tπ ◦ T xω∨
i

7−→ Tω∨
i

extends to a group homomorphism B̈ → Aut( ˙̂Uq(ȧ1)).

Proof. — This is a cumbersome but straightforward exercise that we
leave to the reader. □

Remark 2.15. — In [19], Miki constructed an algebraic action by auto-
morphisms of the extended elliptic braid group on U̇q(ȧ1) which should not
be confused with the topological action of B̈ on ˙̂Uq(ȧ1) provided by the
above theorem.

2.5. Topological Hopf algebra structure on ˙̂Uq(ȧ1)

Definition 2.16. — We endow the topological F-algebra ˙̂Uq(ȧ1) with:

(i) the comultiplication ∆ : ˙̂Uq(ȧ1) → U̇q(ȧ1)⊗̂U̇q(ȧ1) defined by

(2.44) ∆(C±1/2) = C±1/2 ⊗ C±1/2 , ∆(D±1) = D±1 ⊗D±1 ,

(2.45) ∆(k±i (z)) = k±i (zC±1/2
(2) ) ⊗ k±i (zC∓1/2

(1) ) ,

(2.46) ∆(x+
i (z)) = x+

i (z) ⊗ 1 + k−i (zC1/2
(1) )⊗̂x+

i (zC(1)) ,

(2.47) ∆(x−i (z)) = x−i (zC(2))⊗̂k+
i (zC1/2

(2) ) + 1 ⊗ x−i (z) ,

where C±1/2
(1) = C±1/2 ⊗ 1 and C

±1/2
(2) = 1 ⊗ C±1/2;
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(ii) the counit ε : ˙̂Uq(ȧ1) → F, defined by ε(D±1) = ε(C±1/2) =
ε(k±i (z)) = 1, ε(x±i (z)) = 0 and;

(iii) the antipode S : ˙̂Uq(ȧ1) → ˙̂Uq(ȧ1), defined by S(D±1) = D∓1,
S(C±1/2) = C∓1/2 and

S(k±i (z)) = k±i (z)−1 ,

S(x+
i (z)) = −k−i (zC−1/2)−1x+

i (zC−1) ,
S(x−i (z)) = −x−i (zC−1)k+

i (zC−1/2)−1 .

With these operations so defined and the topologies defined in Section 2.3,
˙̂Uq(ȧ1) is a topological Hopf algebra. Indeed, it is a Hopf algebra, (see [8]
or [5] and [6] for the cases of U̇q(an⩾1)), and since the maps are all Z-graded,
we have e.g. ∆(Ωn) ⊆ Ω̂(2)

n for every n ∈ N, making ∆ continuous.

2.6. Non-degenerate Hopf algebra pairing

Define U̇⩾
q (ȧ1) (resp. U̇⩽

q (ȧ1)) as the subalgebra of U̇q(ȧ1) generated by{
k−i,−m, x

+
i,n : i ∈ I,m ∈ N, n ∈ Z

}
(resp.

{
k+

i,m, x
−
i,n : i ∈ I,m ∈ N, n ∈ Z

}
).

In view of the triangular decompositon of U̇q(ȧ1) (see [14]) and of its defin-
ing relations, it is clear that U̇⩾

q (ȧ1) (resp. U̇⩽
q (ȧ1)), as an F-vector space,

is spanned by

(2.48)
{
x+

i1,r1
· · ·x+

im,rm
k−j1,−s1

· · · k−jn,−sn
: m,n ∈ N,

((i1, r1), . . . , (im, rm)) ∈ (İ × Z)m,

((j1, s1), . . . , (jn, sn)) ∈ (İ × N)n
}
,

(2.49)
(
resp.

{
x−i1,r1

· · ·x−im,rm
k+

j1,s1
· · · k+

jn,sn
: m,n ∈ N,

((i1, r1), . . . , (im, rm)) ∈ (İ × Z)m,

((j1, s1), . . . , (jn, sn)) ∈ (İ × N)n
})

.

Proposition 2.17. — There exists a unique non-degenerate Hopf al-
gebra pairing ⟨ , ⟩ : U̇⩾

q (ȧ1) × U̇⩽
q (ȧ1) → F, defined by setting〈

x+
i (z),x−j (v)

〉
= δij

q − q−1 δ
(z
v

)
,(2.50) 〈

k−i (z),k+
j (v)

〉
= G−ij

(z
v

)
,(2.51) 〈

k−i (z),x−j (v)
〉

=
〈
x+

i (z),k+
j (v)

〉
= 0 .(2.52)

ANNALES DE L’INSTITUT FOURIER
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By definition, it is such that, for every a, b ∈ U̇⩾
q (ȧ1) and every x, y ∈

U̇⩽
q (ȧ1),

⟨a, xy⟩ =
∑〈

a(1), x
〉 〈
a(2), y

〉
,

⟨ab, x⟩ =
∑〈

a, x(2)
〉 〈
b, x(1)

〉
,

⟨a, 1⟩ = ε⩾(a) ⟨1, x⟩ = ε⩽(x) ,

where we have set ε⩽ = ε|U̇⩽
q (ȧ1), ε⩾ = ε|U̇⩾

q (ȧ1) and we have made use of
Sweedler’s notation for the comultiplication

∆(x) =
∑

x(1)⊗̂x(2) .

Proof. — See Proposition 2.16 in [22]. □

Before we can establish the continuity of the above defined pairing, we need
the following

Lemma 2.18. — For every m+,m−, n+, n− ∈ N, (i±1 , . . . , i±m±
) ∈ İm±

and every (j±1 , . . . , j±n±
) ∈ İn± , we have〈

x+
i+

1
(u1) · · · x+

i+
m+

(um+)k−
j+

1
(v1) · · · k−

j+
n+

(vn+),(2.53)

x−
i−

1
(w1) · · · x−

i−
m−

(wm−)k+
j−

1
(z1) · · · k+

j−
n−

(zn−)
〉

= δm+,m−

 ∏
r∈Jn+K
s∈Jn−K

G−
j+

r ,j−
s

(
vr

zs

)

×
∑

σ∈Sm+

 ∏
1⩽r<s⩽m+
σ(r)>σ(s)

G−
i+

r ,i+
s

(
ur

us

) ∏
t∈Jm+K

δi+
t ,i−

σ(t)

q − q−1 δ

(
wσ(t)

ut

)
.

Proof. — One easily proves by recursion the results for n+ = n− =
0 and m+ = m− = 0, respectively. The general case then follows by a
straightforward calculation. □

It follows that (remember F is given the discrete topology)

Corollary 2.19. — The Hopf algebra pairing ⟨ , ⟩ is (separately) con-
tinuous.

Proof. — It suffices to prove that for every x ∈ U̇⩾
q (ȧ1) there exists an

m ∈ N such that, for every n ⩾ m〈
x,Ωn ∩ U̇⩽

q (ȧ1)
〉

= {0} .
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18 Robin ZEGERS & Elie MOUNZER

In order to prove the latter, it suffices to prove it over the spanning sets
of (2.48) and (2.49). Now this easily follows by inspection, making use of
Lemma 2.18 and of the fact that, for any y ∈ U̇q(ȧ1) − {0}, there exists
νy ∈ N such that y /∈ Ωνy+1 (see proof of Proposition 2.6). □

We can now extend ⟨ , ⟩ from U̇⩾
q (ȧ1) × U̇⩽

q (ȧ1) to U̇⩾
q (ȧ1) × ˙̂U⩽

q (ȧ1) by
continuity. Importantly, we have

Proposition 2.20. — The extended pairing ⟨ , ⟩ : U̇⩾
q (ȧ1)× ˙̂U⩽

q (ȧ1) → F
is non-degenerate in the sense that, if for every x ∈ U̇⩾

q (ȧ1), ⟨x, y⟩ = 0 for

some y ∈ ˙̂U⩽
q (ȧ1), then y = 0.

Proof. — Let {On : n ∈ N} be any neighbourhood basis at 0 ∈ F for the
discrete topology on F. Then, let for every n ∈ N,

An =
〈
U̇⩾

q (ȧ1),−
〉−1 (On) =

{
y ∈ U̇⩽

q (ȧ1) : ∀x ∈ U̇⩾
q (ȧ1) ⟨x, y⟩ ∈ On

}
.

We clearly have, for every n ∈ N, {0} ⊆ An ⊆ U̇⩽
q (ȧ1) and An ⊇ An+1.

The non-degeneracy of the pairing further implies that⋂
n∈N

An = {0} .

As a consequence, for every n ∈ N and every y ∈ An − {0}, there exists an
N ∈ N such that for every m ⩾ N , y /∈ Am. Now, given n1 ∈ N, let µ(n1) ∈
N be the largest integer such that An1 ⊆ Ωµ(n1). By the previous discussion,
for every point y ∈ An1 − Ωµ(n1)+1, there exists (a smallest) n2 ∈ N such
that for every m ⩾ n2, y /∈ Am. Hence, for every m ⩾ n2, Am ⊆ Ωµ(n1)+1
and we conclude that µ(n) = µ(n1) for every n ∈ Jn1, n2 − 1K, whereas
µ(n2) = µ(n1) + 1. By induction, it follows that µ : N → N so defined
is increasing and that, as a consequence, limn→+∞ µ(n) = +∞. We have
therefore proven that, for every n ∈ N,

(2.54) ∀x ∈ U̇⩾
q (ȧ1) ⟨x, y⟩ ∈ On =⇒ y ∈ Ωµ(n) .

If we finally let (yn)n∈N ∈ U̇⩽
q (ȧ1)N be any Cauchy sequence that does not

converge to 0, the proposition is obviously equivalent to claiming that there
exists an x ∈ U̇⩾

q (ȧ1) such that

lim
n→+∞

⟨x, yn⟩ ≠ 0 .

Indeed, since (yn)n∈N does not converge to 0, there exist m ∈ N such that
for every N ∈ N, yn /∈ Ωm for some n ⩾ N . We can therefore extract a
subsequence (ynk

)k∈N such that ynk
/∈ Ωm for every k ∈ N. The contrapos-

itive of (2.54) then implies that there exists (xk)k∈N ∈ U̇⩾
q (ȧ1)N such that,
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for every k ∈ N,
⟨xk, ynk

⟩ /∈ Oν(m)

where ν(m) = min{n ∈ N : µ(n) = m}. But since (yn)n∈N is Cauchy,
so is (ynk

)k∈N and, upon taking k, l ∈ N large enough, we can make
⟨xk, ynl

− ynk
⟩ arbitrary small. This eventually concludes the proof. □

3. Double quantum affinization in type a1

We now define and study the main object of interest in this paper; the
double quantum affinization in type a1, Üq(a1). We let I = {1} be the
labeling of the unique node of the type a1 Dynkin diagram and we let
Q± = Z±α1. We denote by Q = Zα1 the type a1 root lattice.

3.1. Definition of Üq(a1)

Definition 3.1. — The double quantum affinization Üq(a1) of type a1
is defined as the F-algebra generated by{

D1,D−1
1 ,D2, D−1

2 ,C1/2,C−1/2, c+
m, c−−m,K+

1,0,m,K
−
1,0,−m,

K+
1,n,r,K

−
1,−n,r,X+

1,r,s,X
−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z

}
,

subject to the relations

(3.1) C±1/2 and c±(z) are central

(3.2) res
v,w

1
vw

c±(v)c∓(w) = 1 ,

(3.3) D±1
1 D∓1

1 = 1 D±1
2 D∓1

2 = 1 D1D2 = D2D1

D1K±1,±m(z)D−1
1 = q±mK±1,±m(z) D1X±1,r(z)D−1

1 = qrX±1,r(z) ,(3.4)

D2K±1,±m(z)D−1
2 = K±1,±m(zq−1) D2X±1,r(z)D−1

2 = X±1,r(zq−1) ,(3.5)

(3.6) res
v,w

1
vw

K±1,0(v)K∓1,0(w) = 1 ,

(v − q±2z)(v − q2(m−n∓1)z)K±1,±m(v)K±1,±n(z)(3.7)

= (vq±2 − z)(vq∓2 − q2(m−n)z)K±1,±n(z)K±1,±m(v) ,

(Cq2(1−m)v − w)(q2(n−1)v − Cw)K+
1,m(v)K−1,−n(w)(3.8)

= (Cq−2mv − q2w)(q2nv − Cq−2w)K−1,−n(w)K+
1,m(v) ,
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(3.9) (v − q±2z)K±1,±m(v)X±1,r(z) = (q±2v − z)X±1,r(z)K±1,±m(v) ,

(3.10) (Cv − q2(m∓1)z)K±1,±m(v)X∓1,r(z)

= (Cq∓2v − q2mz)X∓1,r(z)K±1,±m(v) ,

(3.11) (v − q±2w)X±1,r(v)X±1,s(w) = (vq±2 − w)X±1,s(w)X±1,r(v) ,

(3.12)
[
X+

1,r(v),X−1,s(z)
]

= 1
q − q−1

×

δ
(

Cv
q2(r+s)z

) |s|∏
p=1

c−
(

C−1/2q(2p−1)sign(s)−1z
)−sign(s)

K+
1,r+s(v)

−δ
(

C−1v

q2(r+s)z

) |r|∏
p=1

c+
(

C−1/2q(1−2p)sign(r)−1v
)sign(r)

K−1,r+s(z)

 ,

where m,n ∈ N, r, s ∈ Z and we have set

c±(z) =
∑
m∈N

c±±mz
∓m ,(3.13)

K±1,0(z) =
∑
m∈N

K±1,0,±mz
±m ,(3.14)

and, for every m ∈ N× and r ∈ Z,

K±1,±m(z) =
∑
s∈Z

K±1,±m,sz
−s ,(3.15)

X±1,r(z) =
∑
s∈Z

X±1,r,sz
−s .(3.16)

In (3.12), we further assume that K±1,∓m(z) = 0 for every m ∈ N×.

Definition 3.2. — We define Ü0
q(a1) as the subalgebra of Üq(a1) gen-

erated by{
C1/2,C−1/2, c+

m, c−−m,

K+
1,0,m,K

−
1,0,−m,K+

1,n,r,K
−
1,−n,r : m ∈ N, n ∈ N×, r ∈ Z

}
.

We define similarly Ü±q (a1) as the subalgebra of Üq(a1) generated by{
X±1,r,s : r, s ∈ Z

}
.
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Remark 3.3. — Obviously, Ü±q (a1) is graded over Q± whereas Üq(a1)
is graded over the root lattice Q of a1. Üq(a1) is also graded over Z2 =
Z(1) × Z(2);

Üq(a1) =
⊕

(n1,n2)∈Z2

Üq(a1)(n1,n2) ,

where, for every (n1, n2) ∈ Z2, we let

Üq(a1)(n1,n2) =
{
x ∈ Üq(a1) : D1xD−1

1 = qn1x, D2xD−1
2 = qn2x

}
.

Remark 3.4. — It is worth emphasizing that, were it not for rela-
tion (3.12), the above definition of Üq(a1) would be purely algebraic. How-
ever, the r.h.s. of (3.12) involves two infinite series and we may equip Üq(a1)
with a topology, along the lines of what was done in Section 2.3 for U̇q(ȧ1),
making use of the Z(2)-grading in order to construct a basis

{
Ω̇n : n ∈ N

}
of open neighbourhoods of 0. In that case, both series are convergent in
the corresponding completion ¨̂Uq(a1) and we shall further require that the
subalgebras Ü−q (a1), Ü0

q(a1) and Ü+
q (a1) be defined as closed subalgebras

of Üq(a1). We shall eventually denote with a hat their respective comple-
tions. An alternative point of view on this question, which might actually
prove more useful when it comes to studying representation theory, con-
sists in observing that Üq(a1) is proalgebraic. Indeed, for every N ∈ N, let
Üq(a1)(N) be the F-algebra generated by{

C1/2,C−1/2, c+
n , c−−n,K+

1,0,m,K
−
1,0,−m,

K+
1,p,r,K

−
1,−p,r,X+

1,r,s,X
−
1,r,s : m ∈ N, n ∈ J0, NK, p ∈ N×, r, s ∈ Z

}
,

subject to relations (3.1)–(3.12), where, this time,

(3.17) c±(z) =
N∑

m=0
c±±mz

∓m .

Now clearly, each Üq(a1)(N) is algebraic since the sums on the r.h.s. of (3.12)
are both finite (whenever c±(z)−1 is involved, just multiply through by
c±(z) to get an equivalent algebraic relation). Moreover, letting IN be the
two-sided ideal of Üq(a1)(N) generated by {c+

N , c
−
−N } (resp. {c+

0 −1, c−0 −1})
for every N > 1 (resp. for N = 0), we obviously have a surjective algebra
homomorphism

(3.18) Üq(a1)(N) −→ Üq(a1)(N−1) ∼=
Üq(a1)(N)

IN
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and we can define Üq(a1) as the inverse limit

Üq(a1) = lim
←−

Üq(a1)(N)

of the system of algebras

· · · −→ Üq(a1)(N) −→ Üq(a1)(N−1) −→ · · · −→ Üq(a1)(0) −→ Üq(a1)(−1) .

We shall refer to the quotient of Üq(a1)(−1) by the two-sided ideal generated
by {C1/2 − 1} as the double quantum loop algebra of type a1.

Definition 3.5. — In ¨̂U0
q(a1), we define

p±(z) =
∑
m∈N

p±±mz
∓m = c±(z)K∓1,0(C−1/2z)−1K∓1,0(C−1/2zq2)

and for every m ∈ N×,

t+
1,m(z) =

∑
n∈N

t+
1,m,nz

−n = − 1
q − q−1 K+

1,0(zq−2m)−1K+
1,m(z) ,

t−1,−m(z) =
∑
n∈N

t−1,−m,nz
n = 1

q − q−1 K−1,−m(z)K−1,0(zq−2m)−1 .

Then, we let Ü0+

q (a1) be the closed subalgebra of ¨̂U0
q(a1) generated by

{C1/2,C−1/2, p+
m, p−−m, t+

1,p,n, t
−
1,−p,n : m ∈ N, n ∈ Z, p ∈ N×} .

Definition 3.6. — We denote by Ü′q(a1) the subalgebra of Üq(a1) gen-
erated by{

D2,D−1
2 ,C1/2,C−1/2, c+

m, c−−m,K+
1,0,m,K

−
1,0,−m,

K+
1,n,r,K

−
1,−n,r,X+

1,r,s,X
−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z

}
,

i.e. the subalgebra generated by all the generators of Üq(a1) except D1 and
D−1

1 . We shall denote by

ȷ : Ü′q(a1) ↪→ Üq(a1)

the natural injective algebra homomorphism. We extend it by continuity
into

ȷ̂ : ¨̂U′q(a1) ↪→ ¨̂Uq(a1) .
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The main result of the present paper is the following

Theorem 3.7. — There exists a bicontinuous F-algebra isomorphism
Ψ̂ : ˙̂Uq(ȧ1) ∼→ ¨̂U′q(a1).

Proof. — Relations (3.7)–(3.10) respectively imply

K±1,0(v)K±1,0(z) = K±1,0(z)K±1,0(v) ,(3.19)

K+
1,0(v)K−1,0(w) = G+

11(Cv/w)G−11(C−1v/w)K−1,0(w)K+
1,0(v)(3.20)

K±1,0(v)X±1,r(z) = G∓11(v/z)X±1,r(z)K±1,0(v) ,(3.21)

K±1,0(v)X∓1,r(z) = G±11(Cv/z)X∓1,r(z)K±1,0(v) ,(3.22)

since K±1,0(z) ∈ Ü′q(a1)[[z±1]]. It also easily follows from relation (3.11) that[
X+

1,0(v),X+
1,−1(w)

]
G−

11(v/w) = δ

(
vq−2

w

)
Υ+(w) ,(3.23)

[
X−1,1(v),X−1,0(w)

]
G+

11(v/w) = δ

(
vq2

w

)
Υ−(w) ,(3.24)

for some Υ±(w) ∈ ¨̂U′q(a1)[[w,w−1]]. Hence, the only possible obstructions
to setting

Ψ(D±1) = D±1
2 Ψ(C±1/2) = C±1/2 ,

Ψ(k±0 (z)) = −c±(z)K∓1,0(C−1/2z)−1 , Ψ(k±1 (z)) = −K∓1,0(C−1/2z) ,

Ψ(x+
0 (z)) = −c−(C1/2z)K+

1,0(z)−1X−1,1(Cz) ,

Ψ(x−0 (z)) = −X+
1,−1(Cz)c+(C1/2z)K−1,0(z)−1

Ψ(x±1 (z)) = X±1,0(z) ,

and to extending it as an algebra homomorphism Ψ : U̇q(ȧ1) → ¨̂U′q(a1)
are Υ±(w) and the images under Ψ of the l.h.s. of the quantum Serre
relations (2.10). We shall see in Section 4 that both obstructions actually
vanish. We also postpone until Section 4 the construction of the continuous
algebra homomorphism Ψ−1 : Ü′q(a1) → ˙̂Uq(ȧ1). □

3.2. The subalgebra Ü0
q(a1) and the elliptic Hall algebra

Another remarkable feature of Üq(a1) and, more particularly of its sub-
algebra Ü0

q(a1), is the existence of an algebra homomorphism onto it, from
the elliptic Hall algebra that we now define.
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Definition 3.8. — Let q1, q2, q3 be three (dependent) formal variables
such that q1q2q3 = 1. The elliptic Hall algebra Eq1,q2,q3 is the Q(q1, q2, q3)-
algebra generated by

{
C1/2, C−1/2, ψ+

m, ψ
−
−m, e

+
n , e
−
n : m ∈ N, n ∈ Z

}
, with

ψ±0 invertible, subject to the relations

C±1/2 is central ,(3.25)

ψ±(z)ψ±(w) = ψ±(w)ψ±(z) ,(3.26)

g(Cz,w)g(Cw, z)ψ+(z)ψ−(w) = g(z, Cw)g(w,Cz)ψ−(w)ψ+(z) ,(3.27)

g(C
1±1

2 z, w)ψ±(z)e+(w) = −g(w,C
1±1

2 z)e+(w)ψ±(z) ,(3.28)

g(w,C
1∓1

2 z)ψ±(z)e−(w) = −g(C
1∓1

2 z, w)e−(w)ψ±(z) ,(3.29)

[e+(z), e−(w)] = 1
g(1, 1)

[
δ

(
Cw

z

)
ψ+(w) − δ

( w
Cz

)
ψ−(z)

]
,(3.30)

g(z, w)e+(z)e+(w) = −g(w, z)e+(w)e+(z) ,(3.31)
g(w, z)e−(z)e−(w) = −g(z, w)e−(w)e−(z) ,(3.32)

res
v,w,z

(vwz)m(v + z)(w2 − vz)e±(v)e±(w)e±(z) = 0 ,(3.33)

where m ∈ Z and we have introduced

g(z, w) = (z − q1w)(z − q2w)(z − q3w) ,(3.34)

ψ±(z) =
∑
m∈N

ψ±±mz
∓m ,(3.35)

e±(z) =
∑
m∈Z

e±mz
−m .(3.36)

Remark 3.9. — The elliptic Hall algebra Eq1,q2,q3 is Z-graded and can be
equipped with a natural topology along the lines of what we did for U̇q(ȧ1)
in Section 2.3. It then becomes a topological algebra and we denote by
̂Eq1,q2,q3 its completion.

Proposition 3.10. — There exists a unique continuous F-algebra ho-
momorphism f : ̂Eq−4,q2,q2 → Ü0+

q (a1) such that

f(C1/2) = C1/2 ,(3.37)

f(ψ±(z)) = (q2 − q−2)2 p±(C1/2zq−2) ,(3.38)

f(e±(z)) = t±1,±1(z) .(3.39)
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Proof. — We prove that, starting from (3.37)–(3.39), we can extend f

as an algebra homomorphism. For that purpose, it suffices to check the
relations in Eq−4,q2,q2 , observing that, in addition to (3.19) and (3.20), we
also have

K±1,0(v)K±1,±1(z) = G∓11(v/z)G±11(vq2/z)K±1,±1(z)K±1,0(v) ,(3.40)

K∓1,0(v)K±1,±1(w) = G∓11(Cv/w)G±11(C−1q2v/w)K±1,±1(w)K∓1,0(v) ,(3.41)

as direct consequences of (3.7) and (3.8) respectively, since, by definition,
K±1,0(z) ∈ Ü′q(a1)[[z±1]]. One then easily obtains (3.26)–(3.29) and (3.31)–
(3.32). For example, we have

(3.42) g(v, z)f(e+(v))f(e+(z))

= 1
(q − q−1)2 g(v, z)G+

11(z/v)G−11(zq−2/v)

× K+
1,0(vq−2)K+

1,0(q−2z)K+
1,1(v)K+

1,1(z)

= v − z

(q − q−1)2 (v − q2z)(v − q−2z)K+
1,0(vq−2)K+

1,0(q−2z)K+
1,1(v)K+

1,1(z)

= v − z

(q − q−1)2 (vq2 − z)(vq−2 − z)K+
1,0(vq−2)K+

1,0(q−2z)K+
1,1(z)K+

1,1(v)

= v − z

(q − q−1)2 (vq2 − z)(vq−2 − z)G+
11(vq−2/z)G−11(v/z)

× K+
1,0(q−2z)K+

1,1(z)K+
1,0(vq−2)K+

1,1(v)
= −g(z, v)f(e+(z))f(e+(v)) .

Considering (3.30), we observe that (3.8) implies that there exist θ±(z) ∈
¨̂U′q(a1)[[z, z−1]] such that[
K+

1,1(v),K−1,−1(w)
]
G+

11(Cvq−2/w)G−
11(C−1vq2/w) = δ

(
Cv
w

)
θ−(v)+δ

( v

Cw

)
θ+(w)

and one easily sees that

(3.43)
[
f(e+(v)), f(e−(w))

]
= − 1

(q − q−1)2 K+
1,0(vq−2)−1

×
[
K+

1,1(v),K−1,−1(w)
]

G+
11(Cvq−2/w)G−

11(C−1vq2/w) K−1,0(wq−2)−1

= − 1
(q − q−1)2 K+

1,0(vq−2)−1

×
{
δ

(
Cv
w

)
θ−(v) + δ

( v

Cw

)
θ+(w)

}
K−1,0(wq−2)−1 .
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Therefore, it suffices to prove that

1
(q − q−1)2 K+

1,0(Cwq−2)−1θ+(w)K−1,0(wq−2)−1(3.44)

= (q2 − q−2)2

g(1, 1) p+(C1/2q−2w) ,

− 1
(q − q−1)2 K+

1,0(vq−2)−1θ−(v)K−1,0(Cvq−2)−1(3.45)

= − (q2 − q−2)2

g(1, 1) p−(C1/2q−2v) .

We postpone the proof of (3.44)–(3.45), as well as that of

(3.46) res
v,w,z

(vwz)m(v + z)(w2 − vz)f(e±(v))f(e±(w))f(e±(z)) = 0 ,

until Section 4. □

We now naturally make the following

Conjecture 3.11. — f : ̂Eq−4,q2,q2 → Ü0+

q (a1) is a bicontinuous F-
algebra isomorphism.

Remark 3.12. — It is worth mentioning that the above conjecture is
supported by the fact that, in view of (3.31)–(3.32), there clearly exists
e±±2(z) ∈ ̂Eq1,q2,q3 [[z, z−1]] such that

G∓
01(q∓2v/w)G∓

11(v/w)

[
e±(w), e±(v)

]
G∓

01(q∓2w/v)G∓
11(w/v)

= ± [2]q
{
δ

(
q2v

w

)
e±±2(w) − δ

(
wq2

v

)
e±±2(v)

}
and that we can therefore set

f−1(t±1,±2(v)) = e±±2(v) .

In order to complete the proof, one would similarly need to construct
f−1(t±1,±m(v)) for any m > 2.

3.3. U̇q(a1) subalgebras of Üq(a1)

Interestingly, Üq(a1) admits countably many embeddings of the quantum
affine algebra U̇q(a1). This is the content of the following
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Proposition 3.13. — For every m ∈ Z, there exists a unique injective
algebra homomorphism ιm : U̇q(a1) ↪→ ̂̈Uq(a1) such that

ιm(C±1/2) = C±1/2 ιm(D±1) = D±1
2(3.47)

ιm(k±1 (z)) = −
|m|∏
p=1

c±
(
q(1−2p)sign(m)−1z

)sign(m)
K∓1,0(C−1/2z) ,(3.48)

ιm(x±1 (z)) = X±1,±m(z) .(3.49)

Proof. — Let ι(1) : U̇q(a1) ↪→ U̇q(ȧ1) be the injective algebra homo-
morphism mapping U̇q(a1) to the Dynkin diagram subalgebra of U̇q(ȧ1)
associated with the vertex labeled 1 ∈ İ (see Section 2.1). It naturally ex-
tends to an injective algebra homomorphism ι̂(1) : U̇q(a1) ↪→ ˙̂Uq(ȧ1). Then,
let for every m ∈ Z, ιm be the composite

ιm : U̇q(a1) ↪−→
ι̂(1)

˙̂Uq(ȧ1) ∼−→
Y −m

˙̂Uq(ȧ1) ∼−→̂
Ψ

¨̂U′q(a1) ↪−→̂
ȷ

¨̂Uq(a1) .

Thus, ιm is clearly injective. Moreover, one easily checks (3.47)–(3.49) (see
next section). □

3.4. Automorphisms of ¨̂U′q(a1)

¨̂U′q(a1) naturally inherits, through Ψ̂, the automorphisms defined over
˙̂Uq(ȧ1) in the previous section.

Proposition 3.14. — Conjugation by Ψ̂ clearly provides a group iso-
morphism

Aut( ˙̂Uq(ȧ1)) ∼= Aut( ¨̂U′q(a1)).

In particular, for every f ∈ Aut( ˙̂Uq(ȧ1)), we let ḟ = Ψ̂ ◦ f ◦ Ψ̂−1 ∈
Aut( ¨̂U′q(a1)).

3.5. Triangular decomposition of ¨̂Uq(a1)

Definition 3.15. — Let A be a complete topological algebra with
closed subalgebras A± and A0. We shall say that (A−, A0, A+) is a tri-
angular decomposition of A if the multiplication induces a bicontinuous
isomorphism of vector spaces A−⊗̂A0⊗̂A+ ∼→ A.
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In order to prove the triangular decomposition of ¨̂Uq(a1), we shall make
use of the following classic

Lemma 3.16. — Let A be a complete topological algebra with a trian-
gular decomposition (A−, A0, A+). Let I± be a closed two-sided ideal of
A± such that I+.A ⊆ A.I+ and A.I− ⊆ I−.A. Then the quotient algebra
B = A/(A.(I+ + I−).A) admits a triangular decomposition (B−, A0, B+)
where B± is the set of equivalence classes of A± in B. Moreover, there
exists a bicontinuous algebra isomorphism B± ∼= A±/I±.

Proof. — See e.g. Section 4.21 in [16]. □

Recalling the definitions of Ü±q (a1) and Ü0
q(a1) from Definition 3.1, we have

Proposition 3.17. — (Ü−q (a1), Ü0
q(a1), Ü+

q (a1)) is a triangular decom-

position of ¨̂Uq(a1) and Ü±q (a1) is bicontinuously isomorphic to the algebra
generated by {X±1,r,s : r, s ∈ Z} subject to relation (3.11).

Proof. — Let A be the F-algebra generated by{
D1,D−1

1 ,D2,D−1
2 ,C1/2,C−1/2, c+

m, c−−m,K+
1,0,m,K

−
1,0,−m,

K+
1,n,r,K

−
1,−n,r,X+

1,r,s,X
−
1,r,s : m ∈ N, n ∈ N×, r, s ∈ Z

}
,

subject to the relations (3.2)–(3.10) and (3.12), i.e. all the defining rela-
tions of Üq(a1) but relation (3.11). Endow A with a topology along the
lines of what was done in Section 2.3 for U̇q(ȧ1), making use of its Z(2)-
grading. This yields a basis

{
Ω̇n : n ∈ N

}
of open neighbourhoods of 0. Let

furthermore A0 be the closed subalgebra of A generated by{
D1,D−1

1 ,D2,D−1
2 ,C1/2,C−1/2, c+

m, c−−m,

K+
1,0,m,K

−
1,0,−m,K+

1,n,r,K
−
1,−n,r : m ∈ N, n ∈ N×, r ∈ Z

}
and A± be the closed subalgebra of A generated by

{
X±1,r,s : r, s ∈ Z

}
. An

easy recursion proves that relations (3.9) and (3.10) imply that, for every
N ∈ N and every m ∈ N, l, r, s ∈ Z,

X+
1,r,sK+

1,m,l − q2K+
1,m,lX

+
1,r,s − (q2 − q−2)

N∑
p=1

q2pK+
1,m,l+pX+

1,r,s−p

+ q2N K+
1,m,l+N+1X+

1,r,s−N−1 ∈ Ω̇ν+
s,l

(N)
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K−1,−m,lX
−
1,r,s − q−2X−1,r,sK−1,−m,l + (q2 − q−2)

N∑
p=1

q−2pX−1,r,s+pK−1,−m,l−p

+ q2N X−1,r,s+N+1K−1,−m,l−N−1 ∈ Ω̇ν−
s,l

(N)

K+
1,m,lX

−
1,r,s − q−2X−1,r,sK+

1,m,l

+ (q2 − q−2)
N∑

p=1
C−pq2p(m−1)X−1,r,s+pK+

1,m,l−p

+ C−(N+1)q2(N+1)(m−1)+2X−1,r,s+N+1K+
1,m,l−N−1 ∈ Ω̇ν−

s,l
(N)

X+
1,r,sK−1,−m,l − q2K−1,−m,lX

+
1,r,s

− (q2 − q−2)
N∑

p=1
Cpq2p(1−m)K−1,−m,l+pX+

1,r,s−p

+ CN+1q2(N+1)(1−m)K−1,−m,l+N+1X+
1,r,s−N−1 ∈ Ω̇ν+

s,l
(N)

where ν±s,l(N) = min(±l,∓s)+N+1. It obviously follows that (A−, A0, A+)
is a triangular decomposition of A. Now let I± be the closed two-sided ideal
of A± generated by{

X±1,r,m+1X±1,s,n − q±2X±1,r,mX±1,s,n+1

−q±2X±1,s,nX±1,r,m+1 + X±1,s,n+1X±1,r,m : r, s,m, n ∈ Z
}
.

Clearly Üq(a1) ∼= A/(A.(I+ + I−).A). In view of the above rewritings
of (3.9) and (3.10), it is clear that I+.A0 ⊆ A0.I+ and A0.I− ⊆ I−.A0.
Moreover, relations (3.9), (3.10) and (3.12) are easily shown to imply that,
for every r, s, t ∈ Z,[

(v − q±2w)X±1,r(v)X±1,s(w) − (vq±2 − w)X±1,s(w)X±1,r(v),X∓1,t(u)
]

= 0 ,

hence proving that I+.A− ⊆ A.I+ and A+.I− ⊆ I−.A. The claim eventu-
ally follows as a consequence of Lemma 3.16 □

3.6. Weight-finite highest t-weight modules

Definition 3.18. — For every N ∈ N×, we shall say that a (topologi-
cal) module M over Ü′q(a1) is of type (1, N) if:

(i) C±1/2 acts as id on M ;
(ii) c±±m acts by multiplication by 0 on M , for every m ⩾ N .
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We shall say that M is of type (1, 0) if points (i) and (ii) above hold for
every m > 0 and, in addition, c±0 acts as id on M .

Remark 3.19. — Let N ∈ N×. Then the Ü′q(a1)-modules of type (1, N)
are in one-to-one correspondence with the Üq(a1)(N−1)/(C1/2 −1)-modules
(see Remark 3.4 for a definition of Üq(a1)(N)). Similarly, Ü′q(a1)-modules
of type (1, 0) descend to modules over the double quantum loop algebra of
type a1, Üq(a1)(−1)/(C1/2 − 1).

In view of the triangular decomposition (Ü−q (a1), Ü0
q(a1), Ü+

q (a1)) of
¨̂U′q(a1) (see Proposition 3.17), we naturally expect that a new, adapted
notion of highest weight modules exists, in which Ü0

q(a1), although non-
abelian, plays the role usually played by the Cartan subalgebra. Thus, we
restrict our attention to modules over Ü′q(a1) which, regarded as Ü0

q(a1)-
modules, split as direct sums of indecomposable modules over Ü0

q(a1). We
refer to those summands as t-weight spaces. Moreover, the injective algebra
homomorphism ι0 of Proposition 3.13 restricts to an injective algebra ho-
momorphism U̇0

q(a1) → Ü0
q(a1) from the quantum Heisenberg subalgebra

U̇0
q(a1) of U̇q(a1) to Ü0

q(a1). Therefore, considering any ¨̂U′q(a1)-module M
of type (1, 0), we get an action of the infinite-dimensional abelian algebra
U̇0

q(a1)/(C1/2 − 1) on all the t-weight spaces of M . Whenever the latter
decompose into direct sums of generalized eigenspaces of the commuting
family of linear operators {K+

1,0,m,K
−
1,0,−m : m ∈ N}, we shall say that the

t-weight-spaces are ℓ-weight. In the latter case, we let Sp(M) denote the
set of all the eigenvalues of K+

1,0,0 over M .

Definition 3.20. — We shall say that a (topological) Ü′q(a1)-module
M is a t-weight module if there exists a countable set {Mα : α ∈ A} of
indecomposable ℓ-weight Ü0

q(a1)-modules, called the t-weight spaces of M ,
such that, as Ü0

q(a1)-modules,

(3.50) M ∼=
⊕
α∈A

Mα .

We shall say that M is weight-finite if, in addition, Sp(M) is finite. A vector
v ∈ M − {0} is a highest t-weight vector of M if v ∈ Mα for some α ∈ A

and, for every r, s ∈ Z,

(3.51) X+
1,r,s.v = 0 .

We shall say that M is highest t-weight if M ∼= Ü′q(a1).v for some highest
t-weight vector v ∈ M − {0}.
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It is reasonably clear that, owing to the triangular decomposition

(Ü−q (a1), Ü0
q(a1), Ü+

q (a1))

of ¨̂U′q(a1), for every highest t-weight Ü′q(a1)-module M and every highest
t-weight vector v ∈ M − {0}, we have

(3.52) M ∼= Ü−q (a1).Ü0
q(a1).v .

Remark 3.21. — In view of (3.52), simple highest t-weight Ü′q(a1)-mo-
dules, including simple weight-finite Ü′q(a1)-modules, are entirely deter-
mined as M ∼= Ü−q (a1).M0, by the data of their unique highest t-weight
space M0 ∼= Ü0

q(a1).v. Classifying simple weight-finite Üq(a1)-modules
therefore amounts to classifying those simple Ü0

q(a1)-modules that appear
as their highest t-weight spaces. We intend to undertake that classification
in a future work, see [25].

Remark 3.22. — (3.52) induces a partial ordering of the t-weight spaces
through the Q−-grading of Ü−q (a1).

3.7. Topological Hopf algebra structure on ¨̂U′q(a1)

Definition-Proposition 3.23. — We define

∆̇ =
(

Ψ̂⊗̂Ψ̂
)

◦ ∆ ◦ Ψ̂−1 ,(3.53)

Ṡ = Ψ̂ ◦ S ◦ Ψ̂−1 ,(3.54)

ε̇ = ε ◦ Ψ̂−1 .(3.55)

Equipped with the above comultiplication, antipode and counit, ¨̂U′q(a1) is
a topological Hopf algebra. The latter is easily extended into a topological
Hopf algebraic structure on ¨̂Uq(a1) by setting, in addition,

∆̇(D±1
1 ) = D±1

1 ⊗ D±1
1 , Ṡ(D±1

1 ) = D∓1
1 and ε̇(D±1

1 ) = 1 .

4. Doubly Affine Damiani–Beck isomorphism

In this last section, we complete the proof of Theorem 3.7 by constructing
Ψ−1 : Ü′q(a1) → ˙̂Uq(ȧ1); i.e. by constructing a realization of the generators

of Ü′q(a1) in ˙̂Uq(ȧ1).
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4.1. Double loop generators

Definition 4.1. — For every m ∈ Z, we set X±1,m(z) = Y ∓m(x±1 (z)).

It is clear that

Proposition 4.2. — For every m ∈ Z, we have

(4.1) φ
(
X±1,m(z)

)
= X∓1,−m (1/z) .

Definition-Proposition 4.3.

(i) There exists a unique ψ+
1,1(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]] such that

(4.2)
[
Y
(

k−1 (w)−1x−1 (C1/2w)
)
,x+

1 (z)
]

G−
10(C−1/2w/z)

= −δ
(
C−1/2q2w

z

)
ψ+

1,1(z) .

(ii) Set ψ−1,−1(z) = φ
(
ψ+

1,1(1/z)
)
. Then, we have

(4.3)
[
x−1 (z), Y

(
x+

1 (C1/2w)k+
1 (w)−1

)
,
]

G+
10(C1/2z/w)

= −δ
(
C−1/2q2w

z

)
ψ−1,−1(z) .

Proof. — The proof of (i) is immediate from the definitions. (ii) then
follows by applying φ to (4.2). □

Remark 4.4. — It is worth noting that ψ±1,±1(z) /∈ U̇q(ȧ1)[[z, z−1]].

Corollary 4.5. — For every i ∈ İ, we have
(i) k−i (v)ψ±1,±1(z) =G∓i,0(C∓1/2q2v/z)G∓i,1(C∓1/2v/z)ψ±1,±1(z)k−i (v);
(ii) ψ±1,±1(z)k+

i (v) =G∓i,0(C∓1/2q−2z/v)G∓i,1(C∓1/2z/v)k+
i (v)ψ±1,±1(z);

Proof. — (ii) follows by applying φ to (i) and (i) is a direct consequence
of (4.2) and (4.3) on one hand and of (2.6) and (2.7) on the other hand. □

Let us then define the following U̇q(ȧ1)-valued formal power series

(4.4) Γ±0 (z) = k±0 (z)k±1 (z) ∈ U̇q(ȧ1)[[z∓1]] .

Denoting by Z(U̇q(ȧ1)) the center of U̇q(ȧ1), it is straightforward to check
that indeed
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Proposition 4.6. — Γ±0 (z) ∈ Z(U̇q(ȧ1))[[z∓1]].

Similarly, define

(4.5) ℘±(z) = k±0 (z)k±1 (zq2) ∈ U̇q(ȧ1)[[z∓1]] .

Then we establish an important result.

Proposition 4.7. — We have the following fixed points of Y ;

Y
(
℘±(z)

)
= ℘±(z) ,(4.6)

Y
(
ψ±1,±1(z)

)
= ψ±1,±1(z) .(4.7)

Moreover

(4.8) Y
(
Γ±0 (z)

)
= Γ±0 (zq2) ,

Proof. — (4.6) and (4.8) are obvious. We prove (4.7) for the upper choice
of signs. In order to do so, we first rewrite (4.2) as

[
x+

0 (w),x+
1 (z)

]
G−

10(w/z) = δ

(
q2w

z

)
ψ+

1,1(z) .

Now, (2.41) and the definition of Y imply that, on one hand,

[[
x+

0 (z1),
[
x+

0 (z2),x+
1 (wq2)

]
G−

10(z2/wq2)

]
G−

11(z1/z2)G−
10(z1/wq2)

,

x−0 (C−1z)k+
0 (C−1/2z)−1

]
G−

10(w/z)

= − [2]q δ
(

z1

z2q2

)
δ
(z2

w

) [
Y
(
x+

0 (w)
)
, Y
(
x+

1 (z)
)]

G−
10(w/z)

= − [2]q δ
(

z1

z2q2

)
δ
(z2

w

)
Y
([

x+
0 (w),x+

1 (z)
]

G−
10(w/z)

)
= − [2]q δ

(
z1

z2q2

)
δ
(z2

w

)
δ

(
wq2

z

)
Y
(
ψ+

1,1(z)
)
,
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whereas, on the other hand, (2.41), (2.6), (2.7) and (2.9), as well as Corol-
lary 4.5, imply that[[

x+
0 (z1),

[
x+

0 (z2),x+
1 (wq2)

]
G−

10(z2/wq2)

]
G−

11(z1/z2)G−
10(z1/wq2)

,

x−0 (C−1z)k+
0 (C−1/2z)−1

]
G−

10(w/z)

=
[[

x+
0 (z1),

[
x+

0 (z2),x+
1 (wq2)

]
G−

10(z2/wq2)

]
G−

11(z1/z2)G−
10(z1/wq2)

,

x−0 (C−1z)
]

k+
0 (C−1/2z)−1

=
{
δ
(z1

z

)
δ
(z2

w

) [
k+

0 (z1C
−1/2),ψ+

1,1(wq2)
]

G−
11(z1/z2)G−

10(z1/wq2)

+ δ
(z2

z

)[
x+

0 (z1),
[
k+

0 (z2C
−1/2),x+

1 (wq2)
]

G−
10(z2/wq2)

]
G−

11(z1/z2)G−
10(z1/wq2)

}

= 1
q − q−1 δ

(z1

z

)
δ
(z2

w

) [
G+

00(w/z1)G+
01(q2w/z1)

−G−11(z1/w)G−10(z1/wq
2)
]
ψ+

1,1(wq2)

+ δ
(z2

z

)
δ
(z1

w

) G+
01(q2w/z2) −G−10(z2/wq

2)
q − q−1 ψ+

1,1(wq2) .

Making use of (2.17) and (A.5), (for the latter, see Appendix), we eventu-
ally get[[

x+
0 (z1),

[
x+

0 (z2),x+
1 (wq2)

]
G−

10(z2/wq2)

]
G−

11(z1/z2)G−
10(z1/wq2)

,

x−0 (C−1z)k+
0 (C−1/2z)−1

]
G−

10(w/z)

= [2]q δ
(z1

z

)
δ
(z2

w

)[
δ

(
w

z1

)
− δ

(
wq2

z1

)]
ψ+

1,1(wq2)

− [2]q δ
(z2

z

)
δ
(z1

w

)
δ

(
w

z2

)
ψ+

1,1(wq2)

= − [2]q δ
(z1

z

)
δ
(z2

w

)
δ

(
wq2

z1

)
ψ+

1,1(z) ,

thus proving the result. The case with lower choice of signs follows by
applying φ. □
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Proposition 4.8. — For every m ∈ Z, we have
(i)
[
ψ+

1,1(z),X−1,m(v)
]

= −[2]qδ
(

Cz
v

)
℘−(C1/2q−2z)X−1,m+1(Cq−2z);

(ii)
[
ψ+

1,1(z),X+
1,m(v)

]
G−

10(z/vq2)G−
11(z/v) = [2]qδ

(
z

vq2

)
X+

1,m+1(z);
(iii)

[
ψ−1,−1(z),X+

1,−m(v)
]

= [2]qδ
(

Cz
v

)
X+

1,−(m+1)(Cq
−2z)℘+(C1/2q−2z);

(iv)
G+

10(vq2/z)G+
11(v/z)

[
ψ−1,−1(z),X−1,−m(v)

]
= −[2]qδ

(
z

vq2

)
X−1,−(m+1)(z);

(v)[
ψ+

1,1(z),ψ−1,−1(v)
]

= [2]q
q − q−1

[
δ
( z

Cv

)
℘+(C−1/2q−2z) − δ

(
Cz

v

)
℘−(C−1/2q−2v)

]
.

Proof. — (i) and (ii) are readily checked for m = 0. Then, assuming they
hold for some m ∈ Z and applying Y ±1, it follows from propositon 4.7 that
they also hold for m ± 1. (iii) and (iv) are obtained by applying φ to (i)
and (ii) respectively. Finally (v) is obtained by direct calculation from the
definitions of ψ+

1,1(z) and ψ−1,−1(v), i.e.

δ

(
C−1/2q2w

z

)
δ

(
C1/2q−2u

v

)[
ψ+

1,1(z),ψ−1,−1(u)
]

=
[[

x+
0 (C−1/2w),x+

1 (z)
]

G−
10(C−1/2w/z)

,
[
x−1 (u),x−0 (C−1/2v)

]
G+

10(C1/2u/v)

]
= [2]qδ

(
C−1/2v

uq−2

){
δ
( z

Cu

) [
x+

0 (C−1/2w),

x−0 (C−1/2v)k+
1 (C−1/2z)

]
G−

10(C−1/2w/z)

−δ
(
Cw

v

)[
k−0 (C−1v)x−1 (u),x+

1 (z)
]

G−
10(C−1/2w/z)

}
= [2]q
q − q−1 δ

(
C1/2u

vq2

)
δ

(
C−1/2w

zq−2

){
δ
( z

Cu

)
k+

0 (C−1w)k+
1 (C−1/2z)

−δ
(
Cz

u

)
k−0 (C−1v)k−1 (C−1/2u)

}
.

Compare with (4.5) to conclude the proof. □

Definition-Proposition 4.9. — For every m ∈ N× there exist

ψ+
1,m(z),Γ+

m(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]] ,

such that

(4.9) Γ+
1 (v) = 0
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and, for every m,n ∈ N×,

(4.10)
[
Y m

(
k−1 (z)−1x−1 (C1/2z)

)
,x+

1 (v)
]

G−
01(z/C1/2v)

= −δ
( z

C1/2v

)
Γ+

m(v) + (q − q−1)
m−2∑
k=1

δ

(
q2kz

C1/2v

)
ψ+

1,k(v)Γ+
m−k(v)

− δ

(
q2mz

C1/2v

)
ψ+

1,m(v) ,

Y
(
ψ+

1,m(v)
)

= ψ+
1,m(v) ,(4.11)

Y
(
Γ+

m(v)
)

= Γ+
m(vq2) ,(4.12)

(4.13)
G−

01(q−2mv/w)G−
11(q2(1−m)v/w)

[
ψ+

1,1(w),ψ+
1,m(v)

]
G−

01(w/vq2)G−
11(w/v)

= [2]qδ
(
w

vq2

)
ψ+

1,m+1(q2v) − [2]qδ
(
q2mw

v

)
ψ+

1,m+1(v) ,

(4.14) [ψ+
1,n(w),Γ+

m(v)] = 0 .

Proof. — It suffices to prove the proposition with n = 1 since the general
case follows by an easy recursion on n once we have (4.13). The proof for
n = 1 is by recursion on m. For m = 1, (4.9) and (4.10) are definition-
Proposition (i), whereas (4.11) is Proposition 4.7. (4.12) and (4.14), with
n = 1, automatically follow from (4.9). Making use of Proposition 4.8, it is
straightforward to prove that, for every m ∈ N×,

(4.15) [2]qδ
(
z

uq2

)
Y −1

([
Y m+1

(
k−1 (C−1/2v)−1x−1 (v)

)
,

x+
1 (uq2)

]
G−

01(C−1q−2v/u)

)
− [2]qδ

(
Cz

v

)[
Y m+1

(
k−1 (C1/2q−2z)−1x−1 (Cq−2z)

)
,x+

1 (u)
]
G−

01(z/uq2)

=
G−

10(v/Cz)G−
11(vq2/Cz)

[
ψ+

1,1(z),
[
Y m

(
k−1 (C−1/2v)−1x−1 (v)

)
,

x+
1 (u)

]
G−

01(C−1v/u)

]
G−

10(z/uq2)G−
11(z/u)

.

ANNALES DE L’INSTITUT FOURIER



ON DOUBLE QUANTUM AFFINIZATION 37

If m = 1, (4.13) is an easy consequence of the above equation. Now assume
that the proposition holds up to some m ∈ N×. Then (4.15) reads, for
that m,

(4.16) [2]qδ
(

z

uq2

)
Y −1

([
Y m+1

(
k−1 (C−1/2v)−1x−1 (v)

)
,

x+
1 (uq2)

]
G−

01(C−1q−2v/u)

)
− [2]qδ

(
Cz

v

)[
Y m+1

(
k−1 (C1/2q−2z)−1x−1 (Cq−2z)

)
,x+

1 (u)
]

G−
01(z/uq2)

= −δ
( v

Cu

)
G−

10(v/Cz)G−
11(vq2/Cz)

[
ψ+

1,1(z),Γ+
m(u)

]
G−

10(z/uq2)G−
11(z/u)

+ (q − q−1)
m−2∑
k=1

δ

(
q2kv

Cu

)
G−

10(v/Cz)G−
11(vq2/Cz)

[
ψ+

1,1(z),

ψ+
1,k(u)

]
G−

10(z/uq2)G−
11(z/u)

Γ+
m−k(u)

−δ

(
q2mv

Cu

)
G−

10(v/Cz)G−
11(vq2/Cz)

[
ψ+

1,1(z),ψ+
1,m(u)

]
G−

10(z/uq2)G−
11(z/u)

= −[2]q(q − q−1)δ
( v

Cu

){
δ
( v

Cz

)
− δ

(
vq2

Cz

)}
ψ+

1,1(z)Γ+
m(u)

+ [2]q(q − q−1)
m−2∑
k=1

δ

(
q2kv

Cu

){
δ

(
z

uq2

)
ψ+

1,k+1(uq2)

−δ
(
zq2k

u

)
ψ+

k+1(u)
}

Γ+
m−k(u)

− [2]qδ
(
q2mv

Cu

){
δ

(
z

uq2

)
ψ+

1,m+1(uq2) − δ

(
zq2m

u

)
ψ+

1,m+1(u)
}
.

It immediately follows that (4.10) holds at rank m+1, for some Γ+
m+1(z) ∈

˙̂Uq(ȧ1)[[z, z−1]] satisfying (4.12). Considering (4.15) at rank m + 1, and
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substituting the above results, we get

[2]qδ
(

z

uq2

)
Y −1

([
Y m+2

(
k−1 (C−1/2v)−1x−1 (v)

)
,

x+
1 (uq2)

]
G−

01(C−1q−2v/u)

)
− [2]qδ

(
Cz

v

)[
Y m+2

(
k−1 (C1/2q−2z)−1x−1 (Cq−2z)

)
,x+

1 (u)
]

G−
01(z/uq2)

= −δ
( v

Cu

)
G−

10(v/Cz)G−
11(vq2/Cz)

[
ψ+

1,1(z),Γ+
m+1(u)

]
G−

10(z/uq2)G−
11(z/u)

+ [2]q(q − q−1)
m−1∑
k=1

δ

(
q2kv

Cu

){
δ

(
z

uq2

)
ψ+

1,k+1(uq2)

− δ

(
zq2k

u

)
ψ+

k+1(u)
}

Γ+
m+1−k(u)

−δ

(
q2(m+1)v

Cu

)
G−

10(v/Cz)G−
11(vq2/Cz)

[
ψ+

1,1(z),

ψ+
1,m+1(u)

]
G−

10(z/uq2)G−
11(z/u).

It readily follows that, on one hand, there exists some

ψ+
1,m+2(v) ∈ ˙̂Uq(ȧ1)[[v, v−1]]

such that (4.13) holds for m+ 1 and that, on the other hand,

(uq2 − z)(u− z)
[
ψ+

1,1(z),Γ+
m+1(u)

]
= 0 .

Since Y (Γ+
m+1(u)) = Γ+

m+1(uq2), we have that

(uq2(p+1) − z)(uq2p − z)
[
ψ+

1,1(z),Γ+
m+1(u)

]
= 0

for every p ∈ Z and, as a consequence, (4.14) holds for m+1. Finally, (4.11)
for m + 1 follows from the corresponding case of (4.13), which concludes
the proof. □

Remark 4.10. — Note that since [ψ+
1,n(z),Γ+

m(v)] = 0 for every m,n ∈
N×, we have that

(4.17) ψ+
1,n,kΓ+

m,l = Γ+
m,lψ

+
1,n,k ∈ Ωl−k ∩ Ωk−l ,

guaranteeing the convergence in ˙̂Uq(ȧ1) of each of the terms of the series
ψ+

1,k(z)Γ+
m−k(z) on the r.h.s of (4.10).

Definition 4.11. — For every m ∈ N×, let

(4.18) Γ−−m(z) = φ(Γ+
m(1/z)) and ψ−1,−m(z) = φ(ψ+

1,m(1/z)) .
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Then,

Corollary 4.12. — We have

(4.19) Γ−−1(v) = 0

and, for every m,n ∈ N×,

(4.20)
[
x−1 (v), Y m

(
x+

1 (C1/2z)k+
1 (z)−1

)]
G+

01(C1/2v/z)

= −δ
( z

C1/2v

)
Γ−−m(v)

− (q − q−1)
m−2∑
k=1

δ

(
q2kz

C1/2v

)
Γ−−(m−k)(v)ψ−1,−k(v)

− δ

(
q2mz

C1/2v

)
ψ−1,−m(v) ,

(4.21) Y
(
ψ−1,−m(v)

)
= ψ−1,−m(v) ,

(4.22) Y
(
Γ−−m(v)

)
= Γ−−m(vq2) ,

(4.23)
G+

01(q2mw/v)G+
11(q2(m−1)w/v)

[
ψ−1,−m(v),ψ−1,−1(w)

]
G+

01(vq2/w)G+
11(v/w)

= [2]qδ
(
w

vq2

)
ψ−1,−(m+1)(q

2v) − [2]qδ
(
q2mw

v

)
ψ−1,−(m+1)(v) ,

(4.24) [ψ−1,−n(w),Γ−−m(v)] = 0 .

Proof. — It suffice to apply φ to the results of the previous proposition.
□

Proposition 4.13. — For every i ∈ İ and for every m ∈ N×, we have
(i) k−i (v)ψ±1,±m(z)

= G∓i,0(C∓1/2q2mv/z)G∓i,1(C∓1/2v/z)ψ±1,±m(z)k−i (v) ;

(ii) ψ±1,±m(z)k+
i (v)

= G∓i,0(C∓1/2q−2mz/v)G∓i,1(C∓1/2z/v)k+
i (v)ψ±1,±m(z) .

Proof. — Clearly (ii) follows by applying φ to (i). We prove (ii) by in-
duction on m ∈ N×. The case m = 1 is Corollary 4.5(i). Now, assuming
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that (i) holds for some m ∈ N×, we can make use of (4.13) and (4.23) to
show that

k−i (v)ψ±1,±(m+1)(z)

= G∓i,0(C∓1/2q2(m+1)v/z)G∓i,1(C∓1/2q2mv/z)

×G∓i,0(C∓1/2q2mv/z)G∓i,1(C∓1/2z/v)ψ±1,±m(z)k−i (v)

= G∓i,0(C∓1/2q2(m+1)v/z)G∓i,1(C∓1/2z/v)ψ±1,±m(z)k−i (v)

which completes the recursion. □

The above proposition has the obvious

Corollary 4.14. — For every m ∈ N×, we have

℘−(v)ψ±1,±m(z) = G∓00(C∓1/2q2mv/z)G∓01(C∓1/2v/z)(4.25)

×G∓01(C∓1/2q2(m+1)v/z)G∓11(C∓1/2q2v/z)ψ±1,±m(z)℘−(v) ;

ψ±1,±m(z)℘+(v) = G∓00(C∓1/2q−2mz/v)G∓01(C∓1/2z/v)(4.26)

×G∓01(C∓1/2q−2(m+1)z/v)G∓11(C∓1/2q−2z/v)℘+(v)ψ±1,±m(z) .

Proposition 4.15. — For every m,n ∈ N×, we have

[
ψ+

1,m(v),ψ−1,−n(w)
]

= [2]q (q − q−1)
{
δ

(
Cv

wq2(m−1)

)
℘−(C−1/2q−2mv)

×ψ−1,−(n−1)(wq
−2)ψ+

1,m−1(v)

−δ
(
q2(n−1)v

Cw

)
ψ−1,−(n−1)(w)ψ+

1,m−1(vq−2)℘+(C1/2q−2v)
}
,

where we assume that

(4.27) ψ±1,0(z) = 1
q − q−1 .

Proof. — The casem = n = 1 follows immediately by Proposition 4.8(v).
Now, applying a 7→ [a,ψ−1,−n(w)] and a 7→ [ψ+

1,n(w), a] to (4.13) and (4.23)
respectively and making use of Corollary 4.14, one easily completes the
recursion. □
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4.2. Exchange relations

Proposition 4.16. — For every m ∈ N, there exists some ξm(z) ∈
˙̂Uq(ȧ1)[[z, z−1]] such that, for every n ∈ Z,

[X−1,m+n+1(w),X−1,n(z)]G−
01(w/z) = −[X−1,n+1(w),X−1,m+n(z)]G−

01(w/z)(4.28)

= δ

(
wq2

z

)
Y n (ξm(z)) .

Proof. — Assume first that n = 0. The case m = 0 then follows immedi-
ately from the definition of X−1,1(w) and relations (2.7) and (2.9), leading
to ξ0(z) = 0, as it should. Taking the commutator of the case m = 0 with
ψ+

1,1(v), we get

0 = [[X−1,1(w),X−1,0(z)]G−
01(w/z),ψ

+
1,1(v)]

= [[X−1,1(w),ψ+
1,1(v)],X−1,0(z)]G−

01(w/z)

+ [X−1,1(w), [X−1,0(z),ψ+
1,1(v)]]G−

01(w/z)

= [2]q℘−(v)
{
δ

(
C1/2q2v

w

)
[X−1,2(wq−2),X−1,0(z)]G−

01(wq−2/z)

+δ
(
C1/2q2v

z

)
G−

01(zq−2/w)G−
11(z/w)[X

−
1,1(w),X−1,1(zq−2)]

G−
01(w/z)

}
.

The latter implies that

(4.29) [X−1,2(wq−2),X−1,0(z)]G−
01(wq−2/z) = δ

(w
z

)
ξ1(z) ,

(4.30)
G−

01(zq−2/w)G−
11(z/w)[X

−
1,1(w),X−1,1(zq−2)]

G−
01(w/z) = −δ

(w
z

)
ξ1(z) ,

for some ξ1(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. Multiplying (4.30) by (zq−2 − w) and
subsequently factoring (z − q−2w), we get that

(4.31)
G−

01(zq−2/w)[X
−
1,1(w),X−1,1(zq−2)] = δ

(w
z

)
ξ1(z) + δ

(
w

zq2

)
η0(z) ,

for some η0(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. Multiplying the above equation by
q−2(z − w), we get

(4.32) (zq−4 −w)X−1,1(w)X−1,1(zq−2)−q−2(z−w)X−1,1(zq−2)X−1,1(w)

= z(1 − q2)δ
(
w

zq2

)
η0(z) .
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But, on the other hand,

(zq−4 − w)X−1,1(w)X−1,1(zq−2) − q−2(z − w)X−1,1(zq−2)X−1,1(w)

= Y
(
(zq−4 − w)x−1 (w)x−1 (zq−2) − q−2(z − w)x−1 (zq−2)x−1 (w)

)
= 0

by relation (2.8). Substituting back into (4.32) proves that η0(z) = 0 and
that (4.31) eventually reads

(4.33)
G−

01(zq−2/w)[X
−
1,1(w),X−1,1(zq−2)] = δ

(w
z

)
ξ1(z) .

Combining (4.29) and (4.33), we get the case m = 1. Now assume that
the result holds for all nonnegative integer less than m ∈ N. Taking the
commutator of (4.28) with ψ+

1,1(v) yields

[2]q℘−(v)
{
δ

(
C1/2q2v

w

)
[X−1,m+2(wq−2),X−1,0(z)]G−

01(wq−2/z)

+δ
(
C1/2q2v

z

)
G−

01(zq−2/w)G−
11(z/w)[X

−
1,m+1(w),X−1,1(zq−2)]

G−
01(w/z)

}
= −[2]q℘−(v)

{
δ

(
C1/2q2v

w

)
[X−1,2(wq−2),X−1,m(z)]G−

01(wq−2/z)

+δ
(
C1/2q2v

z

)
G−

01(zq−2/w)G−
11(z/w)[X

−
1,1(w),X−1,m+1(zq−2)]

G−
01(w/z)

}
= δ

(
wq2

z

)
[ξm(z),ψ+

1,1(v)]

The latter implies that

[X−1,m+2(wq−2),X−1,0(z)]G−
01(wq−2/z)(4.34)

= δ
(w
z

)
ξm+1(z) + δ

(
wq2

z

)
η1(z) ,

G−
01(zq−2/w)G−

11(z/w)[X
−
1,m+1(w),X−1,1(zq−2)]

G−
01(w/z)(4.35)

= −δ
(w
z

)
ξm+1(z) + δ

(
wq2

z

)
η1(z) ,

[X−1,2(wq−2),X−1,m(z)]G−
01(wq−2/z) = δ

(w
z

)
η3(z) − δ

(
wq2

z

)
η1(z) ,(4.36)

G−
01(zq−2/w)G−

11(z/w)[X
−
1,1(w),X−1,m+1(zq−2)]

G−
01(w/z)(4.37)

= −δ
(w
z

)
η3(z) − δ

(
wq2

z

)
η2(z) ,
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for some ξm+1(z), η1(z), η2(z), η3(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. Multiplying (4.37)
by (z − wq2) and subsequently factoring (zq2 − w), we get that

(4.38) [X−1,m+1(z),X−1,1(w)]G−
01(z/w) = −δ

(
w

zq2

)
η3(w) + δ

(
w

zq4

)
η4(z) ,

for some η4(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. But, by the recursion hypothesis,

[X−1,m+1(z),X−1,1(w)]G−
01(z/w) = Y

(
[X−1,m(z),X−1,0(w)]G−

01(z/w)

)
= δ

(
w

zq2

)
Y (ξm−1(w)) .

Comparing with (4.38), it follows that

η3(w) = −Y (ξm−1(w)) and η4(z) = 0 .

By the recursion hypothesis, we also have

[X−1,2(wq−2),X−1,m(z)]G−
01(wq−2/z)

= Y
(

[X−1,1(wq−2),X−1,m−1(z)]G−
01(wq−2/z)

)
= −δ

(w
z

)
Y (ξm−1(z)) = δ

(w
z

)
η3(z)

Comparing the above result with (4.36), we conclude that η1(z) = 0. As a
consequence, (4.34) now reads

(4.39) [X−1,m+2(w),X−1,0(z)]G−
01(w/z) = δ

(
wq2

z

)
ξm+1(z) .

On the other hand, multiplying (4.35) by (z − wq2) and subsequently fac-
toring (zq2 − w), we get that

(4.40)
G−

01(zq−2/w)[X
−
1,m+1(w),X−1,1(zq−2)]

= δ
(w
z

)
ξm+1(z) + δ

(
w

zq2

)
η5(z) ,

for some η5(z) ∈ ˙̂Uq(ȧ1)[[z, z−1]]. Multiplying the above equation by (z−w)
yields

(4.41) Y
(
(zq−2 −wq2)X−1,m(w)X−1,0(zq−2)−(z − w)X−1,0(zq−2)X−1,m(w)

)
= z(1 − q2)δ

(
zq2

w

)
η5(z) .

But the recursion hypothesis

(4.42) [X−1,m(w),X−1,0(zq−2)]G−
01(wq2/z) = δ

(
wq4

z

)
ξm−1(z)
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implies, upon multiplication by (zq−2 − wq2), that

(4.43) (zq−2 −wq2)X−1,m(w)X−1,0(zq−2)−(z−w)X−1,0(zq−2)X−1,m(w) = 0 .

Substituting back into (4.41) proves that η5(z) = 0 and that (4.40) even-
tually reads

(4.44)
G−

01(w/z)[X
−
1,m+1(z),X−1,1(w)] = δ

(
wq2

z

)
ξm+1(z) .

Combining (4.39) and (4.44) completes the recursion and the result holds
for any m ∈ N, assuming n = 0. The cases n ∈ Z× are then obtained by
applying Y n to the case n = 0. □

Corollary 4.17. — For every m ∈ N and every n ∈ Z, we have

(4.45) [X+
1,m+n+1(z),X+

1,n(w)]G+
01(z/w)

= −[X+
1,n+1(z),X+

1,m+n(w)]G+
01(z/w)

= δ

(
wq2

z

)
φ ◦ Y −m−n−1 (ξm(1/z))

Proof. — It suffices to apply φ ◦ Y −m−n−1 to (4.28). □

We now return to the proof of Theorem 3.7 and to the map Ψ : U̇q(ȧ1) →
¨̂U′q(a1).

Corollary 4.18. — We have
(i) Υ±(w) = 0;
(ii) and for every i ̸= j,∑

σ∈S3

3∑
k=0

(−1)k

(
3
k

)
q

Ψ(x±i (zσ(1))) · · · Ψ(x±i (zσ(k)))Ψ(x±j (z))

× Ψ(x±i (zσ(k+1))) · · · Ψ(x±i (zσ(3))) = 0 .

Proof. — The proof of Proposition 4.16 makes it clear that the rela-
tions (2.9) with i ̸= j there, both follow from the relations

(4.46)
[
X+

1,0(v),X+
1,−1(w)

]
G−

11(v/w) = 0

and

(4.47)
[
X−1,1(v),X−1,0(w)

]
G+

11(v/w) = 0

in the completion ˙̂Uq(ȧ1). A tedious but straightforward calculation shows
that the quantum Serre relations (2.10) similarly follow from

(4.48)
[
X+

1,−1(v),X+
1,−2(w)

]
G−

11(v/w) = 0
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and

(4.49)
[
X−1,2(v),X−1,1(w)

]
G+

11(v/w) = 0 ,

which in turn are a consequence of (4.46)–(4.47), (just apply Y there).
We can therefore extend Ψ : U̇q(ȧ1) → ¨̂U′q(a1) by continuity (1) into

Ψ̂ : ˙̂Uq(ȧ1) → ¨̂U′q(a1) and it suffices to check point (i). Since by construc-

tion U̇q(ȧ1) is dense in ˙̂Uq(ȧ1), there exists a sequence (un(v, w))n∈N ∈
U̇q(ȧ1)[[v, v−1, w, w−1]]N such that

(4.50) lim
n→+∞

un(v, w) = 0 ,

whereas, on the other hand,

(4.51) lim
n→+∞

Ψ̂(un(v, w)) = δ

(
vq∓2

w

)
Υ±(w) .

Take for example the partial sum of the series involved on the l.h.s. of
equations (4.46)–(4.47) above. The result now follows by the continuity
of Ψ̂. □

Remark 4.19. — We have therefore completed the proof of that part
of Theorem 3.7 that claims the existence of a continuous algebra homo-
morphism Ψ̂ : ˙̂Uq(ȧ1) → ¨̂U′q(a1). We still have to construct the inverse

continuous algebra homomorphism Ψ̂−1 : ¨̂U′q(a1) → ˙̂Uq(ȧ1). This shall be
done at the end of the present section.

4.3. Weight grading relations

The results of the previous subsection have the following

Corollary 4.20. — For every m ∈ N× and every n ∈ Z, we have:
(i) [Γ+

m+1(u),X−1,n(z)] = 0 ;
(ii) [ψ+

1,m+1(u),X−1,n(z)]

= −℘−(C1/2uq−2(m+1))
G+

01(Cuq2(1−m)/z)[X
−
1,n+1(zq−2),

ψ+
1,m(u)]G−

01(z/Cuq2(1−m))

∝ δ

(
Cu

zq2m

)
;

(1) Ψ is obviously Z(2)-graded, hence continuous.
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(iii) [Γ+
m+1(u),X+

1,n(z)] = 0 ;
(iv) [ψ+

1,m+1(v),X+
1,n(z)]G+

01(v/z)G+
11(v/zq2(m+1))

= −
G−

01(z/vq2m)[X
+
1,n+1(v),ψ+

1,m(z)]
G+

01(v/z)

∝ δ

(
zq2

v

)
.

Proof. — It suffices to prove the proposition for n = 0 as the general
case then follows by applying Y n for any n ∈ Z. Assuming that n = 0 in (i)
and (ii), it then suffices to take the commutator of (4.28), for n = 1 there,
with x+

1 (z). □

Remark 4.21. — It turns out that, for every m ∈ N×,

Γ+
m(z) ∈ Z( ˙̂Uq(ȧ1))[[z, z−1]] .

Indeed, in the next section we actually establish that these central elements
consistently vanish.

4.4. The central elements Γ±m>2(z)

Before we can actually establish that these central elements vanish, we
need to establish a few lemmas. In what follows, we let U̇<

q (ȧ1) = U̇⩽
q (ȧ1)−

U̇⩽
q (ȧ1) ∩ U̇0

q(ȧ1).

Lemma 4.22. — For every p ∈ N×,
(i) ∆(ψ−1,−p(v)) = 1 ⊗ψ−1,−p(v) mod U̇<

q (ȧ1)⊗̂U̇q(ȧ1) ;

(ii) ∆(X+
1,−p(v)) =

p−1∏
ℓ=1

Γ+
0 (C−1/2q2ℓv)−1k+

0 (C−1/2v)−1⊗̂X+
1,−p(v)

mod U̇<
q (ȧ1)⊗̂U̇q(ȧ1) .

Proof. — First one easily checks that

∆(ψ−1,−1(z)) = 1 ⊗ψ−1,−1(z) + [2]q (q − q−1)x−1 (z)⊗̂x−0 (q−2z)k+
1 (z)

+ψ−1,−1(z)⊗̂℘+(q−2z) ,

which proves (i) for p = 1. Assuming (i) holds for some p ∈ N, the result
for p+ 1 easily holds making use of (4.23) and of the recursion hypothesis.

Similarly, one easily checks that

∆(X+
1,−1(v)) = X+

1,−1(v) ⊗ 1 + k+
0 (C−1/2v)−1⊗̂X+

1,−1(v) ,
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which proves (ii) in the case p = 1. Assuming the result holds for some
p ∈ N, the result for p+ 1 easily follows making use of Proposition 4.8(iii)
and of the recusrion hypothesis. □

For every N ∈ N×, we let

S<
2N−1 =

σ ∈ S2N−1 :
σ(1) = 1
∀p ∈ JN − 1K σ(2p) < σ(2p+ 1)
σ(2N − 4) < σ(2N − 1)


Define ϖ : Z → İ = {0, 1} by setting, for every n ∈ Z,

(4.52) ϖ(n) =
{

0 if n is even;
1 if n is odd.

Lemma 4.23. — For every r ∈ N and every i1, . . . , i2r−1 ∈ İ, there
exists (βr,σ)σ∈S<

2r−1
∈ FS<

2r−1 such that

(4.53)
〈

x+
i1

(z1) . . .x+
i2r−1

(z2r−1),X+
1,−r(v)

〉
= −

[2]r−1
q

q − q−1

∑
σ∈S<

2r−1

βr,σ

2r−1∏
n=1

δiσ(n),π(n)δ

(
zσ(n)q

νr(n)

v

)
,

where we have defined π : N → İ and νr : N → Z by setting, for every
n ∈ N,

(4.54) π(n) =
{

0 if n = 1;
ϖ(n) if n > 1

and

(4.55) νr(n) =
{

2(1 − r) if n = 1;
2(1 − r) + n− 3ϖ(n) if n > 1.

Proof. — The case r = 0 holds by definition of the pairing. Assume
that (4.53) holds for some r ∈ N. Then, making use of the previous lemma,
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one easily shows that, for every i1, . . . , i2r+1 ∈ İ〈
x+

i1
(z1) . . .x+

i2r+1
(z2r+1),

[
ψ−1,−1(z),X+

1,−r(v)
]〉

=
[2]q

q − q−1

∑
A∈P(2,2r−1)

J2r+1K

∏
m∈J2K

δi
A

(1)
m

,1−ϖ(m)δ

(
z

A
(1)
m
q2ϖ(m)

z

)

×

〈
x+

i
A

(2)
1

(z
A

(2)
1

) . . .x+
i

A
(2)
2r−1

(z
A

(2)
2r−1

),X+
1,−r(v)

〉

×
{
R<

A(zA)−G+
i

A
(1)
1

,0(C−1/2z
A

(1)
1
/v)G+

i
A

(1)
2

,0(C−1/2z
A

(1)
2
/v)R>

A(z−1
A )
}
,

where
R<

A(zA) =
∏

m∈J2K
n∈J2r−1K
A(2)

n <A(1)
m

G−i
A

(2)
n

,i
A

(1)
m

(C−1/2z
A

(2)
n
/z

A
(1)
m

) ;

R>
A(z−1

A ) =
∏

m∈J2K
n∈J2r−1K
A(2)

n >A(1)
m

G−i
A

(2)
n

,i
A

(1)
m

(C1/2z
A

(1)
m
/z

A
(2)
n

) .

Making use of Proposition 4.8(iii) on the l.h.s. and of the recursion hypoth-
esis on the r.h.s., we get

[2]q δ
(
Cz

v

)〈
x+

i1
(z1) . . .x+

i2r+1
(z2r+1),X+

1,−(r+1)(vq
−2)
〉

(4.56)

= −
[2]rq

(q − q−1)2

∑
A∈P(2,2r−1)

J2r+1K

σ∈S<
2r−1

βr,σ

∏
m∈J2K

δi
A

(1)
m

,1−ϖ(m)δ

(
z

A
(1)
m
q2ϖ(m)

z

)

×
∏

n∈J2r−1K

δi
A

(2)
σ(n)

,π(n)δ

zA
(2)
σ(n)

qνr(n)

v


×
{
Q<

σ,A(v/z) −G+
0,0(C−1/2zq−2/v)G+

1,0(C−1/2z/v)Q>
σ,A(z/v)

}
,

where

Q<
σ,A(v/z) =

∏
m∈J2K

n∈J2r−1K
A

(2)
σ(n)<A(1)

m

G−π(n),1−ϖ(m)(C
−1/2vqλr(m,n)/z) ;

ANNALES DE L’INSTITUT FOURIER



ON DOUBLE QUANTUM AFFINIZATION 49

and

Q>
σ,A(z/v) =

∏
m∈J2K

n∈J2r−1K
A

(2)
σ(n)>A(1)

m

G−π(n),1−ϖ(m)(C
1/2z/vqλr(m,n)) ;

where λr(m,n) = 2ϖ(m)−νr(n). In view of the δ(Cz/v) factor on the l.h.s
of (4.56), it is clear that the relevant factors in Q<

σ,A(v/z) and Q>
σ,A(z/v)

are the ones contributing to a pole at Cz = v, i.e. the ones for which
λr(m,n) = cπ(n),1−ϖ(m) or λr(m,n) = −cπ(n),1−ϖ(m) respectively. We thus
let

L±r =
{

(m,n) ∈ J2K × J2r − 1K : λr(m,n) = ±cπ(n),1−ϖ(m)
}

and determine, by inspection, that, for every r ⩾ 3,

L+
r = {(1, 2r − 2), (2, 2r − 3)} , whereas L−r = {(2, 2r − 4)} .

Since we cannot have A(2)
σ(2r−4) > A

(1)
2 while A(2)

σ(2r−3) < A
(1)
2 for σ ∈ S<

2r−1,
we see that the relevant pole is necessarily a simple pole; as one might have
expected, given the absence of a δ′(Cz/v) factor on the l.h.s of (4.56). It
easily follows that{

Q<
σ,A(v/z) −G+

0,0(C−1/2zq−2/v)G+
1,0(C−1/2z/v)Q>

σ,A(z/v)
}

= [2]q (q − q−1)γσ,Aδ

(
Cz

v

)
for every (σ,A) ∈ S<

2r−1 × P(2,2r−1)
J2r+1K such that A(2)

σ(2r−2) < A
(1)
1 and either:

• A
(2)
σ(2r−4) > A

(1)
2 (and then necessarily, A(2)

σ(2r−3) > A
(1)
2 ); or

• A
(2)
σ(2r−4) < A

(1)
2 and A

(2)
σ(2r−3) < A

(1)
2 ;

and, for each such pair (σ,A), γσ,A ∈ F. Note that the above conditions
impose that A(2)

σ(1)=1 < A
(1)
1 and hence A(2)

1 = 1. Now, for each pair (σ,A)
as above, define

σ′ =
(

1 2 . . . 2r − 1 2r 2r + 1
1 A

(2)
σ(2) . . . A

(2)
σ(2r−1) A

(1)
1 A

(1)
2

)
.

It is obvious that σ′ ∈ S<
2r+1. Actually, setting (σ,A) 7→ σ′ defines a map

S<
2r−1 × P(2,2r−1)

J2r+1K → S<
2r+1 which is easily seen to be a bijection. Observing

furthermore that νr − 2 = νr+1 and setting βr+1,σ′ = βr,σγσ,A, we can
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rewrite (4.56) as〈
x+

i1
(z1) . . .x+

i2r+1
(z2r+1),X+

1,−(r+1)(v)
〉

= −
[2]rq

q − q−1

∑
σ′∈S<

2r+1

βr+1,σ′

2r+1∏
n=1

δiσ′(n),π(n)δ

(
zσ′(n)q

νr+1(n)

v

)
,

which completes the recursion. □

Proposition 4.24. — For every m ∈ N×, we actually have Γ+
m(v) =

Γ−−m(v) = 0.

Proof. — It suffices to prove that, say Γ−−m(z) = 0 for every m ∈ N×
and to apply φ−1 to get the result for Γ+

m(z). Considering the root space
decomposition, it is obvious that having〈

x+
i1

(z1) · · · x+
i2m

(z2m),Γ−−m(z)
〉

= 0 ,

for every i1, . . . , i2m ∈ I, is a sufficient condition. Now, making use of the
previous lemma, one easily shows that

〈
x+

i1
(z1) · · · x+

i2m
(z2m),

[
X+

1,−m(v),x−1 (z)
]〉

= −
[2]q

(q − q−1)2

∑
A∈P(1,2m−1)

J2mK

σ∈S<
2m−1

βm,σδi
A

(1)
1

,1δ

(z
A

(1)
1

z

)

×
∏

n∈J2m−1K

δi
A

(2)
n

,π(n)δ

zA
(2)
σ(n)

qνm(n)

v


×
{
G+

i
A

(1)
1

,0(C1/2z
A

(1)
1
/v)R<

A(zA) −R>
A(z−1

A )
}
,

where

R<
A(zA) =

∏
n∈J2m−1K
A(2)

n >A
(1)
1

G−i
A

(1)
1

,i
A

(2)
n

(C−1/2z
A

(1)
1
/z

A
(2)
n

) ,

R>
A(z−1

A ) =
∏

n∈J2m−1K
A(2)

n <A
(1)
1

G−i
A

(1)
1

,i
A

(2)
n

(C1/2z
A

(2)
n
/z

A
(1)
1

) .
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Hence, upon rewriting, we get〈
x+

i1
(z1) · · · x+

i2m
(z2m),

[
X+

1,−m(v),x−1 (z)
]〉

= −
[2]q

(q − q−1)2

∑
A∈P(1,2m−1)

J2mK

σ∈S<
2m−1

βm,σδi
A

(1)
1

,1δ

(z
A

(1)
1

z

)

×
∏

n∈J2m−1K

δi
A

(2)
n

,π(n)δ

zA
(2)
σ(n)

qνm(n)

v


×
{
G+

1,0(C1/2z/v)Q<
σ,A(z/v) −Q>

σ,A(v/z)
}
,

where

Q<
σ,A(z/v) =

∏
n∈J2m−1K
A

(2)
σ(n)>A

(1)
1

G−1,π(n)(C
−1/2zqνm(n)/v) ,

Q>
σ,A(v/z) =

∏
n∈J2m−1K
A

(2)
σ(n)<A

(1)
1

G−1,π(n)(C
1/2vq−νm(n)/z) .

In view of (4.20), the contributions to
〈
x+

i1
(z1) · · · x+

i2m
(z2m),Γ−−m(z)

〉
in

the above expression must come from terms with a pole at z = C1/2v. The
latter happen for factors in Q<

σ,A(z/v) or Q>
σ,A(v/z) such that νm(n) =

c1,π(n) or νm(n) = −c1,π(n) respectively. We thus let

M±m = {n ∈ J2m− 1K : νm(n) = ±c1,π(n)} .

Upon inspection, one easily sees that

M+
m = {2m− 4} , whereas M−m = {2m− 1} .

Now, for σ ∈ S<
2m−1, we have σ(2m−4) < σ(2m−1) and no term has a pole

at z = C1/2v. We conclude that
〈
x+

i1
(z1) · · · x+

i2m
(z2m),Γ−−m(z)

〉
= 0. □

4.5. Relations in Ψ−1(Ü0
q(a1))

Definition 4.25. — We set K+
1,0(v) = −k−1 (C1/2v) and, for every

m ∈ N×,
K+

1,m(v) = (q − q−1)k−1 (C1/2vq−2m)ψ+
1,m(v) .

We then let
K−1,0(v) = φ

(
K+

1,0(1/v)
)

= −k+
1 (C1/2v)
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and, for every m ∈ N×,

K−1,−m(v) = φ
(
K+

1,m(1/v)
)

= −(q − q−1)ψ−1,−m(v)k+
1 (C1/2vq−2m) .

It is straigthforward to establish that

(4.57) k−1 (C1/2w)ψ+
1,m(v) = G+

11

(
wq2m

v

)
G−11

(w
v

)
ψ+

1,m(v)k−1 (C1/2w) .

By making repeated use of the above relation, one readily checks that, in
terms of (K+

1,m(v))m∈N× , the relations (4.10) and (4.13), as well as the rela-
tions in Corollary 4.20(ii) and (iv) of the previous subsections respectively
read

(4.58) [x+
1 (v),X−1,n(z)]

= 1
q − q−1 δ

(
zq2n

Cv

)(n−1∏
p=0

Γ−0 (C−1/2zq2p)−1

)
K+

1,n(v) ,

(4.59) [K+
1,1(w),K+

1,m(v)]G−
11(w/v)G+

11(wq2(m−1)/v)

= [2]q
{
δ

(
wq2m

v

)
K+

1,0(vq−2m)K+
1,m+1(v)

−δ
(
w

vq2

)
K+

1,0(v)K+
1,m+1(vq2)

}
,

(4.60) [K+
1,m+1(v),X−1,n(z)]G+

11(Cv/zq2(m+1))

= −Γ−0 (C1/2vq−2(m+1))[X−1,n+1(zq−2),K+
1,m(v)]G+

11(zq2(m−1)/Cv)

∝ δ

(
zq2m

Cv

)
,

[K+
1,m+1(v),X+

1,n(z)]G−
11(v/z) = −[X+

1,n+1(v),K+
1,m(z)]G−

11(v/z)(4.61)

∝ δ

(
zq2

v

)
.

Proposition 4.26. — For every m,n ∈ N, we have

(4.62) (v − q±2z)(v − q2(m−n∓1)z)K±1,±m(v)K±1,±n(z)

= (vq±2 − z)(vq∓2 − q2(m−n)z)K±1,±n(z)K±1,±m(v) ,

Proof. — We apply the map a 7→ [a,X−1,n(u)]G+
11(Cv/uq2(m+1)) to the rela-

tion (4.61) with n = 0 there. Making use of identity (1.6) on the left hand
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side, we get

[[K+
1,m+1(v),X−1,n(u)]G+

11(Cq−2(m+1)v/u)︸ ︷︷ ︸
∝δ
(

C−1uq2m

v

) ,x+
1 (z)]G+

10(v/z)

+
[
K+

1,m+1(v),
[
x+

1 (z),X−1,n(u)
]]

G+
10(v/z)G+

11(Cq−2(m+1)v/u) ∝ δ

(
zq2

v

)
Multiplying through by

(
C−1uq2m − v

) (
zq2 − v

)
and making use of (4.58),

it follows that

0 =
(
C−1uq2m − v

) (
zq2 − v

)
δ

(
uq2n

Cz

)
×
[
K+

1,m+1(v),K+
1,n(z)

]
G+

10(v/z)G+
11(Cq−2(m+1)v/u)

=
(
zq2(m−n) − v

) (
zq2 − v

)
δ

(
uq2n

Cz

)
×
[
K+

1,m+1(v),K+
1,n(z)

]
G+

10(v/z)G+
11(q2(n−m−1)v/z)

Hence the result for the upper choice of signs in (4.62). The case with lower
choice of signs follows by applying φ to the above equation. □

At this point it should be clear that we have obtained Ψ−1. Indeed, it
suffices to let, for every m ∈ N and every n ∈ Z,

Ψ−1(D±1
2 ) = D±1(4.63)

Ψ−1(C±1/2) = C±1/2(4.64)

Ψ−1(c±(z)) = Γ±0 (z)(4.65)

Ψ−1(K±1,±m(z)) = K±1,±m(z)(4.66)

Ψ−1(X±1,n(z)) = X±1,n(z)(4.67)

The relations in Ü′q(a1) are obviously all the relations we have derived in
the present section. Ψ−1 therefore extends as an algebra homomorphism.
This concludes the proof of Theorem 3.7.

Returning to the proof of Proposition 3.10, it is also clear that

f(ψ±(z)) = (q2 − q−2)2Ψ(℘±(C1/2zq−2))(4.68)

f(e±(z)) = Ψ(ψ±1,±1(z))(4.69)

Therefore (3.44)–(3.45) follow from Proposition 4.8(v). In order to complete
the proof of Proposition 3.10, we still have to prove the compatibility of f
with the Serre relations (3.33) of Eq1,q2,q3 . This is the purpose of the next
section.
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4.6. The Serre relations of the elliptic Hall algebra

By the compatibility of f with (3.33), we actually mean that we should
have, for every m ∈ Z,

(4.70) res
v,w,z

(vwz)m(v + z)(w2 − vz)f(e±(v))f(e±(w))f(e±(z)) = 0 .

Now we have already identified f(e±(z)) with Ψ(ψ±1,±1(z)) in (4.69) above.
The latter means that proving (4.70) is equivalent to proving

Proposition 4.27. — For every m ∈ Z, we have

(4.71) res
v1,v2,v3

(v1v2v3)m(v1 + v3)(v2
2 − v1v3)

ψ±1,±1(v1)ψ±1,±1(v2)ψ±1,±1(v3) = 0 .

Proof. — The upper choice of signs immediately follows from the lower
one upon applying φ. Moreover, considering the root space decomposition,
it is clear that having

res
v1,v2,v3

(v1v2v3)m(v1 + v3)(v2
2 − v1v3)

〈
x+

i1
(z1) . . .x+

i6
(z6),

ψ−1,−1(v1)ψ−1,−1(v2)ψ−1,−1(v3)
〉

= 0

for every i1, . . . , i6 ∈ İ is a sufficient condition for the result to hold. Now,
making use of Lemma 4.22, one easily obtains that〈

x+
i1

(z1) . . .x+
i6

(z6),ψ−1,−1(v1)ψ−1,−1(v2)ψ−1,−1(v3)
〉

=
( [2]q
q − q−1

)3 ∑
A∈P(2,2,2)

J6K

3∏
p=1

∏
m∈A(p+1)⊔···⊔A(3)

n∈A(p)

n>m

2∏
k=1

δi
A

(p)
k

,ϖ(k)

× δ

zA
(p)
k

qϖ(k)

vk

G−im,in
(C−1/2zm/zn) .

There is obviously an action of S3 on P(2,2,2)
J6K given by setting σ(A) =

(A(σ(1)), A(σ(2)), A(σ(3))) for every σ ∈ S3 and every A ∈ P(2,2,2)
J6K . It is also

quite clear that
P(2,2,2)

J6K

S3
∼= T(2,2,2)

J6K ,

where
T(2,2,2)

J6K =
{

A ∈ P(2,2,2)
J6K : A(1)

1 < A
(2)
1 < A

(3)
1

}
.
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For every triple n = {n1, n2, n3} ⊂ J6K, we further let

T(2,2,2)
J6K (n) =

{
A ∈ T(2,2,2)

J6K :
{
A

(p)
2 : p ∈ J3K

}
= n

}
.

With these notations in place, we can now write

res
v1,v2,v3

(v1v2v3)m(v1 + v3)(v2
2 − v1v3)

〈
x+

i1
(z1) . . .x+

i6
(z6),

ψ−1,−1(v1)ψ−1,−1(v2)ψ−1,−1(v3)
〉

=
( [2]q
q − q−1

)3 ∑
n⊂J6K

card n=3

zm
n δiJ6K−n,1δin,0

∑
A∈T(2,2,2)

J6K (n)

3∏
p=1

δ

(
z

A
(p)
1
q2

z
A

(p)
2

)
cA ,

where, by definition,

(4.72) zm
n =

3∏
i=1

zm
ni
, δin,0 =

3∏
j=1

δinj
,0 , δiJ6K−n,1 =

∏
m∈J6K−n

δim,1

(4.73) cA =
∑

σ∈S3

F (z
A

(σ(1))
2

, z
A

(σ(2))
2

, z
A

(σ(3))
2

)

∏
1⩽p′<p⩽3

HA,σ,p,p′(z
A

(σ(p))
2

/z
A

(σ(p′))
2

)

(4.74) F (x, y, z) = (x+ z)(y2 − xz)

HA,σ,p,p′

(
z

A
(σ(p))
2

z
A

(σ(p′))
2

)
(4.75)

=
2∏

k,k′=1
G−ϖ(k),ϖ(k′)

(
C−1/2z

A
(σ(p))
2

z
A

(σ(p′))
2

q2(k′−k)

)ϵ(A,σ,p,p′,k,k′)

(4.76) ϵ(A, σ, p, p′, k, k′) =
{

1 if A(σ(p))
k < A

(σ(p′))
k′ ;

0 otherwise.

Denoting each A ∈ T(2,2,2)
J6K as the tableau

A
(1)
1 A

(2)
1 A

(3)
1

A
(1)
2 A

(2)
2 A

(3)
2

,
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one easily checks that, actually,

T(2,2,2)
J6K =T(2,2,2)

J6K ({2, 4, 6}) ⊔ T(2,2,2)
J6K ({2, 5, 6}) ⊔ T(2,2,2)

J6K ({3, 4, 6})

⊔ T(2,2,2)
J6K ({3, 5, 6}) ⊔ T(2,2,2)

J6K ({4, 5, 6}) ,

with

T(2,2,2)
J6K ({2, 4, 6}) =

{
1 3 5
2 4 6

}
,

T(2,2,2)
J6K ({2, 5, 6}) =

{
1 3 4
2 6 5 ,

1 3 4
2 5 6

}
,

T(2,2,2)
J6K ({3, 4, 6}) =

{
1 2 5
4 3 6 ,

1 2 5
3 4 6

}
,

T(2,2,2)
J6K ({3, 5, 6}) =

{
1 2 4
6 3 5 ,

1 2 4
3 6 5 ,

1 2 4
5 3 6 ,

1 2 4
3 5 6

}
,

T(2,2,2)
J6K ({4, 5, 6}) =

{
1 2 3
6 5 4 ,

1 2 3
5 6 4 ,

1 2 3
6 4 5 ,

1 2 3
4 6 5 ,

1 2 3
5 4 6 ,

1 2 3
4 5 6

}
.

A tedious but straightforward calculation (see Appendix for useful identi-
ties) shows that, e.g.

c 1 2 4
6 3 5

= (q2 − q−2)2(1 + q2)(1 − q2)z3
3

[
q2δ

(
z3q

2

z6

)
δ

(
z6

z5

)

−δ
(
z3

z6

)
δ

(
z6q

2

z5

)]
+ q−2(q2 − q−2)(1 + q2)2(1 − q2)6

×H1(z3/z5)
[
z5δ

(
z6

z5

)
− z3δ

(
z3

z6

)]
c 1 2 4

3 6 5
= (q2 − q−2)2(1 + q2)(1 − q2)z3

3δ

(
z3

z6

)
δ

(
z6q

2

z5

)

+ q−2(q2 − q−2)(1 + q2)2(1 − q2)6H1(z3/z5)z3δ

(
z3

z6

)
+ q−2(q2 − q−2)(1 + q2)2(1 − q2)6H2(z3/z5)z5δ

(
z6

z5

)
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c 1 2 4
5 3 6

= −q2(q2 − q−2)2(1 + q2)(1 − q2)z3
3δ

(
z5

z6

)
δ

(
z3q

2

z5

)

− q−2(q2 − q−2)(1 + q2)(1 − q2)6H1(z3/z5)z5δ

(
z5

z6

)
− q−2(q2 − q−2)(1 + q2)(1 − q2)6H2(z3/z6)z3δ

(
z3

z5

)

c 1 2 4
3 5 6

= q−2(q2−q−2)(1+q2)(1−q2)6H2(z3/z6)
[
z3δ

(
z3

z5

)
−z6δ

(
z5

z6

)]
.

where we have set

H1(z3/z5) =
(

z2
3z

2
5(z3 + z5)3

(z3q2 − z5)(q4z3 − z5)(z3 − q2z5)3

)
|z5|≫|z3|

,

H2(z3/z5) =
(

z2
3z

2
5(z3 + z5)3

(z3q4 − z5)(z3 − q2z5)4

)
|z5|≫|z3|

.

It easily follows that

(4.77)
∑

A∈T(2,2,2)
J6K ({3,5,6})

3∏
p=1

δ

(
z

A
(p)
1
q2

z
A

(p)
2

)
cA = 0 .

Similar calculations show that, eventually, for every n ⊂ J6K such that
card n = 3 and T(2,2,2)

J6K (n) ̸= ∅, we have

(4.78)
∑

A∈T(2,2,2)
J6K (n)

3∏
p=1

δ

(
z

A
(p)
1
q2

z
A

(p)
2

)
cA = 0 ,

thus proving the result. □

Appendix A. Formal distributions

A.1. Definitions and main properties

Let K be a field of characteristic 0. For any K-vector space V , we let
V [z, z−1] denote the ring of V -valued Laurent polynomials. Writing

v(z) =
∑
n∈Z

vnz
n ,
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where the sum runs over finitely many terms, for any v(z) ∈ V [z, z−1], we
can define

supp(v(z)) = {n ∈ Z : vn ̸= 0} ,
and set

Vn[z, z−1] =
{
v(z) ∈ V [z, z−1] : supp(v(z)) ⊆ J−n, nK

}
.

It is clear that, for every n ∈ N, Vn[z, z−1] ∼= V 2n+1 as K-vector spaces.
Now, if in addition V is a topological vector space with topology τ1, making
use of that isomorphism, we can endow Vn[z, z−1] with the box topology
of V 2n+1, for every n ∈ N. Denote by τn that topology.

The obvious inclusions Vn[z, z−1] ↪→ Vn+1[z, z−1] are clearly continuous
and we define a topology τ on V [z, z−1] as the inductive limit

τ = lim
→
τn .

We now assume that K is a topological field.

Definition A.1. — The space V [[z, z−1]] of V -valued formal distribu-
tions is the K-vector space of continuous V -valued linear functions over the
ring of K-valued Laurent polynomials K[z, z−1], the latter being endowed
with the final topology induced as above from the topology of K.

Proposition A.2. — Any V -valued formal distribution v(z) ∈V [[z,z−1]]
reads

v(z) =
∑
n∈Z

vnz
n ,

for some (vn)n∈Z ∈ V Z and the action of v(z) on any Laurent polynomial
f(z) ∈ K[z, z−1] is given by

⟨v(z), f(z)⟩ = res
z

(
v(z)f(z)z−1) ,

where we let

res
z
a(z) = res

z

(∑
n∈Z

anz
n

)
= a−1 ,

for any a(z) ∈ V [[z, z−1]]. V [[z, z−1]] is given the weak ∗-topology. It is
actually a module over the ring K[z, z−1] of K-valued Laurent polynomials.

Proof. — It is clear that, due to its linearity, any v(z) ∈ V [[z, z−1]] is
entirely characterized by the data, for every n ∈ N, of

vn =
〈
v(z), z−n

〉
∈ V .

Now, writing v(z) =
∑

n∈Z vnz
n, we also have

vn =
〈
v(z), z−n

〉
= res

z
v(z)z−n−1 ,
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for every n ∈ N and the claim follows. □

Let A be a topological K-algebra. Then A[[z, z−1]] is the space of A-
valued formal distributions, i.e. of A-valued linear functions over A[z, z−1].
In that case, the action of a(z) ∈ A[[z, z−1]] on b(z) ∈ A[z, z−1] is given by

(A.1) ⟨a(z), b(z)⟩ = res
z
a(z)b(z)z−1 .

Clearly, A[[z, z−1]] is a module over the ring A[z, z−1] of A-valued Laurent
polynomials. It is generally impossible to consistently extend that structure
into a full-fledged product over A[[z, z−1]]. However, since A is a topological
algebra, we can set

a(z)b(z) =
∑
p∈Z

(∑
m∈Z

ambp−m

)
zp ,

whenever the series ∑
m∈Z

ambp−m

is convergent for every p ∈ Z. If A is complete as a topological algebra, it
suffices that the above series be Cauchy.

We let similarly V [[z1, z
−1
1 , . . . , zn, z

−1
n ]] denote the space of V -valued

formal distributions in n ∈ N variables, so that any V -valued formal dis-
tribution v(z1, . . . , zn) in n variable reads

v(z1, . . . , zn) =
∑

p1,...,pn∈Z
vp1,...,pn

zp1
1 · · · zpn

n ,

for some (vp1...,pn)p1,...,pn∈Z ∈ V Zn . For every i = 1, . . . , n, we define

res
zi

: V [[z1, z
−1
1 , . . . zn, z

−1
n ]] −→ V [[z1, z

−1
1 , . . . , ẑi, ẑ

−1
i . . . , zn, z

−1
n ]] ,

where a hat over a variable indicates omission of that variable, by setting

res
zi

v(z1, . . . , zn) = res
zi

∑
p1,...,pn∈Z

vp1,...,pn
zp1

1 · · · zpn
n

=
∑

p1,...,p̂i,...,pn∈Z
vp1,...,pi−1,−1,pi+1,...,pn

zp1
1 · · · ẑ−1

i · · · zpn
n .

For every i = 1, . . . , n, we define

∂i : V [[z1, z
−1
1 , . . . , zn, z

−1
n ]] −→ V [[z1, z

−1
1 , . . . , zn, z

−1
n ]]

by setting

∂iv(z1, . . . , zn) =
∑

p1,...,pn∈Z
pivp1,...,pnz

p1
1 · · · zpi−1

i · · · zpn
n .
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If A is a topological K-algebra, then the multiplication in A naturally
extends to bilinear maps

A[[z1, z
−1
1 , . . . , zm, z

−1
m ]] ×A[[zm+1, z

−1
m+1, . . . , zm+n, z

−1
m+n]]

−→ A[[z1, z
−1
1 , . . . , zm+n, z

−1
m+n]]

by setting

a(z1, . . . , zm)b(zm+1, . . . , zm+n)

=
∑

p1,...,pm+n∈Z
ap1,...,pmbpm+1,...,pm+nz

p1
1 · · · zpm+n

m+n .

Let a(z1, . . . , zn) ∈ A[[z1, z
−1
1 , . . . , zn, z

−1
n ]] be an A-valued formal dis-

tribution in n variables. Since A is a topological K-agebra, we can de-
fine the localization a|zn−1=zn

(z1, . . . , zn−1) ∈ A[[z1, z
−1
1 , . . . , zn−1, z

−1
n−1]]

of a(z1, . . . , zn) at zn−1 = zn, by setting

a|zn−1=zn
(z1, . . . , zn−1)

=
∑

p1,...,pn−1∈Z

∑
p∈Z

ap1,...,pn−2,p,pn−1−p

 zp1
1 . . . z

pn−1
n−1 ,

whenever ∑
p∈Z

ap1,...,pn−2,p,pn−1−p

is convergent. If A is complete as a topological algebra, it suffices that the
above series be Cauchy.

A.2. Laurent expansion and the Dirac formal distribution

One way to obtain formal power series is to take the Laurent expansion
of some holomorphic function f : C → C. We shall usually write f(z)|z|≪1
to denote the Laurent expansion around 0. Similarly, we shall denote by
f(z)|z|≫1 the Laurent expansion around ∞.

Let
δ(z) =

∑
n∈Z

zn .

Lemma A.3. — For every n ∈ N×, we have(
1

1 − z

)n

|z|≪1
−
(

1
1 − z

)n

|z|≫1
= δ(n−1)(z)

(n− 1)! .
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Proof. — It is straightforward to check that the result holds for n = 1.
Assuming it holds for some n, it follows, upon differentiation, that

n

[(
1

1 − z

)n+1

|z|≪1
−
(

1
1 − z

)n+1

|z|≫1

]
= δ(n)(z)

(n− 1)! ,

which completes te recursion. □

Lemma A.4. — For any n ∈ N and any A-valued Laurent polynomial
f(z) ∈ A[z, z−1], we have

f(z)δ(n)(z) =
n∑

p=0
(−1)n−p

(
n

p

)
f (n−p)(1)δ(p)(z) .

Proof. — The case n = 1 is straightforward. Assuming the results holds
for some n ∈ N, we have, upon differentiation,

f ′(z)δ(n)(z) + f(z)δ(n+1)(z) =
n∑

p=0
(−1)n−p

(
n

p

)
f (n−p)(1)δ(p+1)(z) ,

which completes the recursion. □

Example A.5. — In particular, for any A-valued formal distribution
f(z1, z2) ∈ A[[z1, z

−1
1 , z2, z

−1
2 ]] with a well-defined localization f|z1=z2(z1)

(see previous subsection for a definition), we have

f(z1, z2)δ
(
z1

z2

)
= f|z1=z2(z1)δ

(
z1

z2

)
,

Assuming that K is an algebraically closed field, we have

Lemma A.6. — Let P (z) ∈ K[z] be a polynomial of degree N , with
roots {λi : i ∈ JnK} and respective multiplicities {mi : i ∈ JnK}. If a(z) ∈
K[[z, z−1]] is a K-valued formal distribution, then

P (z)a(z) = 0 ⇐⇒ a(z) =
n∑

i=1

mi−1∑
pi=0

αi,pδ
(pi)
(
z

λi

)
,

for some αi,p ∈ K.

Proof. — The if part is easily checked making use of the previous lemma.
The only if part follows by an easy recursion, after writing that P (z) =∏

i∈JnK(z − λi)mi . □
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Lemma A.7. — Let P (z), Q(z) ∈ K[z] be two coprime polynomials. Let
{λi : i ∈ JnK} be the set of roots of Q(z) and let {mi : i ∈ JnK} be their
respective multiplicities. Then, in K[[z, z−1]],

(A.2)
(
P (z)
Q(z)

)
|z|≪1

−
(
P (z)
Q(z)

)
|z|≫1

=
n∑

i=1

mi−1∑
pi=0

(−1)pi+1αi,pi+1

(pi)!λpi+1
i

δ(pi)
(
z

λi

)
,

where, for every i ∈ JnK and every pi ∈ JmiK, αi,pi is obtained from the
partial fraction decomposition

(A.3) P (z)
Q(z) = A(z) +

n∑
i=1

mi∑
pi=1

αi,pi

(z − λi)pi
,

in which A(z) ∈ K[z] is a polynomial of degree deg(P ) − deg(Q).

Proof. — Given the partial fraction decomposition (A.3), we can write

(A.4)
(
P (z)
Q(z)

)
|z|≪1

−
(
P (z)
Q(z)

)
|z|≫1

=
n∑

i=1

mi∑
pi=1

αi,pi

[(
1

(z − λi)pi

)
|z|≪1

−
(

1
(z − λi)pi

)
|z|≫1

]

=
n∑

i=1

mi∑
pi=1

(−1)piαi,pi

(pi − 1)!λpi

i

δ(pi−1)
(
z

λi

)
where we have used Lemma A.3 to derive the last equality. The claim
obviously follows. □

A.3. The structure power series G±ij(z)

In this last subsection, we derive identities involving the structure power
series G±ij(z) by applying Lemma A.7. Remember (see Remark 2.2) that in
type ȧ1, we have G±10(z) = G∓11(z).

Proposition A.8. — The following hold true in F[[z, z−1]].
(i) For every p ∈ Z − {2},

(A.5) G+
10(zqp)G+

11(zq−p) −G−10(z−1q−p)G−11(z−1qp)
q − q−1

= [2]q[p]q
[p− 2]q

[
δ
(
zq2−p

)
− δ

(
zqp−2)] .
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In particular, when p = 1, we have

(A.6) G+
10(zq)G+

11(zq−1) −G−10(z−1q−1)G−11(z−1q)
q − q−1

= [2]q
[
δ
(
zq−1)− δ (zq)

]
.

If p = 2, we have instead

(A.7) G+
10(zq2)G+

11(zq−2) −G−10(z−1q−2)G−11(z−1q2)
(q − q−1)2

= [2]2q [δ (z) − δ′ (z)] .

(ii) Similarly,

(A.8) G+
11(zq−2)2 −G−11(z−1q2)2

(q − q−1)2 = 2q−2[2]q
q − q−1 δ (z) + [2]2qδ′ (z) .

Proof. — In each case, it suffices to determine the partial fraction decom-
position of the l.h.s and to apply Lemma A.7 to get the desired result. □
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ŝl(2)”, J. Algebra 161 (1993), no. 2, p. 291-310.

[5] J. Ding & I. B. Frenkel, “Isomorphism of two realizations of quantum affine
algebra Uq(gl(n))”, Commun. Math. Phys. 156 (1993), no. 2, p. 277-300.

[6] J. Ding & K. Iohara, “Generalization of Drinfeld quantum affine algebras”, Lett.
Math. Phys. 41 (1997), no. 2, p. 181-193.

[7] J. Ding & S. Khoroshkin, “Weyl group extension of quantized current algebras”,
Transform. Groups 5 (2000), no. 1, p. 35-59.

[8] V. G. Drinfeld, unpublished note.
[9] B. Feigin, E. Feigin, M. Jimbo, T. Miwa & E. Mukhin, “Quantum continuous

gl∞: semiinfinite construction of representations”, Kyoto J. Math. 51 (2011), no. 2,
p. 337-364.

[10] B. Feigin, M. Jimbo, T. Miwa & E. Mukhin, “Quantum toroidal gl1-algebra: plane
partitions”, Kyoto J. Math. 52 (2012), no. 3, p. 621-659.

[11] ——— , “Quantum toroidal gl1 and Bethe ansatz”, J. Phys. A. Math. Theor. 48
(2015), no. 24, article no. 244001 (27 pages).

[12] V. Ginzburg, M. Kapranov & É. Vasserot, “Langlands reciprocity for algebraic
surfaces”, Math. Res. Lett. 2 (1995), no. 2, p. 147-160.

TOME 0 (0), FASCICULE 0



64 Robin ZEGERS & Elie MOUNZER

[13] N. Guay, H. Nakajima & C. Wendlandt, “Coproduct for Yangians of affine Kac-
Moody algebras”, Adv. Math. 338 (2018), p. 865-911.

[14] D. Hernandez, “Representations of quantum affinizations and fusion product”,
Transform. Groups 10 (2005), no. 2, p. 163-200.

[15] ——— , “Quantum toroidal algebras and their representations”, Sel. Math., New
Ser. 14 (2009), no. 3-4, p. 701-725.

[16] J. C. Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics,
vol. 6, American Mathematical Society, 1996, viii+266 pages.

[17] V. Kac, Vertex algebras for beginners, second ed., University Lecture Series, vol. 10,
American Mathematical Society, 1998, vi+201 pages.

[18] I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge
Tracts in Mathematics, vol. 157, Cambridge University Press, 2003, x+175 pages.

[19] K. Miki, “Toroidal braid group action and an automorphism of toroidal algebra
Uq(sln+1,tor)(n ⩾ 2)”, Lett. Math. Phys. 47 (1999), no. 4, p. 365-378.

[20] ——— , “A (q, γ) analog of the W1+∞ algebra”, J. Math. Phys. 48 (2007), no. 12,
article no. 123520 (35 pages).

[21] H. Nakajima, “Quiver varieties and finite-dimensional representations of quantum
affine algebras”, J. Am. Math. Soc. 14 (2001), no. 1, p. 145-238.

[22] A. Negut, “Quantum toroidal and shuffle algebras, R-matrices and a conjecture of
Kuznetsov”, 2013, https://arxiv.org/abs/1302.6202v2.

[23] O. Schiffmann, “Drinfeld realization of the elliptic Hall algebra”, J. Algebr. Comb.
35 (2012), no. 2, p. 237-262.

[24] M. Varagnolo & É. Vasserot, “Schur duality in the toroidal setting”, Commun.
Math. Phys. 182 (1996), no. 2, p. 469-483.

[25] R. Zegers & E. Mounzer, “Weight-finite modules over the quantum affine and
double quantum affine algebras of type a1”, Algebr. Represent. Theory 25 (2022),
no. 6, p. 1631-1684.

Manuscrit reçu le 27 octobre 2020,
accepté le 2 octobre 2023.

Robin ZEGERS
Université Paris-Saclay, CNRS, IJCLab
91405, Orsay (France)
robin.zegers@universite-paris-saclay.fr
Elie MOUNZER
Université Paris-Saclay, CNRS, IJCLab
91405, Orsay (France)

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/1302.6202v2
mailto:robin.zegers@universite-paris-saclay.fr

	1. Introduction
	Notations and conventions

	2. The quantum toroidal algebra of type a1 and its completion
	2.1. Definition
	2.2. Automorphisms of Uq(a1)
	2.3. The completions Uq(a1) and Uq(a1)otime m >=2
	2.4. Continuous Lusztig automorphisms
	2.5. Topological Hopf algebra structure on Uq(a1)
	2.6. Non-degenerate Hopf algebra pairing

	3. Double quantum affinization in type a1
	3.1. Definition of Uq(a1)
	3.2. The subalgebra Uq0(a1) and the elliptic Hall algebra
	3.3. Uq(a1) subalgebras of Üq(a1)
	3.4. Automorphisms of Üs'(A1)
	3.5. Triangular decomposition of Üq(a1)
	3.6. Weight-finite highest t-weight modules
	3.7. Topological Hopf algebra structure on üq'(a1)

	4. Doubly Affine Damiani–Beck isomorphism
	4.1. Double loop generators
	4.2. Exchange relations
	4.3. Weight grading relations
	4.4. The central elements Gamma m>2 +- (z)
	4.5. Relations in Psi-1 (Üq0(a1)) 
	4.6. The Serre relations of the elliptic Hall algebra

	Appendix A. Formal distributions
	A.1. Definitions and main properties
	A.2. Laurent expansion and the Dirac formal distribution
	A.3. The structure power series Gij pm (z)

	References

