Fredholm backstepping for critical operators and application to rapid stabilization for the linearized water waves
[Transformation de backstepping de type Fredholm pour des opérateurs critiques et application à la stabilisation rapide de l’équation linéarisée des « water waves »]
Annales de l'Institut Fourier, Online first, 78 p.

La transformation de backstepping de type Fredholm, introduite par Coron et Lü, s’est rapidement développée au cours de la dernière décennie et est devenue un outil puissant pour montrer la stabilisation rapide d’une équation. Sa force réside dans son approche systématique, permettant de déduire la stabilisation rapide à partir de la contrôlabilité approchée. L’existence d’une telle transformation, reposant de façon clé sur l’existence d’une base de Riesz associée, est cependant limitée à des opérateurs de la forme |D x | α pour α>3/2. Nous présentons ici une nouvelle méthode de compacité/dualité, s’appuyant sur l’alternative de Fredholm, pour franchir ce seuil α=3/2 dans le cas d’opérateurs anti-adjoint satisfaisait α>1. L’illustration de cette nouvelle méthode est démontrée pour obtenir la stabilisation rapide de l’équation linéarisée des water waves présentant un opérateur d’ordre critique α=3/2.

Fredholm-type backstepping transformation, introduced by Coron and Lü, intensively developed over the last decade and has become a powerful tool for rapid stabilization. Its strength lies in its systematic approach, allowing to deduce rapid stabilization from approximate controllability. But limitations to prove the existence of a Fredholm backstepping transformation exist with the current approach for operators of the form |D x | α for α(1,3/2]. We present here a new compactness/duality method which hinges on Fredholm’s alternative to overcome the α=3/2 threshold. More precisely, the compactness/duality method allows to prove the existence of a Riesz basis for the backstepping transformation for skew-adjoint operators satisfying α>1, a key step in the construction of the Fredholm backstepping transformation, where the usual methods only work for α>3/2. The illustration of this new method is shown on the rapid stabilization of the linearized capillary-gravity water waves equation exhibiting an operator of critical order α=3/2.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3690
Classification : 35S50, 76B15, 93B05
Keywords: Water waves, compactness/duality method, Fredholm transformation, backstepping, rapid stabilization
Mots-clés : Capillarité/gravité, méthode de dualité/compacité, transformation de Fredholm, backstepping, stabilisation rapide

Gagnon, Ludovick 1 ; Hayat, Amaury 2 ; Xiang, Shengquan 3 ; Zhang, Christophe 1

1 Université de Lorraine, CNRS, Inria équipe SPHINX, F-54000 Nancy (France)
2 CERMICS, École des Ponts ParisTech, 6 - 8, Avenue Blaise Pascal, Cité Descartes-Champs sur Marne, 77455 Marne la Vallée (France)
3 School of Mathematical Sciences, Peking University, 100871, Beijing, (P. R. China)
@unpublished{AIF_0__0_0_A150_0,
     author = {Gagnon, Ludovick and Hayat, Amaury and Xiang, Shengquan and Zhang, Christophe},
     title = {Fredholm backstepping for critical operators and application to rapid stabilization for the linearized water waves},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3690},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Gagnon, Ludovick
AU  - Hayat, Amaury
AU  - Xiang, Shengquan
AU  - Zhang, Christophe
TI  - Fredholm backstepping for critical operators and application to rapid stabilization for the linearized water waves
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3690
LA  - en
ID  - AIF_0__0_0_A150_0
ER  - 
%0 Unpublished Work
%A Gagnon, Ludovick
%A Hayat, Amaury
%A Xiang, Shengquan
%A Zhang, Christophe
%T Fredholm backstepping for critical operators and application to rapid stabilization for the linearized water waves
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3690
%G en
%F AIF_0__0_0_A150_0
Gagnon, Ludovick; Hayat, Amaury; Xiang, Shengquan; Zhang, Christophe. Fredholm backstepping for critical operators and application to rapid stabilization for the linearized water waves. Annales de l'Institut Fourier, Online first, 78 p.

[1] Alazard, Thomas Stabilization of the water-wave equations with surface tension, Ann. PDE, Volume 3 (2017) no. 2, 17, 41 pages | DOI | MR | Zbl

[2] Alazard, Thomas Stabilization of gravity water waves, J. Math. Pures Appl., Volume 114 (2018), pp. 51-84 | DOI | MR | Zbl

[3] Alazard, Thomas; Baldi, Pietro; Han-Kwan, Daniel Control of water waves, J. Eur. Math. Soc., Volume 20 (2018) no. 3, pp. 657-745 | DOI | MR | Zbl

[4] Alazard, Thomas; Burq, Nicolas; Zuily, Claude On the water-wave equations with surface tension, Duke Math. J., Volume 158 (2011) no. 3, pp. 413-499 | DOI | MR | Zbl

[5] Balogh, Andras; Krstić, Miroslav Infinite dimensional backstepping-style feedback transformations for a heat equation with an arbitrary level of instability, Eur. J. Control, Volume 8 (2002) no. 3, pp. 165-175 | DOI | Zbl

[6] Barbu, V. Controllability and stabilization of parabolic equations, Progress in Nonlinear Differential Equations and their Applications. Subseries in Control, 90, Birkhäuser/Springer, 2018, x+226 pages | DOI | MR | Zbl

[7] Bardos, Claude; Lebeau, Gilles; Rauch, Jeffrey Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | MR | Zbl

[8] Beauchard, Karine; Laurent, Camille Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., Volume 94 (2010) no. 5, pp. 520-554 | DOI | MR | Zbl

[9] Breiten, Tobias; Kunisch, Karl; Rodrigues, Sérgio S. Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh-Nagumo type, SIAM J. Control Optim., Volume 55 (2017) no. 4, pp. 2684-2713 | DOI | MR | Zbl

[10] Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations, Universitext, 2, Springer, 2011, xiv+599 pages | DOI | MR | Zbl

[11] Christensen, Ole An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser, 2003, xxii+440 pages | DOI | MR | Zbl

[12] Coron, Jean-Michel Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007, xiv+426 pages | DOI | MR | Zbl

[13] Coron, Jean-Michel Stabilization of control systems and nonlinearities, Proceedings of the 8th International Congress on Industrial and Applied Mathematics, Higher Education Press (2015), pp. 17-40 | MR

[14] Coron, Jean-Michel; Gagnon, Ludovick; Morancey, Morgan Rapid stabilization of a linearized bilinear 1-D Schrödinger equation, J. Math. Pures Appl., Volume 115 (2018), pp. 24-73 | DOI | MR | Zbl

[15] Coron, Jean-Michel; Hayat, Amaury; Xiang, Shengquan; Zhang, Christophe Stabilization of the linearized water tank system, Arch. Ration. Mech. Anal., Volume 244 (2022) no. 3, pp. 1019-1097 | DOI | MR | Zbl

[16] Coron, Jean-Michel; Hu, Long; Olive, Guillaume Stabilization and controllability of first-order integro-differential hyperbolic equations, J. Funct. Anal., Volume 271 (2016) no. 12, pp. 3554-3587 | DOI | MR | Zbl

[17] Coron, Jean-Michel; Hu, Long; Olive, Guillaume; Shang, Peipei Boundary stabilization in finite time of one-dimensional linear hyperbolic balance laws with coefficients depending on time and space, J. Differ. Equations, Volume 271 (2021), pp. 1109-1170 | DOI | MR | Zbl

[18] Coron, Jean-Michel; Lü, Qi Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right, J. Math. Pures Appl., Volume 102 (2014) no. 6, pp. 1080-1120 | DOI | MR | Zbl

[19] Coron, Jean-Michel; Lü, Qi Fredholm transform and local rapid stabilization for a Kuramoto–Sivashinsky equation, J. Differ. Equations, Volume 259 (2015) no. 8, pp. 3683-3729 | DOI | MR | Zbl

[20] Coron, Jean-Michel; Trélat, Emmanuel Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim., Volume 43 (2004) no. 2, pp. 549-569 | DOI | MR | Zbl

[21] Gagnon, Ludovick; Hayat, Amaury; Xiang, Shengquan; Zhang, Christophe Fredholm transformation on Laplacian and rapid stabilization for the heat equation, J. Funct. Anal., Volume 283 (2022) no. 12, 109664, 67 pages | DOI | MR | Zbl

[22] Gagnon, Ludovick; Lissy, Pierre; Marx, Swann A Fredholm transformation for the rapid stabilization of a degenerate parabolic equation, SIAM J. Control Optim., Volume 59 (2021) no. 5, pp. 3828-3859 | DOI | MR | Zbl

[23] Haraux, Alain Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire, J. Math. Pures Appl., Volume 68 (1989) no. 4, pp. 457-465 | MR | Zbl

[24] Hayat, Amaury PI controllers for the general Saint-Venant equations, J. Éc. Polytech., Math., Volume 9 (2022), pp. 1431-1472 | DOI | Numdam | MR | Zbl

[25] Hayat, Amaury; Shang, Peipei A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope, Automatica, Volume 100 (2019), pp. 52-60 | DOI | MR | Zbl

[26] Hayat, Amaury; Shang, Peipei Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm, J. Math. Pures Appl., Volume 153 (2021), pp. 187-212 | DOI | MR | Zbl

[27] Komornik, Vilmos Exact controllability and stabilization. The multiplier method, Research in Applied Mathematics, Masson; John Wiley & Sons, 1994, viii+156 pages | MR | Zbl

[28] Komornik, Vilmos Rapid boundary stabilization of linear distributed systems, SIAM J. Control Optim., Volume 35 (1997) no. 5, pp. 1591-1613 | DOI | MR | Zbl

[29] Krieger, Joachim; Xiang, Shengquan Boundary stabilization of the focusing NLKG equation near unstable equilibria: radial case, Pure Appl. Anal., Volume 5 (2023) no. 4, pp. 833-894 | DOI | MR | Zbl

[30] Krstić, Miroslav; Smyshlyaev, Andrey Boundary control of PDEs. A course on backstepping designs, Advances in Design and Control, 16, Society for Industrial and Applied Mathematics, 2008, x+192 pages | DOI | MR | Zbl

[31] Lannes, David Well-posedness of the water-waves equations, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 605-654 | DOI | MR | Zbl

[32] Lannes, David The water waves problem. Mathematical analysis and asymptotics, Mathematical Surveys and Monographs, 188, American Mathematical Society, 2013, xx+321 pages | DOI | MR | Zbl

[33] Lasiecka, Irena; Triggiani, Roberto Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon, Encyclopedia of Mathematics and Its Applications, 75, Cambridge University Press, 2000 | DOI | MR | Zbl

[34] Pazy, Amnon Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer, 1983, viii+279 pages | DOI | MR | Zbl

[35] Reid, Russell M. Control time for gravity-capillary waves on water, SIAM J. Control Optim., Volume 33 (1995) no. 5, pp. 1577-1586 | DOI | MR | Zbl

[36] Su, Pei Asymptotic behaviour of a linearized water waves system in a rectangle, Asymptotic Anal., Volume 131 (2023) no. 1, pp. 83-108 | DOI | MR | Zbl

[37] Su, Pei; Tucsnak, Marius; Weiss, George Stabilizability properties of a linearized water waves system, Syst. Control Lett., Volume 139 (2020), 104672, 10 pages | DOI | MR | Zbl

[38] Sz.-Nagy, Béla Perturbations des transformations linéaires fermées, Acta Sci. Math., Volume 14 (1951), pp. 125-137 | MR | Zbl

[39] Trélat, Emmanuel; Wang, Gengsheng; Xu, Yashan Characterization by observability inequalities of controllability and stabilization properties, Pure Appl. Anal., Volume 2 (2020) no. 1, pp. 93-122 | DOI | MR | Zbl

[40] Tucsnak, Marius; Weiss, George Observation and control for operator semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2009, xii+483 pages | DOI | MR | Zbl

[41] Urquiza, Jose Manuel Rapid exponential feedback stabilization with unbounded control operators, SIAM J. Control Optim., Volume 43 (2005) no. 6, pp. 2233-2244 | DOI | MR | Zbl

[42] Vest, Ambroise Rapid stabilization in a semigroup framework, SIAM J. Control Optim., Volume 51 (2013) no. 5, pp. 4169-4188 | DOI | MR | Zbl

[43] Xiang, Shengquan Small-time local stabilization of the two-dimensional incompressible Navier–Stokes equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 40 (2023) no. 6, pp. 1487-1511 | DOI | MR | Zbl

[44] Xiang, Shengquan Quantitative rapid and finite time stabilization of the heat equation, ESAIM, Control Optim. Calc. Var., Volume 30 (2024), 40, 25 pages | DOI | MR | Zbl

[45] Xu, Cheng-Zhong; Weiss, George Eigenvalues and eigenvectors of semigroup generators obtained from diagonal generators by feedback, Commun. Inf. Syst., Volume 11 (2011) no. 1, pp. 71-104 | MR | Zbl

[46] Zakharov, V. E. Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., Volume 9 (1968), pp. 190-194 | DOI

[47] Zhang, Christophe Finite-time internal stabilization of a linear 1-D transport equation, Syst. Control Lett., Volume 133 (2019), 104529, 8 pages | DOI | MR | Zbl

[48] Zhang, Christophe Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback, Math. Control Relat. Fields, Volume 12 (2022) no. 1, pp. 169-200 | DOI | MR | Zbl

[49] Zhu, Hui Control of three dimensional water waves, Arch. Ration. Mech. Anal., Volume 236 (2020) no. 2, pp. 893-966 | DOI | MR | Zbl

Cité par Sources :