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FREDHOLM BACKSTEPPING FOR CRITICAL
OPERATORS AND APPLICATION TO RAPID

STABILIZATION FOR THE LINEARIZED WATER
WAVES

by Ludovick GAGNON, Amaury HAYAT,
Shengquan XIANG & Christophe ZHANG (*)

Abstract. — Fredholm-type backstepping transformation, introduced by Coron
and Lü, intensively developed over the last decade and has become a powerful tool
for rapid stabilization. Its strength lies in its systematic approach, allowing to de-
duce rapid stabilization from approximate controllability. But limitations to prove
the existence of a Fredholm backstepping transformation exist with the current
approach for operators of the form |Dx|α for α ∈ (1, 3/2]. We present here a new
compactness/duality method which hinges on Fredholm’s alternative to overcome
the α = 3/2 threshold. More precisely, the compactness/duality method allows to
prove the existence of a Riesz basis for the backstepping transformation for skew-
adjoint operators satisfying α > 1, a key step in the construction of the Fredholm
backstepping transformation, where the usual methods only work for α > 3/2.
The illustration of this new method is shown on the rapid stabilization of the lin-
earized capillary-gravity water waves equation exhibiting an operator of critical
order α = 3/2.

Résumé. — La transformation de backstepping de type Fredholm, introduite
par Coron et Lü, s’est rapidement développée au cours de la dernière décennie
et est devenue un outil puissant pour montrer la stabilisation rapide d’une équa-
tion. Sa force réside dans son approche systématique, permettant de déduire la
stabilisation rapide à partir de la contrôlabilité approchée. L’existence d’une telle
transformation, reposant de façon clé sur l’existence d’une base de Riesz associée,
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est cependant limitée à des opérateurs de la forme |Dx|α pour α > 3/2. Nous pré-
sentons ici une nouvelle méthode de compacité/dualité, s’appuyant sur l’alternative
de Fredholm, pour franchir ce seuil α = 3/2 dans le cas d’opérateurs anti-adjoint
satisfaisait α > 1. L’illustration de cette nouvelle méthode est démontrée pour
obtenir la stabilisation rapide de l’équation linéarisée des water waves présentant
un opérateur d’ordre critique α = 3/2.

1. Introduction

Since its introduction by Coron and Lü for the rapid stabilization of the
Korteweg-de Vries equation [18] and Kuramoto–Sivashinsky equation [19],
the Fredholm-type backstepping transformation has been applied success-
fully in the past decade for the rapid stabilization of a large class of equa-
tions. It consists in finding an isomorphism-feedback pair (T,K) where K
is the feedback operator and T maps a system of the form,

∂tu = Au+BKu,(1.1)

to the rapidly exponentially stable system,

∂tv = (A− λI)v,(1.2)

where A is the generator of a strongly continuous semigroup, B is an
unbounded operator and λ is an arbitrarily large positive number. Com-
pared with the original Volterra transformation introduced by Krstić and
Balogh [5], the Fredholm transformation possesses the advantage of pre-
senting a systematic approach to prove the rapid stabilization based on
spectral properties of the spatial operator A and from suitable controlla-
bility assumptions. However, the classical approach for the Fredholm trans-
formation fails to deal with operators A that have eigenvalues scaling as nα

with α ∈ (1, 3/2], for instance, operators of the form |Dx|α for α ∈ (1, 3/2].
Indeed, one key step in proving the existence of the Fredholm transforma-
tion T is to prove that the family (Tφn)n is a Riesz basis of the state space,
where,

{(φn, λn)}n∈N are the eigenmodes of the spatial operator A.

The classical approach refers to the way of tackling the existence of T by
proving that the family (Tφn)n is quadratically close to the eigenfunction
basis (φn)n (see Definition A.1 (3) for a precise statement). However, when
α ∈ (1, 3/2], the growth of the eigenvalues is too slow, preventing the use
of such criteria. Thus, for operators behaving as |Dx|α with α ∈ (1, 3/2],
the Fredholm alternative remains an open question.
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1.1. The compactness/duality method

In this paper we present a new method to answer this question. This
method is based on a new compactness/duality approach to prove that the
family (Tφn)n is indeed a Riesz basis in sharp spaces for the whole range
α > 1 of skew-adjoint operators. The challenging part in proving that the
family (Tφn)n is a Riesz basis is the coercivity estimate (see the left-hand
side estimate of (A.1)). We proceed with a contradiction argument to prove
this inequality. Using the expression of Tφn, we are able to prove that T can
be decomposed in an invertible part and a compact part. Then, the desired
uniform estimate can be deduced from the ω-independence property. A
further inspection of the duality between the ω-independence of (Tφn)n

in Hr and the density of (T ∗φn)n in (Hr)∗ ≃ H−r finally leads to the
required property(1) .

A second important step of our method is to deal with the so-called TB =
B uniqueness condition, introduced in [13] for finite-dimensional systems,
used implicitly in [18, 19]. It was first introduced explicitly for PDEs in [14]
to handle the nonlocal term arising from the distributed controls. In the
original approach, proposed by [18], and used since then for the Fredholm
alternative, the uniqueness condition is solved thanks to the quadratically
close property mentioned above. With this new method, we are able to
sidestep this limitation thanks to a fine decomposition of the TB = B

condition, which allows us to define the transformation T along with the
feedback law K.

Beyond the α = 3/2 threshold, this new method leads to sharp Riesz
basis properties for a large class of skew-adjoint operators, including Fourier
multiplier operators, as long as the high frequencies scale as nα for α > 1.
We apply this new strategy to prove the rapid stabilization of the linearized
capillary-gravity water waves equation, which exhibits a spatial operator
behaving like |Dx|3/2. This is an example corresponding to the critical case
α = 3/2 which remained out of reach until now.

1.2. Statement of the main results

We consider in this paper the rapid stabilization of the system (1.1), that
is to seek, for any λ > 0, a control feedback law w(t) = Ku(t, ·), such that

(1) In fact, this holds in more general spaces Hr and H−r that correspond exactly to
Hr and H−r when the operator A acts as a Fourier multiplier (see Section 1.8).

TOME 0 (0), FASCICULE 0
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the solution of (1.1) satisfies(2) ,

∥u(t)∥ ≲ e−λt ∥u0∥, ∀t ∈ (0,+∞).

We stress that the feedback law K is of finite rank, that is, we aim at
stabilizing system (1.1) with a finite number of scalar feedback controls.
More precisely, we do it with the minimal number of scalar controls for
which system (1.1) can be controllable, under suitable assumptions on the
control operator B (see Section 2 for more details).

The precise statement of our main results relies on the spectral prop-
erties of the operator A and on the regularity properties of the control
operator B such that it is admissible (see Assumption 2.1), and (1.1) is
controllable. In order to introduce the techniques used in the article and
to motivate the new compactness/duality method, we begin by giving a
simplified statement of our main results when the operator only has sim-
ple eigenvalues (the precise statements for the general case are found in
Section 2, see Theorems 2.6 and 2.9).

Theorem 1.1. — Let A be a skew-adjoint operator with simple eigen-
values satisfying (1.12) below, and in particular such that its eigenvalues λn

satisfy |λn| ∼ nα with α > 1. Let B ∈ H−α/2 satisfying the controllability
Assumption 2.1 below. Then, for any λ > 0, there exist a bounded linear
operator K ∈ L(Hα/2;C) and an operator T such that T is an isomorphism
from Hr to itself for any r ∈ (1/2 − α, α− 1/2) and maps the system,

∂tu = Au+BK(u),(1.3)
to the system

∂tv = Av − λv.

Consequently, the closed-loop system (1.3) is exponentially stable in Hr for
r ∈ (1/2 − α, α− 1/2) with decay rate λ.

Remark 1.2. — Here, the spaces Hs, defined properly in Section 1.8, are
defined from the eigenbasis of the operator A. They are such that H0 = H,
where H is a given Hilbert space, and D(A) = Hα. In particular, when the
spatial operator is defined as A = ih(|Dx|) over a compact one-dimensional
domain with periodic boundary conditions, with h an analytic function, and
H is chosen as L2(T;C), the spaces Hs correspond to the classical Sobolev
spaces Hs(T;C), denoted Hs(T) in the following. Thus, the spaces Hs are
a natural generalization of the classical Sobolev spaces, and the statement

(2) Throughout the article, a ≲ b denotes that there exists C > 0 such that a ⩽ Cb and
a ∼ b means that there exist c, C > 0 such that ca ⩽ b ⩽ Ca. When the quantities
involved depends on n ∈ N, the constants c, C > 0 are uniform with respect to n.

ANNALES DE L’INSTITUT FOURIER
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of our main results holds in this general framework. In the present article,
we exhibit the spaces Hs with the example of the linearized water waves
equation on the 1-dimensional torus T and highlight the correspondance
Hs = Hs(T).

The proof of Theorem 1.1 relies on our compactness/duality method,
allowing to prove the existence of a Fredholm operator for the backstepping
method as long as α > 1 (and in particular below the critical case α = 3/2).

1.3. The capillary-gravity water waves equation

One application of our main results is the rapid stabilization of the
linearized capillary-gravity water waves equation, which exhibits a skew-
adjoint operator of order α = 3/2. They are relevant for modelling the mo-
tion and stability of perfect fluids where the surface tension and capillarity
cannot be neglected; for instance for small characteristic scales or when
waves are breaking at certain wave frequencies ([32, 46]). The linearized
water waves equation writes (the full derivation from the free surface Euler
equation is done in Section 7),

(1.4) ∂tu(t) = L u(t) +Bw(t),

where

(1.5) L := −i
(
(g − ∂2

x)G[0, h]
)1/2

,

and where G[0, h] = |Dx| tanh(h|Dx|) is defined as a Fourier multiplier on
periodic functions. In (1.4), u is complex-valued, and the operator B =
(B1, B2) ∈ H−3/4 (which can be identified with H−3/4(T)) is real-valued.
In this setting, Assumption 2.1, given in Section 2, will give a sufficient
condition for the controllability of (1.4) in H0 = L2(T).

We prove, based on the main result of this paper, the rapid stabilization
of the linearized water waves equation (1.4) (see Corollaries 2.10 and 2.11
for a more precise statement):

Theorem 1.3 (Water waves equation). — Let B ∈ (H−3/4(T))2 sat-
isfying the controllability and admissibility Assumption 2.1 below. Then,
for any λ > 0, there exists a bounded linear operator K ∈ L(H3/4(T);C2)
and an operator T being an isomorphism from Hr(T) to itself for any
r ∈ (−1, 1) and mapping the closed-loop system

∂tu = L u+BK(u), (t, x) ∈ R+ × T,(1.6)

TOME 0 (0), FASCICULE 0
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to the system

∂tv = L v − λv, (t, x) ∈ R+ × T,

where L is the linearized water-wave operator given in (1.5). Consequently,
the closed-loop system (1.6) is exponentially stable in Hr(T) for any r ∈
(−1, 1).

1.4. The Fredholm-type backstepping method

Let us introduce the heuristics of the backstepping method for PDEs, as
well as the main steps of our proof. The backstepping method consists in
proving the existence of a feedback law w = Ku and an invertible operator
T that maps the solution u of the equation to be stabilized,

(1.7)
{
∂tu(t) = Au(t) +Bw(t),
u(0) = u0,

onto the solution v of an exponentially stable equation (due to the natural
dissipation of A and the strong damping effect of −λI),

(1.8)
{
∂tv(t) = (A− λI)v(t),
v(0) = v0,

where u(t) and v(t) = Tu(t) belong to a Hilbert space H, A is the generator
of a C0 semigroup over the state space, B is an unbounded operator satis-
fying some admissibility conditions (see, for instance, [40] for a definition)
and the control w(t) = Ku(t) is of feedback form to achieve stabilization.
Notice that if such T exists and is invertible, then the exponential decay is
proved by choosing v0 = Tu0,

∥u(t)∥ ⩽ ∥T−1∥∥v(t)∥ ≲ e(ω0−λ)t ∥T−1∥∥T∥∥u0∥,

with
ω0 = ω0(etA) := inf

t∈(0,∞)
log∥etA ∥L(H,H).

The main challenge is to find an isomorphism-feedback pair (T,K) such
that this mapping can be achieved. This problem is equivalent to find (T,K)
which solve formally,

(1.9) T (A+BK) = (A− λI)T,

obtained by taking formally the time derivative of v = Tu and using (1.7)
and (1.8).

ANNALES DE L’INSTITUT FOURIER
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The backstepping method was first introduced in finite dimension as
a chain of integrators for feedback laws [30], but was then extended to
PDEs by Krstić and Balogh [5] for Volterra transformations of the second
kind,

v(t, x) = Tu = u(t, x) −
∫ x

0
k(x, y)u(t, y) dy.

The abstract equation (1.9) is then transformed to a non-standard PDE
on the kernel k and most of the properties of the transformation T are de-
duced from the properties of the kernel k. In addition to leaving the classical
framework of Cauchy theory, the kernels resulting from the Volterra trans-
formation present boundary conditions on the diagonal k(x, x) that proves
to be very difficult to handle. Despite these difficulties, several methods
have been developed to solve the PDE on the kernel of the Volterra trans-
formation (successive approximations [30], explicit representations [30] or
method of characteristics [17]) leading to a rich literature, the invertibility
of the Volterra transformation being guaranteed.

More recently, the Fredholm-type transformation,

v(t, ·) = Tu(t, ·) = (Id +Tcomp)u(t, ·),

was introduced by Coron and Lü for the rapid stabilization of the Korteweg-
de Vries equation [18] and Kuramoto–Sivashinsky equation [19] by means of
the backstepping method. In this transformation, T is a Fredholm operator
with an invertible and a compact part. Although much more technical, the
Fredholm transformation provides a systematic approach to the backstep-
ping method based on the spectral properties of the operator A and the
controllability properties to prove the rapid stabilization for a large class
of equations.

Let us elaborate on the techniques involved with the backstepping method
with the Fredholm transformation. A first crucial step is to consider the so-
called uniqueness condition TB = B to change the abstract equation (1.9)
into a system of two equations,

TA+BK = (A− λI)T,(1.10)
TB = B.(1.11)

The uniqueness condition TB = B was first introduced in [13] to prove
the existence of (T,K) solving (1.10)–(1.11) in finite dimension, used im-
plicitly in [18, 19] and finally stated explicitly in [14] to remove nonlocal
terms involved in (1.9) for distributed controls. The proof of existence

TOME 0 (0), FASCICULE 0
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of an invertible transformation T over the state space and a feedback law
stabilizing (1.7) is then divided in the following steps:
Step 1: Let λ > 0 such that (λn + λ)n ∩ σ(A) = ∅. Notice that (1.10) is

equivalent to,

Tφn = Kn(A− (λn + λ)I)−1B,

where Kn = Kφn. We prove that,

T̃φn = (A− (λn + λ)I)−1B,

is a Riesz basis family of H.
Step 2: Let B =

∑
n bnφn. Use the Riesz basis properties to solve the

TB = B uniqueness condition in a suitable sense,

TB =
∑

n

bnTφn =
∑

n

bnKnT̃φn = B.

Step 3: Show from TB = B that (Kn)n is uniformly bounded from above
and below. Then, using operator equality, prove that T : H → H

is continuous and invertible.
Step 4: Thanks to the operator equality, the operator A + BK generates

a semigroup on H (and, in fact, it also generates semigroups in
Hβ with a certain range of β). Conclude on the rapid stabilization
using the operator equality.

Aside of the seemingly different approach of hyperbolic systems [15, 16, 17,
47, 48], the proof of Step 1 and 2 relied heavily in the literature on the
quadratically close criterion. Roughly speaking, it amounts to show, after
some computations, that∑

n∈N

∑
p∈N\{n}

1
|λn − λp + λ|2

< +∞

which holds if the eigenvalues λn of the operator A scales as nα with α >

3/2 but fails as soon as α ⩽ 3/2.
We introduce in this article the compactness/duality approach to over-

come the limitations of the quadratically close criterion coupled with ω-
independence/density properties. Indeed, this criterion corresponds to the
rather strong Hilbert–Schmidt criterion for compactness. It turns out that
the compactness part can be proved in a more general way, and we establish
the ω-independence thanks to a new duality observation, thus overcoming
the apparent limit of α > 3/2 (see Remark 4.9). This allows us to prove
Step 1 for skew-adjoint operators with eigenvalues scaling as nα (for in-
stance i|Dx|α) with α ∈ (1, 3/2].

ANNALES DE L’INSTITUT FOURIER
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Let us also stress that the TB = B uniqueness condition is more difficult
to handle than it seems since B is an unbounded operator. Indeed, if B
were to be bounded, then from,∑

n

bnKnT̃φn = B,

one would be tempted to deduce that the sequence bnKn belongs to ℓ2.
Moreover, the controllability assumption implies that the sequence of |bn|
is bounded from below (it is impossible from the assumption that B is
bounded but let us assume it is for the sake of the argument) and therefore
one would conclude that Kn ∈ ℓ2. But then, with the expression of T , it is
not difficult to prove that in this case that the transformation T would be
compact and therefore not invertible.

The proof of the decomposition of TB = B for B unbounded and ad-
missible still follows the same idea, with the slight modification that TB
is seen as a singular and bounded part. Then, one adjusts the behaviour
of Kn by hand by letting Kn ∼ c+ kn where c is independent of n. If the
Riesz basis is quadratically close to the eigenfunctions, then one obtains,∑

n

bnknT̃φn =
∑

n

bn(φn − T̃φn)

and the right-hand side is bounded in H using the quadratically close ar-
gument and the boundedness of the sequence bn in ℓ∞ (provided, roughly
speaking, by the admissibility of B). Without the quadratically close prop-
erty this direct argument fails. However, we prove here that even if the
Riesz basis is not quadratically close to the eigenfunctions, we are still able
to reach the same final conclusion by a close inspection of the left-hand
side. Steps 3 and 4 are obtained following standard techniques.

1.5. Related works on the backstepping with a Fredholm
transform

There are essentially two type of systems in the literature for which rapid
stabilization was achieved through the backstepping method with a Fred-
holm transformation: either the operator A is of first order (α = 1) or of
second order or higher (α ⩾ 2). We have so far excluded from our discus-
sion the case α = 1 as it seems to be a very specific case with techniques of
its own. Indeed, the rapid stabilization for hyperbolic systems was estab-
lished in [16, 17] through direct methods or by identifying the isomorphism
applied to the eigenbasis leading to the Riesz basis [15, 47, 48]. The other
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results found in the literature were concerned with operators such that
α ⩾ 2, and in these cases the Riesz basis properties was proved through the
quadratically close criterion, thanks to the sufficient growth of the eigenval-
ues. Following the steps described in the previous section, the rapid stabi-
lization was obtained for the linearized bilinear Schrödinger equation [14],
the KdV equation [18], the Kuramoto–Sivashinksi equation [19], a degen-
erate parabolic operator [22] and finally the heat equation for which the
backstepping is proved in sharp spaces [21]. The variety of the PDEs for
which this methodology can be applied tends to show that there exists an
abstract theory for operators of order α > 1. Theorem 1.1 demonstrates this
fact for skew-adjoint operators for α > 1. This abstract setting could allow
to lift some difficult questions raised when trying to apply the backstepping
with the Volterra transformation. One such difficulty is seen for instance for
degenerate parabolic equations ([22]), where the Fredholm transformation
lead to the study of well-known spectral properties of the Sturm–Liouville
equation, whereas the PDE on the kernel of the Volterra transformation
amounts to describe the propagation of bicharacteristics from a boundary
satisfying a degenerate equation, a notoriously difficult problem.

Finally, we shall remark that there are many other useful stabilization
techniques in the literature that may also apply to similar systems, for
instance the damping stabilization of waves [1, 7, 29], the multiplier meth-
ods [27], Riccati theory [6, 9, 33], Gramian method [41], equivalence be-
tween observability and stabilizability [39], quantitative finite time stabi-
lization [43, 44], various Lyapunov approaches [20, 24, 25, 26] and among
others.

1.6. Related works on controllability and stabilization of the
water waves system

A considerable amount of literature exists on the control of fluids. How-
ever, few works address the controllability and stabilization of the water
waves. Recently, this subject has drawn more and more attention. The con-
trollability properties of these systems was first investigated in [35] using
the moment method, and the controllability assumption was sharpened to
quasi-linear systems in [3], where the control is localized in the domain.
A recent work [49] investigated the water waves in 3-D, highlighting the
need for the geometric control condition for the controllability (the 2-D
case satisfying automatically the geometric control condition as the control
problem reduces to a 1-D equation).

ANNALES DE L’INSTITUT FOURIER
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Concerning stabilization, despite fruitful stabilization results were ob-
tained in the literature for fluids, only few result seems to exist regarding
the water waves. We may refer to the asymptotic stabilization and expo-
nential stabilization results of water waves systems [1, 2] that are based on
external “damping” forces and “observability” of the closed-loop systems.
Alternatively, stabilizability properties of linearized water waves systems
with controls acting on the boundary have been recently studied in [36, 37].
Our contribution, as a direct consequence of the Fredholm backstepping
transformation, is to obtain a rapid stabilization result, that is exponential
stability with arbitrarily decay rate.

1.7. Outline of the paper

The paper is divided in the following way. First, the main results are
stated precisely in Section 2 as well as their possible extensions, and the
precise strategy of the proof is presented in Section 3. Then, the proof
is further divided in two parts. The first part deals with the proof of the
main theorems in the abstract settings. In particular, Section 4 begins with
the statement of technical estimates used throughout the article as well
as the proof of the Riesz basis (Step 1 of Section 1.4) using the compact-
ness/duality argument. In Section 5 we prove that the uniqueness condition
TB = B holds in H−1/2−ε, ε ∈ (0, 1/2) (Step 2) and define properly the
feedback law K, the isomorphism T (Step 3) as well as the operator equal-
ity (1.10). The well-posedness and rapid stabilization of the closed-loop
system (2.9) is proved (Step 4) in Section 6 and in turn proves that the
sharp spaces for which the backstepping transform is established coincide
with the sharp space for the well-posedness of the closed-loop system. The
second part of the paper proves the rapid stabilization of the linearized
water waves. The derivation of the system is first detailed, and then the
abstract setting is shown to fit the functional framework of the linearized
water waves, allowing to apply the main abstract results of this paper. Fi-
nally, Appendix A recalls the basic definitions for Riesz basis, Appendix B
proves the exact controllability of a class of skew-adjoint operators. Appen-
dix C is devoted to the extension from Assumption 2.1 to Assumption 2.7,
Appendix D–F are dedicated to technical proofs on the Fredholm transform
for the backstepping method already existing in the literature.

TOME 0 (0), FASCICULE 0
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1.8. Notations and spaces

Let H be a Hilbert space and A : D(A) → H be an unbounded operator.
Recall the definition of the domain of A:

D(A) = {f ∈ H, Af ∈ H} .

We will assume throughout this paper that A is densely defined, and that
it is skew-adjoint so that its eigenvalues are imaginary, and eigenvectors
associated to distinct eigenvalues are orthogonal. See [10, 12] for these
classical functional analysis definitions.

1.8.1. Simple eigenvalues case

We first consider the case that all eigenvalues λn of the operator A are
simple. Thanks to the fact that A is skew-adjoint, we denote (φn)n an
orthonormal basis of eigenvectors such that,

Aφn = λnφn, ∥φn∥H = 1,∀n ∈ N∗.

We make the following crucial assumption on the growth of the eigenvalues:

(1.12) P(α) :

There exists α > 1 such that
|λn| + 1 ∼ nα, n ∈ N∗,

|n1 − n2|nα−1
1 ≲ |λn1 − λn2 |, ∀n1, n2 ∈ N∗.

It follows from this assumption that A has compact resolvent. As a conse-
quence, it has a bounded resolvent and is thus closed [10]. As it is skew-
adjoint, it is dissipative on D(A), and its adjoint as well. Then, by the
Lumer–Phillips theorem [34], A generates a strongly continuous semigroup
on H. Now, for s ∈ R we can define the spaces Hs as,

(1.13) Hs :=
{
a =

∑
n∈N∗

anφn :
∑

n∈N∗

|n|2s|an|2 < +∞

}
,

endowed with the norms,

∥a∥2
Hs :=

∑
n∈N∗

|n|2s|an|2 < +∞.

Finally, the inner product ⟨· , ·⟩Hs is well-defined for any,

f =
∑

n∈N∗

fnφn, g =
∑

n∈N∗

gnφn ∈ Hs,

it is given by,
⟨f, g⟩Hs =

∑
n∈N∗

(nsfn)(nsgn).

ANNALES DE L’INSTITUT FOURIER
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With this definition the spaces Hs acts like a Sobolev space but generated
by (φn)n∈N instead of the classical basis of sin and/or cosine functions.
Note that H0 = H since (φn)n∈N∗ is an orthonormal basis of H. For usual
cases where A = i|Dx|α (such as Schrödinger equation or the water waves
equation for instance) and the geometry considered is the torus, we can
simply choose H = L2(T) and then Hs = Hs(T) where Hs(T) is the
classical Sobolev space on the torus.

In general, let us point out the crucial embedding property, akin to
Sobolev embeddings: for any s ∈ R and any ε > 0, Hs+ε is compactly
embedded in Hs, each space being endowed with its corresponding norm
as defined above. Indeed, let us define the (finite-rank) projections and the
continuous injection:

PN : f =
∑
n∈N

fnφn ∈ H 7−→
N∑

n=0
fnφn,

ι : Hs+ε −→ Hs.

Let f =
∑

n∈N fnφn ∈ Hs+ε, then

∥ιf−PNf∥2
Hs =

∑
n⩾N+1

n2s|fn|2 =
∑

n⩾N+1
n−2εn2s+2ε|fn|2 ⩽ N−2ε∥f∥2

Hs+ε .

Hence, ∥ι − PN ∥L(Hs+ε,Hs) ⩽ N−ε −−−−→
N→∞

0. Hence, the injection ι is the
uniform limit of a sequence of finite-rank operators. By [10, Corollary 6.2],
it is thus compact.

Moreover, in the general setting, given the property P (α) given by (1.12),

D(A) = Hα.

Notice that when s ∈ Z, we have,

D(As) = Hαs,

however for s ∈ R\Z, As is not a priori well-defined as A is not self-adjoint.

1.8.2. Bounded multiplicities case

In this subsection, we extend these notations to the case where A has
eigenvalues with multiplicities higher than 1. This is, for example, the case
for Laplace operator on the one-dimensional torus, but these notations hold
in the general setting. Let us assume that the eigenvalues of A have at most
multiplicity m ∈ N∗. Then, there exists a decomposition of H in a finite
direct sum of subspaces Hi, i ∈ {1, . . . ,m}, invariant under the action
of the unitary group etA, on which A has a spectral decomposition with
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14 L. Gagnon, A. Hayat, S. Xiang & C. Zhang

simple eigenvalues (as in the previous subsection). For more details on how
to explicitly construct this decomposition, see Appendix G.

Then, on each Hi, there exists a basis of eigenvectors of A that we denote
(φi

n)Ii
and we can define the nested spaces Hs

i as in (1.13) with (φi
n)Ii

instead of (φn)n∈N. More precisely, for i ∈ {1, . . . ,m}, for s ∈ R we define
the spaces Hs

i as,

(1.14) Hs
i :=

{
a =

∑
n∈Ii

anφ
i
n :

∑
n∈Ii

|n|2s|an|2 < +∞

}
,

endowed with the norms,

∥a∥2
Hs

i
:=
∑
n∈Ii

|n|2s|an|2 < +∞.

For any real number s, we define,

(1.15) Hs := Hs
1 ⊕ · · · ⊕ Hs

m.

Moreover, we can also define, for any s⃗ = (s1, . . . , sm) ∈ Rm, the space,

Hs⃗ := Hs1
1 ⊕ · · · ⊕ Hsm

m .

Without loss of generality we can assume that there existsml ∈ {1, . . . ,m}
such that Hi is infinite dimensional and Ii = N∗ if i ∈ {1, . . . ,ml}, and Hi

is finite dimensional if i ∈ {ml + 1, . . . ,m} with Ii = {1, . . . , Ni}.
Finally, we require that on each Hi, with i ∈ {1, . . . ,ml}, the ordered

eigenvalues of A satisfy the property P(αi) for some αi > 1.
More precisely,

Assumption 1.4. — For any i ∈ {1, . . . ,ml}, there exists αi > 1 such
that P (αi) holds for (λi

n)n∈N∗ .

Remark 1.5. — The definition of the space Hs
i , with the renumbering of

the eigenvalues, is made so that it behaves like classical Sobolev spaces and
so that it is easier to deal with the coefficients of a function in some exotic
cases. Indeed, assume that λn = n, n ∈ N and that all the eigenvalues are
simple, except when n = m2,m ∈ N, in which case they are double. Then,
by the definition of H2, a function a belonging to H2 is such that

a =
∑
n∈N

anφ
2
n,

instead of,
a =

∑
n∈N

n=m2,m∈N

anφ
2
n,
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for a more classical definition of H2 without renumbering. This way, our
computations are uniform with respect of the multiplicity of the eigen-
values.

Remark 1.6. — Notice that the decomposition Hs in direct sum is not
unique. It may be written in multiple different ways, but from the functional
setting defined here, the computations are uniform with respect to the
different possible choice of definition of the spaces Hs

i . Moreover, notice
that the finite-dimensional spaces Hs

i for i ∈ {ml+1, . . . ,m} may be chosen
arbitrarily, as long as they remain of finite dimension. Since the existence
of the pair (Ti,Ki) for these finite dimensional spaces are tackled with a
finite dimensional result, our main results may be reinterpreted as a proof of
convergence of the infinite-dimensional reminder. This could be particularly
relevant for efficient finite-dimensional numerical methods.

2. Main results

Let us first introduce the assumptions leading to the main results. Notice
first that under the assumption of Section 1.8, D(A)∥·∥H = H and A is
densely defined. Therefore, the Lumer–Philips Theorem implies that A is
the infinitesimal generator of the semigroup eAt : H → H. Since A can be
continuously extended as an operator from Hs to Hs−α, s ∈ R, A is the
infinitesimal generator of the semigroup eAt : Hs → Hs with s ∈ R.

Regarding the control operator B, recall that we consider the case of a
finite number of scalar controls, with which system (1.1) can be control-
lable under suitable assumptions on A and B. In our study, we find that
when the eigenvalues are simple, one control suffices. In general, given a
decomposition of H in subspaces on which A has simple eigenvalues, using
one scalar control for each subspace suffices. The smallest required number
of scalar controls required is the smallest number of subspaces in such a
decomposition, which corresponds to the number m of subspaces in the de-
composition (1.15), that is, the highest multiplicity found in the spectrum
of A.
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We now consider(3) the control operator B = (B1, . . . , Bm) such that,
for any Bi ∈ H−αi/2

i , for any i ∈ {1, . . . ,m} and

Bi =
Ni∑

n=1
bi

nφ
i
n, in H−αi/2

i , for i ∈ {ml + 1, . . . ,m},

Bi =
∑

n∈N∗

bi
nφ

i
n, in H−αi/2

i , for i ∈ {1, . . . ,ml}.
(2.1)

and we formulate the following assumption:

Assumption 2.1. — The sequences (bi
n)i,n introduced in (2.1) satisfy

the following inequalities:

bi
n ̸= 0, for n ∈ {1, . . . , Ni}, i ∈ {ml + 1, . . . ,m},(2.2)

c1 < |bi
n| < c2, for i ∈ {1, . . . ,ml}, n ∈ N∗, for some constants c1, c2 > 0.

Remark 2.2. — Assumption 2.1 can be seen as an regularity assumption
linked to admissibility and exact controllability. It is natural in the sense
that the lower bound in Assumption 2.1 is necessary and sufficient to get the
exact controllability in H (with L2(0, T ) controls) (see the proof of Propo-
sition 2.5), while the upper bound on (bn)n is necessary to the admissibility
of the control operator (i.e., the existence of a mild solution in C0([0, T ];H)
to the system) as shown in [45] (see the specific condition [45, Section 2]).

Notice first that, under Assumption 2.1, the control system is well-posed
as the (potentially unbounded in Hs) control operator B : Cm → H−α/2 is
admissible in Hs for any s ⩽ 0 (and in particular in H).

Lemma 2.3. — Let A be a skew-adjoint operator such that Assump-
tion 1.4 holds. Assume the control operator B : Cm → H−α/2 satisfies
Assumption 2.1. Then B is admissible in H (and therefore in Hs for any
s ⩽ 0) that is, for any T > 0,

(2.3)

∥∥∥∥∥
∫ T

0
eA(T −t) Bw(t) dt

∥∥∥∥∥
H

⩽ C∥w∥L2(0,T ), ∀w ∈ L2((0, T );Cm).

Conversely, if the operator B is admissible, then there exists c > 0 such
that |bi

n| < c.

The proof of Lemma 2.3 is found in Appendix B.

Remark 2.4. — From the proof, Lemma 2.3 is easily extended for con-
trols w ∈ Hσ((0, T );Cm), σ ∈ R, and more general control operator B

(3) Throughout the paper, we shall denote Bi ∈ Hs
i as a shorthand for Bi : C → Hs

i .
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satisfying Assumption 2.7 below. But for the sake of conciseness, we re-
strict ourselves to controls in L2((0, T );Cm) and with control operators
satisfying Assumption 2.1.

From [40, Proposition 4.2.5] and Lemma 2.3, for any u0 ∈ H and w ∈
L2((0, T );Cm), the problem

(2.4)
{
∂tu(t) = Au(t) +Bw(t), t ∈ (0, T ),
u(0) = u0,

has a unique solution u ∈ C([0, T ];H). This solution is given by the
Duhamel formula,

u(t) = eAt u0 +
∫ t

0
eA(t−s) Bw(s) ds.

This framework allows us to deduce the exact small-time controllabil-
ity by the moments method using Haraux’s refined version of Ingham’s
inequality.

Proposition 2.5. — Let T > 0 and define the control system

(2.5) ∂tu(t) = Au(t) +Bw(t).

Assume that Assumption 1.4 and Assumption 2.1 hold. Then, there exists
some positive constant C > 0 such that for any (u0, uf ) ∈ (H)2 there exists
a control w ∈ L2((0, T );Cm) satisfying

∥w∥L2(0,T ) ⩽ C (∥u0∥H + ∥uf ∥H) ,

such that the unique solution of (2.5) with initial state u0 satisfies u(T ) =
uf in H.

The proof of Proposition 2.5 is postponed to the Appendix B.
Our main result is the following:

Theorem 2.6. — Let the spatial operator A such that Assumption 1.4
holds. Let B = (B1, . . . , Bm) ∈ H−α1/2

1 × · · · × H−αm/2
m such that As-

sumptions 2.1 holds and set α := mini αi. For any λ > 0, there exists an
explicit bounded linear operator K ∈ L(Hα1/2

1 × · · · × Hαm/2
m ;Cm) and an

isomorphism T from Hr to itself for r ∈ (1/2 − α, α − 1/2) that maps the
system

∂tu = Au+BK(u), (t, x) ∈ R+ × T,(2.6)
to the system

∂tv = Av − λv, (t, x) ∈ R+ × T.
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Consequently, the closed-loop system (2.6) is exponentially stable in Hr for
r ∈ (1/2 − α, α − 1/2) with decay rate λ. In particular it is exponentially
stable in H0 = H.

In fact, we are able to prove a more general result, as the regularity
Assumption 2.1 can be generalized to the following:

Assumption 2.7. — Let βi ∈ R. Let the operator B = (B1, . . . , Bm)
be such that Bi ∈ Hβi− αi

2
i . Then, assume the following conditions,

(2.7)


bi

n ̸= 0, for n ∈ {1, . . . , Ni}, i ∈ {ml + 1, . . . ,m},
and for some constants c1, c2 > 0,

c1n
−βi ⩽ |bi

n| ⩽ c2n
−βi , i ∈ {1, . . . ,ml}, n ∈ N∗,

Following the proof of Proposition 2.5 and an adaptation of Lemma 2.3
based on Assumption 2.7, we deduce from this hypothesis,

Proposition 2.8. — Let T > 0 and assume that Assumption 1.4 and
Assumption 2.7 hold. For any (u0, uf ) ∈ (Hr⃗)2 with r⃗ = (β1, . . . , βm), there
exists a control w ∈ L2((0, T );Cm) such that the unique solution of (2.5)
with initial state u0 satisfies u(T ) = uf in (Hr⃗)2.

Theorem 2.9. — Let the spatial operator A such that Assumption 1.4
holds. Let B = (B1, . . . , Bm) ∈ Hβ1− α1

2
1 × · · · × Hβm− αm

2
m such that As-

sumption 2.7 holds. For any λ > 0, there exists an explicit bounded linear
operator K ∈ L(Hβ1+ α1

2
1 ×· · ·×Hβm+ αm

2
m ;Cm) and an isomorphism T from

Hr⃗ to itself for any,

r⃗ = (β1 + r1, . . . , βm + rm) such that

ri ∈
(

1
2 − αi, αi − 1

2

)
,∀i ∈ {1, . . . ,ml},

ri ∈ R,∀i ∈ {ml + 1, . . . ,m}.

that maps the system,

∂tu = Au+BK(u), (t, x) ∈ R+ × T,(2.8)
to the system

∂tv = Av − λv, (t, x) ∈ R+ × T.

Consequently, the closed-loop system (2.8) is exponentially stable in Hr⃗

with decay rate λ. In particular it is exponentially stable in H0 = H pro-
vided that,

βi ∈
(

1
2 − αi, αi − 1

2

)
,∀i ∈ {1, . . . ,ml}.
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We shall remark here that the bounds are sharp in the sense that if,
for any i ∈ {1, . . . ,ml}, ri ⩾ βi + α − 1/2, then the unbounded opera-
tor A + BK does not anymore generate a strongly continuous semigroup
in Hr⃗ (see Section 6). We also underline that, while the isomorphism T

depends on the regularity of the state space Hr⃗, the feedback law is, sur-
prisingly, independent of r⃗. This independence was already noticed in [21].
To prove Theorem 2.9, we introduce the compactness-duality method to
free ourselves from the bound α = 3/2.

This result can be directly applied to the capillarity-gravity water waves
system. Indeed, given that the operator L defined in (1.5) is a Fourier mul-
tiplier defined on the torus, its eigenvectors are sin and cosine functions and
Hs = Hs(T) is a classical Sobolev space on the torus. Moreover, given (1.5)
one can check that all the eigenvalues of this operator have multiplicity 2,
except for the eigenvalue λ0 = 0 that has multiplicity 1. Hence m = ml = 2
and the operator satisfies Assumption 1.4 with α = 3/2. This is shown in
Appendix D.

Corollary 2.10 (Water waves equations – Backstepping transform).
Let B = (B1, B2) ∈ H−3/4

1 ×H−3/4
2 such that (2.2) holds. Then, for any λ >

0, there exists an explicit bounded linear operator K ∈ L(H3/4
1 ×H3/4

2 ;C2)
and an isomorphism T from Hr(T) to itself for any r ∈ (−1, 1) that maps
the system,

(2.9) ∂tu = L u+BK(u), (t, x) ∈ R+ × T,

to the system,

(2.10) ∂tv = L v − λv, (t, x) ∈ R+ × T,

where L is the linearized water-wave operator given in (1.5).

As direct consequence we can deduce the existence of an explicit control
law for the rapid exponential stabilization of the system (7.4).

Corollary 2.11 (Water waves equations – exponential stability). —
For any λ > 0, there exists an explicit feedback functional K ∈ L(H3/4

1 ×
H3/4

2 ;C2) such that for any r ∈ (−1, 1) and for any initial state u(t)|t=0 =
u0 ∈ Hr(T), the closed-loop system (2.9) has a unique solution
u ∈ C0([0,+∞);Hr(T)). In addition, this unique solution decays exponen-
tially with rate λ,

∥u(t, ·)∥Hr ≲ e−λt ∥u0∥Hr , ∀t ∈ (0,+∞).

As stated in the introduction, the system (7.4) is all the more interesting
as it represents the critical case α = 3/2 where the usual method fails.
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Remark 2.12 (Rapid stabilization in Hs(T) instead of L2(T)). — In
Corollaries 2.10 and 2.11 we chose H = L2(T), thus the feedback law
stabilizes the system in Hr for every r ∈ (−1, 1). However, if operators B1
and B2 have different regularity and satisfy instead (2.7) with β1 = β2 = s,
then, thanks to Theorem 2.9, we can construct feedback laws such that the
closed-loop system is stable in Hr+s for every r ∈ (−1, 1).

Other remarks about mass-like conservation condition and the stabiliza-
tion of the water-wave equations on a bounded domain can be found in
Section 7 dedicated to the case of the water-wave equations.

3. Strategy and outline

In this section, we briefly comment on the strategy to prove Theorem 2.9
which is the task of the next two sections, while the proof of Corollary 2.11
concerning the well-posedness and stability of the closed-loop system will
be discussed later on in Section 6. Given the decomposition of the space Hs

along sub-spaces Hs
i with i ∈ {1, . . . ,m}, showing Theorem 2.9 amounts to

proving the following proposition.

Proposition 3.1. — Let i ∈ {1, . . . ,m}. Let Bi ∈ Hβi− αi
2

i satisfy-
ing (2.7). For any λ > 0, there exists a bounded linear operator Ki ∈
L(Hβi+ αi

2
i ;C) and an isomorphism Ti from Hr

i to itself, for

r ∈ (βi + 1/2 − αi, βi + αi − 1/2),

which maps the system,

∂tu = Au+BiKi(u), u ∈ Hr
i ,(3.1)

to the system,

∂tv = Av − λv, v ∈ Hr
i .(3.2)

Indeed, if Proposition 3.1 holds, then the isomorphism-feedback pair
(T,K) of Theorem 2.9 is simply T = T1 ⊕· · ·⊕Tm and K = (K1, . . . ,Km).

Remark 3.2. — In the following we will select i ∈ {1, . . . ,ml} and work
with this fixed i. The case of i ∈ {ml + 1, . . . ,m} corresponding to a finite
dimensional space Hi can be tackled using a classical finite-dimensional
backstepping described below (see also [13]) and will not be described here.
For the reader’s convenience, we will also drop from now on the index i and
denote again Hr, α, β, H, K, T , φn instead of Hr

i , αi, βi, Hi, Ki, Ti, φi
n

respectively. Moreover, it suffices to consider the case that β = 0 (see
Appendix C for an extension to the case β ̸= 0)
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Before proving Proposition 3.1, let us make some formal observations to
get an intuition of the problem. To map the system (3.1) onto (3.2), what
we would like to do is to obtain (formally) the following operator equality,

(3.3) T (A+BK) = (A− λI)T.

As noted in [14, 19, 21], a good approach to this aim is to add a condition
on TB, and to require instead the two following operator equalities,

(3.4)
TA+BK = (A− λI)T,

TB = B,

in a certain sense to be specified. Note that (3.4) implies formally (3.3) and
requiring (3.4) instead of (3.3) allows to deal with operator equations that
are linear with (T,K). It also usually ensures the uniqueness of solution (see
for instance [21]). In finite dimension, (3.3) corresponds to an equivalent
formulation of the pole-shifting theorem [15, Section 2]. Applying the first
operator equality to the orthonormal basis of eigenvectors (φn)n∈N∗ gives,

(3.5) λn(Tφn) +BK(φn) = (A− λI)(Tφn),

where we used the fact that φn is an eigenvector of A and where λn is the
eigenvalue associated to φn. Observe that (3.5) is a differential equation on
(Tφn). Projecting now on a vector φp and recalling that bp = ⟨B,φp⟩, this
becomes,

(3.6) (λn + λ)⟨(Tφn), φp⟩ + ⟨B,φp⟩K(φn) = ⟨A(Tφn), φp⟩,
= ⟨(Tφn), A∗φp⟩
= λp⟨(Tφn), φp⟩.

This gives the following formal expression,

(3.7) Tφn =
∑

p∈N∗

⟨(Tφn), φp⟩φp = (−K(φn))
∑

p∈N∗

bpφp

λn − λp + λ
.

These formal calculations lead us to introduce the following notations
that will be used all along the proof. We define,

• The families

(3.8) qn :=
∑

p∈N∗

φp

λn − λp + λ
, Kn = K(φn), n ∈ N∗.

• The operator

(3.9) S : φn 7−→ qn.

Note that S is completely defined as an operator on Hr for a certain
range of r that will be considered later on in this paper (eventually,
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for r ∈ (1/2 − α, α − 1/2)). This is a consequence of (n−rφn)n∈N∗

being an orthonormal basis of Hr for any r ∈ R as well as direct
estimates on (qn)n∈N∗ .

• The operator

(3.10) τ : φn 7−→ bnφn.

Note that since bn are uniformly bounded from above and below,
this is an isomophism from H to H, and in fact also from Hr to Hr

for any r ∈ R.
• The operator T defined on Hr

(3.11) T : φn 7−→ (−Kn)τqn.

Note that this expression of T corresponds exactly to the expres-
sion (3.7) obtained from the formal calculations.

In the following we will show that, for a good choice of (Kn)n∈N∗ , the
operator T thus defined is an isomorphism from Hr to itself for r ∈ (1/2 −
α, α− 1/2), and T and K satisfy (3.4) in a sense to be specified.

We are going to show successively the following steps:
(1) Show that S is a Fredholm operator from Hr → Hr for any r ∈

(1/2 − α, α− 1/2).
(2) Show that (qn)n∈N∗ is a Riesz basis for H using a duality argument

and the fact that S is Fredholm.
(3) Further show that (n−rqn)n∈N∗ is a Riesz basis for Hr for any r ∈

(1/2 − α, α − 1/2) by showing it is ω-independent using a duality
argument between the density of (n−rqn)n∈N∗ in Hr and the ω-
independence of (nrqn)n∈N∗ in H−r.

(4) Provide an explicit candidate of (Kn)n∈N which satisfies TB = B

in H−α/2. Show that (|Kn|)n∈N is bounded from above and that
bnKn = −(λ + kn) for any n ∈ N∗, where (knn

ε)n∈N∗ ∈ l∞ for
any ε ∈ [0, ε(α)) (where ε(α) is a positive constant that can be
computed).

(5) Show that T is uniformly bounded from Hr to itself for
r ∈ (1/2 −α, α− 1/2) and the first operator equality (3.4) holds in
L(Hα/2; H−α/2).

(6) Show that T is a Fredholm operator from H−α/2 to H−α/2.
(7) Show that T is an isomorphism from H−α/2 to H−α/2 using a Fred-

holm argument and spectral theory in H−α/2.
(8) Show that T is an isomorphism from H to H and in fact an iso-

morphism from Hr to itself for any r ∈ (1/2 − α, α− 1/2).
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Let us briefly discuss Steps 6 to 8 as, at first sight, it seems odd to prove
the invertibility in H−α/2 and not in our reference H space for instance.
The main motivation is to avoid working in the space D(A+BK) := {f ∈
H : (A+BK)f ∈ H} before proving the invertibility of T . Indeed, in the
present setting, the space D(A+BK) does not have nice properties shared
by the Hs spaces such as the density of H∞ functions(4) , defined as

H∞ :=
⋂
k∈N

Hk,

see for instance (6.9). This comes from the fact that B is not regular enough,
and therefore one is not able to conclude that φn ∈ D(A + BK) for any
n ∈ N∗. Hence, it is easier to first prove the invertibility in weaker but
classical Hs space (Steps 6 and 7) before deducing the invertibility in the
required spaces (Step 8). In turn, the invertibility of T in Hr allows us
to construct an equivalent norm on Hr, which allows us to prove that
D(A+BK) is an Hilbert space, a non-trivial task without the invertibility
of T . We underline that if our setting is close to the linearized bilinear
Schrödinger equation, the fact that the control is real-valued in [14] allows
to decouple the real and imaginary part of the solution to deal directly
with the space D(A+BK), which is not the case here.

We start by introducing some technical lemmas in Subsection 4.1. Then
we prove Proposition 3.1, following the outline above: we prove Steps (1)–(3)
in Section 4 and Steps (4)–(8) in Section 5. Finally, we prove the well-
posedness of the closed-loop system obtained and Corollary 2.11 in Sec-
tion 6.

4. Compactness/duality method for Riesz basis

Following the outline detailed in Section 3, we devote this section to the
proofs of Steps (1)–(3). These steps form a first important part of the proof
of our main theorem: they revolve around Riesz basis properties for some
important families of functions derived from the backstepping operator
equalities (3.4). As we have mentioned in the introduction, we introduce
here a new method based on compactness and duality, namely, we prove
in a general way that the transformations involved in our backstepping
method are Fredholm operators.

(4) Note that in usual cases where, for instance, Hs = Hs(T), the H∞ functions are
simply C∞ functions, from Sobolev embedding. Notice that the eigenfunctions (φn)n

belong to the space H∞.
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4.1. Some basic estimates

In this section we introduce some technical lemmas that will be used in
the following. For the readers’ convenience, the technical parts of certain
proofs are postponed to Appendix D.

The first lemma is a direct consequence of the existence of c, C > 0 such
that,

cnα ⩽ |λn| + 1 ⩽ Cnα, ∀n ∈ N∗.

Lemma 4.1. — Let s ∈ R. Let ρ ∈ C be in the resolvent set of the
operator A. We know that

A : Hs+α/2 −→ Hs−α/2 is continuous,

(A− ρI)−1 : Hs−α/2 −→ Hs+α/2 is continuous.

Next, we give an important technical lemma:

Lemma 4.2. — For any s < α− 1 we have

(4.1)
∑

n∈N∗\{p}

ns

|λn − λp|
≲ p1−α+s log(p) + p−α, ∀p ∈ N∗.

Proof of Lemma 4.2. — Let s < α− 1, we have∑
n∈N∗\{p}

ns

|λn − λp|
= I1 + I2 + I3,

where

I1 =
∑

n∈N∗, n⩽p/2

ns

|λn − λp|
,

I2 =
∑

n∈N∗\{p}, p/2<n<2p

ns

|λn − λp|
,

I3 =
+∞∑

n=2p

ns

|λn − λp|
.

We will show that all these three terms can be bounded by

C(p−(α−1)+s log(p) + p−α)

where C is a constant independent of p. For this, we introduce the following
basic estimates (the proofs may be found in Appendix D).

Lemma 4.3. — There exists c > 0 such that for any (n,m) ∈ N∗

|λn − λm| ⩾ c|n−m|α.
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Lemma 4.4. — For any s ̸= −1, there exists C > 0 such that for any
p ∈ N∗

p∑
n=1

ns ⩽ C(1 + p1+s).

Lemma 4.5. — For any s ∈ R and ε > 0, there exists C > 0 such that,
p∑

n=1
ns log(n) ⩽ C(1 + p1+s+ε).

We first consider I1. First note that there exists C > 0 independent of p
and n, such that if n ⩽ p/2, then |λp − λn| ⩾ C−1pα. Using Lemma 4.3

(4.2)
∑

n∈N∗,n⩽p/2

ns

|λn − λp|
≲ p−α

 ∑
n∈N∗,n⩽p/2

ns


≲ p−α + p−(α−1)+s log(p),

where in the rightmost inequality we used Lemma 4.4 if s ̸= −1 and p1+s ⩽
p1+s log(p) for p large enough, and if s = −1 then we simply used that
(
∑p

n=0 1/n) = O(log(p)).
Then we turn to I2, using Lemma 4.3 we have

∑
n∈N∗\{p},p/2<n<2p

ns

|λn − λp|
≲ ps

 ∑
n∈N∗\{p},p/2<n<2p

1
|λn − λp|


≲ ps

 ∑
n∈N∗\{p},p/2<n<2p

1
|n− p|pα−1

 .

Notice that ∑
n∈N∗\{p},p/2<n<2p

1
|n− p|

⩽
∑

k⩽p/2

1
k

+
p∑

k=1

1
k
≲ log(p),

hence

(4.3)
∑

n∈N∗\{p},p/2<n<2p

ns

|λn − λp|
≲ p−(α−1)+s log(p),

which gives the bound on I2.
We finally consider I3. Since n > 2p, there exists a constant C > 0

independent of p such that |λn − λp| ⩾ C−1nα from Lemma 4.3, thus

(4.4) I3 =
+∞∑

n=2p

ns

|λn − λp|
≲

+∞∑
n=2p

ns−α ≲
∫ +∞

2p

xs−α dx ≲ p−(α−1)+s,
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where we used that s < (α − 1) thus s − α < −1. Combining (4.2), (4.3)
and (4.4) we deduce that

I1 + I2 + I3 ≲ p−(α−1)+s log(p) + p−α.

This ends the proof of Lemma 4.2. □

4.2. Step (1): a general Fredholm operator

In this subsection, we show the following proposition.

Proposition 4.6. — For any r ∈ (1/2 − α, α − 1/2), there exists a
compact operator Sc from Hr into itself such that the operator S defined
by (3.9) satisfies on Hr,

(4.5) S = 1
λ

Id +Sc.

In particular, S is a Fredholm operator (of index 0) from Hr into itself.

Let us first show that for any a ∈ Hr, denoting an = (a, n−rφn)Hr , such
that a =

∑
n∈N∗ ann

−rφn, we have,

(4.6) Sa = a

λ
+

∑
n∈N∗

ann
−r

 ∑
p∈N∗\{n}

φp

λn − λp + λ

 .

Indeed, from the definition of (3.9),

Sa =
∑

n∈N∗

ann
−rS(φn) =

∑
n∈N∗

ann
−rqn

=
∑

n∈N∗

ann
−r

∑
p∈N∗

φp

λn − λp + λ


= 1
λ

(∑
n∈N∗

ann
−rφn

)
+
∑

n∈N∗

ann
−r

 ∑
p∈N∗\{n}

φp

λn − λp + λ

 ,

which, given the definition of a, is exactly (4.6). Now we show the following.

Lemma 4.7. — For any r ∈ (1/2 −α, α− 1/2), there exists ε = ε(r) > 0
such that the operator Sc defined by,

Sc :
∑

n∈N∗

ann
−rφn 7−→

∑
n∈N∗

ann
−r

 ∑
p∈N∗\{n}

φp

λn − λp + λ

 ,

is continuous from Hr to Hr+ε. In particular, this operator is compact from
Hr to itself.

ANNALES DE L’INSTITUT FOURIER



RAPID STABILIZATION FOR THE WATER WAVES SYSTEM 27

The proof of Lemma 4.7 is based on a careful estimation allowed by
the Lemma 4.2, and we give its proof below. Proposition 4.6 then follows
from (4.6) and Lemma 4.7.

Remark 4.8. — Note, as a corollary of Lemma 4.7 and the expression of
S given by (4.6), that for any r ∈ (1/2 − α, α − 1/2), there exists C > 0
such that for any (an)n∈N∗ ∈ l2 one has,

(4.7)

∥∥∥∥∥∑
n∈N∗

ann
−rqn

∥∥∥∥∥
2

Hr

⩽ C
∑

n∈N∗

|an|2.

which means that S is a bounded operator from Hr into itself. In fact,
Proposition 4.6 is stronger since it shows that S is even a Fredholm operator
from Hr to itself.

Remark 4.9. — As we have mentioned in the introduction, previous works
on the backstepping method use the quadratically close criterion to prove
that qn is a Riesz basis. In our case, one would then seek to prove that

(4.8)
∑

n∈N∗

∥∥∥∥n−rqn − 1
λ
n−rφn

∥∥∥∥2

Hr

< +∞.

In terms of Sc, this amounts to

(4.9)
∑

n∈N∗

∥Scn
−rφn∥2

Hr < +∞,

which is the Hilbert–Schmidt compactness criterion for Sc. However, in our
case, (4.8)–(4.9) does not hold. Our new compactness/duality method illus-
trates that the relevant property is not the Hilbert–Schmidt compactness
criterion (4.9), but simply the compactness of Sc, which we prove here in
a more general way. This, together with the duality argument presented
in Steps (2) and (3) below, leads to Riesz basis properties thanks to the
Fredholm alternative.

Interestingly, this illustrates that there is a link between the growth of the
eigenvalues and the class of compact operators that appear in the Fredholm
decomposition of S.

Proof of Lemma 4.7. — We start by considering two different cases.
First, let r ∈ (1/2 −α, 0]. What we need to show is that there exists C > 0
and ε > 0 such that for any (an)n∈N∗ ∈ l2,∥∥∥∥∥∥

∑
n∈N∗

ann
−r

 ∑
p∈N∗\{n}

φp

λn − λp + λ

∥∥∥∥∥∥
Hr+ε

⩽ C

∥∥∥∥∥∑
n∈N∗

ann
−rφn

∥∥∥∥∥
Hr

.
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Notice that the following equality holds in H1/2−α,

∑
n∈N∗

ann
−r

 ∑
p∈N∗\{n}

φp

λn − λp + λ

 =
∑

p∈N∗

φp

 ∑
n∈N∗\{p}

ann
−r

λn − λp + λ

 .

Hence, it suffices to show that,

(4.10)
∑

p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

⩽ C
∑

n∈N∗

|an|2.

Let us look at the left-hand side. Recall that, since A is skew-adjoint, the
eigenvalues (λn)n are purely imaginary while λ ∈ R+ \ {0}. Therefore

(4.11) |λn − λp| ⩽ |λn − λp + λ| ⩽ |λn − λp| + λ.

Thus, using a Cauchy–Schwarz inequality, we have,

∑
p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

⩽
∑

p∈N∗

p2r+2ε

 ∑
n∈N∗\{p}

|an|2n−2r+1−α+2ε

|λn − λp|

 ∑
n∈N∗\{p}

n(α−1)−2ε

|λn − λp|

 .
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Then, using Lemma 4.2, Fubini theorem (since all terms are nonnegative),
and again (4.11) and Lemma 4.2 (since 2r < α−1) we get, for ε ∈ (0, 2α−2),

(4.12)
∑

p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

≲
∑

p∈N∗

p2r+2ε

 ∑
n∈N∗\{p}

|an|2n−2r−(α−1)+2ε

|λn − λp|

(p−2ε log(p) + p−α
)

≲
∑

n∈N∗

|an|2n−2r−(α−1)+2ε
∑

p∈N∗\{n}

p2r+2ε
(
p−2ε log(p) + p−α

)
|λn − λp|

≲
∑

n∈N∗

|an|2n−2r−(α−1)+2ε
∑

p∈N∗\{n}

p2r+2ε
(
p−(3/2)ε + p−α

)
|λn − λp|

≲
∑

n∈N∗

|an|2n−2r−(α−1)+2ε

×
(
n(1−α)+2r+ε/2 log(n) + n−(2α−1)+2r+2ε log(n) + n−α

)
≲
∑

n∈N∗

|an|2(n−2(α−1)+3ε + n−(3α−2)+5ε + n(1−2α)−2r+2ε).

Note that the limiting term is the last one, and since r ∈ (1/2 − α, 0], we
can choose ε depending only on r such that r+ (α− 1/2) − ε ⩾ 0 and such
that we have (n−2(α−1)+3ε + n−(3α−2)/2+5ε + n(1−2α)−2r+2ε) ⩽ 3 (choose
for instance ε = min(r + (α− 1/2), 3/10)). This means that,

∑
p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

≲
∑

n∈N∗

|an|2,

and this ends the proof of Lemma 4.7 in the case r ∈ (1/2−α, 0]. Note that
this could also work for r ∈ (0, (α− 1)/2). However, for r ∈ [(α− 1)/2, α−
1/2), Lemma 4.2 cannot be used to get the fifth line of (4.12). Thus, we
choose to treat the symmetrical cases r ∈ (1/2 −α, 0] and r ∈ (0, α− 1/2).

Let us now assume that r ∈ (0, α−1/2). As in the previous case, it suffices
to show (4.10). Let us apply again (4.11) and Cauchy–Schwarz inequality
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on the left-hand side of (4.10), but in a slightly different way. We have

∑
p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

⩽
∑

p∈N∗

p2r+2ε

 ∑
n∈N∗\{p}

|an|2

|λn − λp|

 ∑
n∈N∗\{p}

n−2r

|λn − λp|

 .

Using again Lemma 4.2 since −2r < (α − 1), then Fubini theorem, and
then again Lemma 4.2 by choosing ε > 0 such that 3ε < 2(α − 1) and
2r − α+ 2ε < (α− 1) (which always exists since 2r < 2α− 1), we have

∑
p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

≲
∑

p∈N∗

p2r+2ε

 ∑
n∈N∗\{p}

|an|2

|λn − λp|

 (p−(α−1)−2r log(p) + p−α)

≲
∑

p∈N∗

 ∑
n∈N∗\{p}

|an|2

|λn − λp|

 (p−(α−1)+3ε + p−α+2r+2ε)

≲
∑

n∈N∗

|an|2
 ∑

p∈N∗\{n}

p−(α−1)+3ε + p−α+2r+2ε

|λn − λp|


≲
∑

n∈N∗

|an|2
(
n−2(α−1)+3ε log(n) + n−α + n−(2α−1)+2r+2ε log(n)

)
≲
∑

n∈N∗

|an|2
(
n−2(α−1)+4ε + n−α + n−(2α−1)+2r+3ε

)
.

Then by choosing ε such that ε < (α − 1)/2 and 2r − (2α − 1) + 3ε < 0
(which is possible since r ∈ (0, α − 1/2)), there exists a constant C > 0
(depending only on r) such that,

∑
p∈N∗

p2r+2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

ann
−r

λn − λp + λ

∣∣∣∣∣∣
2

⩽ C
∑

n∈N∗

|an|2.

Recalling the compact embedding property (see Section 1.8.1) of the Hs

spaces, this ends the proof of Lemma 4.7. □
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4.3. Step (2): a Riesz basis for H

In this section we prove the existence of a Riesz basis.

Proposition 4.10. — The family (qn)n∈N∗ is a Riesz basis of H.

Showing this amounts to showing that S, defined by (3.9), is an iso-
morphism from H to H. Since we know from Proposition 4.6 that S is a
Fredholm operator (of index 0), it suffices to show that ker(S) = {0}. This
is equivalent to say that for any (an)n∈N∗ ∈ l2, such that,

(4.13)
∑

n∈N∗

anqn = 0,

one has an = 0, for all n ∈ N∗. In other words this is equivalent to show
that (qn)n∈N∗ is ω-independent in H (see Definition A.1). Notice that,

qn =
∑

p

φp

λn − λp + λ
and qn =

∑
p

φp

λp − λn + λ
.

Thus we have the following Lemma:

Lemma 4.11. — The sequences (qn)n∈N∗ and (qn)n∈N∗ satisfy the fol-
lowing:

(1) (qn)n∈N∗ is ω-independent in H or H-dense.
(2) (qn)n∈N∗ is ω-independent in H or H-dense.
(3) (qn)n∈N∗ is ω-independent in H ⇔ (qn)n∈N∗ is ω-independent in H.
(4) (qn)n∈N∗ is H-dense ⇔ (qn)n∈N∗ is H-dense.
(5) (qn)n∈N∗ is H-dense ⇔ (qn)n∈N∗ is ω-independent in H.
(6) (qn)n∈N∗ is H-dense ⇔ (qn)n∈N∗ is ω-independent in H.

Consequently, we know that (qn)n∈N∗ (resp. (qn)n∈N∗) is both ω-indepen-
dent in H and H-dense.

Proof of Proposition 4.10. — The proof of Proposition 4.10 is equivalent
to prove (4.13) implies an = 0,∀n ∈ N∗. But since from Lemma 4.11,
(qn)n∈N∗ is ω-independent in H, we conclude directly that an = 0,∀n ∈ N∗,
hence the proof. □

Hence, it remains to prove Lemma 4.11.
Proof of Lemma 4.11. — The relations (3) and (4) are direct conse-

quences of the conjugacy of qn and qn. We only focus on the proof of (1)
and (6), as (2) and (5) can be treated similarly.

The proof of (6) is further separated by two parts:

(qn)n∈N∗ is not H-dense =⇒ (qn)n∈N∗ is not ω-independent in H,
(qn)n∈N∗ is not H-dense ⇐= (qn)n∈N∗ is not ω-independent in H.
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On the one hand, suppose that (qn) is not H-dense, then there exists
some nontrivial function a =

∑
p∈N∗ apφp ∈ H, namely (ap)p∈N∗ ∈ l2, such

that

⟨qn, a⟩H = 0, ∀n ∈ N∗,

which is equivalent to∑
p∈N∗

ap

λp − λn + λ
= 0, ∀n ∈ N∗.

Thus∑
p∈N∗

apqp =
∑

p∈N∗

ap

∑
m∈N∗

φm

λp − λm + λ
=
∑

m∈N∗

φm

∑
p∈N∗

ap

λp − λm + λ
= 0,

and consequently (qp)p∈N∗ is not ω-independent in H.
On the other hand, suppose that (qn)n∈N∗ is not ω-independent in H,

then there exists some nontrivial sequence (ap)p∈N∗ ∈ l2, namely a =∑
p apφp ∈ H, such that

0 =
∑

p∈N∗

apqp =
∑

p∈N∗

ap

∑
m∈N∗

φm

λp − λm + λ
=
∑

m∈N∗

φm

∑
p∈N∗

ap

λp − λm + λ
.

Since (φm)m∈N∗ is a basis of H, this implies that∑
p

ap

λp − λn + λ
= 0, ∀n ∈ N∗,

which is equivalent to

(qn, a)H = 0, ∀n ∈ N∗.

Hence the sequence (qn)n∈N∗ is not H-dense. This ends the proof of the
property (6).

Finally, we turn to the property (1). The proof of this point is now
classical (see for instance [21]) and we put it in Appendix E for readers’
convenience. We however underline that the proof in Appendix E does not
require that the family (qn)n∈N∗ is quadratically close. □

4.4. Step (3): extending the Riesz basis property to a sharp
range of Sobolev spaces

We are now going to use Proposition 4.10 as well as Proposition 4.6 to
show the following.

Proposition 4.12. — For any r ∈ (1/2 − α, α − 1/2), the family
(n−rqn)n∈N∗ is a Riesz basis of Hr.
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Proof of Proposition 4.12. — First of all, note, given the definition of
S in (3.9), that showing Proposition 4.12 is equivalent to showing that S
is an isomorphism from Hr to itself. Since we know, from Proposition 4.6,
that S is a Fredholm operator (of index 0) from Hr to itself, it is enough
to show that ker(S) = {0} (where now ker(S) is now a subset of Hr). As
previously, this is equivalent to show that (n−rqn)n∈N∗ is ω-independent in
Hr in the sense of Definition A.1, e.g. for any (an)n∈N∗ ∈ l2, such that

(4.14)
∑

n∈N∗

ann
−rqn = 0,

one has an = 0, for all n ∈ N∗.
The case r = 0 is treated in Proposition 4.10, so we now assume r ̸= 0.

We consider two different cases:
Case (1) r > 0. — Let (an)n∈N∗ ∈ l2, and assume that (4.14) holds, we

can set cn = (ann
−r)n∈N∗ ∈ l2, and (4.14) becomes

(4.15)
∑

n∈N∗

cnqn = 0.

Since (qn)n∈N∗ is a Riesz basis from Proposition 4.10, we have that (qn)n∈N∗

is ω-independent in H (see in particular Lemma 4.11) and therefore (4.15)
implies that

cn = 0, ∀n ∈ N∗,

which implies that an = 0 for all n∈N∗. Thus (n−rqn)n∈N∗ is ω-independent,
hence ker(S) = {0} (in Hr) and this ends the proof.

Remark 4.13. — The argument above is summarized by the following: if
r > 0, ker(S) seen as a subset of Hr is included in ker(S) seen as a subset
of H, which is {0} from Proposition 4.10.

Case (2) r < 0. — This is the more difficult case as ker(S), seen as a
subset of Hr, is not anymore included in ker(S) seen as a subset of H (but
rather the opposite holds). To show this, we proceed by contradiction and
use a dual argument between ω-independence in Hr and density in H−r.

Let’s assume by contradiction that (n−rqn)ω∈N∗ is not ω-independent in
Hr. Then there exists some nontrivial (an)n∈N∗ ∈ l2 such that (4.14) holds.
Projecting on (m−rφm)m∈N∗ , we have

0 =

∑
n∈N∗

ann
−r

∑
p∈N∗

p−rprφp

λn − λp + λ

 ,m−rφm


Hr

=
∑

n∈N∗

ann
−rmr

λn − λm + λ
, ∀m ∈ N∗.

(4.16)
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Now, let us set h =
∑

n∈N∗ ann
rφn which belongs to H−r since (an)n∈N∗ ∈

l2. From assumption, an is not identically 0 thus h ̸= 0 since nrφn is a basis
of H−r. Since r < 0, (−r) > 0 and therefore, from Case (1), (nrqn)n∈N∗ is
a Riesz basis of H−r. In particular, this implies that (nrqn)n∈N∗ is a dense
family in H−r and there exists m0 ∈ N∗ such that

⟨h,mr
0qm0⟩H−r ̸= 0,

Expending the expression of h and qm0 , using the fact that the λi are
imaginary, this means ∑

n∈N∗

anm
r
0

n−r

λn − λm0 + λ
̸= 0,

which is in contradiction with (4.16). Thus (an)n∈N∗ is identically 0 and
(n−rqn)n∈N∗ is ω-independant in Hr, which means that ker(S) (seen as a
subset of Hr) is reduced to {0} and S is an isomorphism from Hr to Hr.
This ends the proof of Proposition 4.12. □

5. Construction of the isomorphism-feedback pair

In this section, we construct the isomorphism-feedback pair to end the
proof of Proposition 3.1. In the previous section, we have established some
important properties, namely that specific families of functions form Riesz
basis in appropriate spaces. Accordingly, this allowed us to define a general
isomorphism, given by S, using the first backstepping equality in (3.4). We
now use the second one to propose a feedback law. Then, using the Riesz
basis properties and the isomorphism S, we prove that the corresponding
transformation T is an isomorphism in an array of spaces. This will end the
proof of Proposition 3.1 and Theorem 2.10. It will then remain to prove
that the closed-loop system given by the feedback is well-posed to have
Corollary 2.11.

5.1. Step (4): construction and basic properties of the
stabilizing feedback

Let us now provide a candidate for (Kn)n∈N∗ . Recall that our goal is
to have (Kn)n∈N∗ such that the TB = B condition holds in some sense.
Expressing this condition on the basis φn, it becomes

(5.1)
∑

n∈N∗

(−Knbn)τqn =
∑

n∈N∗

bnφn.
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Note that the right-hand side belongs to H−α/2 and in fact, given (2.2),
it even belongs to H− 1

2 −ε for any ε > 0. From Proposition 4.12 and since
τ : Hr → Hr is an isomorphism for any r ∈ R, we have that (n−rτqn)n∈N∗

is a Riesz basis of Hr for r ∈ ( 1
2 − α, α − 1

2 ). Since α > 1, we are able to
give a meaning to (5.1) in Hr for r ∈ ( 1

2 −α,− 1
2 ), or equivalently in H− 1

2 −ε

for ε ∈ (0, α − 1), thanks to Proposition 4.12. This leads to the following
lemma:

Lemma 5.1. — There exists a unique sequence (−Kn)n∈N∗ such that
for any ε ∈ (0, α− 1) the condition (5.1) holds in H− 1

2 −ε and,

((−Knbn)n− 1
2 −ε)n∈N∗ ∈ l2.

Let us set,

(5.2) kn := −(Knbn + λ),

The goal of this section will be to show the following lemma.

Lemma 5.2. — The two following hold,

(1) The sequence (Kn)n∈N∗ defined by Lemma 5.1 is uniformly bounded.
(2) For any r ∈ ( 1

2 − α, α− 1
2 ), the operator k defined by,

(5.3) k : φn 7−→ knτqn,

is continuous from Hr to Hr+ε for ε ∈ [0, r0) where r0 = min(α −
1
2 −r, α−1). In particular, this operator is a compact operator from
Hr to Hr.

Proof. — From the definition ofKn given by Lemma 5.1 and the TB = B

condition given by (5.1), we have that,

(5.4)
∑

n∈N∗

(−Knbn)τqn =
∑

n∈N∗

bnφn,

holds in H−1/2−ε for any ε ∈ (0, α − 1). Moreover, from Lemma 5.1 and
the definition (5.2) of kn, we have, since (n− 1

2 −ελ) ∈ ℓ2 for any ε > 0, that

(5.5) (knn
−r)n∈N∗ ∈ ℓ2, for any r ∈

(
1
2 , α− 1

2

)
.
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Hence, using the definition of kn and τqn, we get in the H−1/2−ε sense, for
any ε ∈ (0, α− 1), that,

∑
n∈N∗

λ
∑

p∈N∗

bpφp

λn − λp + λ
+
∑

n∈N∗

knτqn =
∑

n∈N∗

bnφn,

which gives,

∑
n∈N∗

λ
∑

p∈N∗\{n}

bpφp

λn − λp + λ
+
∑

n∈N∗

bnφn +
∑

n∈N∗

knτqn =
∑

n∈N∗

bnφn.

Hence,

(5.6)
∑

n∈N∗

λ
∑

p∈N∗\{n}

bpφp

λn − λp + λ
= −

∑
n∈N∗

knτqn.

Let us remark that this equality a priori holds in H− 1
2 −ε for any ε ∈

(0, α−1). However, we removed from (5.1) the most singular part and thus
both terms of (5.6) are in fact more regular. Indeed, if α > 3/2, then the
left-hand side of (5.6) belongs to Hε with α − 3/2 > ε > 0. To show this,
observe that using Fubini’s Theorem in H−1/2−ε,

∑
n∈N∗

λ
∑

p∈N∗\{n}

bpφp

λn − λp + λ
=
∑

p∈N∗

bpφpλ
∑

n∈N∗\{p}

1
λn − λp + λ

,

and, using (4.11),

∥∥∥∥∥∥
∑

p∈N∗

bpφpλ
∑

n∈N∗\{p}

1
λn − λp + λ

∥∥∥∥∥∥
2

Hε

=
∑

p∈N∗

p2ε|bp|2λ2

∣∣∣∣∣∣
∑

n∈N∗\{p}

1
λn − λp + λ

∣∣∣∣∣∣
2

≲
∑

p∈N∗

p2ε

∣∣∣∣∣∣
∑

n∈N∗\{p}

1
λn − λp + λ

∣∣∣∣∣∣
2

⩽
∑

p∈N∗

p2ε

 ∑
n∈N∗\{p}

1
|λn − λp|

2

,
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where we used the fact that bp are uniformly bounded and {λn}n∈N∗ are
imaginary while λ is real. Then, applying Lemma 4.2 yields,∥∥∥∥∥∥

∑
n∈N∗

λ
∑

p∈N∗\{n}

bpφp

λn − λp + λ

∥∥∥∥∥∥
2

Hε

≲
∑

p∈N∗

p2ε+2(1−α) log2(p),

which converges for ε ∈ (0, α − 3
2 ) and α > 3/2. Therefore, going back

to (5.6) and rewriting it as,

(5.7)
∑

n∈N∗

λ
∑

p∈N∗\{n}

bpφp

λn − λp + λ
= −

∑
n∈N∗

(knn
ε)(n−ετqn).

using that (n−ετqn)n∈N∗ is a Riesz basis of Hε for ε ∈ (0, α − 3/2) from
Proposition 4.12, we deduce that,

(5.8) (nεkn)n∈N∗ ∈ ℓ2, for any ε ∈
(

0, α− 3
2

)
, with α > 3/2.

Moreover, by definition Knbn = −(λ+ kn), and together with the uniform
boundedness of bn and (5.8), we obtain,

(Kn)n∈N∗ ∈ ℓ∞, for any α > 3/2.

Yet, if 3/2 ⩾ α > 1 the gain of regularity in (5.6) is not sufficient
to conclude the first point of Lemma 5.2. Note that α = 3/2 is exactly
the critical case. However, we can show that it belongs to H−ε for any
ε > 3/2 − α. Indeed, a similar computation leads to,

(5.9)

∥∥∥∥∥∥
∑

n∈N∗

λ
∑

p∈N∗\{n}

bpφp

λn − λp + λ

∥∥∥∥∥∥
2

H−ε

=
∑

p∈N∗

p−2ε|bp|2λ2

∣∣∣∣∣∣
∑

n∈N∗\{p}

1
λn − λp + λ

∣∣∣∣∣∣
2

≲
∑

p∈N∗

p−2ε

 ∑
n∈N∗\{p}

1
|λn − λp|

2

≲
∑

p∈N∗

p−2ε+2(1−α) log2(p),
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which converges for any ε > 3/2 −α. Hence, the left-hand side of (5.6) be-
longs to H−ε for any ε > 3/2−α. From Proposition 4.12 and the fact that τ
is an isomorphism from Hr to Hr for any r ∈ (1/2−α, α−1/2), (nετqn)n∈N∗

is a Riesz basis of H−ε and therefore there exists a unique (knn
−ε)n∈N∗ ∈ l2

such that (5.7) holds. In particular, this shows that (kn)n∈N∗ defined in (5.2)
satisfies,

(5.10) (knn
−ε)n∈N∗ ∈ l2 for any ε ∈

(
3
2 − α, α− 1

2

)
, with α ∈ (1, 3/2],

and therefore, thanks to the definition of kn,

(5.11) (Knn
−ε)n∈N∗ ∈ l∞ for any ε∈

(
3
2 − α, α− 1

2

)
, with α∈ (1, 3/2].

Comparing (5.10) to (5.5), we are able to see the (α− 1) gain of regularity
between (5.4) and (5.7). The core of the proof of Lemma 5.2 in the critical
range α ∈ (1, 3/2] is to iterate this (α − 1) gain of regularity. To do so,
we derive an asymptotic analysis of Kn by induction up to an order which
depends on α, and we gain at each order the (α − 1) regularity, allowing
us to conclude thanks to the fact that α > 1. Indeed, consider (5.4) again
and explicit the expression of τqn,

∑
n∈N∗

(−Knbn)

bnφn

λ
+

∑
p∈N∗\{n}

bpφp

λn − λp + λ

 =
∑

n∈N∗

bnφn,

which gives, by decomposing Kn in λ and kn in the first term only,

∑
n∈N∗

knbn

λ
φn +

∑
n∈N∗

(−Knbn)
∑

p∈N∗\{n}

bpφp

λn − λp + λ

 = 0.

Using again Fubini theorem in H−1/2−ε for ε ∈ (0, α−1) and identifying the
coefficients along the orthonormal basis (φn)n∈N∗ , we obtain the following
expression.

(5.12) knbn

λ
=

∑
m∈N∗\{n}

Kmbm
bn

λm − λn + λ
.

The asymptotic analysis is done in the following manner. First, denote
e0

n = λ and k0
n = kn, n ∈ N∗. In order to simplify the notation, we will

assume without loss of generality bn = 1, n ∈ N∗. Thus −Kn = e0
n +k0

n and
the expression (5.12) becomes,

(5.13) kn = λ
∑

m∈N∗\{n}

Km

λm − λn + λ
= −λ

∑
m∈N∗\{n}

e0
m + k0

m

λm − λn + λ
.
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We now decompose further kn = k0
n = e1

n + k1
n as follows,

(5.14) e1
n = −λ

∑
m∈N∗\{n}

e0
m

λm − λn + λ
, k1

n = −λ
∑

m∈N∗\{n}

k0
m

λm − λn + λ
.

From Lemma 4.2, we observe that,

|e1
n| ≲ n1−α logn ≲ 1.

We therefore focus on the regularity of k1
n. Let us denote s0 := 3/2 − α.

Then we have, using (4.11)

(5.15) ∥(n−rk1
n)n∥2

l2

≲
∑

n∈N∗

n−2r

 ∑
m∈N∗\{n}

k0
m

λm − λn + λ

2

≲
∑

n∈N∗

n−2r

 ∑
m∈N∗\{n}

|k0
m|2

|λm − λn|

 ∑
m∈N∗\{n}

1
|λm − λn|


≲
∑

n∈N∗

n−2r+1−α logn

 ∑
m∈N∗\{n}

|k0
m|2

|λm − λn|


≲
∑

m∈N∗

|k0
m|2

∑
n∈N∗\{m}

n−2r+1−α log(n)
(

1
|λm − λn|

)
≲
∑

m∈N∗

|k0
m|2m−2(r+(α−1)) log2(m),

which, from (5.10), converges if r + (α− 1) ∈ ( 3
2 − α, α− 1

2 ), that is,

(5.16) (n−εk1
n)n∈N∗ ∈ l2 for any ε ∈

(
5
2 − 2α, 1

2

)
, with α ∈ (1, 3/2].

Define s1 := 5/2 − 2α. Notice that if s1 < 0, namely α > 5/4, then we
can conclude that (k1

n)nn
δ belongs to l2 with δ > 0. Therefore, from the

definition of (k1
n)n and the fact that (e1

n)n is uniformly bounded, we deduce
that (kn)n is uniformly bounded, which further yields similarly that (Kn)n

is uniformly bounded.
Otherwise, we have s1 ⩾ 0 and need to continue the iteration proce-

dure to further decompose k1
n. Indeed, injecting the definition of k0

m again
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into (5.13), we have

kn = −λ
∑

m∈N∗\{n}

e0
m + k0

m

λm − λn + λ
(5.17)

= −λ
∑

m∈N∗\{n}

(
e0

m

λm − λn + λ

)
− λ

∑
m∈N∗\{n}

(
km

λm − λn + λ

)

= −λ
∑

m∈N∗\{n}

(
e0

m

λm − λn + λ

)

− λ
∑

m∈N∗\{n}

 1
λm −λn +λ

−λ
∑

p∈N∗\{m}

e0
p +k0

p

λp −λm +λ


= −λ

∑
m∈N∗\{n}

(
e0

m

λm − λn + λ

)
− λ

∑
m∈N∗\{n}

(
e1

m

λm − λn + λ

)

− λ
∑

m∈N∗\{n}

(
k1

m

λm − λn + λ

)
.

We therefore define e2
n and k2

n as,

(5.18) e2
n = −λ

∑
m∈N∗\{n}

e1
m

λm − λn + λ
, k2

n = −λ
∑

m∈N∗\{n}

k1
m

λm − λn + λ
.

Since kn = e1
n + k1

n, and using the definition of e1
n given by (5.14) together

with (5.17) we deduce that k1
n = e2

n + k2
n. Again, it is straightforward to

observe that,
|e2

n| ≲ n1−α logn ≲ 1.

We further get estimates on (k2
n), using again (4.11),

∥(n−rk2
n)n∥2

l2 ≲
∑

n∈N∗

n−2r

 ∑
m∈N∗\{n}

k1
m

λm − λn + λ

2

≲
∑

n∈N∗

n−2r

 ∑
m∈N∗\{n}

|k1
m|2

|λm − λn|

 ∑
m∈N∗\{n}

1
|λm − λn|


≲
∑

m∈N∗

|k1
m|2

∑
n∈N∗\{m}

n−2r+1−α logn
(

1
|λm − λn|

)
≲
∑

m∈N∗

|k1
m|2m−2(r+(α−1)) log2(m),
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which, from (5.16), converges if r + (α− 1) ∈ ( 5
2 − 2α, 1

2 ), that is,

(5.19) (n−εk2
n)n∈N∗ ∈ l2 for any ε∈

(
7
2 − 3α, 3

2 − α

)
, with α∈ (1, 3/2].

Define s2 := 7/2 − 3α. We deduce that if s2 < 0, namely α > 7/6, then
kn is uniformly bounded and so is Kn. Otherwise, s2 ⩾ 0 and we continue
the iteration procedure. From (5.17), we easily obtain by induction that,
ki

n = ei+1
n + ki+1

n for i ∈ N where,

ei+1
n := −λ

∑
m∈N∗\{n}

ei
m

λm − λn + λ
,(5.20)

ki+1
n := −λ

∑
m∈N∗\{n}

ki
m

λm − λn + λ
.(5.21)

A straightforward computation show that,

(5.22) −Kn =

 i∑
j=0

ej
n

+ ki
n, ∀i ∈ N.

Moreover, by the definition (5.20) of ei
n, the simple bound |ei−1

n | ≲ 1, i ∈ N∗

and Lemma 4.2, we have,

(5.23) |ei
n| ≲ n1−α logn ≲ 1, ∀i ∈ N∗.

By the definition (5.21) of ki+1
n and (4.11), also have,

∥(n−rki+1
n )n∥2

l2 ≲
∑

n∈N∗

n−2r

 ∑
m∈N∗\{n}

ki
m

λm − λn + λ

2

≲
∑

n∈N∗

n−2r

 ∑
m∈N∗\{n}

|ki
m|2

|λm −λn|

 ∑
m∈N∗\{n}

1
|λm −λn|


≲
∑

m∈N∗

|ki
m|2

∑
n∈N∗\{m}

n−2r+1−α logn
(

1
|λm − λn|

)
≲
∑

m∈N∗

|ki
m|2m−2(r+(α−1)) log2(m),

which, by induction for i ⩾ 2 together with (5.19), allows to deduce,

(5.24) (n−εki
n)n∈N∗ ∈ l2 for any ε ∈ (si, si−2) , with α ∈ (1, 3/2],

with si := s0 + (1 − α)i = 1/2 + (1 − α)(i + 1), ∀i ∈ N. We are therefore
able to conclude the first part of Lemma 5.2. Indeed, for any α ∈ (1, 3/2],
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there exists M ∈ N such that sM < 0. Hence, for such M , from (5.24), we
deduce that kM

n ∈ ℓ∞ and, from (5.22) and (5.23), that,

|Kn| ≲M + ∥kM
n ∥ℓ∞ ,

which implies (Kn)n∈N∗ ∈ l∞. This ends the proof of the first point of
Lemma 5.2.

Let us now study the operator k given by (5.3). Let r ∈ (1/2−α, α−1/2)
and consider ε ∈ (0, α− 1

2 − r). Let f ∈ Hr and denote fn = ⟨f, n−rφn⟩Hr

such that f =
∑

n∈N∗ fnn
−rφn. We have,

k(f) =
∑

n∈N∗

fnknn
−rτqn =

∑
n∈N∗

(fnknn
ε)(n−(r+ε)τqn),

where the last equality holds a priori in Hr since kn is bounded. In fact,
we have

(5.25) (knn
ε)n∈N∗ ∈ l∞, for any ε ∈ [0, α− 1),

Indeed, for α > 3/2, we use the decomposition kn = e1
n +k1

n, the estimation
|e1

n| ≲ 1 from Lemma 4.2, the estimation as in (5.17),

∥(nrk1
n)n∥2

ℓ2 ≲
∑

m∈N∗

|km|2m2r−2(α−1) log2(m),

and (5.8) to deduce

(knn
ε)n∈N∗ ∈ l∞, for any ε ∈ (α− 1, 2α− 5

2),

which is sufficient to conclude. For α ∈ (1, 3/2], it suffices to use the fact
that,

kn =

 i∑
j=1

ej
n

+ ki
n.

On the one hand, using (5.23), we have

|ei
nn

ε| ≲ n1−α+ε log(n) ≲ 1, ∀i ∈ N∗,

as long as ε < α − 1. On the other hand, for any α ∈ (1, 3/2], we have
that (5.24) holds for any i ∈ N, and since si → −∞ as i → ∞, we deduce
that there exists M ∈ N such that (nεkM

n )n∈N∗ ∈ ℓ2 for all ε < α − 1.
Hence, (nεkM

n )n∈N∗ ∈ ℓ∞ for ε ∈ [0, α− 1) and,

|nϵkn| ≲M + ∥(nεkM
n )∥ℓ∞ ,

for ε ∈ [0, α− 1) and α ∈ (1, 3/2].
Thus, for any α > 1, (fnknn

ε)n∈N∗ ∈ l2 for ε ∈ [0, α− 1).
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Now assume ε ∈ [0, r0) where r0 := min(α− 1
2 − r, α− 1). Since r + ε <

α − 1/2, we have from Proposition 4.12 that (n−(r+ε)qn)n∈N∗ is a Riesz
basis of Hr+ε therefore so is (n−(r+ε)τqn)n∈N∗ . Thus k(f) ∈ Hr+ε and,

∥k(f)∥Hr+ε ≲ ∥fnknn
ε∥l2 ≲ ∥f∥Hr .

This ends the proof of Lemma 5.2. □

5.2. Step (5): boundedness of the corresponding backstepping
transformation

Let us now look at the boundedness of T and show that it satisfies the
operator equality (3.3) in some sense. We show the following.

Lemma 5.3. — The operator T given by (3.11) is a bounded operator
from Hr to Hr for any r ∈ (1/2 − α, α − 1/2). Moreover, we have the
following operator equality,

(5.26) T (A+BK) = (A− λI)T in L(Hα/2+s; H−α/2+s),

∀s ∈
(

−α−1
2 ,

α−1
2

)
.

Proof of Lemma 5.3. — We start by proving that T is a bounded oper-
ator using the previous section. Let r ∈ (1/2 − α, α − 1/2). We introduce
the operator τK

(5.27) τK : n−rτqn −→ (−Kn)n−rτqn,

which is well defined since (n−rτqn)n∈N∗ is a Riesz basis of Hr (recall that
(n−rqn)n∈N∗ is a Riesz basis of Hr for r ∈ (1/2 − α, α − 1/2) and τ is an
isomorphism from Hr to Hr for r ∈ R). From the definition of T given
in (3.11), we have,

(5.28) T = τK ◦ τ ◦ S.

Since both τ and S are bounded from Hr to itself, it suffices to show that
τK is bounded to show that T is bounded from Hr to itself. Since we
showed in the previous section that (Kn)n∈N∗ is uniformly bounded from
above (see Lemma 5.2), and (n−rτqn)n∈N∗ is a Riesz basis of Hr, we have
that for any f =

∑
n∈N∗ fnn

−rτqn ∈ Hr,

∥τKf∥Hr =

∥∥∥∥∥∑
n∈N∗

(−Kn)fnn
−rτqn

∥∥∥∥∥
Hr

≲ ∥(fnKn)n∥l2 ≲ ∥(fn)n∥l2 ≲ ∥f∥Hr .

Thus τK is bounded from Hr to itself and so is T .
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Let us now prove the operator equality (5.26). We proceed by ensuring
that the modified operator equality,

TA+BK = (A− λI)T,

which have been using to define T and K, indeed holds on the right array
of functional spaces.

Observe first that all terms make sense: indeed, K : n−rφn 7→ n−rKn is
a bounded operator from Hα/2+s to C for any s ∈ (−(α− 1)/2, (α− 1)/2).
On the other hand, B ∈ H−α/2 and in fact in H−α/2+s for any s ∈ (−(α−
1)/2, (α−1)/2) since (bn)n∈N∗ is uniformly bounded. So B can be formally
seen as an operator from C to H−α/2+s for any s ∈ (−(α−1)/2, (α−1)/2).
Thus, BK is a bounded operator from Hα/2+s to H−α/2+s for any s ∈
(−(α− 1)/2, (α− 1)/2). Similarly one can check that both AT and TA are
bounded operators from Hα/2+s to H−α/2+s when s ∈ (−(α − 1)/2, (α −
1)/2) (since T is a bounded operator in Hr for any r ∈ (1/2 −α, α− 1/2)).
To show (5.26) it suffices to check that it holds against n−α/2−sφn for any
n ∈ N∗ and s ∈ (−(α − 1)/2, (α − 1)/2). Since the operators are linear,
it suffices to verify that it holds against φn for any n ∈ N∗. From the
definition of T (see (3.11)) we have (in H−α/2+s)

[(TA+BK) − (A− λI)T ]φn = λnTφn +BKn − (A− λI)Tφn

= λn(−Kn)

∑
p∈N∗

bpφp

λn − λp + λ

+BKn

− (−Kn)

∑
p∈N∗

bp(λp − λ)φp

λn − λp + λ


= (−Kn)

∑
p∈N∗

bpφp

+BKn

= 0.

Then, using the TB = B condition, which holds in H−α/2+s with s ∈
(−(α− 1)/2, (α− 1)/2) thanks to Lemma 5.2, we have,

TA+BK = T (A+BK), in L(Hα/2+s; H−α/2+s), ∀s ∈
(

−α−1
2 ,

α−1
2

)
,

which ends the proof of Lemma 5.3. □
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5.3. Step (6): Fredholm operator property in H−α/2

We now prove the following lemma.

Lemma 5.4. — T defined by (3.11) with Kn defined by Lemma 5.1 is a
Fredholm operator (of index 0) from H−α/2 to H−α/2.

Proof of Lemma 5.4. — In order to show this(5) it suffices to show that
Tc = T − Id is a compact operator in H−α/2. Let f ∈ H−α/2, and denote(
f, nα/2φn

)
H−α/2 = fn ∈ ℓ2 such that,

f =
∑

n∈N∗

fn(nα/2φn).

We have, using the fact that T is bounded from H−α/2 to H−α/2,

(5.29) Tcf = Tf − f

=
∑

n∈N∗

fn(−Kn)nα/2τqn −
∑

n∈N∗

fnn
α/2φn

=
(∑

n∈N

fn

bn
nα/2λτqn

)
−

(∑
n∈N∗

fnn
α/2φn

)
+
(∑

n∈N

fn

bn
nα/2knτqn

)
.

Now observe that, as previously,(∑
n∈N∗

fn

bn
nα/2λτqn

)
−

(∑
n∈N∗

fnn
α/2φn

)

=

∑
n∈N∗

fn

bn
nα/2λ

∑
p∈N∗\{n}

bpφp

λn − λp + λ

+
(∑

n∈N∗

fnn
α/2λ

φn

λ

)

−

(∑
n∈N∗

fnn
α/2φn

)

= λ

∑
n∈N∗

fn

bn
nα/2

∑
p∈N∗\{n}

bpφp

λn − λp + λ

 .

Together with (5.29) and the definition of the operator k (5.3), this gives

Tcf = λ

∑
n∈N∗

fn

bn
nα/2

∑
p∈N∗\{n}

bpφp

λn − λp + λ

+ k(τ−1f).

(5) One could wonder: why showing this in H−α/2 while this seems to hold in H as
well? This will become clearer in the next section: it is easier to show first that T is
an isomorphism in H−α/2 rather than in H and then deduce that T is an isomorphism
in H.
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From the definition Sc given by Lemma 4.7 and τ given in (3.10), this can
be expressed as

Tcf = λτ ◦ Sc ◦ τ−1f + k ◦ τ−1f.

We know from Lemma 5.2 that k is a compact operator from H−α/2 to
H−α/2 and τ−1 is an isomorphism from H−α/2 to H−α/2 thus k ◦ τ−1 is a
compact operator from H−α/2 to H−α/2. Similarly Sc is a compact operator
from H−α/2 to H−α/2 from Lemma 4.7, and therefore τ ◦ Sc ◦ τ−1 is a
compact operator from H−α/2 to H−α/2. Hence, Tc is a compact operator
from H−α/2 to H−α/2. This ends the proof of Lemma 5.4. □

5.4. Step (7): invertibility in H−α/2

We now turn to the following lemma.

Lemma 5.5. — T defined by (3.11) with Kn given by Lemma 5.1 defines
an isomorphism from H−α/2 to H−α/2.

Proof of Lemma 5.5. — We already know that T is a bounded operator
from H−α/2 to H−α/2 and that T is also a Fredholm operator of index 0.
Therefore, using the fact that the adjoint of a Fredholm operator is still
a Fredholm operator from Schauder’s theorem, and that dim(ker(T )) =
dim(coker(T )) = dim(ker(T ∗)) < +∞, it suffices to show that,

(5.30) ker(T ∗) = {0} in H−α/2,

to prove that T is an isomorphism from H−α/2 to H−α/2, where T ∗ is
the adjoint of T (taken as an operator from H−α/2 for H−α/2). From that
point, the method is inspired by what is done for the Schrödinger equation
or the heat equation in [14, 21]: the proof is composed of three main steps:

(1) There exists ρ ∈ C such that both A+BK+λ Id +ρ Id and A+ρ Id
are invertible operator from Hα/2 to H−α/2.

(2) For such a ρ, if ker(T ∗) ̸= {0}, then (A+ρ Id)−1 has an eigenvector
h which belongs to ker(T ∗).

(3) No eigenvector of (A+ ρ Id)−1 belong to ker(T ∗).
From Step (2) and Step (3) we deduce that ker(T ∗) = {0}. Given that this
is very similar to what is done in [14, 21], the rigorous proof is postponed
to the Appendix F. In addition, we also provide another direct method to
prove the first step instead of the method using the perturbation theory of
operators that is introduced in [14]. □
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5.5. Step (8): invertibility on a range of Sobolev spaces

Now that we know from Lemma 5.5 that T is an isomorphism from
H−α/2 to H−α/2, we are going to show the following proposition.

Proposition 5.6. — For any r ∈ (1/2 − α, α − 1/2), the operator T
given by (3.11) is an isomorphism from Hr to Hr. In particular T is an
isomorphism from H to H.

Proof of Proposition 5.6. — We first show that for any n ∈ N∗, Kn ̸=
0. Let m ∈ N∗. Since T is an isomorphism from H−α/2 to H−α/2 from
Lemma 5.5 there exists h ∈ H−α/2 such that,

(5.31) Th = mα/2τqm.

As h ∈ H−α/2 there exists (hn)n∈N∗ ∈ l2 such that,

h =
∑

n∈N∗

hnn
α/2φn,

hence,
Th =

∑
n∈N∗

(−Kn)hnn
α/2τqn.

As (nα/2qn)n∈N∗ is a Riesz basis of H−α/2 and τ : H−α/2 → H−α/2 is
an isomorphism, then (nα/2τqn)n∈N∗ is also a Riesz basis of H−α/2 which
means, together with (5.31), that,

hm(−Km) = 1,

hence Km ̸= 0. Since it is true for any m ∈ N∗, we deduce that Kn ̸= 0,
for any n ∈ N∗.

Now, we are going to show that (Kn)n∈N∗ is bounded from below. Note
that from (5.2),

|Knbn| = |λ+ kn|,
where (knn

ε)n∈N∗ ∈ l∞, for some ε > 0 (see (5.25)), which means that
kn → 0 when n → +∞. Hence, there exists n0 ∈ N∗ such that for any
n ⩾ n0,

(5.32) |Knbn| ⩾ λ

2 > 0.

AsKn and bn do not vanish, minn⩽n0(|Knbn|)> 0. This together with (5.32)
means that |Knbn| is uniformly bounded from below. Since bn is uniformly
bounded we deduce that there exists a constant c > 0 independent of n
such that,

|Kn| ⩾ c > 0, ∀n ∈ N∗.
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We can now conclude: since (Kn)n∈N∗ is uniformly bounded from below
and above (see Lemma 5.2), the operator,

τK : n−rτqn 7−→ (−Kn)n−rτqn,

is an isomorphism from Hr to Hr, for any r ∈ (1/2 −α, α− 1/2). We used
here that (n−rτqn)n∈N∗ is a Riesz basis of Hr, for any r ∈ (1/2−α, α−1/2).
Using the same fact, the operator,

n−rφn 7−→ n−rτqn,

is also an isomorphism from Hr to Hr, for any r ∈ (1/2 − α, α − 1/2).
Hence, composing using τK ,

T : n−rφn 7−→ (−Kn)n−rτqn,

is an isomorphism from Hr to Hr. In particular, given that H0 = H, it is
an isomorphism from H to itself. This ends the proof of Proposition 5.6.

Remark 5.7. — This last argument simply means that T = τK ◦ τ ◦ S,
each of these three operators being an isomorphism from Hr to Hr. □

6. Well-posedness and stability of the closed-loop system

Our proof of the well-posedness of the closed-loop system is based on
semigroup theory. The closed-loop system has the form,

(6.1)
{
∂tu = Au+BKu, t ∈ (0, T ),
u|t=0 = u0(x),

with,
B =

∑
n∈N∗

bnφn ∈ H−α/2,

Observe in addition that since B satisfies Assumption 2.1, B ∈ H−1/2−ε

for ε sufficiently small. Similarly we have

K : H1/2+ε −→ C,
φn 7−→ Kn.

We begin by studying the closed-loop operator A+BK and the spaces on
which the operator equality is defined. Then we move on to the proof of
well-posedness by the semigroup theory.
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6.1. Properties of the spaces Dr(A+BK)

Clearly, A+BK can be defined on H1/2+ε. In particular,

A+BK : Hα/2 −→ H−α/2.

However, it does not map the natural space Hα (which is exactly D(A)) to
the “desired” H space (recall that H = H0):

A+BK : Hα −→ H−1/2−ε,

as B ∈ H−1/2−ε. Therefore, for r ∈ (1/2 − α, α− 1/2), we shall define the
unbounded operator A+BK as follows:

A+BK : Dr(A+BK) ⊂ Hr −→ Hr,(6.2)
Dr(A+BK) := {f ∈ Hr : (A+BK)f ∈ Hr},(6.3)

where the space Dr(A+BK) is endowed with the usual norm

∥y∥Dr(A+BK) := ∥y∥Hr + ∥(A+BK)y∥Hr , ∀y ∈ Dr(A+BK).

Let us first point out that every f ∈ Dr(A + BK) ⊂ Hr satisfies Af ∈
Hr−α. Since r < α− 1/2,

BKf ∈ Hr−α ⊂ H−1/2−ε \ H−1/2,

which implies that Kf is well-defined (and in particular Kf ∈ C). From
the definition of Dr(A + BK), we then get Af ∈ H−1/2−ε. Hence, f =
A−1(Af) ∈ Hα−1/2−ε. As a result, for r ∈ (1/2 − α, α− 1/2), and for
ε < α− r − 1/2, Dr(A+BK) ⊂ Hr+ε.

In order to further our study, we now use the operator equality (5.26)
in the appropriate functional setting. We first show that for r ∈
(1/2 − α, α− 1/2),

T (A+BK)f = (A− λI)Tf ∈ Hr, ∀f ∈ Dr(A+BK).(6.4)

Recall from (5.26) that this equality holds in H−α/2+s, for f ∈ Hα/2+s for
any s ∈ (−(α−1)/2, (α−1)/2) but a priori we do not have any information
in Hr. Since Dr(A+BK) ⊂ Hα−1/2−ε, (5.26) holds for f ∈ Dr(A+BK),
so that we only need to check the regularity of both sides of the equality.
Now, for f ∈ Dr(A+BK), by property of T and definition of Dr(A+BK),
we have T (A+BK)f ∈ Hr, hence (A− λI)Tf ∈ Hr, and (6.4) follows.

We can now use the operator equality to characterize the spaces
Dr(A+BK).

Lemma 6.1. — Let r ∈ (1/2 − α, α− 1/2). Then,

Dr(A+BK) = T−1(Hr+α).
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Proof of Lemma 6.1. — As a direct consequence of the above, for f ∈
Dr(A + BK), we get ATf ∈ Hr, thus Tf ∈ Hr+α ⊂ Hr. This implies by
Proposition 5.6 that

D(A+BK) ⊂ T−1(Hr+α).

It remains to prove that T−1(Hr+α) ⊂ D(A+BK). Let f̃ ∈ T−1(Hr+α) ⊂
Hα−1/2−ε so that (A−λI)T f̃ ∈ Hr. Applying the operator equality (5.26)
to f , and using Proposition 5.6, we get

T (A+BK)f̃ ∈ Hr, i.e., (A+BK)f̃ ∈ Hr, i.e., f̃ ∈ Dr(A+BK).

This concludes the proof of the lemma. □

Since T is an isomorphism on Hr, and by density of Hr+α in Hr, we
immediately get:

Corollary 6.2. — For r ∈ (1/2 − α, α− 1/2), the space Dr(A+BK)
is dense in Hr.

We show the following lemma.

Lemma 6.3. — For r ∈ (1/2 − α, α− 1/2), Dr(A + BK) is a Hilbert
space. Moreover,

T : Dr(A+BK) = T−1(Hr+α) −→ Hr+α,

is an isomorphism, and

(6.5) T (A+BK) = (A− λI)T ∈ L(Dr(A+BK); Hr).

Proof of Lemma 6.3. — We first show that Dr(A + BK) is complete
and hence is a Hilbert space, the proof of which is classical and that we
recall. Given (fn)n∈N∗ a Cauchy sequence in Dr(A+BK), we have

∥(A+BK)(fn − fm)∥Hr + ∥fn − fm∥Hr −−−−−−→
n,m→+∞

0.

Since (fn)n∈N∗ is a sequence of elements of Dr(A+BK), according to the
operator equality (6.4),

∥(A− λI)(Tfn − Tfm)∥Hr = ∥T (A+BK)(fn − fm)∥Hr

≲ ∥(A+BK)(fn − fm)∥Hr −→ 0,

thus

∥(A(Tfn − Tfm)∥Hr −→ 0 which implies ∥Tfn − Tfm∥Hr+α −→ 0.

Since Hr+α is complete, there exists some Tf ∈ Hr+α such that Tfn
Hr+α

−−−−→
n→∞

Tf . As a direct consequence we immediately obtain that,

(6.6) fn
Hr

−−−−→
n→∞

f.
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Moreover,

(6.7) ∥(A+BK)fn − (A+BK)f∥Hr

≲ ∥T (A+BK)fn − T (A+BK)f∥Hr

= ∥(A− λI)T (fn − f)∥Hr −→ 0,

as Tfn
Hr+α

−−−−→
n→∞

Tf . Thus, putting (6.6) and (6.7) together, we get

fn
Dr(A+BK)−−−−−−−−→

n→∞
f.

Next, we turn to the second part of Lemma 6.3 and we show that T : Dr(A+
BK) → Hr+α is an isomorphism. For any y ∈ Dr(A+BK) = T−1(Hr+α),
we know that, since the operator equality holds in Hr,

∥y∥Dr(A+BK) = ∥(A+BK)y∥Hr + ∥y∥Hr

≃ ∥T (A+BK)y∥Hr + ∥y∥Hr

= ∥(A− λI)Ty∥Hr + ∥y∥Hr

≃ ∥Ty∥Hr+α ,

which implies that T : Dr(A+BK) → Hr+α is an isomorphism.
Finally, we immediately get from the definition of Dr(A+BK) and the

fact that it is a Hilbert space that

T (A+BK), (A− λI)T ∈ L(D(A+BK);H).

This proves (6.5) and thus concludes the proof of Lemma 6.3. □

6.2. Regularity of the domains and spectral properties of
A+BK

At this point, our characterization of the Dr(A + BK) is rather indi-
rect. To gain a better understanding of these spaces, we will now explore
their relationship with the spaces Hs, an endeavour which we have already
started at the beginning of this subsection.

Our first remark is that, since T is an isomorphism on Hs for s ∈ (1/2 −
α, α− 1/2), we have

(6.8) Dr(A+BK) = T−1(Hr+α) = Hr+α, ∀r ∈
(

1
2 − α,−1

2

)
.

In particular, for r ∈
( 1

2 − α,− 1
2
)

the eigenvectors (φn)n∈N∗ form a Riesz
basis of Dr(A + BK). On the other hand, recall that B /∈ H− 1

2 . Hence,
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for r ∈ [−1/2, α − 1/2), and for f ∈ Hr+α, since Af ∈ Hr ⊂ H− 1
2 ,

f /∈ Dr(A+BK), i.e.,

(6.9) Hr+α ∩Dr(A+BK) = {0}, ∀r ∈
[
−1

2 , α− 1
2

)
.

In particular, for r ∈
[
− 1

2 , α− 1
2
)
, φn /∈ Dr(A+BK), ∀n ∈ N∗.

Let us stress this interesting dichotomy: for low regularity spaces, (6.8)
tells us that the domain Dr(A+BK) is the expected Hr+α. Then, past the
threshold given by r = −1/2, for higher regularity spaces, (6.9) tells us that
Dr(A + BK) is completely unrelated to Hr+α. This is to be understood
in light of the regularity of the control operator B. We have implemented
the backstepping method in an array of spaces, using a controllability as-
sumption. Now, in all these spaces, B is an admissible control operator,
but it is bounded only in the low regularity spaces given by (6.8). In that
case, it is indeed usual that the closed-loop operator should have the same
domain as A. Accordingly, (6.8) tells us that T preserves regularity, i.e.,
T (Hr+α) = Hr+α, ∀r ∈

( 1
2 − α,− 1

2
)
.

On the other hand, in the higher regularity spaces, B is unbounded. Ac-
cordingly, the backstepping transformation does not preserve higher reg-
ularity, i.e., T (Hr+α) ∩ Hr+α = {0}, ∀r ∈

[
− 1

2 , α− 1
2
)

. As a result, the
domains are more implicitly defined. The same difficulties regarding the do-
main of the closed-loop operator were already mentioned in [28, 42]. Here,
thanks to a comprehensive study of the operator and its domain, we are
able to give a more precise definition of the domain, and even a Riesz basis.

Indeed, having characterized the domains Dr(A+BK), we can now study
the spectral properties of A + BK, using again the operator inequality.
Consider the formal calculation:

(6.10)

(A+BK)T−1φn = T−1T (A+BK)T−1φn

= T−1(A− λI)TT−1φn

= T−1(A− λI)φn

= (λn − λ)T−1φn, ∀n ∈ N∗.

Now, we know from (6.4) that this formal derivation holds if one can ap-
ply the operator equality to T−1φn, i.e., if T−1φn ∈ Dr(A + BK). By
Lemma 6.1, this always holds. Thus, (6.10) leads to the following proposi-
tion:

Proposition 6.4. — For r ∈ (1/2−α, α−1/2), the unbounded operator
A+BK with domain Dr(A+BK) admits a Riesz basis of eigenvectors in
Hr, given by (T−1φn)n∈N∗ , with corresponding eigenvalues (λn − λ)n∈N∗ .
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6.3. Well-posedness and exponential stability.

Proposition 6.5. — The unbounded operator A + BK with domain
Dr(A + BK) is the infinitesimal generator of a strongly continuous C0-
semigroup on Hr.

Proof of Proposition 6.5. — This proof is inspired by [15] for the well-
posedness of the closed-loop water tank system. Note that we unfortunately
cannot adapt the proof from [21] concerning well-posedness of the heat
equations for the lack of smoothing effects.

For r ∈ (1/2 − α, α − 1/2), it is easy to prove, thanks to its spectral
properties, that the operator A − λI with domain Dr(A − λI) = Hr+α

(which always contains the eigenfunctions of A− λI) generates a strongly
continuous semigroup on Hr, which we denote et(A−λI).

Now, define the following strongly continuous semigroup on Hr:

(6.11) S : R+ −→ L(Hr)

t 7−→ T−1 et(A−λI) T ∈ Hr.

We prove that the infinitesimal generator of S(t), t ⩾ 0 is A + BK with
domain Dr(A + BK). Let f ∈ Dr(A + BK). Then, by Lemma 6.1, Tf ∈
Hr+α = Dr(A− λI) and clearly, by definition of et(A−λI),

S(t)f − f

t
= T−1

(
et(A−λI) Tf − Tf

t

)
Hr

−−−−→
t→0+

T−1(A− λI)Tf.

Conversely, let f ∈ Hr be such that there exists h ∈ Hr such that

S(t)f − f

t

Hr

−−−−→
t→0+

h.

Then, as T is an isomorphism on Hr,

et(A−λI) Tf − Tf

t
= TS(t)T−1(Tf) − Tf

t

= T
S(t)f − f

t
Hr

−−−−→
t→0+

Th.

This implies that Tf ∈ Dr(A − λI) = Hr+α, i.e., f ∈ T−1(Hr+α) =
Dr(A+BK).
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Thus, Dr(A + BK) is indeed the domain of the infinitesimal generator
of S(t), t ⩾ 0. Moreover, by (6.4),

lim
t→0+

S(t)f − f

t
= T−1(A− λI)Tf

= T−1T (A+BK)f
= (A+BK)f, ∀f ∈ Dr(A+BK),

which concludes the proof of the proposition. □

Now that we have established the well-posedness of the closed-loop sys-
tem, we can turn to its exponential stability, keeping in mind that, remark-
ably, the same feedback achieves exponential stabilization in an array of
functional spaces.

Proof of Corollary 2.11. — Let r ∈ (1/2 − α, α − 1/2), and u0 ∈ Hr.
From the definition of the semigroup S(t) on Hr, we immediately get

∥S(t)u0∥Hr = ∥T−1 et(A−λI) Tu0∥Hr ⩽ e−λt ∥T−1∥∥T∥∥u0∥Hr .

This ends the proof of Corollary 2.11. □

7. Linearized water waves

In this section, we illustrate the application of our main results to the
rapid stabilization of the linearized water waves. We first recall its deriva-
tion following [3, 4, 31, 32] and proceed to describe the functional setting
fitting our abstract framework.

7.1. Derivation of the linearized water waves equation

Consider the 2-D capillary-gravity water waves for an homogeneous, in-
viscid, incompressible, irrotational fluid over a flat bottom on which an
external pressure is applied. The volume of the fluid is described by

Ω(t) = {(x, y) ∈ T × R | −h ⩽ y ⩽ η(x, t)},

where y = −h is the bottom of the fluid, y = η(x, t) is the deformation
from the rest y = 0 of the free surface and T = R/2πZ . The evolution of
the velocity field U of the fluid and of the free surface are governed by 2-D
free surface Euler equation,

∂tU + (U.∇)U = −∇p− ge2, (x, y) ∈ Ω(t),
div U = 0, rot U = 0, (x, y) ∈ Ω(t),
U · n = 0, (x, y) ∈ T × {−h},
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satisfying the boundary conditions on the free surface y = η(t, x),{
∂tη =

√
1 + |∇η|2U.n, (x, y) ∈ T × {η(t, x)},

p = patm + Pext − σκ(η), (x, y) ∈ T × {η(t, x)},

where p is the pressure, g the gravitational constant,

n := 1√
1 + |∇η|2

(−∇η, 1)t

the outward normal vector to the surface η, e2 = (0, 1)t the unit vector,
σ > 0 is the surface tension coefficient and

κ(η) = ∂x

(
∂xη√

1 + |∂xη|2

)
= ∂2

xη

(1 + (∂xη)2)3/2 ,

is the mean curvature of the surface. The first part is the Euler equation
on U describing incompressible and irrotational fluids with an impermeable
bottom respectively. The second part is the boundary conditions on the free
surface: the kinematic equation on the surface for η asserting that particles
on the surface remains on the surface along time, and the pressure at the
surface, including the surface tensison and the localized external pressure
Pext(t, x, η(t, x)). The incompressible and irrotational assumption implies
that the velocity field is represented by a velocity potential Φ : R+×R2 → R
such that U = ∇x,yΦ. The 2-D free surface Euler equation implies that the
velocity potential satisfies

∂tΦ + 1
2 |∇Φ|2 + gy = −(p− patm), (x, y) ∈ Ω(t),

∆Φ = 0, (x, y) ∈ Ω(t),
∂nΦ = 0, (x, y) ∈ (0, 2π) × {−h},
∂tη =

√
1 + |∇η|2∂nΦ, (x, y) ∈ (0, 2π) × {η(t, x)}.

It was first noted by Zakharov [46] that the previous equation on the
velocity potential Φ is an Hamiltonian system, where ψ := Φ|y=η and η are
(generalized) canonical variables. Moreover, Φ is completely determined
through the Laplace equation and the knowledge of ψ := Φ|y=η and η.
This leads to study the Dirichlet-to-Neumann map

G[η, h] : ψ 7−→
√

1 + |∇η|2∂nΦ|y=η = ∂yΦ(x, η, t) − ∂xη(x, t)∂xΦ(x, η, t).

We refer for instance to [3, 4, 31, 32] and the references therein for the
properties of the Dirichlet-to-Neumann map as well as its application to the
well-posedness of the Cauchy problem of the gravity and capillary-gravity
water waves.
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Using the Dirichlet-to-Neumann map, one may reformulate the capillary-
gravity water waves as,

(7.1)

∂tη −G[η, h]ψ = 0,

∂tψ + gη + 1
2 |∇ψ|2 − (G[η, h]ψ + ∇η.∇ψ)2

2(1 + |∇η|2) = σκ(η) − Pext.

The Dirichlet-to-Neumann operator is nonlinear with respect to the surface
elevation. We therefore consider the linearization around (η, ψ) = (0, 0),
yielding (fixing σ = 1),

(7.2)
{
∂tη −G[0, h]ψ = 0,
∂tψ + gη − ∂2

xη = −Pext,

where G[0, h] = |Dx| tanh(h|Dx|), defined as a Fourier multiplier on peri-
odic functions. Set L the operator

(7.3) L := −i
(
(g − ∂2

x)G[0, h]
)1/2

,

and let u = ψ + LG[0, h]−1η, we end up with,

∂tu = L u+ Pext.

To be more precise, we consider the external pressure (the control) to
be of the distributed control form Pext = B1(x)w1(t) +B2(x)w2(t). Notice
that L has double eigenvalues (see Section 1.8), which means according
to [21] two distributed controls are required to control/stabilize the system
instead of one. Hence, for ease of notations we consider

(7.4) ∂tu = L u+Bw(t),

where B is a rank 2 control operator B : w ∈ C2 → w1B1 + w2B2. Note
that since all nonzero eigenvalues are doubled, the system would not be
controllable with a rank 1 operator and 2 is the smallest possible dimension
to have controllability.

7.2. Functional setting

The spectral decomposition of L is given by,

L e±inx = −i
(
(g − n2)|n| tanh(h|n|)

)1/2 e±inx, n ∈ N∗,

where,

(7.5) λn := −i
(
(g − n2)|n| tanh(h|n|)

)1/2
.
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Thus,
L cos(nx) = λn cos(nx), L sin(nx) = λn sin(nx),

Since every nonzero eigenvalues has multiplicity two, any given function can
be decomposed by odd and even parts under the orthonormal eigenbasis,

φ1
n := 1√

π
sin(nx), φ2

n := 1√
π

cos(nx), for n ∈ N∗,

and
φ2

0 = 1
2π .

Hence, we define

(7.6) Hs
1 := span{φ1

n | n ∈ N∗}∥·∥Hs
1 , Hs

2 := span{φ2
n | n ∈ N∗}∥·∥Hs

2 .

Remark 7.1. — As pointed out in Remark 1.6, the decomposition of the
spaces Hs

i , i = 1, 2 is not unique. One could also include the space Hs
3, where

space Hs
3 could be generated by any finite combination of φi

n, i = 1, 2 and
n ∈ N∗, without changing the nature of the result. One could also consider
φ2

0 in the space Hs
3, but this would mean that the “mass” would not be

preserved. This does not present any mathematical obstruction, but is less
physically relevant (see Remark 7.3).

7.3. Application of the main results

We now show that the water-wave operator L satisfies Assumption 1.4
with αi = 3/2 for i = 1, 2. First, from the definition of λn given by (7.5),

cn3 ⩽
∣∣∣−i ((g − n2)|n| tanh(h|n|)

)1/2
∣∣∣ ⩽ Cn3, n ∈ N∗,

for C, c > 0 since tanh is bounded above and below. Now, inspired by the
definition of λn we define,

g(x) :=
(
(g + x2)x tanh(bx)

) 1
2 ,∀x ∈ (0,+∞),

which is strictly increasing and verifies that for any x ∈ [1,+∞),

g′(x) = 1
2
(
(g + x2)x tanh(bx)

)− 1
2

×
(
(g + 3x2) tanh(bx) + b(g + x2)x(1 − tanh2(bx))

)
⩾ Cx− 3

2x2 = Cx
1
2 .

We also observe that

g2(2x) ⩾ 2g2(x), ∀x ∈ [1,+∞).
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Let given m,n ∈ N∗ with m ̸= n. Assume without loss of generality that
m < n. If n ⩾ 2m, then

|λn−λm| = g(n)−g(m)⩾ g(n)−g(n/2)⩾ 2−
√

2
2 g(n)⩾Cn

3
2 ⩾C(n−m)n 1

2 .

If m < n < 2m, then there exists some y ∈ [m,n] such that

|λn−λm| = g(n)−g(m) = (n−m)g′(y)⩾C(n−m)m 1
2 ⩾ C(

√
2)−1(n−m)n 1

2 .

Hence the water-wave operator does satisfy Assumption 1.4 with α1 =
α2 = 3/2. Then, it suffices to consider B satisfying either Assumption 2.1
or Assumption 2.7 to deduce the controllability of the linearized water
waves equation, thanks to Proposition 2.8.

Proposition 7.2. — Let T > 0, s ⩾ 0 and let Bi ∈ Hs
i satisfying

Assumption 2.7. Then, for any (u0, uf ) ∈ (Hs
1 ×Hs

2)2, there exists a control
w ∈ L2((0, T );R2) such that the unique solution of (7.4) with initial state
u0 satisfies u(T ) = uf in Hs

1 × Hs
2.

From Assumption 2.1, Assumption 2.7 as well as our main theorems,
we also deduce the rapid stabilization given by Corollary 2.10 and Corol-
lary 2.11.

Remark 7.3 (Conservation of mass-like condition). — In this paper we
have not taken into account the possibility of a conserved quantity, for
instance a “conservation of mass” condition which could be relevant for
physical equations such as the water waves equation. In this case, denot-
ing (φ2

n)n∈N∗ the even eigenfunctions and (φ1
n)n∈N∗ the odd eigenfunctions

(recall that for the water waves equation the eigenfunctions are sin and co-
sine fuctions) associated to λn = |n|3/2, the conservation of mass condition
becomes ∫

T
u(x) dx = ⟨u(t), φ2

0⟩ = 0,

In this case the space Hr
2 is generated by the even eigenfunctions and by

choosing B such that ⟨B2, φ
2
0⟩ = 0, the backstepping method can still be

applied. Indeed, by following the same steps as in our proof, one can build
an isomorphism that maps the even part of the water-waves system, with
mass conservation, to the target system

∂tv = L v − λv,
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with mass conservation. This system is of course still exponentially stable.
The key here is that the target system under consideration also preserves
mass, i.e., its semigroup et(A−λI) leaves Span{φ2

n, n ⩾ 1} invariant, allow-
ing us to implement the backstepping method between the operators L

and L − λI, both with domain Span{φ2
n, n ⩾ 1}.

Remark 7.4 (Water waves in bounded domains). — In Corollaries 2.10
and 2.11, we have investigated the linearized water waves system in a pe-
riodic domain. In fact we can also study the same system in a bounded
domain with Neumann boundary conditions, the controllability of which
was obtained by Reid [35]. In this framework, since all eigenvalues are sim-
ple, the situation is simpler and we are able to establish controllability, and
rapid stabilization by backstepping, using only one control term.

8. Conclusion

We have presented a compactness/duality method to overcome the lim-
itations of the classical Fredholm backstepping method. This allows to
prove the rapid stabilization of the linearized capillary-gravity water waves
system (1.6). More precisely, this compactness/duality method allows to
construct a Riesz basis for skew-adjoint operators behaving like i|Dx|α
for α > 1, that is beyond the α > 3/2 threshold imposed by the typi-
cal quadratically close criterion. We were moreover able to prove that the
uniqueness condition TB = B can also be handled without the quadrat-
ically close criterion, using fine estimations. The rapid stabilization was
proved in the spaces Hr, r ∈ (1/2−α, α−1/2). These bounds are sharp in
the sense that the operator A+BK cannot generate a strong semigroup for
r = α− 1/2, while r = 1/2 −α is the limit for the operator equality (5.26)
to hold. Moreover, the feedback law is shown to be independent of r. Fi-
nally, we are able to prove the existence of the isomorphism T in regular
spaces Hs, s ∈ R (as long as the control operator B is regular enough and
satisfies the equivalent of the controllability Assumption 2.1) a crucial step
in proving the local rapid stabilization of the nonlinear system (7.1) using
the regularity-consuming nonlinear estimates of [4, 31].

Appendix A. Riesz basis in Hilbert spaces

We recall here some definitions about vector families in Hilbert spaces
(see for instance [8, 11, 14, 21]).
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Definition A.1 (Vector family). — Let X be a Hilbert space. A family
of vectors {ξn}n∈I , where I = Z, N, or N∗ is said to be

(1) Dense in X, if span{ξi; i ∈ I} = X.
(2) ω-independent in X, if∑

k∈I

ckξk = 0 in X with {cn}n∈I ∈ ℓ2(I) =⇒ cn = 0, ∀n ∈ I.

(3) Quadratically close to a family of vector {en}n∈I , if∑
k∈I

∥ξk − ek∥2
X < +∞.

(4) Riesz basis of X, if it is the image of an isomorphism (on X) of
some orthonormal basis.

An equivalent definition of Riesz basis can also be stated as follows

Definition A.2 (Riesz basis). — A family of vectors {ξn}n∈I , where
I = Z, N, or N∗ of X is a called a Riesz basis of X, if it is dense in X and
if there exist C1, C2 > 0 such that for any {an}n∈I ∈ ℓ2(I) we have

(A.1) C1
∑
k∈I

|ak|2 ⩽ ∥
∑
k∈I

akξk∥2
X ⩽ C2

∑
k∈I

|ak|2.

The following lemma has been heavily used in the literature as a criterion
for Riesz basis.

Lemma A.3. — Let {ξn}n∈I be quadratically close to an orthonormal
basis {en}n∈I . Suppose that {ξn}n∈I is either dense in X or ω-independent
in X, then {ξn}n∈I is a Riesz basis of X.

Finally in this paper we also make use of the following Lemma

Lemma A.4. — Let X, Y be Hilbert spaces. Let T : X → Y be an
isomorphism. Suppose that {ξn}n∈I is a Riesz basis of X, then with ζn :=
Tξn, the family {ζn}n∈I is a Riesz basis of Y .

Appendix B. Controllability properties in the abstract
setting

In this section, by the decomposition H = H1 ⊕· · ·⊕Hm, we consider the
restriction of eAt on each Hi, i ∈ {1, . . . ,m}. Hence, for sake of conciseness,
we prove the results for an individual Hi that we denote H. We also denote
the corresponding control operator B = (B1, . . . , Bm) as B ∈ H−α/2.

Let us first recall Haraux’s Ingham inequality,
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Theorem B.1 ([23, Theorem 2]). — Let J ⊂ R be a bounded interval
and γ, ω > 0. Assume there exists {µn}n∈N∗ a real sequence such that,

(1) |µn+1 − µn| ⩾ ω,∀n ∈ N∗;
(2) there exists N ∈ N∗ such that |µn+1 − µn| ⩾ γ, for all |n| ⩾ N ;
(3) |J | > 2π/γ.

Then, there exist c, C > 0 such that for any sequence {an}n∈N∗ ∈ ℓ2(N∗;C),

c
∑

n∈N∗

|an|2 ⩽
∫

J

∣∣∣∣∣∑
n∈N∗

an eiµnt

∣∣∣∣∣
2

dt ⩽ C
∑

n∈N∗

|an|2.

We then deduce,

Lemma B.2. — Let T > 0 and assume that A is skew-adjoint and that
Assumption 1.4 holds. Then

(1) the family {eλnt |t∈(0,T )}n∈N∗ is a Riesz basis of

Θ := Span{eλnt |t∈(0,T ) : n ∈ N∗}L2((0,T );C).

(2) There exists a bi-orthogonal sequence (gn(t)|t∈(0,T ))n satisfying

gn ∈ Θ,∀n ∈ N∗,

⟨eλn·, gm⟩L2(0,T ) = δn,m,∀n,m ∈ N∗,

and (gn(t)|t∈(0,T ))n is also a Riesz basis of Θ.
(3) There exist constants c, C > 0 such that, for every f ∈ L2(0, T ),

there is

c

(∑
n∈N∗

|⟨f(·), eλn·⟩|2
) 1

2

⩽

∥∥∥∥∥∑
n∈N∗

⟨f(·), eλn·⟩L2(0,T )gn

∥∥∥∥∥
L2(0,T )

⩽ C∥f∥L2(0,T ).

Proof. — We mimic the proof by Beauchard–Laurent in [8, Proposi-
tion 19].

(1). — Since A is skew-adjoint, the eigenvalues λn are purely imaginary.
Moreover, from Assumption 1.4, we deduce that there exists ω > 0 such
that |λn+1 − λn| ⩾ ω > 0,∀n ∈ N∗ and that there exists, for any γ > 0,
N ∈ N∗ such that |λn+1 − λn| ⩾ γ > 0,∀n ⩾ N . Hence, Haraux’s Ingham
inequality holds for {eλnt |t∈(0,T )}n∈N∗ and, from (A.1), {eλnt |t∈(0,T )}n∈N∗

is a Riesz basis of Θ = Span{eλnt |t∈(0,T ) : n ∈ N∗}L2((0,T );C);.
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(2). — From the fact that {eλnt |t∈(0,T)}n∈N∗ is a Riesz basis of Θ, we
also deduce the existence of a bi-orthogonal sequence to {e−λns |s∈(0,T)}n∈Z∗,
that we denote {gm}m∈N∗ , also a Riesz basis of L2((0, T );C).

(3). — The first inequality comes from the fact that (gn)n is a Riesz basis
of Θ, it remains to prove the second one. Since Θ is a closed subspace of
L2(0, T ), we decompose L2(0, T ) by Θ⊕Θ⊥ with the orthogonal projection
P : L2(0, T ) → Θ. Thus, for every f ∈ L2(0, T ), there is

Pf =
∑

n∈N∗

⟨f(·), eλn·⟩L2(0,T )gn.

Hence we obtain the second inequality from the fact that ∥Pf∥L2(0,T ) ⩽
∥f∥L2(0,T ). □

We now prove the admissibility of the control operator stated in
Lemma 2.3.

Proof. — We prove Lemma 2.3 for a single space H, as the proof follows
readily in the general case. We apply directly Lemma B.2 with the hypoth-
esis of Lemma 2.3 to deduce that both {eλkt}k∈N∗ and its bi-orthogonal
sequence {gn(t)|t∈(0,T )}n∈N∗ are Riesz bases of

Span{eλnt |t∈(0,T ) : n ∈ N∗}L2((0,T );C)

for any T > 0. We can therefore write, for any T > 0,

L2((0, T );C) = Θ ⊕ Θ⊥ and the corresponding orthogonal projections

P : L2(0, T ) −→ Θ,

P⊥ : L2(0, T ) −→ Θ⊥.

where

Θ := Span{eλn(T −t) |t∈(0,T ) : n ∈ N∗}L2((0,T );C)

= Span{gn(t)|t∈(0,T ) : n ∈ N∗}L2((0,T );C).

Now, for any T > 0, let w ∈ L2((0, T );C) such that w = Pw + P⊥w. We
have

(Pw)(t) =
∑

k∈N∗

wkgk(t) with wk = ⟨w(·), eλk·⟩L2(0,t), ∀t ∈ (0, T ).
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Then, on the one hand, from Assumption 2.1, we deduce the admissibility
in Hs for s ⩽ 0. Indeed, it suffices to show the case s = 0. We have,

∥∥∥∥∥
∫ T

0
eA(T −t)Bw(t) dt

∥∥∥∥∥
2

H

=

∥∥∥∥∥
∫ T

0
eA(T −t) B(w1(t) + w2(t)) dt

∥∥∥∥∥
2

H

=

∥∥∥∥∥
∫ T

0

∑
k∈N∗

eλk(T −t) bkφk(Pw(t) + P⊥w(t)) dt

∥∥∥∥∥
2

H

=
∑

k∈N∗

|bk|2
∣∣∣∣∣
∫ T

0
eλk(T −t)(Pw(t) + P⊥w(t)) dt

∣∣∣∣∣
2

=
∑

k∈N∗

|bk|2
∣∣∣∣∣
∫ T

0
eλk(T −t) Pw(t) dt

∣∣∣∣∣
2

=
∑

k∈N∗

|bk|2|wk|2

⩽ C
∑

k∈N∗

|wk|2

= C∥Pw(t)∥2
L2(0,T )

⩽ C∥w(t)∥2
L2(0,T ).

Therefore, for every T > 0 there exists a constant CT > 0 such that,
for every w ∈ L2(0, T ), and for every initial state u0 ∈ H, there exists a
solution u(t) such that

∥u(T )∥H ⩽ ∥u0∥H + CT ∥w∥L2(0,T ).

This further implies that, thanks to the fact that the semigroup etA pre-
serves the H-norm, the solution belongs to C([0, T ];H) and satisfies

∥u(t)∥H ⩽ ∥u0∥H + CT ∥w∥L2(0,t),∀t ∈ [0, T ].

On the other hand, assume the admissibility in H. Then, for any T > 0,

∥∥∥∥∥
∫ T

0
eA(T −t) Bw(t) dt

∥∥∥∥∥
H

⩽ C∥w∥L2(0,T ), ∀w ∈ L2((0, T );C).
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Taking successively w(t) = gm(t),m ∈ N∗, we have,∥∥∥∥∥
∫ T

0
eA(T −t) Bw(t) dt

∥∥∥∥∥
2

H

=

∥∥∥∥∥
∫ T

0

∑
k∈N∗

eλk(T −t) bkφkw(t) dt

∥∥∥∥∥
2

H

=

∥∥∥∥∥∑
k∈N∗

bkφk

∫ T

0
eλk(T −t) gm(t) dt

∥∥∥∥∥
2

H

=
∑

k∈N∗

|bk|2
∣∣∣∣∣
∫ T

0
eλk(T −t) gm(t) dt

∣∣∣∣∣
2

= |bm|2 ⩽ C∥gm∥2
L2(0,T ) ⩽ C.

Therefore, the sequence bm is uniformly bounded from above. □

We now turn to the proof of Proposition 2.5.

Proof. — We study the controllability of the abstract system

(B.1)
{
∂tu(t) = Au(t) +Bw(t), t ∈ (0, T )
u(0) = u0,

with u0 ∈ H and w ∈ L2((0, T );C).
From the time-reversibility of (B.1) and the linearity of the equation, it

is sufficient to prove that it is always possible to drive the solution from any
initial data to u(T ) = 0, the proof of which relies on the moment method.
Indeed, let u0 ∈ H and use the Duhamel formula, thanks to (2.3), to write
the solution of (B.1) as,

u(t) = eAt u0 +
∫ t

0
eA(t−s) Bv(s) ds.

Denote the decomposition of u0 and B in the eigenbasis,

u0 =
∑

n∈N∗

un
0φn and B =

∑
n∈N∗

bnφn.

Then, the controllability is equivalent to,

0 =
∑

n∈N∗

eλnT un
0φn +

∫ T

0
eA(T −s)

∑
n∈N∗

bnφnw(s) ds

=
∑

n∈N∗

eλnT un
0φn +

∫ T

0

∑
n∈N∗

eλn(T −s) bnφnw(s) ds.
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Using Assumption (2.2), and more precisely, 0 < c ⩽ |bn| to ensure bn ̸= 0,
this is equivalent to,

(B.2) −un
0
bn

=
∫ T

0
e−λns w(s) ds, ∀n ∈ N∗.

Thanks to this controllability assumption, we have
un

0
bn

∈ ℓ2(N∗;C).

Therefore, if we are able to prove that there exists w ∈ L2((0, T );C)
such that (B.2) is satisfied, then we deduce the null-controllability. In-
deed, Lemma B.2 implies that {e−λns}n∈N∗ and its bi-orthogonal family
(gn(s))n∈N∗ are Riesz basis of Span{eλnt |t∈(0,T ) : n ∈ N∗}L2((0,T );C). There-
fore, the control can be chosen in such fashion as,

w(t) := −
∑

m∈N∗

um
0
bm

gm(t),

satisfying ∥w∥L2(0,T ) ≲ ∥u0∥H. Hence the null-controllability of the sys-
tem (B.1).

□

Appendix C. Extension to the case β ̸= 0

Suppose that Proposition 3.1 is proved for the case that β = 0. Then, for
any B =

∑
n bnφn satisfying Assumption 2.7, we consider B̃ =

∑
n b̃nφn

with b̃n = nβbn, which satisfies

c ⩽ |̃bn| ⩽ C, ∀n ∈ N.

According to Proposition 3.1 for the case that β = 0, for any λ > 0, for the
controlled system,

∂tũ = Aũ+ B̃y(t),
we are able to find an operator K̃ ∈ L(H α

2 ;C) and an isomorphism T̃ from
which is an isomorphism from Hr to itself for any r ∈ (1/2 − α, α − 1/2)
such that, (T̃ , K̃) is an isomorphism-feedback pair to the preceding system
and,

∂tũ = Aũ+ B̃K̃u,

is exponentially stable with decay rate λ. Now we introduce a map M from
H∞ to H∞ as,

M : H∞ −→ H∞,

n−βφn 7−→ φn.
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Clearly, M is an isomorphism from Hβ+s to Hs for every s ∈ R, and
the operator M commutes with the operator A. Then, for the controlled
system,

∂tu = Au+By(t),
where B = M−1B̃, we consider the feedback law (namely, we set y(t) =
Ku(t)),

K = K̃M ∈ L(Hβ+ α
2 ;C),

as well as the transformation,

T := M−1T̃M,

which is an isomorphism from Hr to itself for any r ∈ (β + 1/2 − α, β +
α − 1/2). It follows from simple calculation that the above-defined (T,K)
is an isomorphism-feedback pair. Actually, considering ũ = Mu we obtain,

∂tũ = ∂tMu = M∂tu = M(Au+BKu) = Aũ+ B̃K̃ũ.

This ends the proof of this claim.

Appendix D. Proof of Lemmas 4.3–4.5

Proof of Lemma 4.3. — By assumption (see Assumption 1.4 and (1.12))

|λn − λm| ⩾ cnα−1|n−m|.

There exists a constant C > 0 such that nα−1|n−m| ⩾ C|n−m|α if and
only if (assuming n ̸= m, otherwise the proof is trivial),

nα−1 ⩾ C|n−m|α−1.

But this follows from the strict monotonicity of the function f(x) = xα−1.
□

Proof of Lemma 4.4 and Lemma 4.5. — Define f(x) := xs for x ∈
[1,+∞). There exists c0, C0 > 0 such that

c0n
s ⩽ f(x) ⩽ C0n

s, ∀n ∈ N∗,∀x ∈ [n, n+ 1].

Concerning Lemma 4.4, suppose that s ̸= −1, then
p∑

n=1
ns ⩽ c−1

0

∫ p+1

1
f(x) dx = c−1

0
s+ 1

(
(p+ 1)s+1 − 1

)
⩽ C(1 + p1+s),

this ends the proof of Lemma 4.4.
Next we turn to the proof of Lemma 4.5. Given s ∈ R, we are able to

choose ε > 0 such that s+ ε ̸= −1. Because there exists C > 0 such that,

log(n) ⩽ Cnε, ∀n ∈ N∗,
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we can use Lemma 4.4 as well as the fact that s+ ε ̸= −1. This yields,
p∑

n=1
ns log(n) ⩽

p∑
n=1

ns+ε ⩽ C(1 + p1+s+ε).

Once this estimation holds for any ε > 0 such that s+ ε ̸= −1, we deduce
it for any ε > 0. □

Appendix E. Proof of Property (1) in Lemma 4.11

To simplify the notations we assume that λn ̸= 0. The proof can be easily
adapted to the case where λ1 = 0, since the resolvant Aλ defined below is
well-defined and invertible on H.

Recall that qn ∈ Hα− 1
2 −ε for any ε > 0. By defining rn = (λn + λ/2)−1

we obtain, by definition (3.8) of the (qn),

(E.1) (A− λ− λn)qn = −
∑

p∈N∗

φp =: h, in H− 1
2 −ε, for ε > 0,

which becomes, defining(6) Aλ := (A− λ/2)−1,

Aλqn = rnqn − rnAλh, in Hα− 1
2 −ε, for ε > 0.

Now, suppose that the {qn}n∈N∗ are not ω-independent in H, then there
exists a nontrivial sequence {cn}n∈N∗ ∈ l2(N∗) such that

(E.2)
∑

n∈N∗

cnqn = 0 in H,

which is well-defined thanks to Remark 4.8.
Next, by applying Aλ to (E.2), we conclude,∑

n∈N∗

cnrnqn =
(∑

n∈N∗

cnrn

)
Aλh in H,

where we have used the fact rn ∈ ℓ2.
Applying again Aλ we get,∑

n∈N∗

cnr
2
nqn =

(∑
n∈N∗

cnr
2
n

)
Aλh+

(∑
n∈N∗

cnrn

)
A2

λh in H.

(6) It is not guaranteed that λ/2 is in the resolvent set of A. However, a shift of the
operator allows to conduct the same proof, with slightly more complicated notations
(see for instance [14]). For the sake of conciseness, we will assume that λ/2 is in the
resolvent of A.
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By induction we easily derive,

(E.3)
∑

n∈N∗

cnr
m
n qn =

m∑
i=1

(∑
n∈N∗

cnr
m+1−i
n

)
Ai

λh

=
m∑

i=1
Cm+1−iAi

λh, m ∈ N∗,

where,

(E.4) Cl :=
∑

n∈N∗

cnr
l
n < +∞, l ∈ N∗.

Let us now distinguish two cases:
First case: the {Cm} are not identically zero. — We note,

m0 = inf{n ∈ N∗, Cn ̸= 0}.

Then, starting with (E.3) with m = m0, we have by induction,

Am
λ h ∈ span{qn}n∈N∗ , m ⩾ 1.

Suppose that span{qn}n∈N∗ is not dense in H, then there exists a nonzero
d =

∑
n dnφn ∈ H such that,

(E.5) ⟨g, d⟩H = 0, ∀g ∈ span{qn}n∈N∗ ,

which in particular yields,

⟨Am
λ h, d⟩H = 0, ∀m ∈ N∗.

Recalling that h = −
∑
φn ∈ H−1, we get that,

(E.6)
∑

n

dnr
m
n = 0, ∀m ∈ N∗.

By defining the complex variable function,

G(z) :=
∑

n∈N∗

dnrn ernz, ∀z ∈ C.

By checking that the series expansion of the right-hand side is absolutely
convergent, we deduce that this function is holomorphic. From (E.6) we
know that G(m)(0) = 0,m ∈ N. Thus G = 0, and further dn = 0, which
leads to a contradiction. Therefore, we conclude in the first case if the {qn}
are not ω-independent in H, then,

(E.7) span{qn}n∈N∗ is dense in H.
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Second case: the {Cm} are identically zero. — Then we define the com-
plex variable function,

G̃(z) :=
∑

n∈N∗

cnrn ernz .

This function is holomorphic. Moreover, as the (Cm) are identically zero,
it satisfies,

G̃(m)(0) = 0, ∀m ∈ N,
thus as previously G̃ = 0 and therefore,

cn = 0, ∀n ∈ N∗,

which is in contradiction with the definition of the {cn}n∈N∗ . Hence, in the
second case that the {qn} are ω-independent in H.

Therefore, since we either fall in the first or second case, this proves that
the family {qn} is either ω-independent or dense in H, which ends the proof
of the property (1) in Lemma 4.11.

Appendix F. Proof that ker(T ∗) = {0}

We proceed as presented in Section 5.4. Let ρ ∈ C to be chosen later on
and let us look at A+BK + λ Id +ρ Id.

(1). — Let us denote z := λ + ρ, we try to investigate the invertibility
of Id +A−1BK + zA−1 in the Hα/2 space. As ρ can be chosen arbitrarily,
z ∈ C can be as well. Remark here that if A is not invertible, then, since
the spectrum is countable, then there always exists δ ̸= 0 sufficiently close
to 0 such that Ã := A + δ is invertible. Hence, without loss of generality,
we assume that 0 is in the resolvent set of A. We now consider two cases:

• If K(A−1B) ̸= −1, then we know that the bounded operator
Id +A−1BK is invertible. In fact, for any f ∈ Hα/2, we can check
that

φ := f − A−1B(Kf)
1 +K(A−1B) ∈ Hα/2,

is the unique solution to

(Id +A−1BK)φ = f.

Note that A−1 is a compact operator in Hα/2 (since A is a differen-
tial operator) thus a continuous operator in Hα/2 and Id +A−1BK

is invertible, thus thanks to the openness of invertible operators,
there exists ε > 0 such that for any |z| < ε

(F.1) (Id +A−1BK) + zA−1,
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is invertible in H−α/2.
• If K(A−1B) = −1, then one can check that 0 is an eigenvalue

of Id +A−1BK with multiplicity 1 and the eigenspace is gener-
ated by A−1B. Indeed, it is clear that A−1B is an eigenvector of
Id +A−1BK with eigenvalue 0. On the other hand, suppose that for
some v ∈ Hα/2 we have (Id +A−1BK)v = 0, then we immediately
conclude that v = −(A−1B)(Kv) ∈ span{A−1B}.

Therefore, there exist small open neighborhoods Ω and Ω̃ of 0 in
C satisfying (see for instance [38])

(Id +A−1BK + zA−1)y(z) = λ(z)y(z),(F.2)

y(z) : z ∈ Ω 7−→ y(z) ∈ Hα/2 is holomorphic,(F.3)

λ(z) : z ∈ Ω 7−→ λ(z) ∈ Ω̃ ⊂ C is holomorphic,(F.4)

λ(0) = 0, y0 := y(0) = A−1B,(F.5)

in such fashion that for any z ∈ Ω, λ(z) is the unique eigenvalue
inside Ω̃. Recall that λ(0) = 0, therefore only two cases are possible:
either λ is identically 0 in Ω, or there exists a smaller neighborhood
ω such that for any z in ω \ {0} there is λ(z) ̸= 0. Let us show by
contradiction that λ is not identically 0. Assume that it is. We now
that there exists a sequence (yk)k∈N∗ in Hα/2 such that

y(z) =
+∞∑
k=0

ykz
k,

with y0 = A−1B. From (F.2) and the fact that λ(z) = 0 in Ω,

(Id +A−1BK + zA−1)
+∞∑
k=0

ykz
k = 0, in Hα/2,

by unicity of the development in entire series we get,

(F.6) (Id +y0K)yk +A−1yk−1 = 0, in Hα/2, ∀k ∈ N∗.

Recall that K(y0) = −1, by applying K to the previous equation
we conclude that,

K(A−1yk−1) = 0, ∀k ∈ N∗ =⇒ K(A−1yk) = 0, ∀k ⩾ 0.

By applying KA−1 to Equation (F.6) we arrive at,

K(A−1yk) +K(A−1y0)(Kyk) +K(A−2yk−1) = 0, ∀k ∈ N∗,

thus,

K(A−2yk−1) = 0, ∀k ∈ N∗ =⇒ K(A−2yk) = 0, ∀k ⩾ 0.
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Then by successively applying KA−(n−1) to the same equation we
arrive at,

K(A−nyk) = 0, ∀k ⩾ 0,∀n ⩾ 1,

which in particular yields,

K(A−ny0) = 0,∀n ⩾ 1.

The previous equality implies,∑
m∈N∗

bmKm

λl
m

= 0,∀l ⩾ 2.

Again using the holomorphic function technique in Appendix E, we
conclude that bmKm = 0, which is a contradiction. Therefore, we
know that there exists ε > 0 such that for any z ∈ C with |z| < ε,
z ∈ Ω and λ(z) ̸= 0. Since λ(z) is the unique eigenvalue inside Ω̃,
Id +A−1BK + zA−1 is invertible.

In both cases there exists at least a sequence of {zk} converging to 0 such
that Id + A−1BK + λA−1 + (zk − λ)A−1 is invertible in Hα/2. As the
spectrum of A + ρ Id is discrete, we can find some ρ := zk − λ, such that
both

A+ ρ Id and A+BK + λ Id +ρ Id = A(Id +A−1BK + λA−1 + ρA−1),

are invertible operators from Hα/2 to H−α/2. This ends the proof of the
first point.

(1)*. — Alternatively, this first step can be proved using the following
direct method. We show that there exists some effectively computable real
number ρ0 > 0 such that for any ρ ∈ [ρ0,+∞) the operators,

A+ ρ Id and A+BK + λ Id +ρ Id : Hα/2 −→ H−α/2

are invertible. Notice that since the spectrum of A belongs to iR, it is
straightforward that A + ρ Id is invertible. It suffices to show that A +
BK + λ Id +ρ Id is invertible. We have the following lemma.

Lemma F.1. — There exists some effectively computable ρ0 > 0 such
that for any ρ ∈ [ρ0,+∞) there is,

cρ :=
∑

m∈N∗

bmKm

ρ+ λ+ λm
satisfying |cρ| ⩽ 1

2 .

Proof of Lemma F.1. — We know from Lemma 5.2 that |Km| is uni-
formly bounded, thus there exists some C0 > 0 such that |bmKm| ⩽ C0 for
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∀m ∈ N∗, hence

|cρ| ⩽
∑

m∈N∗

|bmKm|
|ρ+ λ+ λm|

⩽
∑

m∈N∗

C0

|ρ+ λ+ λm|
.

Also notice the existence of N0 ∈ N∗ such that∑
m>N0

C0

|λm|
⩽

1
4 .

By choosing ρ0 > 0 large enough there is∑
m∈N∗

|bmKm|
|ρ+ λ+ λm|

⩽
∑

m⩽N0

C0

|ρ0 + λ|
+
∑

m>N0

C0

|λm|
⩽

1
2 . □

Now we come back and prove that for any ρ ∈ [ρ0,+∞) the operator
A+BK+λ Id +ρ Id is invertible. It suffices to show that for any g ∈ H−α/2

there exists a unique f ∈ Hα/2 such that,

(A+BK + λ Id +ρ Id)f = g,(F.7)
∥f∥Hα/2 ≲ ∥g∥H−α/2 .(F.8)

Let us denote by,

g :=
∑

n∈N∗

gnn
α/2φn, f :=

∑
n∈N∗

fnn
−α/2φn.

By comparing the coefficients in both side of the equation (F.7) we get,

fnn
−α/2(λn + λ+ ρ) + bnK(f) = nα/2gn,

hence (fn)n is implicitly solved by,

fn = nα/2gn − bnK(f)
n−α/2(λn + λ+ ρ)

.

The previous implicit formula of f yields,

K(f) =
∑

m∈N∗

Kmfmm
−α/2

=
∑

m∈N∗

Kmgmm
α/2

λm + λ+ ρ
−K(f)

( ∑
m∈N∗

bmKm

λm + λ+ ρ

)
.

Thanks to Lemma F.1, the coefficients (fn)n are uniquely determined by

(F.9) fn = nαgn

λn + λ+ ρ
− nα/2bn

(1 + cρ)(λn + λ+ ρ)

( ∑
m∈N∗

Kmgmm
α/2

λm + λ+ ρ

)
.

Since ∣∣∣∣∣ ∑
m∈N∗

Kmgmm
α/2

λm + λ+ ρ

∣∣∣∣∣ ≲ ∑
m∈N∗

mα/2|gm|
|λm|

≲ ∥(gm)m∥l2 ,
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we have

∥(fn)n∥l2 ≲ ∥(gn)n∥l2 + ∥(gm)m∥l2

∥∥∥∥( nα/2bn

(1 + cρ)(λn + λ+ ρ)

)
n

∥∥∥∥
l2

≲ ∥(gn)n∥l2 .

This finishes the proof of the inequality (F.8).
(2). — Let us assume that kerT ∗ ̸= {0} and let ρ be defined as in 1).

We are going to show that there exists an eigenvector of A+ρ Id in ker(T ∗)
and deduce that there exists n ∈ N∗ such that nα/2φn ∈ ker(T ∗). We know
from the operator equality (5.26) that

T (A+BK + λ Id +ρ Id) = AT + ρT,

holds when the operators are seen as acting on Hα/2 to H−α/2. Thus from
the invertibility of the two operators (from point 1)),

(F.10) (A+ ρ Id)−1T = T (A+BK + λ Id +ρ Id)−1,

where the operator are seen as acting on H−α/2 to Hα/2. Since ker(T ∗) ̸=
{0} we can take h ̸= 0 such that h ∈ kerT ∗ and h ∈ H−α/2. We deduce
from (F.10) that for any φ ∈ H−α/2,

0 = ⟨(A+ ρ Id)−1Tφ− T (A+BK + λ Id +ρ Id)−1φ, h⟩H−α/2 ,

= ⟨φ, T ∗(A∗ +ρ Id)−1h⟩H−α/2 −⟨(A+BK+λ Id+ρ Id)−1φ, T ∗h⟩H−α/2 ,

= ⟨φ, T ∗(A∗ + ρ Id)−1h⟩H−α/2 ,

where A∗ is the adjoint of A. The above implies that T ∗(A∗ +ρ Id)−1h = 0
in H−α/2, thus (A∗ + ρ Id)−1h ∈ kerT ∗. Namely, we have deduced that

(A∗ + ρ Id)−1 : kerT ∗ −→ kerT ∗.

Because kerT ∗ is of finite dimension (recall that T is Fredholm, hence
T ∗ is) and not reduced to {0} there exists an eigenfunction h ∈ ker(T ∗)
of (A∗ + ρ Id)−1, associated to an eigenvalue µ ̸= 0 (since the operator
(A∗ + ρ Id)−1 is invertible). Thus

(F.11) (A∗ + ρ Id)−1h = µh,

which in particular implies that h ∈ Hα/2. We immediately deduce that h
is an eigenfunction of A∗ in H−α/2. Moreover, we know from (F.11) that

A∗h = 1 − ρµ

µ
h.

Now we would like to conclude that there exists n ∈ N∗ and C ̸= 0 such
that h = Cnα/2φn. Note that since (nα/2φn)n∈N∗ is an orthonormal basis
of eigenvectors of A, it is also a basis of eigenvector of A∗ (associated

TOME 0 (0), FASCICULE 0



74 L. Gagnon, A. Hayat, S. Xiang & C. Zhang

to eigenvalues (λn)n∈N∗). To obtain such a conclusion, we notice that the
eigenspaces of A∗ (in H−α/2) have dimension 1, in particular the dimension
of the eigenspace associated to (1 − ρµ)/µ is one, and therefore there exist
some n ∈ N∗ and C ̸= 0 such that h = Cnα/2φn.

(3). — From point (2), we know that if ker(T ∗) ̸= {0} there exists
n ∈ N∗ such that nα/2φn ∈ ker(T ∗), thus,

⟨Tφ, nα/2φn⟩H−α/2 = 0, ∀φ ∈ H−α/2.

We know that this is impossible: as TB = B holds in H−α/2, we can take
φ := B to achieve,

0 = ⟨TB, nα/2φn⟩H−α/2 = ⟨B,nα/2φn⟩H−α/2 = bn

nα/2 ,

which is in contradiction with the fact that |bn| is uniformly bounded from
below. Hence ker(T ∗) = {0}.

Appendix G. Construction of the spectral decomposition

Denote (λn)n∈N∗ the eigenvalues of A and assume that the multiplicity
mn ∈ N∗ of the eigenvalue λn is finite. Assume m = maxn∈N∗ mn < ∞. We
construct a spectral decomposition of A such that

H = H1 ⊕ · · · ⊕Hm,{
Hi = Span{(φi

n)n∈N∗} for i ∈ {1, . . . ,ml},
Hi = Span{(φi

n)n∈{1,...,Ni}} for i ∈ {ml + 1, . . . ,m},
(G.1)

where ml ∈ {1, . . . ,m}, φi
n is an eigenvector of A and Span is taken with

a closure in H. Moreover, denoting λi
n the eigenvalue associated to φi

n, we
have for any n ̸= m

(G.2) λi
n ̸= λi

m.

In other words the spaces Hi are eigenspaces of A with only simple eigen-
values. To construct this decomposition we proceed as follows: we denote
by ml ∈ {1, . . . ,m} the highest multiplicity such that there is an infinite
number of eigenvalues with multiplicity ml. Then we construct m set of
eigenvector–eigenvalue pairs as follows

• (φ1
n, λ

1
n)n∈N∗ are eigenvalues–eigenvectors pairs selected such that

(λ1
n)n∈N∗ enumerate all the distincts eigenvalues in increasing order

and (φ1
n)n∈N∗ is a family where each φ1

n is an eigenvector associated
to λ1

n.
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• (φ2
n, λ

2
n)n∈N∗ are eigenvalues–eigenvectors pairs selected such that

(λ2
n)n∈N∗ enumerate all the distincts eigenvalues with multiplicity at

least 2 in increasing order and (φ2
n)n∈N∗ is a family where each φ2

n is
an eigenvector associated to λ2

n and is orthogonal to all eigenvectors
of (φ1

n)n∈N∗ .
• for any i ∈ {1, . . . ,ml}, (φi

n, λ
i
n)n∈N∗ are eigenvalues–eigenvectors

pairs selected such that (λi
n)n∈N∗ enumerate all the distincts eigen-

values with multiplicity at least i in increasing order and (φi
n)n∈N∗

is a family where each φi
n is an eigenvector associated to λi

n and is
orthogonal to all eigenvectors of (φk

n)(n,k)∈N∗×{1,...,i−1}.
• for any i ∈ {ml + 1, . . . ,m}, we denote by Ni the (finite) num-

ber of eigenvalues with multiplicity i and (φi
n, λ

i
n)n∈{1,...,Ni} are

eigenvalues–eigenvectors pairs selected such that (λi
n)n∈{1,...,Ni} enu-

merate all the distincts eigenvalues with multiplicity at least i in
increasing order and (φi

n)n∈{1,...,Ni} is a family where each φi
n is an

eigenvector associated to λi
n and is orthogonal to all eigenvectors of

(φk
n)(n,k)∈N×{1,...,i−1}.

Consequently we have with this decomposition

∪ {(φ, λ) : eigenpairs of A}

=
(

m⋃
i=ml+1

Ni⋃
n=1

(φi
n, λ

i
n)
)

∪

(
ml⋃
i=1

⋃
n∈N∗

(φi
n, λ

i
n)
)
,

From this point it suffices to define, for any i ∈ {1, . . . ,m}

(G.3) Hi = Span((φi
n)n∈N),

(where Span is again taken with a closure in H) and for any i ∈ {ml + 1,
. . . ,m} (if any)

(G.4) Hi = Span((φi
n){1,...,Ni}),

to have (G.1).
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