Jones’ representations of R. Thompson’s groups not induced by finite-dimensional ones
[Représentations de Jones des groupes de R. Thompson qui ne sont pas induites par celles de dimension finie]
Annales de l'Institut Fourier, Online first, 40 p.

Étant donnée une isométrie linéaire entre un espace de Hilbert et sa somme directe avec lui-même on peut construire explicitement une représentation unitaire du groupe F de Richard Thompson. Nous définissons une condition sur l’isométrie qui assure que la représentation associée ne contienne pas de représentations induites par une représentation de dimension finie. Il s’agit du premier résultat de ce type. Nous illustrons ce théorème à l’aide d’une famille de représentations avec la propriété susdite qui est indexée par la sphère réelle de dimension 3 à laquelle on a retiré deux cercles.

Given any linear isometry from a Hilbert space to its square one can explicitly construct a so-called Pythagorean unitary representation of Richard Thompson’s group F. We introduce a condition on the isometry implying that the associated representation does not contain any representation induced by finite-dimensional ones. This provides the first result of this kind. We illustrate this theorem via a family of representations parameterized by the real 3-sphere for which all of them have this property except on two sub-circles.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3689
Classification : 20C99
Keywords: Thompson’s groups, unitary representations, Jones’ representations, mixing, fraction groups, Pythagorean C*-algebras
Mots-clés : Groupes de Thompson, représentations unitaires, représentations de Jones, mélange, groupes de fractions, C*-algèbres pythagoriciennes

Brothier, Arnaud 1 ; Wijesena, Dilshan 1

1 School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052 (Australia)
@unpublished{AIF_0__0_0_A155_0,
     author = {Brothier, Arnaud and Wijesena, Dilshan},
     title = {Jones{\textquoteright} representations of {R.~Thompson{\textquoteright}s} groups not induced by finite-dimensional ones},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3689},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Brothier, Arnaud
AU  - Wijesena, Dilshan
TI  - Jones’ representations of R. Thompson’s groups not induced by finite-dimensional ones
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3689
LA  - en
ID  - AIF_0__0_0_A155_0
ER  - 
%0 Unpublished Work
%A Brothier, Arnaud
%A Wijesena, Dilshan
%T Jones’ representations of R. Thompson’s groups not induced by finite-dimensional ones
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3689
%G en
%F AIF_0__0_0_A155_0
Brothier, Arnaud; Wijesena, Dilshan. Jones’ representations of R. Thompson’s groups not induced by finite-dimensional ones. Annales de l'Institut Fourier, Online first, 40 p.

[1] Aiello, Valeriano An introduction to Thompson knot theory and to Jones subgroups (2023) (to appear in J. Knot Theory Ramifications)

[2] Aiello, Valeriano; Nagnibeda, Tatiana On the 3-colorable subgroup and maximal subgroups of Thompson’s group F, Ann. Inst. Fourier, Volume 73 (2023) no. 2, pp. 783-828 | DOI | MR | Zbl

[3] Bekka, Bachir; de la Harpe, Pierre Unitary representations of groups, duals, and characters, Mathematical Surveys and Monographs, 250, American Mathematical Society, 2020, xi+474 pages | DOI | MR | Zbl

[4] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008, xiv+472 pages | DOI | MR | Zbl

[5] Bergelson, Vitaly; Rosenblatt, Joseph Mixing actions of groups, Ill. J. Math., Volume 32 (1988) no. 1, pp. 65-80 | MR | Zbl

[6] Birget, Jean-Camille The groups of Richard Thompson and complexity, Int. J. Algebra Comput., Volume 14 (2004) no. 5-6, pp. 569-626 | DOI | MR | Zbl

[7] Blackadar, Bruce Shape theory for C * -algebras, Math. Scand., Volume 56 (1985) no. 2, pp. 249-275 | DOI | MR | Zbl

[8] Bleak, Collin; Wassink, Bronlyn Finite index subgroups of R. Thompson’s group F (2007) (https://arxiv.org/abs/0711.1014)

[9] Brothier, Arnaud On Jones’ connections between subfactors, conformal field theory (2020) (Celebratio Mathematica in the volume Vaughan F. R. Jones, available at https://celebratio.org/Jones_VFR/article/821/)

[10] Brothier, Arnaud Haagerup property for wreath products constructed with Thompson’s groups, Groups Geom. Dyn., Volume 17 (2023) no. 2, pp. 671-718 | DOI | MR | Zbl

[11] Brothier, Arnaud; Jones, Vaughan F. R. On the Haagerup and Kazhdan properties of R. Thompson’s groups, J. Group Theory, Volume 22 (2019) no. 5, pp. 795-807 | DOI | MR | Zbl

[12] Brothier, Arnaud; Jones, Vaughan F. R. Pythagorean representations of Thompson’s groups, J. Funct. Anal., Volume 277 (2019) no. 7, pp. 2442-2469 | DOI | MR | Zbl

[13] Brothier, Arnaud; Wijesena, Dilshan Atomic representations of R. Thompson’s groups and Cuntz’s algebra (2024) (https://arxiv.org/abs/2406.02967)

[14] Brothier, Arnaud; Wijesena, Dilshan Irreducible Pythagorean representations of R. Thompson’s groups and of the Cuntz algebra, Adv. Math., Volume 454 (2024), 109871, 59 pages | DOI | MR | Zbl

[15] Brown, Kenneth S. Finiteness properties of groups, J. Pure Appl. Algebra, Volume 44 (1987) no. 1-3, pp. 45-75 | DOI | MR | Zbl

[16] Burger, Marc; de la Harpe, Pierre Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci., Math. Sci., Volume 107 (1997) no. 3, pp. 223-235 | DOI | MR | Zbl

[17] Cannon, James W.; Floyd, William J.; Parry, Walter R. Introductory notes on Richard Thompson’s groups, Enseign. Math., Volume 42 (1996) no. 3-4, pp. 215-256 | MR | Zbl

[18] Courtney, Kristin E. Universal C * -algebras with the local lifting property, Math. Scand., Volume 127 (2021) no. 2, pp. 361-381 | DOI | MR | Zbl

[19] Cuntz, Joachim Simple C * -algebras generated by isometries, Commun. Math. Phys., Volume 57 (1977) no. 2, pp. 173-185 | DOI | MR | Zbl

[20] Garncarek, Ł ukasz Analogs of principal series representations for Thompson’s groups F and T, Indiana Univ. Math. J., Volume 61 (2012) no. 2, pp. 619-626 | DOI | MR | Zbl

[21] Golan, Gili On maximal subgroups of Thompson’s group F (2023) (https://arxiv.org/abs/2209.03244v2, to appear in Groups Geom. Dyn.)

[22] Golan, Gili; Sapir, Mark On Jones’ subgroup of R. Thompson group F, J. Algebra, Volume 470 (2017), pp. 122-159 | DOI | MR | Zbl

[23] Golan, Gili; Sapir, Mark On subgroups of R. Thompson’s group F, Trans. Am. Math. Soc., Volume 369 (2017) no. 12, pp. 8857-8878 | DOI | MR | Zbl

[24] Golan, Gili; Sapir, Mark On the stabilizers of finite sets of numbers in the R. Thompson group F, St. Petersbg. Math. J., Volume 29 (2018) no. 1, pp. 51-79 | DOI | Zbl

[25] Grymski, Ariana; Peters, Emily Conway rational tangles and the Thompson group (2022) (https://arxiv.org/abs/2212.00100)

[26] Jones, Vaughan F. R. Some unitary representations of Thompson’s groups F and T, J. Comb. Algebra., Volume 1 (2017) no. 1, pp. 1-44 | DOI | MR | Zbl

[27] Jones, Vaughan F. R. A no-go theorem for the continuum limit of a periodic quantum spin chain, Commun. Math. Phys., Volume 357 (2018) no. 1, pp. 295-317 | DOI | MR | Zbl

[28] Jones, Vaughan F. R. Scale invariant transfer matrices and Hamiltonians, J. Phys. A. Math. Theor., Volume 51 (2018) no. 10, 104001, 27 pages | DOI | MR | Zbl

[29] Jones, Vaughan F. R. On the construction of knots and links from Thompson’s groups, Knots, low-dimensional topology and applications (Adams, Colin et al., eds.) (Springer Proceedings in Mathematics & Statistics), Volume 284, Springer, 2019, pp. 43-66 | DOI | MR | Zbl

[30] Jones, Vaughan F. R. Planar algebras, I, N. Z. J. Math., Volume 52 (2021), pp. 1-107 | DOI | MR | Zbl

[31] Kerr, David; Li, Hanfeng Ergodic theory. Independence and dichotomies, Springer Monographs in Mathematics, Springer, 2016, xxxiv+431 pages | DOI | MR | Zbl

[32] Kodama, Yuya; Takano, Akihiro The 3-colorable subgroup of Thompson’s group and tricolorability of links, J. Algebra, Volume 634 (2023), pp. 336-344 | DOI | MR | Zbl

[33] Köstler, Claus; Krishnan, Arundhathi; Wills, Stephen J. Markovianity and the Thompson monoid F + , J. Funct. Anal., Volume 284 (2023) no. 6, 109818, 70 pages | DOI | MR | Zbl

[34] Mackey, George W. On induced representations of groups, Am. J. Math., Volume 73 (1951), pp. 576-592 | DOI | MR | Zbl

[35] Nekrashevych, Volodymyr V. Cuntz–Pimsner algebras of group actions, J. Oper. Theory, Volume 52 (2004) no. 2, pp. 223-249 | MR | Zbl

[36] von Neumann, John Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA, Volume 18 (1932), pp. 70-82 europepmc.org/articles/pmc1076162 | DOI | Zbl

[37] Reed, Michael; Simon, Barry Methods of modern mathematical physics, Academic Press Inc., 1972, xvii+325 pages | MR | Zbl

[38] Ren, Yunxiang From skein theory to presentations for Thompson group, J. Algebra, Volume 498 (2018), pp. 178-196 | DOI | MR | Zbl

Cité par Sources :