[Représentations de Jones des groupes de R. Thompson qui ne sont pas induites par celles de dimension finie]
Étant donnée une isométrie linéaire entre un espace de Hilbert et sa somme directe avec lui-même on peut construire explicitement une représentation unitaire du groupe de Richard Thompson. Nous définissons une condition sur l’isométrie qui assure que la représentation associée ne contienne pas de représentations induites par une représentation de dimension finie. Il s’agit du premier résultat de ce type. Nous illustrons ce théorème à l’aide d’une famille de représentations avec la propriété susdite qui est indexée par la sphère réelle de dimension à laquelle on a retiré deux cercles.
Given any linear isometry from a Hilbert space to its square one can explicitly construct a so-called Pythagorean unitary representation of Richard Thompson’s group . We introduce a condition on the isometry implying that the associated representation does not contain any representation induced by finite-dimensional ones. This provides the first result of this kind. We illustrate this theorem via a family of representations parameterized by the real -sphere for which all of them have this property except on two sub-circles.
Révisé le :
Accepté le :
Première publication :
Keywords: Thompson’s groups, unitary representations, Jones’ representations, mixing, fraction groups, Pythagorean C*-algebras
Mots-clés : Groupes de Thompson, représentations unitaires, représentations de Jones, mélange, groupes de fractions, C*-algèbres pythagoriciennes
Brothier, Arnaud 1 ; Wijesena, Dilshan 1
@unpublished{AIF_0__0_0_A155_0, author = {Brothier, Arnaud and Wijesena, Dilshan}, title = {Jones{\textquoteright} representations of {R.~Thompson{\textquoteright}s} groups not induced by finite-dimensional ones}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3689}, language = {en}, note = {Online first}, }
TY - UNPB AU - Brothier, Arnaud AU - Wijesena, Dilshan TI - Jones’ representations of R. Thompson’s groups not induced by finite-dimensional ones JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3689 LA - en ID - AIF_0__0_0_A155_0 ER -
%0 Unpublished Work %A Brothier, Arnaud %A Wijesena, Dilshan %T Jones’ representations of R. Thompson’s groups not induced by finite-dimensional ones %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3689 %G en %F AIF_0__0_0_A155_0
Brothier, Arnaud; Wijesena, Dilshan. Jones’ representations of R. Thompson’s groups not induced by finite-dimensional ones. Annales de l'Institut Fourier, Online first, 40 p.
[1] An introduction to Thompson knot theory and to Jones subgroups (2023) (to appear in J. Knot Theory Ramifications)
[2] On the 3-colorable subgroup and maximal subgroups of Thompson’s group , Ann. Inst. Fourier, Volume 73 (2023) no. 2, pp. 783-828 | DOI | MR | Zbl
[3] Unitary representations of groups, duals, and characters, Mathematical Surveys and Monographs, 250, American Mathematical Society, 2020, xi+474 pages | DOI | MR | Zbl
[4] Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008, xiv+472 pages | DOI | MR | Zbl
[5] Mixing actions of groups, Ill. J. Math., Volume 32 (1988) no. 1, pp. 65-80 | MR | Zbl
[6] The groups of Richard Thompson and complexity, Int. J. Algebra Comput., Volume 14 (2004) no. 5-6, pp. 569-626 | DOI | MR | Zbl
[7] Shape theory for -algebras, Math. Scand., Volume 56 (1985) no. 2, pp. 249-275 | DOI | MR | Zbl
[8] Finite index subgroups of R. Thompson’s group F (2007) (https://arxiv.org/abs/0711.1014)
[9] On Jones’ connections between subfactors, conformal field theory (2020) (Celebratio Mathematica in the volume Vaughan F. R. Jones, available at https://celebratio.org/Jones_VFR/article/821/)
[10] Haagerup property for wreath products constructed with Thompson’s groups, Groups Geom. Dyn., Volume 17 (2023) no. 2, pp. 671-718 | DOI | MR | Zbl
[11] On the Haagerup and Kazhdan properties of R. Thompson’s groups, J. Group Theory, Volume 22 (2019) no. 5, pp. 795-807 | DOI | MR | Zbl
[12] Pythagorean representations of Thompson’s groups, J. Funct. Anal., Volume 277 (2019) no. 7, pp. 2442-2469 | DOI | MR | Zbl
[13] Atomic representations of R. Thompson’s groups and Cuntz’s algebra (2024) (https://arxiv.org/abs/2406.02967)
[14] Irreducible Pythagorean representations of R. Thompson’s groups and of the Cuntz algebra, Adv. Math., Volume 454 (2024), 109871, 59 pages | DOI | MR | Zbl
[15] Finiteness properties of groups, J. Pure Appl. Algebra, Volume 44 (1987) no. 1-3, pp. 45-75 | DOI | MR | Zbl
[16] Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci., Math. Sci., Volume 107 (1997) no. 3, pp. 223-235 | DOI | MR | Zbl
[17] Introductory notes on Richard Thompson’s groups, Enseign. Math., Volume 42 (1996) no. 3-4, pp. 215-256 | MR | Zbl
[18] Universal -algebras with the local lifting property, Math. Scand., Volume 127 (2021) no. 2, pp. 361-381 | DOI | MR | Zbl
[19] Simple -algebras generated by isometries, Commun. Math. Phys., Volume 57 (1977) no. 2, pp. 173-185 | DOI | MR | Zbl
[20] Analogs of principal series representations for Thompson’s groups and , Indiana Univ. Math. J., Volume 61 (2012) no. 2, pp. 619-626 | DOI | MR | Zbl
[21] On maximal subgroups of Thompson’s group F (2023) (https://arxiv.org/abs/2209.03244v2, to appear in Groups Geom. Dyn.)
[22] On Jones’ subgroup of R. Thompson group , J. Algebra, Volume 470 (2017), pp. 122-159 | DOI | MR | Zbl
[23] On subgroups of R. Thompson’s group , Trans. Am. Math. Soc., Volume 369 (2017) no. 12, pp. 8857-8878 | DOI | MR | Zbl
[24] On the stabilizers of finite sets of numbers in the R. Thompson group , St. Petersbg. Math. J., Volume 29 (2018) no. 1, pp. 51-79 | DOI | Zbl
[25] Conway rational tangles and the Thompson group (2022) (https://arxiv.org/abs/2212.00100)
[26] Some unitary representations of Thompson’s groups and , J. Comb. Algebra., Volume 1 (2017) no. 1, pp. 1-44 | DOI | MR | Zbl
[27] A no-go theorem for the continuum limit of a periodic quantum spin chain, Commun. Math. Phys., Volume 357 (2018) no. 1, pp. 295-317 | DOI | MR | Zbl
[28] Scale invariant transfer matrices and Hamiltonians, J. Phys. A. Math. Theor., Volume 51 (2018) no. 10, 104001, 27 pages | DOI | MR | Zbl
[29] On the construction of knots and links from Thompson’s groups, Knots, low-dimensional topology and applications (Adams, Colin et al., eds.) (Springer Proceedings in Mathematics & Statistics), Volume 284, Springer, 2019, pp. 43-66 | DOI | MR | Zbl
[30] Planar algebras, I, N. Z. J. Math., Volume 52 (2021), pp. 1-107 | DOI | MR | Zbl
[31] Ergodic theory. Independence and dichotomies, Springer Monographs in Mathematics, Springer, 2016, xxxiv+431 pages | DOI | MR | Zbl
[32] The 3-colorable subgroup of Thompson’s group and tricolorability of links, J. Algebra, Volume 634 (2023), pp. 336-344 | DOI | MR | Zbl
[33] Markovianity and the Thompson monoid , J. Funct. Anal., Volume 284 (2023) no. 6, 109818, 70 pages | DOI | MR | Zbl
[34] On induced representations of groups, Am. J. Math., Volume 73 (1951), pp. 576-592 | DOI | MR | Zbl
[35] Cuntz–Pimsner algebras of group actions, J. Oper. Theory, Volume 52 (2004) no. 2, pp. 223-249 | MR | Zbl
[36] Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA, Volume 18 (1932), pp. 70-82 europepmc.org/articles/pmc1076162 | DOI | Zbl
[37] Methods of modern mathematical physics, Academic Press Inc., 1972, xvii+325 pages | MR | Zbl
[38] From skein theory to presentations for Thompson group, J. Algebra, Volume 498 (2018), pp. 178-196 | DOI | MR | Zbl
Cité par Sources :