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JONES’ REPRESENTATIONS OF R. THOMPSON’S
GROUPS NOT INDUCED BY FINITE-DIMENSIONAL

ONES

by Arnaud BROTHIER & Dilshan WIJESENA (*)

Abstract. — Given any linear isometry from a Hilbert space to its square one
can explicitly construct a so-called Pythagorean unitary representation of Richard
Thompson’s group F . We introduce a condition on the isometry implying that the
associated representation does not contain any representation induced by finite-
dimensional ones. This provides the first result of this kind. We illustrate this
theorem via a family of representations parameterized by the real 3-sphere for
which all of them have this property except on two sub-circles.

Résumé. — Étant donnée une isométrie linéaire entre un espace de Hilbert et
sa somme directe avec lui-même on peut construire explicitement une représenta-
tion unitaire du groupe F de Richard Thompson. Nous définissons une condition
sur l’isométrie qui assure que la représentation associée ne contienne pas de repré-
sentations induites par une représentation de dimension finie. Il s’agit du premier
résultat de ce type. Nous illustrons ce théorème à l’aide d’une famille de représen-
tations avec la propriété susdite qui est indexée par la sphère réelle de dimension
3 à laquelle on a retiré deux cercles.

Introduction

Vaughan Jones introduced a powerful tool for constructing actions of
groups known as Jones’ technology [26, 27]. In particular, any linear isom-
etry H → H ⊕ H with H a Hilbert space provides a so-called Pythagorean
(unitary) representation (σ, H ) of Richard Thompson’s groups F, T, and
V [12]. The strength of this construction resides in obtaining unitary rep-
resentations of the complicated groups F, T, and V using elementary initial
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data (for instance a linear isometry Cn → C2n). Moreover, these represen-
tations are very explicit carrying obvious algorithms for computing matrix
coefficients. Finally, we can surprisingly derive representations of the Cuntz
algebra making this technology also appealing from an operator algebraic
point of view.

This article is a first of a series that will develop techniques and tools
to study these Thompson’s groups representations in view of decomposing
them into irreducible components, deciding which one are pairwise isomor-
phic, and how much they differ from obvious ones (like monomial represen-
tations associated to subgroups of F ). In this article we introduce a simple
criteria named diffuse on the linear isometry H → H ⊕ H assuring that the
associated unitary representation (σ, H ) does not contain any representa-
tion induced by finite-dimensional ones (we refer to this latter property as
Ind-mixing).

Background

Richard Thompson’s groups F, T , and V

Richard Thompson introduced three groups F ⊂ T ⊂ V in unpublished
notes during the 1960’s, see [17]. They are countable discrete groups acting
by homeomorphisms on the unit interval, the unit circle, and the Cantor
set, respectively. They appear in various area of mathematics such as topol-
ogy, logic, dynamics and more recently in the reconstruction program of
conformal field theories of Jones, see [9, 26] for details on Jones’ connection.
They are famous for satisfying rare properties of groups and following un-
expected behaviours. One of the most celebrated open question regarding
them is to know if F is amenable or not. Note that much weaker properties
than amenability are not known to hold, including exactness, sophicity,
and Cowling–Haagerup’s weak amenability. Deeply understanding groups
is usually done by studying actions of them. Jones introduced a technology
to construct such.

Jones’ technology

In the 2010’s Jones came across the Thompson groups while he was
aiming to construct conformal field theories from subfactors [9, 26]. This
connection came from the similarity of diagrammatic description of ele-
ments of F, T, V via rooted finite binary trees and the string diagrams of
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JONES’ REPRESENTATIONS 3

Jones (forming a planar algebra) used to describe the standard invariant
of a subfactor [30]. (Diagrammatic descriptions of elements of the Thomp-
son groups first appeared in the literature in Kenneth Brown’s work but
unpublished notes suggest that Thompson was aware of it [15].) From that
discovery Jones defined a novel technique for constructing actions of the
Thompson groups (and many other such groups) [26, 27]. This has already
led to numerous applications in mathematical-physics, group theory, knot
theory and so on [1, 10, 11, 25, 28, 29, 32]. Moreover, similar techniques
based on the study of the Thompson monoid and a quotient of it have
recently produced applications in noncommutative probabilty [33].

Pythagorean’s representations

Among other, this novel technology of Jones permits to construct a uni-
tary representation of F, T, and V from any linear isometry H → H ⊕ H

where H is a Hilbert space [12]. These representations are named
pythagorean for the following reason: if we write the linear isometry as
ξ 7→ (Aξ, Bξ) for some bounded linear operators A, B ∈ B(H), then
this pair of operators must satisfy the relation reminiscent of the one of
Pythagoras:

(0.1) A∗A + B∗B = idH .

The associated unitary representation (σ, H ) of F is constructed via an
inductive limit of direct sum powers of H. It heavily depends on the choice
of the so-called Pythagorean pair (A, B). The limit Hilbert space H can
be thought as the set of classes of (finite rooted binary) trees with their
(ordered) leaves indexed by elements of H. Moving inside an equivalence
class corresponds in growing or reducing trees and applying the operators
A, B to the decorations of the leaves, see Subsection 1.4 for details.

Connection with C*-algebras

Define the Pythagorean algebra P to be the universal C*-algebra gen-
erated by A, B satisfying (0.1). A representation of P provides a represen-
tation of F, T, V as explained above. Previously, Birget and Nekrashevych
have independently discovered that F embeds in the unitary group of the
Cuntz algebra O2 [6, 19, 35]. More precisely, V corresponds to the nor-
maliser of a certain maximal abelian subalgebra of O2 where O2 is the quo-
tient of P for the additional relations AA∗ = BB∗ = id (see [14, Section 1]
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for details). The embedding V ↪→ O2 has been widely used for produc-
ing representations of F, T, V (by restricting representations of O2 that are
necessarily infinite-dimensional). One of the main power of Pythagorean
representations is to be able to construct interesting representation for
F, T, V but starting from finite-dimensional operators A, B.

It is worth noting that P is not only useful for producing representations
of the Thompson groups but it is also an interesting C*-algebra on its
own. It admits many quotients such as the celebrating Cuntz algebra O2
and it is one of the few known non-nuclear C*-algebra having the lifting
property as proved by Courtney [18]. Since P surjects to O2 we have that
any representation of O2 yields a representation of P . Surprisingly the
converse also holds: any representation of P produces a representation of
O2 giving a new way to construct such using again only finite-dimensional
initial data, see [12, Proposition 7.1].

Content and main results

In this article we consider a Pythagorean representation (σ, H ) of
Thompson group’s F constructed from a Pythagorean pair (A, B) acting
on some H. We focus on actions of F even if the representation σ canoni-
cally extends to T and V , making our analysis still relevant for these larger
groups, see Subsection 3.2 of this article and [14, Section 2] for details. Our
approach consists in obtaining properties of representation of F (thus acting
on a large inductive limit Hilbert space H ) from the study of the two op-
erators A, B acting on a comparably smaller Hilbert space H. In this article
we compare Pythagorean representations with monomial ones (e.g. quasi-
regular) or more generally representations induced by finite-dimensional
ones (and thus easily constructible without using Jones’ technology). This
leads to the following natural notion for unitary representations of discrete
groups.

Definition A. — Let σ : G ↷ H be a unitary representation of a
discrete group. We say that σ is Ind-mixing if given any non-trivial sub-
group K ⊂ G and any finite-dimensional non-zero unitary representation
θ : K ↷ K we have that the induced representation IndG

K θ is not contained
in σ.

Note that if G is torsion-free, then mixing implies Ind-mixing; and for all
groups Ind-mixing implies weak mixing, see Section 1.1.3 for definitions.
However, none of the reverse implications hold in general. We introduce
the following key notion for Pythagorean pairs.

ANNALES DE L’INSTITUT FOURIER
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Definition B. — A Pythagorean pair (A, B) acting on H is called dif-
fuse if given any increasing sequence of words pn in A, B and any vector
ξ ∈ H we have that

lim
n→∞

pnξ = 0,

i.e. increasing sequences of words in A, B converge to 0 for the strong
operator topology. In that case, we say that the associated Pythagorean
representation (σ, H ) of F is diffuse.

Note, by an increasing sequence of words pn we mean that pn+1 = xpn

for all n where x is a finite product of A and B.

Here is our main result linking the notion of diffuse Pythagorean pairs
with Ind-mixing representations.

Theorem C. — A diffuse Pythagorean representation of F is Ind-mixing.

For the sake of simplicity we have chosen to present only the F -case.
However, one can easily adapt our techniques and prove the main results
of this article for the larger Thompson groups T and V . This is briefly
explained in Section 3.2.

Note that all Pythagorean representations are not mixing, see Remark 3.3.
We obtain the first known family of representations of F of this kind (being
Ind-mixing but not mixing). A related result was proved by Garncarek when
he considered a one-parameter deformation of the Koopman representation
of F ↷ [0, 1] [20]. He proved, among other, that these representations
do not contain induced representations of the form IndF

Fp
θ where Fp is a

parabolic subgroup of F and θ : Fp ↷ K is finite-dimensional.
We illustrate our theorem by considering all Pythagorean representations

obtained from all linear isometries C → C2. They are parametrised by the
unit vectors (a, b) of C2 which is the real 3-sphere S3 (hence our operators
A, B are complex scalar multiplications by a, b acting on C). The diffuse
representations are exactly those where both a and b are non-zero, that is,
S3 minus the union of the two circles

C1 := {(a, 0) ∈ C2 : |a| = 1} and C2 := {(0, b) ∈ C2 : |b| = 1}.

We directly deduce the following.

Corollary D. — For all (a, b) ∈ S3 \ (C1 ∪ C2) we have that the
associated representation σa,b : F ↷ H is Ind-mixing.

TOME 0 (0), FASCICULE 0
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We observe that the class of representations considered by Garncarek
corresponds exactly to the sub-circle C3 ⊂ S3 of all (ω/

√
2, ω/

√
2) with ω

a complex number of modulus one. We will show in a future work that the
diffuse representations of this corollary are all irreducible and pairwise non-
isomorphic. This extends and generalises Garncarek’s pioneering results
using novel techniques that deeply rely on the Pythagorean structure of
the representations. We will later provide a much wider and richer class
of concrete irreducible Ind-mixing examples by considering A, B acting on
higher dimensional Hilbert spaces [14, Theorem E].

By adapting the proof of Theorem C we obtain the following criteria on
(A, B) assuring that σ : F ↷ H is weakly mixing.

Corollary E. — Consider a Pythagorean pair (A, B) acting on H with
associated representation (σ, H ) of F . If limn Anξ = limn Bnξ = 0 for all
ξ ∈ H, then σ is weakly mixing (i.e. does not contain any finite-dimensional
subrepresentation).

In a future work (which relies on general decompositions of Pythagorean
representations) we will show that both assumptions of Theorem C and
Corollary E are in fact necessary [13, Corollary D]. Hence, we provided
characterisations of Ind-mixing and weak mixing Pythagorean representa-
tions solely in terms of the pair (A, B).

Plan of the article

In Section 1 we provide a detailed preliminary section on unitary repre-
sentations, strong operator topology, Thompson’s groups, and Pythagorean
representations. This allows us to introduce terminology, notations, and
classical results needed for our study.

In Section 2 we introduce a class of partial isometries (τν)ν acting on
H that is the carrier Hilbert space of a Pythagorean representation σ of
Thompson’s group F . These partial isometries are indexed by finite binary
sequences ν (or equivalently vertices of the rooted infinite binary tree).
They permit to decompose vectors ξ ∈ H in a diagrammatic fashion and
moreover to describe the action σ : F ↷ H . In particular, if g ∈ F is
described by a pair of trees with leaves indexed by νi and µi, then σ(g) is
equal to the finite sum of operators

∑
i τ∗

νi
◦τµi

. This decomposition of both
the vectors and the actions of F using the τν plays a major role in our study.
We establish a number of useful observations on these partial isometries.
Moreover, we obtain a corollary of von Neumann’s ergodic theorem which

ANNALES DE L’INSTITUT FOURIER
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relates projections of H and supports of Thompson’s group elements. This
corollary will be key for proving Theorem C.

In Section 3 we prove our main result, Theorem C, via the following
strategy. We fix a diffuse Pythagorean pair (A, B) acting H with associated
representation σ : F ↷ H . For the sake of contradiction we assume that
IndF

H θ ⊂ σ where θ : H ↷ K is a non-zero finite-dimensional representation
of a subgroup H ⊂ F . We introduce the set

P := {g ∈ F : gn /∈ H for all n ⩾ 1}.

Using projections defined by vertices and the von Neumann ergodic theorem
we show that there exists a nonempty subset Q of the Cantor space (i.e. the
set of all infinite binary sequences) satisfying that if Q ̸⊂ supp(g), then
gn ∈ H for infinitely many n ⩾ 1. We fix u ∈ Q. Using tree-diagrams and
the assumption we construct a subset of elements H̃ ⊂ F such that:

(1) they all act trivially around u and
(2) given any finite subset K ⊂ H we can extract a sequence {gj}j ⊂

H̃ with the property limj⟨σ(gj)ξ, ξ⟩ = 0 for all ξ ∈ K.

Since any g ∈ H̃ acts trivially around u we have that u /∈ supp(g) and
thus Q ̸⊂ supp(g). Therefore, gn is not in H for infinitely many n ⩾ 1.
This allows us to further assume that the sequence {gj}j of above is con-
tained in H. We deduce that the restriction σ ↾H is weakly mixing. This
produces a contradiction since θ ⊂ σ ↾H is a non-zero finite-dimensional
subrepresentation of a weakly mixing one. By slightly adjusting this proof
we deduce Corollary E.

We end the paper with Section 4 in which we describe the class of
Pythagorean representations obtained from (A, B) acting on H = C.

Comparison of Pythagorean representations to other known
representations of the Thompson groups and the Cuntz algebra

Our approach recovers several previously known families of representa-
tions of all three Thompson’s groups along with all representations of the
Cuntz algebra O2 (as explained above). Moreover, this will lead to the re-
covery and the extension of many of the previous classification results in
the literature for these representations. This is extensively explained in a
sequel of this article [14, Section 6].

TOME 0 (0), FASCICULE 0
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1. Preliminaries

We recall definitions and facts concerning unitary representations of
groups, Richard Thompson’s groups F, T, V , and a particular case of Jones’
construction. All of the content of the preliminaries can be found elsewhere
and thus we will be rather brief. We take the occasion of this section to
introduce terminology, notations, and fixing conventions. We recommend
the reader to consult [3, 4, 31] for materials concerning unitary representa-
tions, [17] for Thompson’s groups, [9, 11, 27] for the general theory of Jones’
technology, and [12] for the particular case of Pythagorean representations
that we will be exclusively using in this article.

Convention. — All along the article we take the convention that all
groups are equipped with the discrete topology, all Hilbert spaces are over
the complex field C, and all inner products are linear in the first variable.
Moreover, all representations are unitary.

1.1. Unitary representations of discrete groups

1.1.1. Unitary representations

A unitary representation σ : G → U(Hσ) of a group G is a group mor-
phism from G to the unitary group U(Hσ) of a Hilbert space Hσ. We will
be exclusively considering unitary representations and thus may drop the
word “unitary”. A representation of a group G will be denoted (σ,H),
σ : G → U(H), or G ↷ H. As usual we write σ ↾H for the restriction
of σ to a subgroup H ⊂ G.

ANNALES DE L’INSTITUT FOURIER
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1.1.2. Induced representations

If G is a group, H ⊂ G a subgroup, and σ : H → U(K) a representation,
then we define the induced representation of σ to be

IndG
H σ : G −→ U(ℓ2(T,K))

IndG
H σ(g)f(t) = σ(β(g−1, t)−1)(f(g−1 · t)),

where g ∈ G, t ∈ T, f ∈ ℓ2(T,K), T is a fixed set of representatives of G/H,
so that (g ·t, β(g, t)) is the unique pair of T ×H satisfying gt = (g ·t)β(g, t).

When dim(K) = 1, then we say that IndG
H σ is monomial. Note that

when σ = 1H is the trivial representation, then IndG
H 1H is isomorphic to

the quasi-regular representation λG/H : G ↷ ℓ2(G/H).

1.1.3. Properties of representations

Consider a representation σ : G → U(Hσ) and recall that a subrepresen-
tation of σ is a (topologically) closed vector subspace K ⊂ Hσ that is closed
under the action of G. The representation σ is called:

(1) irreducible if it does not admit any proper non-zero subrepresenta-
tion (and is called reducible otherwise);

(2) mixing if G is infinite and limg→∞|⟨σgξ, ξ⟩| = 0 for all ξ ∈ Hσ;
(3) weakly mixing if it does not admit any finite-dimensional non-zero

subrepresentation.
Here is a well-known reformulation of weakly mixing which is due to [5,

Corollary 1.6, Theorem 1.9] (the notion of weakly mixing was introduced
in this paper) and is often taken to be the definition of weakly mixing.

Proposition 1.1. — A representation σ is weakly mixing if and only
if for every finite subset K ⊂ Hσ and ϵ > 0, there exists g ∈ G such that
|⟨σgξ, ξ⟩| < ϵ for all ξ ∈ K.

From the definition it is clear that for infinite-dimensional representa-
tions irreducible implies weakly mixing. Proposition 1.1 shows that mix-
ing implies weak mixing. Although, an irreducible representation is not
necessarily mixing. Indeed, take any infinite self-commensurator subgroup
H ⊂ G and note that the quasi-regular representation G ↷ ℓ2(G/H)
is irreducible but not mixing from the Mackey–Schoda criterion [34] (see
also [16]). For instance, taking G to be Thompson’s group F , and H to be
the parabolic subgroup Fx := {g ∈ F : g(x) = x} associated to a point
x ∈ (0, 1), we have that Fx ⊂ F is a self-commensurating subgroup and
then F ↷ ℓ2(F/Fx) is irreducible but not mixing.

TOME 0 (0), FASCICULE 0
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1.2. Thompson’s groups F, T, and V

In unpublished notes of 1960’s Richard Thompson defined three groups
F, T, V satisfying F ⊂ T ⊂ V . We will be focused on F in this article but
all the representations that we will define for F extends to V and thus
this study stays relevant for all three Thompson’s groups. In particular,
in Subsection 3.2 we explain how the main theorem of the paper can be
extended to T and V .

1.2.1. Classical definitions as homeomorphism groups

Description of F as actions on [0, 1]. — Thompson’s group F is the
group of piece-wise linear homeomorphisms of the unit interval [0, 1] hav-
ing finitely many breakpoints all occurring at dyadic rationals Z[1/2] and
having all slopes powers of 2. We will often identify F as a subgroup of the
homeomorphism group Homeo(0, 1) of [0, 1].

1.2.2. Definition of F involving partitions

Standard dyadic interval. — A common way to understand F is to con-
sider certain partitions of [0, 1]. A standard dyadic interval (in short sdi)
is an interval of the form I = [ a

2b , a+1
2b ] with a, b ∈ N which is con-

tained in [0, 1]. For technical reasons we may consider the half-open interval
İ := [ a

2b , a+1
2b ) and may identify I with İ.

Standard dyadic partition. — A standard dyadic partition (in short sdp)
is a finite list I := (I1, . . . , In) of sdi so that sup(Ij) = inf(Ij+1) for 1 ⩽ j ⩽
n − 1 and so that inf(I1) = 0, sup(In) = 1, i.e. an ordered finite partition
of [0, 1] into sdi up to removing certain endpoints of the sdi. Note that
{İ1, . . . , İn} is a partition of [0, 1) in the usual sense.

A partial order. — If I, J are sdp and every sdi of I is equal to the
union of some sdi of J , then we say that I is a refinement of J and write
I ⩽ J . The set of all sdp equipped with ⩽ is a directed partially ordered
set (in short a directed poset).

Description of F using partitions and definitions of T and V . — Thomp-
son’s group F is the group of maps g : [0, 1] → [0, 1] satisfying that there
exists two sdp (I1, . . . , In) and (J1, . . . , Jn) for some common n ⩾ 1 so
that g maps bijectively in the unique increasing and affine way Ik onto
Jk for each 1 ⩽ k ⩽ n. To define V we add in the data a permutation σ

ANNALES DE L’INSTITUT FOURIER
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of {1, . . . , n} so that g maps İk onto J̇σ(k). The group T is obtained by
requiring that σ is cyclic. Note that elements of T act continuously on the
torus R/Z while elements of V have finitely many discontinuous points (all
at dyadic rationals).

1.2.3. Description of F acting on the Cantor space

Cantor space. — Recall, the Cantor space C := {0, 1}N∗ is the space
equal to all infinite sequences in 0, 1 which is equipped with the product
topology generated by the sets Iw := {w · p : p ∈ C} for all finite words w

in 0, 1. Note the sets Iw are in fact open and closed since C \ Iw can be
written as a finite union of Iν . The Cantor space is associated to the unit
interval by the following map

S : C −→ [0, 1], (xn : n ⩾ 1) 7−→
∑

n∈N∗

2−nxn

which is surjective and continuous. Each dyadic rational in (0, 1) has two
preimages under S while all other points have an unique preimage. In par-
ticular, for each finite word w, the binary sequences (w0111 . . .), (w1000 . . .)
are mapped to the same dyadic rational. Additionally, eventually con-
stant sequences are mapped to the dyadic rational, eventually periodic
sequences are mapped to the rationals while not eventually periodic se-
quences are mapped to the irrationals. Furthermore, S maps the sets Iw

to sdi’s up to removing certain endpoints. This yields a bijection between
{Iw : w is a finite word} and the set of sdi’s.

Notation. — For a sdi I, denote mI to be the finite word given by the
above bijection.

A desirable property of the above identification is that now each sdp of
[0, 1] gives rise to a “true” partition of C without needing to remove certain
endpoints and removes the ambiguity of which sdi a dyadic rational in (0, 1)
belongs to. This is a consequence of C containing two copies of the dyadic
rationals in (0, 1). For this reason in this paper we will often work on the
Cantor space rather than the unit interval. Further, from hereon, we shall
identify sdi’s with the subsets Iw of the Cantor space and similarly for
sdp’s.

Description of F as actions on the Cantor space. — Using the above
correspondence and the definition of F involving partitions we obtain an
action of F on the Cantor space in the obvious way. Indeed, F is the group of
homeomorphism on C satisfying there exists two ordered sdp’s (I1, . . . , In)

TOME 0 (0), FASCICULE 0
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and (J1, . . . , Jn) for some common n ⩾ 1 such that Ik is “linearly” mapped
onto Jk in the following way:

(1.1) mIk
· w 7−→ mJk

· w, 1 ⩽ k ⩽ n, w ∈ {0, 1}N∗
.

Similarly, we can obtain actions of T, V as homeomorphisms on the Cantor
space. It is clear that the map S is F -equivariant with respect to the above
action.

Support. — The support of an element g ∈ F is the closure of all se-
quences in C which are not fixed by g. That is,

supp(g) := {p ∈ C : g(p) ̸= p}.

From the description of F acting on the Cantor space, it is clear that the
support is always a finite disjoint union of sdi and is thus both open and
closed.

1.2.4. Diagrammatic description of elements of Thompson’s groups

Infinite binary rooted tree. — Consider the infinite binary rooted tree
t∞ that we identify with a geometric realisation of it in the plane where
the root is on top, the root has two neighbours placed at the bottom left
and right of it, every other vertex has three neighbours: one above it, one
on the bottom left, and one at the bottom right; the latter two being called
immediate children of the vertex. We equip the tree with the orientation
satisfying that each oriented edge is going from top to bottom. We call
left and right edges the oriented edges going in the bottom left and right
directions, respectively. Moreover, a pair of edges with a common source
(going down) is called a caret. We denote it with the symbol ∧.

Decoration of vertices with binary sequences. — We will often identify
vertices of t∞ with finite binary sequences (also referred to as finite words).
Write Ver for the vertex set of t∞ and by BS the set of finite binary
sequences over the letters 0 and 1 including the empty one that we denote
by ∅. We denote a finite sequence with n elements either as x1x2 · · · xn

or as (x1, . . . , xn). We write x · y for the concatenation of two sequences,
e.g. 01 · 0011 = 010011. Consider the map bs : Ver → BS satisfying that
the image of the root is the empty sequence. Moreover, if ν ∈ Ver and ν0, ν1
are the left and right immediate children of ν, then bs(ν0) = bs(ν) · 0 and
bs(ν1) = bs(ν) · 1. The map bs defines a bijection. We will often identify a
vertex ν with its associated binary sequence bs(ν).

ANNALES DE L’INSTITUT FOURIER
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Decoration of vertices with sdi. — By identifying each vertex with its
associated binary sequence bs(ν) we can decorate each vertex with the sdi
Iν (recall the definition of Iν from Subsection 1.2.3). Here is the beginning
of this diagram (to allow for better intuition we have represented each sdi
as a subset of the unit interval rather than as a subset of the Cantor space):

[0, 1]

[0, 1
2 ]

[0, 1
4 ] [ 1

4 , 1
2 ]

[ 1
2 , 1]

[ 1
2 , 3

4 ] [ 3
4 , 1]

Observe that we have a bijection between the sdi and the vertices of t∞.

Disjoint. — Two vertices are said to be disjoint if their associated sdi
(as subsets of the Cantor space) are disjoint (otherwise one sdi would be
contained in the other). This is equivalent to say that one is not the children
of the other.

Left/right sides, and centre of t∞. — The left (resp. right) side of t∞
is the set of vertices whose binary sequence consists only of zeroes (resp.
ones). The root node neither lies on the left nor right side of t∞. The centre
of t∞ is the set of vertices which is not the root node and neither lies on
the left or right side of t∞.

Tree. — We call a tree any (nonempty) rooted finite subtree of t∞ so
that each vertex has either two immediate children or none. A vertex with
no immediate children is called a leaf. Moreover, we index increasingly
the leaves of a tree from left to right starting at 1. We write T for the
collection of all trees and tar(t) for the number of leaves of t where tar
stands for “target”. We write Leaf(t) for the set of leaves of a tree t so that
tar(t) = |Leaf(t)|.

Forest. — We call a forest a finite union of trees that we represent as
finitely many trees placed next to each other ordered from left to right
having all roots and leaves lining on two horizontal lines. The roots and
leaves of the forest are ordered from left to right and indexed by natural
numbers starting at 1. Here is an example of a forest with two roots and
seven leaves:
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14 Arnaud BROTHIER & Dilshan WIJESENA

We write F for the collection of all forests and Root(f), Leaf(f) for the
sets of roots and leaves of a forest f , respectively.

Composition of forests. — When f, g are forests so that the number of
leaves of f is equal to the number of roots of g (i.e. |Leaf(f)| = |Root(g)|),
we consider the composition of f with g, written g◦f , as the forest obtained
by stacking vertically g on the bottom of f lining up the jth root of g

with the jth leaf of f . This provides a partially defined associative binary
operation on F (and in fact confers a structure of category).

Partially ordered set. — We equip T with a poset (partially ordered set)
structure ⪯ that is t ⪯ s if t is a rooted subtree of s. From the description
of T as rooted subtrees of t∞ it is obvious that (T, ⪯) is directed, i.e. if
t, s ∈ T, then there exists r ∈ T satisfying t ⪯ r and s ⪯ r. Moreover, given
t, s ∈ T, we have t ⪯ s if and only if there exists f ∈ F satisfying s = f ◦ t.

From trees to sdp. — If t is a tree, then for each of its leaves ℓ we have
an associated sdi Iℓ. Observe that the collection (Iℓ, ℓ ∈ Leaf(t)) is a sdp
which we write sdp(t). Hence, if {νi}i∈X = Leaf(t) from some tree t, then
we say {νi}i∈X is a sdp of vertices which correspond to sdp(t). The map
t 7→ sdp(t) defines an isomorphism of posets from trees to sdp so that t ⪯ s

implies that sdp(s) is a refinement of sdp(t).

Tree-diagrams. — A tree-diagram is an ordered pair of trees (t, s) ∈ T×T

such that |Leaf(t)| = |Leaf(s)|. From the description of F as acting on the
Cantor space and the observation above we deduce that any element g ∈ F

is described by a tree-diagram. This is not a one to one correspondence
since clearly (f ◦ t, f ◦ s) and (t, s) correspond to the same Thompson’s
group element.

Description of F using trees. — We now provide the description of F

using tree-diagrams which is due to Brown [15]. Consider the set P of
all tree-diagrams (t, s). Let ∼ be the equivalence relation generated by
(f ◦ t, f ◦ s) ∼ (t, s) where f is a forest having the same number of roots as
the number of leaves of t (and thus of s). Let [t, s] be the class of (t, s) in
the quotient space P/ ∼. Define the binary operation

[t, s] ◦ [t′, s′] := [f ◦ t, f ′ ◦ s′] for f, f ′ satisfying f ◦ s = f ′ ◦ t′.

This binary operation is well-defined and confers a group structure to P/ ∼
so that [t, s]−1 = [s, t] and [t, t] is the identity for each tree t. Moreover,
this group is isomorphic to Thompson’s group F .

Reduced pair. — Consider g = [t, s] ∈ F . A representative (t, s) of g is
called reducible (and irreducible otherwise) if there exists s′, t′, f with f
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non-trivial so that t = f ◦ t′ and s = f ◦ s′. Note: in that case (t′, s′) is
again a representative of g.

Corresponding leaves. — For a tree-diagram (t, s), two leaves ν ∈ Leaf(t),
ω ∈ Leaf(s) are said to correspond to each other if they have the same
numbered position, i.e if ν is the jth leaf of t, then ω is the jth leaf of s. By
the second description of F , the element in F associated with [t, s] maps
the sdi Iν to Iω.

We will be mostly working with this description of F and will thus con-
sider pairs of trees for describing Thompson’s group elements. Note that
one can similarly define T and V using tree-diagrams in a similar way by
considering permutations of leaves of trees.

1.2.5. Description of F using categories

Another way to define F is to consider the collection of all forests as a
(small) category using the composition (i.e. a set equipped with a partially
defined associative binary operation and having an identity for each unit).
This category is cancellative and any pair of forests with the same number
of leaves admit a left-common multiple (this is known as Ore’s property).
Hence, F embedds in its (left-)groupoid of fractions (i.e. we can formally
manipulate inverses of forests obtaining a groupoid and moreover all ele-
ment of the groupoid can be written (non-uniquely) as f−1 ◦ g with f, g

forests). Now, by restricting to pairs of trees (rather than forests) we obtain
F . Hence, F is the set of t−1 ◦ s with t, s trees having the same number of
leaves equipped with the composition of F extended to formal inverses.

1.3. Particular trees and forests

Particular trees. — We use the symbol ∧ for the tree with two leaves
which is equal to a caret. The trivial tree is the tree having only one leaf
(that is equal to its root) that we denote by e or I. We write tn for the
regular tree with 2n leaves all at distance n from the root for the usual
tree-metric.

Tensor product. — Given two forests f, g we define the tensor product
f ⊗ g of them which is a forest obtained by concatenating horizontally f to
the left of g. Note that this is an associative binary operation on the set of
forests F. As a side remark, if we add the empty forest to F (which is the
neutral element for ⊗), then we obtain that (F, ◦, ⊗) has a structure of a
monoidal category.
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16 Arnaud BROTHIER & Dilshan WIJESENA

Elementary forests. — An elementary forest is of the form fk,n where
1 ⩽ k ⩽ n so that fk,n has n roots, n + 1 leaves, and all the trees of fk,n

are trivial except the kth tree which has two leaves. Using tensor product
notation we get fk,n = I⊗k−1 ⊗ ∧ ⊗ I⊗n−k. If the context is clear we may
write fk rather than fk,n. The set of elementary forests generates F in the
sense that any forest is a finite composition of elementary forests. Note that
such a decomposition of forests is in general not unique.

Remark 1.2. — The single tree ∧ tensor-generates F in the sense that:
the smallest subset of F that contains ∧, the trivial forests, and which is
closed under composition and tensor product is equal to F. This is at the
root of Jones’ technology: one can construct an action of F by defining how
∧ “acts”, see [9] for details.

1.4. Definition of Pythagorean representations

We explain a particular case of Jones’ technology allowing us to construct
unitary representations of F (and in fact all these representations extend
to the larger Thompson’s group V , see [12, Section 4] for details) using a
pair of operators.

1.4.1. Pythagorean pairs of operators

Consider a Hilbert space H and two (bounded linear) operators A, B ∈
B(H). We say that (A, B) is a Pythagorean pair (over H) if:

A∗A + B∗B = idH

where idH is the identify operator of H and A∗ is the adjoint of A. Define
the following corresponding universal C∗-algebra.

Definition 1.3. — The Pythagorean algebra P = P2 is the universal
C∗-algebra with generators a, b and the unique relation

a∗a + b∗b = 1.

We refer the reader to [7] for a description of universal C∗-algebras. For
examples of interesting Pythagorean pairs, see Section 6 in [12] where the
authors study the cyclic subrepresentations generated by a specific single
vector.
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1.4.2. Construction of a Hilbert space

Hilbert spaces associated to trees. — Fix a Pythagorean pair (A, B) over
H. For each tree t ∈ T we define Ht to be ℓ2(Leaf(t),H) the vector space of
maps ξ : Leaf(t) → H, ℓ 7→ ξℓ equipped with the inner product:

⟨ξ, η⟩ =
∑

ℓ∈Leaf(t)

⟨ξℓ, ηℓ⟩.

Note that Ht is isomorphic to the nth direct sum Hn := H⊕n where n is the
number of leaves of t. We will make this identification writing (ξ1, . . . , ξn)
the list of values taken by ξ so that ξi corresponds to the ith leaf of t,
1 ⩽ i ⩽ n. To emphasise the tree t and to avoid confusions we may write
(t, ξ) or (t, ξ1, . . . , ξn) rather than ξ or (ξ1, . . . , ξn). Another common way to
think of ξ ∈ Ht is to consider the tree t so that each of its leaf ℓ is decorated
by ξℓ. Hence, Ht is the Hilbert space equal to all possible decorations of
the leaves of t with elements in H. As an example, below is an element of
Ht where t is the unique tree with two leaves and has been decorated with
the vector (ξ1, ξ2).

ξ1 ξ2

Directed system of Hilbert spaces. — We consider now the family (Ht :
t ∈ T). We want to equip this family with a directed set structure. We start
by considering a certain family of isometries. Let fk,n = I⊗k−1 ⊗∧⊗I⊗n−k

be an elementary forest with 1 ⩽ k ⩽ n. Define the map:

Φ(fk,n) = ΦA,B(fk,n) : Hn −→ Hn+1,

(ξ1, . . . , ξn) 7−→ (ξ1, . . . , ξk−1, A(ξk), B(ξk), ξk+1, . . . , ξn).

Note that since (A, B) is a Pythagorean pair we have that Φ(fk,n) is an
isometry.

Now, any forest f is a finite product of elementary forests f = fk1,n1 ◦
· · ·◦fkr,nr . We put Φ(f) := Φ(fk1,n1)◦· · ·◦Φ(fkr,nr ). This is well-defined (if
f is written as a different composition of elementary forests we still obtain
the same operator). Note that Φ(f) is an isometry for any forest f since
it is the composition of some isometries. In particular, Φ(f) is an isometry
from Hnr to Hnℓ where nr = |Root(f)| and nℓ = |Leaf(f)|.

Connecting maps and limits. — Consider now t, s ∈ T satisfying t ⪯ s.
There exists a unique forest f ∈ F satisfying s = f ◦ t. Define the map

ιs
t : Ht −→ Hs, (t, ξ) 7−→ (s, Φ(f)(ξ)).
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18 Arnaud BROTHIER & Dilshan WIJESENA

We obtain a directed system (Ht, ιs
t : t, s ∈ T, t ⪯ s) of Hilbert spaces and

isometries. Its directed limit (or inductive limit or colimit) K = KA,B :=
lim−→t∈T

Ht is a preHilbert space that we complete into a Hilbert space H =
HA,B .

Diagrammatic description of the limit space. — Here is a convenient way
to think about the limit space K . Consider a tree t and index its leaves
by some elements in H. We obtain an element (t, ξ) ∈ Ht. If we add a caret
to t at the kth leaf we obtain a larger tree t′ ⩾ t that we decorate with ξ′

just as t except that the kth leaf is decorated by A(ξk) and the (k + 1)th
by B(ξk). Put (t, ξ) ∼ (t′, ξ′) and consider the smallest equivalence relation
generated by it. The space K is equal to all decorated trees quotiented
by ∼ . Hence, any element of K admits a representative (t, ξ) and write
[t, ξ] for the class associated to it. Below we provide an example of the
equivalence relation ∼ on K .

ξ1 ξ2

∼

Aξ1 Bξ1

ξ2

For all trees t the direct sum Ht naturally embeds inside K given by
Ht ∋ ξ 7→ [t, ξ] ∈ K . In the sequel, if ξ ∈ H we shall commonly identify ξ

with its image [e, ξ] inside K .

Remark 1.4. — It is important to note that even when H is finite-dimen-
sional, the larger Hilbert space H will always be infinite-dimensional. This
can be easily observed by considering the above diagrammatic description
of K . Indeed, take any non-zero vector ξ ∈ H and for n ∈ N∗ define zn

to be the element in K formed by indexing the second leaf of tn with ξ

and decorating all the other leaves with zeros. It can then be observed that
{zn}n∈N∗ forms an orthogonal set in H .

1.4.3. The Jones representation associated to a Pythagorean pair

As before consider a Pythagorean pair (A, B) over a Hilbert space H,
the associated directed system (Ht, ιs

t : t, s ∈ T, t ⪯ s), the isometries
(Φ(f) : f ∈ F) and the limit spaces K and H . We want to construct a
(unitary) representation of F on H . Consider g ∈ F and z ∈ K . There
exists some trees s, t, r ∈ T and a vector ξ ∈ Hr so that g = [t, s] and
z = [r, ξ]. Since (T, ⪯) is directed there exists w ∈ T so that s ⪯ w and
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r ⪯ w and thus some forests f, h satisfying w = f ◦ s = h ◦ r. Using the
equivalence relations defining F and K we have:

g = [t, s] = [f ◦ t, f ◦ s] = [f ◦ t, w]

and

z = [r, ξ] = [h ◦ r, Φ(h)(ξ)] = [w, Φ(h)(ξ)].

We set:

σ(g)z := σ([f ◦ t, w])[w, Φ(h)(ξ)] := [f ◦ t, Φ(h)(ξ)].

This defines an action by unitary operators of F on K which extends into
a unitary representation σ = σA,B acting on H . This is indeed well-defined
(the formula does not depend on the choice of the representatives (t, s) and
(r, ξ) nor depend on the choice of f, h).

Definition 1.5. — We call σA,B the Jones representation or Jones ac-
tion of F associated to the Pythagorean pair (A, B) or the Pythagorean
representation associated to (A, B).

Visualisation of the Jones action. — Here is one key example to keep in
mind for visualising σ. Consider g = [t, s] ∈ F and z = [s, ξ] ∈ H where
we have taken the second tree s of the representative of g to be equal to
the tree of the representative of z. The element z corresponds to the (class
of the) tree s with leaves decorated by ξ = (ξ1, . . . , ξn) where n is the
number of leaves of s (and thus of t). Now, σ(g)(z) = [t, ξ] corresponds to
the tree t (instead of s) with the same decoration ξ of leaves. Hence, the
Jones action did not change the decoration but only the tree. An example
of Jones’ action is shown below.

σ

(
,

)
·

ξ1

ξ2 ξ3

=

ξ1 ξ2

ξ3

Categorical interpretation. — Initially, Jones’ actions were defined using
categories and functors as we are about to explain. This description will
not be used or referred later in the paper. It is here for the curiosity of the
reader. Consider the monoidal category of binary forests (F, ◦, ⊗) where
the objects of F are the natural numbers, the morphisms the forests, the
composition ◦ the vertical concatenation, and the monoidal structure ⊗ the
horizontal concatenation. Consider now the category of Hilbert spaces with
isometries for morphisms and equip it with the monoidal structure given by
the direct sum of Hilbert spaces (hence not the usual monoidal structure
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given by the Hilbert space tensor product). Now, choosing a Pythagorean
pair (A, B) corresponds in choosing a covariant monoidal functor from the
category of binary forests to the category of Hilbert spaces. The functor
being the Φ we used above satisfying Φ(∧)(ξ) = (Aξ, Bξ) ∈ H ⊕ H for
ξ ∈ H := Φ(1). Jones’ technology can be applied to construct unitary
representations of F using any functor from F to the category of Hilbert
spaces (not necessarily covariant nor monoidal). Hence, we are considering a
very special kind of those. Moreover, it provides an action of the Thompson
groupoid (the whole fraction groupoid obtained from F) that we restrict in
this paper to the Thompson group.

2. Tools and general results for Pythagorean
representations

In this section we fix a Pythagorean pair (A, B) acting on H and consider
the associated representation (σ, H ) of F . We recall that K ⊂ H is
the dense subspace of equivalence classes [t, ξ] of trees t whose leaves are
decorated by vectors of H.

2.1. Definitions of some partial isometries

Partial isometries associated to a vertex

Consider a tree t and a vector [t, ξ] ∈ K : that is the tree t with its leaves
ℓ decorated by elements ξℓ of H. Given any vertex ν of the infinite binary
rooted tree we want to define the ν-component of [t, ξ].

• If ν is a leaf ℓ of t, then it is ξℓ ∈ H that we interpret as an element
of H .

• If ν is not a vertex of t, then we choose another representative
(t′, ξ′) of [t, ξ] such that ν is a leaf ℓ′ of t′ and take ξ′

ℓ′ . Note that t′

is necessarily of the form f ◦ t where f is a forest we attach on the
bottom of t.

• If ν is an interior vertex of t (a vertex of t that is not a leaf), then we
consider tν the subtree of t rooted at ν and having same children of
ν as t. In particular, the leaves of tν forms a subset of the leaves of t.
The ν-component is then [tν , η] ∈ Htν

deduced from the subtree tν

of t and the decoration of leaves being the restriction of the one of t,
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that is, η : Leaf(tν) ∋ ℓ 7→ ξℓ. For an example, see the below where
the 0-component is taken of a vector. Here, t is the tree (∧ I) ◦ ∧
(recall I is the trivial tree), ν = 0 is an interior vertex of t that is
not a leaf, tν = ∧ and η = (ξ1, ξ2).

ξ1 ξ2

ξ3
0-component7−−−−−−−→ ξ1 ξ2

Intuitively, taking the ν-component consists of “growing” the tree large
enough and then “snipping” the tree at the vertex ν. We formalise this
notion in the following proposition.

Proposition 2.1. — For any ν ∈ Ver, taking the ν-component is a well-
defined map from K to K that extends into a surjective partial isometry

τν : H −→ H .

Proof. — It is not difficult to observe that taking the ν-component is a
well-defined map from K to K as a consequence of Φ being a monoidal
functor. This map is clearly surjective and linear. Define the subspace Xν ⊂
K consisting of all elements such that their ω-component (in the sense as
described in the beginning of the subsection) is zero for all vertices ω which
are disjoint from ν (recall ν and ω are disjoint if their associated sdi’s are
disjoint). Now, if ξ ∈ Xν , then the ν-component of ξ has same norm than ξ.
Further, if x ∈ X⊥

ν ∩ K then necessarily the ν-component of x must be 0.
Thus the map taking the ν-component is bounded and can be continuously
extended to a surjective partial isometry τν on H with initial space the
norm-closure of Xν . □

Example 2.2. — Consider [s, ξ] where s = ∧ is the tree with two leaves,
ξ = (ξ1, ξ2), and ν = 01. Note that (s, ξ) ∼ (f1 ◦ s, (Aξ1, Bξ1, ξ2)) and thus
the 01-component of [s, ξ] is Bξ as shown by the diagram.

ξ1 ξ2
∼

ΦA,B(f1)

Aξ1 Bξ1

ξ2
7−→
τ01 •

Bξ1

Remarks 2.3.
(i) Since τν (for a given vertex ν) is a surjective partial isometry we

have that its adjoint τ∗
ν is an isometry being a right-inverse of τν .

Moreover, note that τω ◦ τ∗
ν = 0 for all vertex ω which is disjoint
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from ν. Graphically, τ∗
ν acts on (t, ξ) ∈ Ht by “lifting” the tree t

and attaching the resulting subtree, along with the components of
ξ, at the vertex ν while setting all other components to 0.

(ii) Define the orthogonal projection

ρν := τ∗
ν τν

which sets the ω-components of an element to 0 for all vertices ω

that are disjoint from ν.If {νi}n
i=1 is a sdp then

∑n
i=1 ρνi

= id. The
action of ρ0 is shown below.

ξ1 ξ2 ξ3 ξ4

7−→
ρ0

ξ1 ξ2 0 0

∼

ξ1 ξ2

0

More generally, τ∗
ν τω is the partial isometry which “snips” the tree

at ω and attaches the resulting subtree, along with its components,
at the vertex ν while setting all other components to 0. Below shows
an example of how the map τ∗

0 τ1 acts.

ξ1 ξ2 ξ3 ξ4

7−→
τ1

ξ3 ξ4

7−→
τ∗

0

ξ3 ξ4

0

2.2. Some Identities of Pythagorean representations

Viewing elements of Thompson’s group F as a pair of trees in combi-
nation with the family of partial isometries {τν}ν∈Ver provides a powerful
method for analysing properties of Pythagorean representations. Below we
list some obvious but useful identities of Pythagorean representations in-
volving these partial isometries which we shall frequently refer to later in
the paper.

(i) Consider an sdi I. There exists a unique finite word w satisfying
that

I =
{

w · x : x ∈ {0, 1}N} .

Moreover, we have a homeomorphism

φ : I −→ {0, 1}N, w · x 7−→ x.

This corresponds to the unique bijective increasing affine transfor-
mation from the real interval corresponding to I to [0, 1]. Define
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now

FixF (Ic) :=
{

g ∈ F : g(x) = x for all x ∈ {0, 1}N \ I
}

the fixed-point subgroup of F that fixes all elements not in I. The
conjugation by the homeomorphism φ gives a group isomorphism

α : FixF (Ic) −→ F, g 7−→ φ ◦ g ↾I ◦φ−1.

This formula extends into a surjective group morphism from the
stabiliser subgroup StabF (I) := {g ∈ F : g(I) = I} onto F .

(ii) We now interpret (i) using the bijection between sdi and vertices.
Given a vertex ν and a tree t we consider tν as defined in Sec-
tion 2.1 being the maximal subtree of t rooted at ν. If g = [t, s] is
in StabF (Iν), then gν := [tν , sν ] is in F (tν , sν necessarily have the
same number of leaves) and corresponds to the affine scaling of g

when restricted to Iν as defined in (i).
(iii) The mapping

StabF (Iν) −→ F, g 7−→ gν

of(ii) is compatible with the Jones action σ:

(2.1) σ(gν) ◦ τν = τν ◦ σ(g).

Further, if {νi}n
i=1 is a sdp such that g ∈ StabF (νi) for all i =

1, 2, . . . , n then:

(2.2) σ(g) =
n∑

i=1
τ∗

νi
◦ σ(gνi

) ◦ τνi
.

(iv) Let z ∈ H and g := [t, s] ∈ F where Leaf(t) := {νi}n
i=1 and

Leaf(s) := {ωi}n
i=1. Then for all i = 1, 2, . . . , n:

τνi ◦ σ(g) = τωi .

Diametrically, for z := [t, ξ], this can be viewed as the action σ(g)
takes the subtree which has root node at ωi and then attaches it to
the vertex νi along with the components of ξ which are children of
ωi. This is extended by the following identity:

(2.3) σ(g) =
n∑

i=1
τ∗

νi
τωi

.

(v) Let z ∈ H and let g be defined as above. From the above statement,
σ(g)z = z if and only if:

(2.4) τνi(z) = τωi(z), for all i = 1, 2, . . . , n.
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2.3. Diffuse Pythagorean pairs.

Recall the strong operator topology (SOT) of B(H) is the locally convex
topology obtained from the seminorms B(H) ∋ T 7→ ∥T (ξ)∥ indexed by the
vectors ξ ∈ H. In particular, a net of operators (Ti)i∈I converges to T for
the SOT, denoted

Ti
s−→ T

when limi∈I ∥T (ξ) − Ti(ξ)∥ = 0 for all ξ ∈ H.

Definition 2.4. — We call a Pythagorean pair (A, B) acting on H to
be diffuse if

lim
n→∞

pnξ = 0

for all ξ ∈ H and all sequences (pn : n ⩾ 1) such that pn = xn . . . x2x1
where each xk ∈ {A, B}. We say that (pn) is an increasing sequence of
words in A, B.

A Pythagorean representation is diffuse if it is associated to a diffuse
Pythagorean pair.

In other words: (A, B) is diffuse if any increasing chain of words in A, B

converges to 0 for the strong operator topology. Note, the above definition
is identical to Definition B.

Remark 2.5. — Observe, it is not immediately clear (nor trivial) whether
the definition of a diffuse Pythagorean representation is well-defined in
the sense that a diffuse and a non-diffuse Pythagorean pair may induce
equivalent Pythagorean representations. In a later article we show that this
definition is indeed well-defined, see the explanation in [13, Remark 2.14].

Lemma 2.6. — Assume that (A, B) is a diffuse Pythagorean pair of
operators with associated representation (σ, H ). If ν ∈ Ver is a vertex
different from the root and z ∈ H is a non-zero vector, then τν(z) ̸= z.

Proof. — Let z ∈ H and ν ∈ Ver \{∅} such that τν(z) = z. Denote νn

to be the vertex corresponding to the binary sequence ν concatenated n

times. Define p to be the unique ray which passes through the sequence of
vertices (νn : n ⩾ 1) (by a ray we mean an infinite geodesic path in t∞
which begins from the root node). Note that p is indeed unique because
ν ̸= ∅. Observe that ∥z∥ = ∥τνn(z)∥ for all n ∈ N∗. This implies that
τω(z) = 0 if the vertex ω does not lie on the ray p.

Now, consider an arbitrary vector x := [t, ξ] ∈ K . We are going to show
that x is orthogonal to z which will imply that z = 0 since K is dense in
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H . Iteratively define a sequence of representatives of x by (xk : k ⩾ 0)
such that x0 := (t0, ξ0) = (t, ξ) and:

xk+1 := (tk+1, ξk+1) = (f ◦ tk, Φ(f)ξk)

where f is the elementary forest having a single caret at the unique leaf
ℓk of tk that lies in the ray p. Further, define ([x̃k] : k ⩾ 1) ⊂ K by
x̃k = (tk, ξ̃k) where:

ξ̃k
ℓ =

{
ξk

ℓ , ℓ ̸= ℓk,

0, ℓ = ℓk

and ξk
ℓ denotes the component of ξk at the leaf ℓ. Hence, ξ̃k is the tree

tk with same decoration than xk except that the leaf ℓk is decorated by
0. Define p′ to be the unique, infinite subpath of p which begins from ℓ0
and let (p′

n : n ⩾ 1) be the sequence of operators induced by p′. That
is, p′

n = an . . . a2a1 such that ak = A if the kth edge of p′ is a left-edge,
otherwise ak = B. Using the initial assumption that (A, B) is diffuse we
have:

ξk
ℓk

= p′
kξ0

ℓ0
= p′

kξℓ0 −→ 0 as k −→ ∞.

Hence, by choosing a sufficiently large m we can make ∥x − [x̃m]∥ = ∥ξm −
ξ̃m∥ = |ξm

ℓm
| arbitrarily small. Therefore, x is the norm limit of the sequence

([x̃n] : n ⩾ 1). Further, observe by construction that each [x̃n] is orthogonal
to the vector z. Therefore we have:

⟨x, z⟩ = lim
n→∞

⟨[x̃n], z⟩ = 0.

Since K is a dense subspace H this implies z ∈ H ⊥ and thus z = 0. The
reverse direction of the lemma is obvious. This completes the proof. □

Remark 2.7. — The above lemma shows that if (σ, H ) is diffuse and
z ∈ H is non-zero, then necessarily τν(z) ̸= 0 on a set of ν that is not
contained in finitely many rays. Intuitively, z is supported on a diffuse set
of vertices of the infinite binary tree which motivates our terminology.

For the remainder of the paper we shall focus on diffuse Pythagorean
pairs of operators.

2.4. Von Neumann ergodic theorem and consequences for
partial isometries.

We deduce an interesting consequence of the von Neumann ergodic the-
orem ([36], see [37, Theorem II.11] for a more recent proof) that links our
projections ρν to the Jones action σ.
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Theorem 2.8 (von Neumann ergodic theorem). — Let H be a Hilbert
space, U a unitary operator acting on it, and N := ker(U − idH) ⊂ H the
vectors fixed by U . We have that

1
n

n−1∑
k=0

Uk s−→ projN

where projN is the orthogonal projection onto N.

Given a vertex ν recall that ρν := τ∗
ν ◦ τν is the associated projection

as defined in Section 2.1 and Iν is the associated sdi. If I is a finite dis-
joint union of sdi’s {Iνi}n

i=1 (like the support of a g ∈ F ), then define the
projection:

ρI :=
n∑

i=1
ρνi

.

Here is a very useful consequence of the von Neumann ergodic theorem
applied to Pythagorean representations.

Proposition 2.9. — Let (A, B) be a diffuse Pythagorean pair with
associated Jones’ representation (σ, H ) of F . Then for all g ∈ F we have:

ker(σ(g)− id) = {z ∈ H : τν(z) = 0 for all ν ∈ Ver satisfying Iν ⊂ supp(g)}

=
⋂

ν: Iν ⊂supp(g)

ker(τν)

and
1
n

n−1∑
k=0

σ(gk) s−→ id −ρsupp(g).

Proof. — Consider A, B, H , σ as above and g ∈ F . It is easy to see
from (2.2) that the following holds:

{z ∈ H : τν(z) = 0, ∀ν ∈ Ver : Iν ⊂ supp(g)} ⊂ ker(σ(g) − id).

Thus, we only need to prove the reverse inclusion. That is, if z ∈ H and
σ(g)z = z, then τν(z) = 0 for all ν ∈ Ver such that Iν ⊂ supp(g). Therefore,
again from (2.2), it is sufficient to only consider g ∈ F with full support and
prove that ker(σ(g) − id) = {0}. Consider such an element g := [t, s] ∈ F

and assume there exists a non-zero vector z fixed by σ(g). Let (ν1, . . . , νn)
and (ω1, . . . , ωn) be the leaves of t and s, respectively. By (2.4) we have
τνi

(z) = τωi
(z) for all 1 ⩽ i ⩽ n. We conclude by using the assumption.

Indeed, let j be the first index satisfying τωj (z) ̸= 0 and thus the first
index satisfying τνj

(z) ̸= 0 as well. Such an index exists because z ̸= 0.
This implies νj and ωj are not disjoint vertices (i.e. their associated sdi
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have non-trivial intersection). Further, νj and ωj do not coincide because
g has full support. Hence, up to switching the roles of t and s (which
corresponds to taking the inverse of g) we can assume that νj is a child of
ωj . Then the binary sequence of νj is obtained by concatenating ωj with a
non-trivial word µ. This implies that τµ(τωj (z)) = τωj (z) ̸= 0 contradicting
Lemma 2.6.

The second statement follows immediately from the first and Theorem 2.8
by noting that id −ρsupp(g) is the orthogonal projection onto the subspace
ker(id −σ(g)) ⊂ H . □

Remark 2.10. — The proof of Proposition 2.9 can be slightly modified
to show that for all g ∈ F , there is no z ∈ H and λ ∈ S1 with λ ̸= 1 such
that σ(g)z = λz. In particular, this proves that if g has full support then
σ(g) has no eigenvalues, otherwise σ(g) only has the single eigenvalue 1.

3. Containment of Induced Representations

3.1. Ind-mixing representations of F

In the quest to find families of irreducible representations of Thompson’s
groups, one obvious source are induced representations associated to self-
commensurator subgroups of Thompson’s groups (the irreducibility is a
consequence of the Mackey–Schoda criteria [34], see also [3, Theorems 1.F11
and 1.F.17] and [16]). These representations are easily constructible without
using Jones’ technology and have somewhat too obvious finite-dimensional
roots. Hence, we are interested in obtaining representations far from those.
This leads to the following notion (which is identical to Definition A).

Definition 3.1. — Consider a unitary representation σ of a discrete
group G. We say that σ is Ind-mixing if given any non-trivial subgroup
K ⊂ G and any finite-dimensional non-zero unitary representation θ : K ↷
K we have that σ does not contain the induced representation IndG

K θ.

Note that a mixing representation (e.g the regular one λF : F ↷ ℓ2(F ))
is always Ind-mixing but for some rather trivial reason, see Remark 3.3. Al-
though, none of the Pythagorean representations are mixing (see the same
remark). This leads to the following interesting and non-trivial question: if
σ is a diffuse Pythagorean representation of F then do we have that σ is
Ind-mixing?
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As far as the authors are aware of, from previously constructed fam-
ilies of representations of Thompson’s groups, only Garncarek has (par-
tially) addressed the above question [20]. Indeed, he constructed a family
of representations of F and showed that they are not the induction of
a finite-dimensional representation of a parabolic subgroup (i.e. the sub-
groups Fp := {g ∈ F : g(p) = p} for some ray p in the Cantor space).

In this section we shall indeed answer positively to our question proving
the main result of the paper. This extends and strengthens the result of
Garncarek. Indeed, there is a large wealth of subgroups of F which are
not fixed point subgroups (note, there are only three isomorphism classes
of parabolic subgroups Fx depending on whether x is a dyadic rational, a
non-dyadic rational or irrational [24]); to cite a few examples: the derived
subgroup, the rectangular (finite index) subgroups of Bleak–Wassink [8]
which are isomorphic to F , the 3-colourable Jones–Thompson subgroup
F ⊂ F [2, 27] which is isomorphic to F4, infinite index maximal sub-
groups of [21, 22, 23, 26] which are isomorphic to Fp+1 for prime p and
are pairwise non-isomorphic, and analogous diagrammatically constructed
subgroups [38] which extend the preceding family of subgroups. All of the
above examples, asides from certain ones of [38], are explicitly known to be
non-isomorphic to the parabolic subgroups, and thus provide countably in-
finite many such examples. Moreover, the representations of Garncarek are
all Pythagorean (arising from one-dimensional H), see Section 4. Finally, as
far as we are aware of, this result produces the first known representations
of F that are Ind-mixing but not mixing, see Remark 3.3.

Theorem 3.2. — All diffuse Pythagorean representations of F are
Ind-mixing.

Proof. — Consider a diffuse Pythagorean pair (A, B) acting on H and
write (σ, H ) for the associated Pythagorean representation. Suppose there
exists a non-trivial subgroup H ⊂ F and a non-zero finite-dimensional
representation θ : H ↷ K of H such that σ ⊃ IndF

H θ. By definition, the
carrier Hilbert space of the representation IndF

H θ can be identified with
a direct sum

⊕
sH∈F/H KsH of copies of K indexed by the left-cosets sH.

Moreover, σ(g)(HsH) = HgsH for all g ∈ F and sH ∈ F/H. We then
identify K with the copy KeH . It is a subspace of H and moreover note
that σ(g)(K) ⊥ K for all g ∈ F that is not in H. In particular, we have that

ϕz(g) := ⟨σ(g)z, z⟩ = 0 for all g ∈ F\H and z ∈ K.

Our general strategy is to prove that σ ↾H is weakly mixing by proving
that H contains an infinite subset H ′ with good asymptotic properties.
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This will lead to a contradiction since a weakly mixing representation does
not contain any non-zero finite-dimensional subrepresentation.

Notation. — From now on we fix a unit vector z ∈ K.

(1) First, we shall prove the following claim.

Claim 1. — If there exists g ∈ F such that {gn}n∈N∗ ⊂ F \ H, then
ρN (z) = 0 where

N := supp(g)c = C \ supp(g)
and recall C denotes the Cantor space. Equivalently, K is in the range of
ρsupp(g) for all g ∈ F satisfying that gn /∈ H for all n ⩾ 1.

Suppose g ∈ F satisfying that gn /∈ H for all n ⩾ 1. Proposition 2.9
implies that:

∥ρN (z)∥2 = ⟨ρN (z), ρN (z)⟩ = ⟨ρN (z), z⟩

=
〈

lim
n→∞

1
n

n−1∑
k=0

σ(gk)z, z

〉
= lim

n→∞

1
n

n−1∑
k=0

⟨σ(gk)z, z⟩

= lim
n→∞

1
n

n−1∑
k=0

ϕz(gk) = lim
n→∞

1
n

ϕz(g0) = 0.

This proves the claim.
Motivated by the result of the above claim, define:

P := {g ∈ F : {gn}n∈N∗ ⊂ F\H},

P :=
⋃

g∈P

supp(g)c =
( ⋂

g∈P

supp(g)
)c

,

Q := P c =
⋂

g∈P

supp(g).

In particular, we have that K ⊂
⋂

g∈P Ran(ρsupp(g)).

Claim 2. — The set Q is non-empty. Further, if g ∈ F satisfies Q ̸⊂
supp(g), then there exists n ⩾ 1 for which gn ∈ H.

Using the above notation and from Claim 1, ρP (z) = 0. If P is the whole
Cantor space, then z = 0, a contradiction. Hence, P must be a proper subset
and subsequently Q must be non-empty. Now suppose g is an element in
F such that Q Ć supp(g). Then it follows supp(g)c Ć P and thus g /∈ P.
Hence, by definition of P, there exists n ⩾ 1 such that gn ∈ H which
proves the claim.
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The results from Claim 2 provides a method for constructing elements
in H which we shall exploit in the following claims in the proof.

Define the following trees:

L1 = , R1 =

Then define the set of trees {Li}i∈N∗ such that Li := ftar(Li−1)Li−1 =
fi+1Li−1 for i ⩾ 2 (recall fk denotes an elementary forest with a single
caret at the kth root) and define another set of trees {Ri}i∈N∗ such that
Ri := f1Ri−1 for i ⩾ 2. These trees are sometime called vines. Note that all
the leaves of Li (resp. Ri) are incident with left (resp. right) edges except
for the last (resp. first) leaf. Moreover, the length of the jth leaf is an
increasing function for Li and a decreasing function for Ri. This will play a
key role in Claim 6. Further, the following identities can be easily verified:

(|⊗| ⊗ Lk−1)L1 = Lk+1 = fk+2Lk, (Rk−1 ⊗ |⊗|)R1 = Rk+1 = f1Rk

for k ⩾ 2. As an example, the trees L2, R2, L3 and R3 are shown below:

L2 = , R2 = , L3 = , R3 = .

Claim 3. — We have [Li, Ri]n = [Lin, Rin] for all i, n ∈ N∗ where
[Li, Ri]n is the nth power of the element of F associated to the tree-diagram
(Li, Ri).

We shall first prove the claim for the case when i = 1 by induction on
n. The initial cases for n = 1, 2 are easily verifiable. Now suppose that
[L1, R1]k = [Lk, Rk] for some k ⩾ 2. Then:

[L1, R1]k+1 = [Lk, Rk] · [L1, R1]
= [fk+2Lk, fk+2Rk] · [(Rk−1 ⊗ |⊗|)L1, (Rk−1 ⊗ |⊗|)R1]
= [Lk+1, fk+2Rk] · [fk+2Rk, Rk+1]
= [Lk+1, Rk+1].

This proves the statement for i = 1. The general case then easily follows:

[Li, Ri]n = ([L1, R1]i)n = [L1, R1]in = [Lin, Rin].

Notation. — From now on we fix a binary sequence u ∈ Q. Such a se-
quence exists from Claim 2.
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Recall that tn denotes the regular tree with 2n leaves all with length n.
Fix a n ∈ N∗ and denote νn to be the leaf of tn which corresponds to the
sdi in C that contains the sequence u. Define the tree pn,i (resp. qn,i) by
attaching copies of Li (resp. Ri) to all leaves of tn except to νn. Finally,
define gn,i := [pn,i, qn,i] ∈ F . The purpose of the above construction is to
ensure u is not in the support of gn,i and thus gn,i acts like the identity on
an open set containing u. Equivalently,

gn,i ∈ F̂u := {g ∈ F : g(u) = u, g′(u) = 1}.

Claim 4. — We have (gn,i)j = gn,ij for all n, i, j ∈ N∗.

Fix n ∈ N∗. Then the proof proceeds similarly as to the proof for Claim 3
by applying the same argument separately for each of the leaves of tn except
for the leaf νn.

Claim 5. — There exists a subset (not necessarily a subgroup) H ′ ⊂ H

such that H ′ = {gn,in,k
: n, k ∈ N∗} where for each fixed n we have that

the family (in,k : k ⩾ 1) forms a strictly increasing sequence.

From Claim 4, it follows supp(gn,i) = supp(gn,j) for all i, j ∈ N∗. Then
by construction u ∈ supp(gn,i)c. Thus Q ̸⊂ supp(gn,i) for all n, i ∈ N∗. Now
fix n ∈ N∗ and consider gn,1 ∈ F . By Claim 2 there exists i1 ∈ N∗ such
that (gn,1)i1 = gn,i1 ∈ H. Set in,1 := i1. Similarly consider gn,i1+1. Again
by Claim 2 there exists i2 ∈ N∗ such that (gn,i1+1)i2 = gn,(i1+1)i2 ∈ H and
set in,2 := (i1 + 1)i2. Therefore, by iteratively applying this process, we
obtain the set H ′

n := {gn,in,k
: k ∈ N∗} ⊂ H where (in,k : k ⩾ 1) forms a

strictly increasing sequence. Repeating the above for all n ∈ N∗ and taking
H ′ := ∪n∈N∗H ′

n ⊂ H gives the required set which proves the claim.
(2) From the above claims, we have shown that H contains infinitely many
elements in the form gn,i. In fact, given any pair (n, j) of non-zero natural
numbers, there exists i ⩾ j satisfying that gn,i ∈ H. Using just these
elements we shall prove that the restriction of σ on H is weakly mixing.
First we shall require the following claim.

Claim 6. — We have that

lim
i→∞

⟨σ([Li, Ri])ξ, ξ⟩ = 0 for all ξ ∈ H ⊂ H .

Fix i ⩾ 1 and consider [Li, Ri] ∈ F . We identify ξ ∈ H with its image
(ξ, e) inside H where e stands for the trivial tree. Observe that

⟨σ([Li, Ri])ξ, ξ⟩ = ⟨Φ(Ri)ξ, Φ(Li)ξ⟩.

Moreover,
Φ(Li)ξ = (Aξ, ABξ, AB2ξ, . . . , ABiξ, Bi+1ξ)
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and
Φ(Ri)ξ = (Ai+1ξ, BAiξ, BAi−1ξ, . . . , BAξ, Bξ).

These operators are isometries from H to H⊗ ℓ2({0, 1, . . . , i + 1}). Further-
more, since (A, B) is a diffuse pair we have that

lim
i

Biξ = lim
i

Aiξ = 0 for all ξ ∈ H.

This second fact allows us to forget asymptotically the right-most term of
Φ(Li)ξ and the left-most term of Φ(Ri)ξ which is crucial. By embedding
ℓ2({0, 1, . . . , i+1}) inside ℓ2(Z) we deduce that these two sequences of oper-
ators converge in the strong operator topology to the following isometries:

L∞ : H −→ H ⊗ ℓ2(Z), ξ 7−→
∞∑

j=0
ABjξ ⊗ δj

and

R∞ : H −→ H ⊗ ℓ2(Z), ξ 7−→
∞∑

j=0
BAjξ ⊗ δ−j .

Note that we put a minus sign in the definition of R∞. This will make our
formula nicer. Define now the usual shift operator S that we tensor by the
identity:

idH ⊗S : H ⊗ ℓ2(Z) −→ H ⊗ ℓ2(Z), ξ ⊗ δn 7−→ ξ ⊗ δn+1.

Observe that

σ([Li, Ri])ξ, ξ⟩ = ⟨Φ(Ri)ξ, Φ(Li)ξ⟩

= ⟨Ai+1ξ − BAi+1ξ, Aξ⟩ + ⟨Bξ, Bi+1ξ − ABi+1ξ⟩

+ ⟨(idH ⊗Si+1) ◦ R∞ξ, L∞ξ⟩

for all i ⩾ 2 and ξ ∈ H. The first two terms tend to zero in i by the
Cauchy–Schwarz inequality and because An, Bn s−→ 0 as a consequence of
(A, B) being diffuse. It is well-known and easy to prove that powers of the
shift operators tends to zero in the weak operator topology. Therefore, so
does the sequence (idH ⊗Si : i ⩾ 0) and thus the inner product of above
converges to zero as i → ∞ for all ξ ∈ H.

Claim 7. — The restriction σ ↾H of σ to H is weakly mixing.

We will use the characterisation given by Proposition 1.1. Fix a finite
subset of vectors K = {xj}k

i=j ⊂ H and ϵ > 0. By density we can assume
that K ⊂ K . Further, for a fixed n ⩾ 1 large enough we can assume that
for all 1 ⩽ j ⩽ k we have each xj can be written in the form [tn, ξ(j,n)]
(where tn is the complete binary tree with 2n leaves all of length n and
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ξ(j,n) is a vector of HLeaf(tn)). Consider one element xj = [tm, ξ] ∈ K where
m ⩾ n (where we have dropped the superscript for lighter notations). Let
νm be the label of the leaf of tm whose sdi contains u ∈ Q as defined before
Claim 4. Note for a sdp {νi}i∈I we have the following identity:

(3.1) τνk
τ∗

νl
=
{

0, k ̸= l

idH , k = l

where idH is the identity operator on H . Then by using the notation
from (2.2) and applying (3.1), we have for all i ∈ N∗:

|⟨σ(gm,i)xj , xj⟩|

=

∣∣∣∣∣∣
〈 ∑

ν∈Leaf(tm)

τ∗
ν (σ(g̃m,i,ν)(τν(xj))), xj

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈 ∑

ν∈Leaf(tm)

τ∗
ν (σ(g̃m,i,ν)(τν(xj))),

∑
ω∈Leaf(tm)

τ∗
ω(τω(xj))

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

ν∈Leaf(tm)

⟨τ∗
ν (σ(g̃m,i,ν)(τν(xj))), τ∗

ν (τν(xj))⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

ν∈Leaf(tm)

⟨σ(g̃m,i,ν)(τν(xj)), τν(xj)⟩

∣∣∣∣∣∣
=
∑

ν ̸=νm

⟨σ([Li, Ri])[e, ξν ], [e, ξν ]⟩ + ∥ξνm
∥2

⩽
∑

ν ̸=νm

|⟨σ([Li, Ri])ξν , ξν⟩| + ∥ξνm
∥2.

We will now show that this expression tends to zero in m using the
property that (A, B) is diffuse. To keep track of all the indices i, m, j we
now write ξ

(j,m)
ν for ξν if the context is unclear.

For each xj ∈ K, let mj ∈ N be such that ∥ξ
(j,m)
νm ∥2 < ϵ/2 for all m ⩾ mj .

Such a mj exists since (A, B) is diffuse. Indeed, ξ
(j,m)
νm is a coefficient of

ξ(j,m) where (tm, ξ(j,m)) is a representative of xj . Taking larger m′ ⩾ m,
we obtain that the coefficients of ξ(j,m′) are obtained from those of ξ(j,m) to
which we apply an increasing sequence of words in A, B. Since an increasing
sequence of words in A, B tends in the strong operator topology to zero
we deduce that the coefficients of ξ(j,m) tends to zero in m. Consider now
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M = max{mj : 1 ⩽ j ⩽ k} and fix m ⩾ M . We have that

|⟨σ(gm,i)xj , xj⟩| ⩽ ϵ/2 +
∑

ν ̸=νm

|⟨σ([Li, Ri])ξ(j,m)
ν , ξ(j,m)

ν ⟩| for all 1 ⩽ j ⩽ k.

Since m is fixed it is easy to conclude. Indeed, apply Claim 6 to each vector
ξ

(j,m)
ν with 1 ⩽ j ⩽ k and ν leaf of tm different from νm. We deduce that

for i large enough the quantity above is smaller than ϵ proving the claim.
Therefore, we have shown the action of H is weakly mixing and hence

there are no non-zero finite-dimensional, H-invariant subspaces of H , a
contradiction. □

Remarks 3.3.
(1) If (σ, H ) is a Pythagorean representation of F , then it is not mix-

ing. Indeed, let H ⊂ F be the subgroup of g ∈ F fixing the interval
[0, 1/2]. Consider now the subspace K ⊂ H equal to the range of
the isometry τ∗

0 . It is not hard to see that H acts trivially on K.
Since H is infinite this implies that σ is not mixing.

(2) It is clear that mixing implies Ind-mixing for torsion-free groups.
Indeed, consider a mixing representation σ of a torsion-free group
G. If H ⊂ G is a non-trivial subgroup it must be an infinite torsion-
free group and then the restriction σ ↾H is weakly mixing. There-
fore, σ ↾H does not admit any finite-dimensional subrepresenta-
tion. Hence, σ does not contain any IndG

H θ with θ : H ↷ K finite-
dimensional.

(3) By definition we trivially have that a Ind-mixing representation is
weakly mixing. Therefore, we have the chain of implications:

mixing =⇒ Ind-mixing =⇒ weakly mixing
for representations of torsion-free groups such as F . Moreover, we
have produced a huge class of Ind-mixing representations of F that
are not mixing.

With little effort, we can adjust the proof of Theorem 3.2 to obtain the
following result. Note that the condition An, Bn s−→ 0 of below is much
weaker than having (A, B) diffuse since we only need to consider two in-
creasing sequences of words instead of all of them.

Proposition 3.4. — If An, Bn s−→ 0, then the associated representation
σ of F does not contain any non-zero finite-dimensional subrepresentation.

Proof. — Continue to use the same notation defined in the proof of The-
orem 3.2. In the proof of Theorem 3.2 we aimed to show that the restriction
of σU to a subgroup of F was weakly mixing using Proposition 1.1. Here,
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we want to show that the whole representation σ of the whole group F

is weakly mixing. First, observe Claim 6 in the proof of Theorem 3.2 still
continues to hold because by initial hypothesis An, Bn s−→ 0 which is the
only assumption used in proving Claim 6. Thus, we have

lim
i→∞

⟨σ([Li, Ri])ξ, ξ⟩ = 0 for all ξ ∈ H.

Define the trees p̃n,i (resp. q̃n,i) by attaching 2n copies of Li (resp. Ri) to
each of the leaves of tn and define g̃n,i := [p̃n.i, q̃n,i] ∈ F . Note p̃n,i, q̃n,i

are different to pn,i, qn,i defined in the proof of Theorem 3.2 since here we
have attached Li, Ri to all leaves of tn (since we no longer require to fix
the sequence u). Then by performing a similar calculation as in the proof
of Claim 7 (but now using g̃n,i and not separating out the terms ξνm) we
obtain that σ is weakly mixing which proves the result. □

In a future article we will see that the assumptions of Theorem 3.2 and
Proposition 3.4 are optimal [13].

3.2. Ind-mixing representations of T and V

As explained in Section 1.4, every Pythagorean representation σ of F

can be extended to the larger Thompson groups T and V which we shall
also denote by σ. As for F , we can similarly define the notion of diffuse
Pythagorean representations of T and V . Furthermore, the result of The-
orem 3.2 holds true for T, V : diffuse Pythagorean representations of T, V

are Ind-mixing. However, the proof of the theorem cannot be immediately
applied to the case of T, V . This is because crucially, Proposition 2.9 does
not hold for T, V which is required for Claim 1 in the proof of the theorem.

Indeed, let r ∈ T be the element that rotates by one place the leaves
of the caret ∧. The support of this element is the entire Cantor space;
however, it does fix non-zero vectors such as (∧, (ξ, ξ)) for any ξ ∈ H which
is contrary to the conclusion of Proposition 2.9. In fact, we have

ker(σ(r) − id) = {τ0(z) + τ1(z) : z ∈ H }.

Nevertheless, by making a slight adjustment to the proof of Theorem 3.2
we can still apply it to T, V which we shall explain below.

First, note that one direction of Proposition 2.9,

Hg := {z ∈ H : τν(z) = 0 for all ν ∈ Ver satisfying Iν ⊂ supp(g)}
⊂ ker(σ(g) − id),
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continues to hold for all g ∈ V (with equality when g ∈ F ). Let Ng be
H ⊥

g ∩ ker(σ(g) − id) and PS be the orthogonal projection onto S for any
closed subspace S ⊂ H . Then by Proposition 2.8 we have

1
n

n−1∑
k=0

σ(gk) s−→ PHg ⊕ PNg = ρsupp(g)c ⊕ PNg

where supp(g)c = C\ supp(g).
Now, take X = T, V and assume that a diffuse Pythagorean representa-

tion σ of X is not Ind-mixing: there exists a non-trivial subgroup H ⊂ X

and non-zero finite-dimensional representation θ : H ↷ K of H such that
σ ⊃ IndX

H θ. Fix a unit vector z ∈ K that we identify with its copy inside
H . Suppose there exists g ∈ X such that gn ∈ X\H for all n > 1. Then by
following the same calculation from the proof of Claim 1 in Theorem 3.2
we have

∥ρsupp(g)c(z)∥2 + ∥PNg (z)∥2 = ∥Pker(σ(g)−id)(z)∥2 = 0.

We deduce that ρsupp(g)c(z) = 0.
Hence, we have shown that Claim 1 also holds for diffuse Pythagorean

representations of T, V . Now, observe the remainder of the proof of The-
orem 3.2 immediately extends to the T, V cases since it does not require
any particular property of F . Therefore, we obtain that all diffuse repre-
sentations of T, V are Ind-mixing as claimed.

4. A class of examples

Definition. — We illustrate our main result with a class of represen-
tations parameterised by the real 3-sphere S3. These examples first appear
in [12, Section 6]. Consider the one-dimensional Hilbert space H = C. A
Pythagorean pair acting on C is a pair of complex numbers (A, B) sat-
isfying |A|2 + |B|2 = 1. We deduce that the set of all Pythagorean pairs
acting on C is in bijection with the real 3-sphere S3. Take (A, B) ∈ S3 and
consider the associated Pythagorean representation σ = σA,B : F ↷ H .

Diffuse representations. — Observe that (A, B) is not diffuse if and only
if A or B is equal to 0. Hence, the non-diffuse (A, B) are the ones contained
in the two circles

C1 := {(a, 0) ∈ C2 : |a| = 1} and C2 := {(0, b) ∈ C2 : |b| = 1}.

We deduce the following corollary of Theorem 3.2.
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Corollary 4.1. — For all (A, B) ∈ S3 \ (C1 ∪ C2) we have that the
associated representation σA,B : F ↷ H is Ind-mixing.

We will show in a future article that all these diffuse representations of
F are irreducible and pairwise non-isomorphic.

Non-diffuse representations. — The remaining representations coming
from the two circles C1 and C2 are actually reducible. Indeed, it is not
hard to prove that if B = 0, then σA,B is isomorphic to the direct sum of

• the one-dimensional representation χ : F → S1, g 7→ Alog2((g−1)′(0));
and

• the monomial representation IndF
F1/2

θ where F1/2 is the parabolic
subgroup of F fixing the point 1/2, and θ : F1/2 → S1, g 7→
Alog2((g−1)′

+(1/2)).

In the definition of θ we take the right-derivative of g−1 at the point 1/2. If
we rather consider the action of g on the Cantor space then θ corresponds
in taking a slope at the infinite binary sequence 10000 . . . . There is a similar
decomposition when A = 0 by switching 0 and 1 and right-derivatives with
left-derivatives.

Note. — In Section 6 of [12] we implicitly considered the cyclic subrep-
resentation of σA,B generated by any non-zero vector ξ ∈ H seating inside
H . When A ̸= 0 ̸= B it does not matter because the representation σA,B is
irreducible. Although, when B = 0 for instance, the description of the rep-
resentation given in [12] corresponds to the one-dimensional representation
of above. In particular, if A = 1, B = 0, then the cyclic subrepresentation
of σA,B generated by ξ is isomorphic to the trivial representation 1F .

The representations of Koopman and Garncarek. — It is interesting to
notice that the representations considered by Garncarek [20] are contained
in the above Pythagorean representations. Indeed, first consider A = B =
1/

√
2. One can prove that σ is unitary conjugated to the Koopman repre-

sentation κ : F ↷ L2([0, 1]) associated to the usual action F ↷ [0, 1]. Since
F ↷ [0, 1] is not measure-preserving we must include the Radon–Nikodym
derivative in the formula of κ in order to have a unitary representation.
The formula is then

κ(g)f =
(

dg∗L

dL

)1/2
· f ◦ g−1 for g ∈ F, f ∈ L2([0, 1])

where L is the Lebesgues measure. Garncarek considered the following
representations obtained by twisting the Radon–Nikodym by a parameter
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s ∈ R:

κs(g)f :=
(

dg∗L

dL

)1/2+is

· f ◦ g−1 =
(

dg∗L

dL

)is

· κ(g)f

for g ∈ F, f ∈ L2([0, 1]). By comparing this formula with the one given
in Section 6.2 of [12] we deduce that the representations of Garncarek are
exactly the Pythagorean representations obtained from the circle

C3 :=
{(

ω√
2

,
ω√
2

)
: ω ∈ S1

}
.

Note that C3 is the set of (A, B) ∈ S3 satisfying A = B.

Remark 4.2. — A Pythagorean representation σA,B morally consists in
applying sums of W ∗U to vectors of H where W, U are words in A, B.
When A = B, then there exists a unitary u satisfying that A = B = u/

√
2.

In that case the product W ∗U only depends on the difference of lengths
between the words W and U . This permits to describe σA,B using the
Koopman representation and a cocycle valued in the unitary group of H,
see [12, Section 6.5]. When dim(H) = 1, then this cocycle is a scalar and
we recover the description of Garncarek.

When A ̸= B but still commute, then W ∗U depends on the number
of A and B appearing in the words U, W .The representation σA,B then
remembers more the tree-structure of elements of the Thompson group. It is
then more complex and cannot be defined in an obvious way via the action
F ↷ [0, 1] but rather via the action on the Cantor space {0, 1}N∗

. Finally,
when AB ̸= BA, then W ∗U remembers even more the word structure.
This produces rich and complex families of representations for which our
tools are well-adapted. We will investigate explicit representations arising
in these contexts in future works [13, 14].

BIBLIOGRAPHY

[1] V. Aiello, “An introduction to Thompson knot theory and to Jones subgroups”,
to appear in J. Knot Theory Ramifications, 2023.

[2] V. Aiello & T. Nagnibeda, “On the 3-colorable subgroup F and maximal sub-
groups of Thompson’s group F ”, Ann. Inst. Fourier 73 (2023), no. 2, p. 783-828.

[3] B. Bekka & P. de la Harpe, Unitary representations of groups, duals, and char-
acters, Mathematical Surveys and Monographs, vol. 250, American Mathematical
Society, 2020, xi+474 pages.

[4] B. Bekka, P. de la Harpe & A. Valette, Kazhdan’s property (T), New Mathe-
matical Monographs, vol. 11, Cambridge University Press, 2008, xiv+472 pages.

[5] V. Bergelson & J. Rosenblatt, “Mixing actions of groups”, Ill. J. Math. 32
(1988), no. 1, p. 65-80.

ANNALES DE L’INSTITUT FOURIER



JONES’ REPRESENTATIONS 39

[6] J.-C. Birget, “The groups of Richard Thompson and complexity”, Int. J. Algebra
Comput. 14 (2004), no. 5-6, p. 569-626.

[7] B. Blackadar, “Shape theory for C∗-algebras”, Math. Scand. 56 (1985), no. 2,
p. 249-275.

[8] C. Bleak & B. Wassink, “Finite index subgroups of R. Thompson’s group F”,
https://arxiv.org/abs/0711.1014, 2007.

[9] A. Brothier, “On Jones’ connections between subfactors, conformal field theory”,
Celebratio Mathematica in the volume Vaughan F. R. Jones, available at https:
//celebratio.org/Jones_VFR/article/821/, 2020.

[10] ——— , “Haagerup property for wreath products constructed with Thompson’s
groups”, Groups Geom. Dyn. 17 (2023), no. 2, p. 671-718.

[11] A. Brothier & V. F. R. Jones, “On the Haagerup and Kazhdan properties of R.
Thompson’s groups”, J. Group Theory 22 (2019), no. 5, p. 795-807.

[12] ——— , “Pythagorean representations of Thompson’s groups”, J. Funct. Anal. 277
(2019), no. 7, p. 2442-2469.

[13] A. Brothier & D. Wijesena, “Atomic representations of R. Thompson’s groups
and Cuntz’s algebra”, https://arxiv.org/abs/2406.02967, 2024.

[14] ——— , “Irreducible Pythagorean representations of R. Thompson’s groups and of
the Cuntz algebra”, Adv. Math. 454 (2024), article no. 109871 (59 pages).

[15] K. S. Brown, “Finiteness properties of groups”, J. Pure Appl. Algebra 44 (1987),
no. 1-3, p. 45-75.

[16] M. Burger & P. de la Harpe, “Constructing irreducible representations of discrete
groups”, Proc. Indian Acad. Sci., Math. Sci. 107 (1997), no. 3, p. 223-235.

[17] J. W. Cannon, W. J. Floyd & W. R. Parry, “Introductory notes on Richard
Thompson’s groups”, Enseign. Math. 42 (1996), no. 3-4, p. 215-256.

[18] K. E. Courtney, “Universal C∗-algebras with the local lifting property”, Math.
Scand. 127 (2021), no. 2, p. 361-381.

[19] J. Cuntz, “Simple C∗-algebras generated by isometries”, Commun. Math. Phys.
57 (1977), no. 2, p. 173-185.

[20] Ł. u. Garncarek, “Analogs of principal series representations for Thompson’s
groups F and T ”, Indiana Univ. Math. J. 61 (2012), no. 2, p. 619-626.

[21] G. Golan, “On maximal subgroups of Thompson’s group F”, https://arxiv.org/
abs/2209.03244v2, to appear in Groups Geom. Dyn., 2023.

[22] G. Golan & M. Sapir, “On Jones’ subgroup of R. Thompson group F ”, J. Algebra
470 (2017), p. 122-159.

[23] ——— , “On subgroups of R. Thompson’s group F ”, Trans. Am. Math. Soc. 369
(2017), no. 12, p. 8857-8878.

[24] ——— , “On the stabilizers of finite sets of numbers in the R. Thompson group F ”,
St. Petersbg. Math. J. 29 (2018), no. 1, p. 51-79.

[25] A. Grymski & E. Peters, “Conway rational tangles and the Thompson group”,
https://arxiv.org/abs/2212.00100, 2022.

[26] V. F. R. Jones, “Some unitary representations of Thompson’s groups F and T ”,
J. Comb. Algebra. 1 (2017), no. 1, p. 1-44.

[27] ——— , “A no-go theorem for the continuum limit of a periodic quantum spin
chain”, Commun. Math. Phys. 357 (2018), no. 1, p. 295-317.

[28] ——— , “Scale invariant transfer matrices and Hamiltonians”, J. Phys. A. Math.
Theor. 51 (2018), no. 10, article no. 104001 (27 pages).

[29] ——— , “On the construction of knots and links from Thompson’s groups”, in
Knots, low-dimensional topology and applications (C. Adams et al., eds.), Springer
Proceedings in Mathematics & Statistics, vol. 284, Springer, 2019, p. 43-66.

[30] ——— , “Planar algebras, I”, N. Z. J. Math. 52 (2021), p. 1-107.

TOME 0 (0), FASCICULE 0

https://arxiv.org/abs/0711.1014
https://celebratio.org/Jones_VFR/article/821/
https://celebratio.org/Jones_VFR/article/821/
https://arxiv.org/abs/2406.02967
https://arxiv.org/abs/2209.03244v2
https://arxiv.org/abs/2209.03244v2
https://arxiv.org/abs/2212.00100


40 Arnaud BROTHIER & Dilshan WIJESENA

[31] D. Kerr & H. Li, Ergodic theory. Independence and dichotomies, Springer Mono-
graphs in Mathematics, Springer, 2016, xxxiv+431 pages.

[32] Y. Kodama & A. Takano, “The 3-colorable subgroup of Thompson’s group and
tricolorability of links”, J. Algebra 634 (2023), p. 336-344.

[33] C. Köstler, A. Krishnan & S. J. Wills, “Markovianity and the Thompson
monoid F +”, J. Funct. Anal. 284 (2023), no. 6, article no. 109818 (70 pages).

[34] G. W. Mackey, “On induced representations of groups”, Am. J. Math. 73 (1951),
p. 576-592.

[35] V. V. Nekrashevych, “Cuntz–Pimsner algebras of group actions”, J. Oper. Theory
52 (2004), no. 2, p. 223-249.

[36] J. von Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Natl. Acad. Sci.
USA 18 (1932), p. 70-82.

[37] M. Reed & B. Simon, Methods of modern mathematical physics, Academic Press
Inc., 1972, xvii+325 pages.

[38] Y. Ren, “From skein theory to presentations for Thompson group”, J. Algebra 498
(2018), p. 178-196.

Manuscrit reçu le 13 janvier 2023,
révisé le 27 octobre 2023,
accepté le 21 décembre 2023.

Arnaud BROTHIER
School of Mathematics and Statistics,
University of New South Wales,
Sydney NSW 2052 (Australia)
Current address:
Department of Mathematics, University of Trieste,
via Valerio 12/1, 34127, Trieste (Italy)
arnaud.brothier@gmail.com
Dilshan WIJESENA
School of Mathematics and Statistics,
University of New South Wales,
Sydney NSW 2052 (Australia)
dilshan.wijesena@hotmail.com

ANNALES DE L’INSTITUT FOURIER

mailto:arnaud.brothier@gmail.com
mailto:dilshan.wijesena@hotmail.com

	Introduction
	Background
	Richard Thompson's groups F,T, and V
	Jones' technology
	Pythagorean's representations
	Connection with C*-algebras

	Content and main results
	Plan of the article
	Comparison of Pythagorean representations to other known representations of the Thompson groups and the Cuntz algebra
	Acknowledgments

	1. Preliminaries
	1.1. Unitary representations of discrete groups
	1.1.1. Unitary representations
	1.1.2. Induced representations
	1.1.3. Properties of representations

	1.2. Thompson's groups F,T, and V
	1.2.1. Classical definitions as homeomorphism groups
	1.2.2. Definition of F involving partitions
	1.2.3. Description of F acting on the Cantor space
	1.2.4. Diagrammatic description of elements of Thompson's groups
	1.2.5. Description of F using categories

	1.3. Particular trees and forests
	1.4. Definition of Pythagorean representations
	1.4.1. Pythagorean pairs of operators
	1.4.2. Construction of a Hilbert space
	1.4.3. The Jones representation associated to a Pythagorean pair


	2. Tools and general results for Pythagorean representations
	2.1. Definitions of some partial isometries
	Partial isometries associated to a vertex

	2.2. Some Identities of Pythagorean representations
	2.3. Diffuse Pythagorean pairs.
	2.4. Von Neumann ergodic theorem and consequences for partial isometries.

	3. Containment of Induced Representations
	3.1. Ind-mixing representations of F
	3.2. Ind-mixing representations of T and V

	4. A class of examples
	References

