[Systèmes cohérents associés aux réseaux approximatifs dans des groupes moyennables]
Soit un groupe moyennable à base dénombrable et un réseau uniforme -approximatif dans . Pour une représentation projective de la série discète de de dimension formelle , nous prouvons que la condition est nécessaire pour que le système cohérent soit complet dans . En outre, nous montrons que si le système est minimal, alors . Ces deux conditions nécessaires sont nouvelles, même pour des systèmes de Gabor dans et permettent de reprouver des théorèmes de densité stricte. Comme application de cette approche, nous obtenons également des conditions de densité pour les repères cohérents et les suites de Riesz associés à des ensembles discrets arbitraires. Tous nos résultats sont valables pour des groupes unimodulaires à croissance exponentielle.
Let be a second-countable amenable group with a uniform -approximate lattice . For a projective discrete series representation of of formal degree , we show that is necessary for the coherent system to be complete in . In addition, we show that if is minimal, then . Both necessary conditions recover sharp density theorems for uniform lattices and are new even for Gabor systems in . As an application of the approach, we also obtain necessary density conditions for coherent frames and Riesz sequences associated to general discrete sets. All results are valid for amenable unimodular groups of possibly exponential growth.
Révisé le :
Accepté le :
Première publication :
Keywords: Approximate lattice, complete systems, density condition, discrete series, frame
Mots-clés : Condition de densité, repères, réseau uniforme approximatif, série discète, système complet
Enstad, Ulrik 1 ; van Velthoven, Jordy Timo 2
@unpublished{AIF_0__0_0_A146_0, author = {Enstad, Ulrik and van Velthoven, Jordy Timo}, title = {Coherent systems over approximate lattices in amenable groups}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3687}, language = {en}, note = {Online first}, }
Enstad, Ulrik; van Velthoven, Jordy Timo. Coherent systems over approximate lattices in amenable groups. Annales de l'Institut Fourier, Online first, 23 p.
[1] Density of Gabor systems via the short time Fourier transform, J. Fourier Anal. Appl., Volume 24 (2018) no. 3, pp. 699-718 | DOI | MR | Zbl
[2] Phase space distribution of Gabor expansions, Appl. Comput. Harmon. Anal., Volume 26 (2009) no. 2, pp. 277-282 | DOI | MR | Zbl
[3] Aperiodic order. Volume 1. A mathematical invitation, Encyclopedia of Mathematics and Its Applications, 149, Cambridge University Press, 2013, xvi+531 pages | DOI | MR | Zbl
[4] Square integrable representations, von Neumann algebras and an application to Gabor analysis, J. Fourier Anal. Appl., Volume 10 (2004) no. 4, pp. 325-349 | DOI | MR | Zbl
[5] Upper and lower densities of Gabor Gaussian systems, Appl. Comput. Harmon. Anal., Volume 49 (2020) no. 2, pp. 438-450 | DOI | MR | Zbl
[6] Approximate lattices, Duke Math. J., Volume 167 (2018) no. 15, pp. 2903-2964 | DOI | MR | Zbl
[7] Aperiodic order and spherical diffraction, I: auto-correlation of regular model sets, Proc. Lond. Math. Soc., Volume 116 (2018) no. 4, pp. 957-996 | DOI | MR | Zbl
[8] Geometry of locally compact groups of polynomial growth and shape of large balls, Groups Geom. Dyn., Volume 8 (2014) no. 3, pp. 669-732 | DOI | MR | Zbl
[9] The structure of approximate groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012), pp. 115-221 | DOI | Numdam | MR | Zbl
[10] -algebras, North-Holland Mathematical Library, 15, Elsevier, 1977 | MR | Zbl
[11] The density theorem for projective representations via twisted group von Neumann algebras, J. Math. Anal. Appl., Volume 511 (2022) no. 2, 126072, 25 pages | DOI | MR | Zbl
[12] A dynamical approach to non-uniform density theorems for coherent systems (2022) (to appear in Trans. Am. Math. Soc., https://arxiv.org/abs/2207.05125) | DOI
[13] On sufficient density conditions for lattice orbits of relative discrete series, Arch. Math., Volume 119 (2022) no. 3, pp. 279-291 | DOI | MR | Zbl
[14] Density of sampling and interpolation in reproducing kernel Hilbert spaces, J. Lond. Math. Soc., Volume 96 (2017) no. 3, pp. 663-686 | DOI | MR | Zbl
[15] Linear analysis and representation theory, Grundlehren der Mathematischen Wissenschaften, 198, Springer, 1973, ix+688 pages | DOI | MR | Zbl
[16] Frame representations for group-like unitary operator systems, J. Oper. Theory, Volume 49 (2003) no. 2, pp. 223-244 | MR | Zbl
[17] Aspects of Gabor analysis on locally compact abelian groups, Gabor analysis and algorithms. Theory and applications (Applied and Numerical Harmonic Analysis), Birkhäuser, 1998, p. 211-231, 453–488 | MR | Zbl
[18] The homogeneous approximation property and the comparison theorem for coherent frames, Sampl. Theory Signal Image Process., Volume 7 (2008) no. 3, pp. 271-279 stsip.org/vol07/no3/vol07no3pp271-279.html | DOI | MR | Zbl
[19] History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl., Volume 13 (2007) no. 2, pp. 113-166 | DOI | MR | Zbl
[20] Growth of connected locally compact groups, J. Funct. Anal., Volume 12 (1973), pp. 113-127 | DOI | MR | Zbl
[21] Approximate lattices and Meyer sets in nilpotent Lie groups, Discrete Anal., Volume 2020 (2020), 1, 18 pages | DOI | MR | Zbl
[22] Infinite approximate subgroups of soluble Lie groups, Math. Ann., Volume 382 (2022) no. 1-2, pp. 285-301 | DOI | MR | Zbl
[23] Closed approximate subgroups: Compactness, amenability and approximate lattices (2023) (https://arxiv.org/abs/2011.01829)
[24] Algebraic numbers and harmonic analysis, North-Holland Mathematical Library, 2, Elsevier, 1972, x+274 pages | MR | Zbl
[25] Density results for continuous frames, J. Fourier Anal. Appl., Volume 26 (2020) no. 4, 56, 26 pages | DOI | MR | Zbl
[26] Revisiting Landau’s density theorems for Paley-Wiener spaces, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 9-10, pp. 509-512 | DOI | MR | Zbl
[27] Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., Volume 48 (1987), pp. 1-141 | DOI | MR | Zbl
[28] Leptin densities in amenable groups, J. Fourier Anal. Appl., Volume 28 (2022) no. 6, 85, 36 pages | DOI | MR
[29] A Banach space-valued ergodic theorem for amenable groups and applications, J. Anal. Math., Volume 130 (2016), pp. 19-69 | DOI | MR | Zbl
[30] Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal., Volume 2 (1995) no. 2, pp. 148-153 | DOI | MR | Zbl
[31] A complete Gabor system of zero Beurling density, Sampl. Theory Signal Image Process., Volume 3 (2004) no. 3, pp. 299-304 | DOI | MR | Zbl
[32] The density theorem for discrete series representations restricted to lattices, Expo. Math., Volume 40 (2022) no. 2, pp. 265-301 | DOI | MR | Zbl
[33] Square-integrable factor representations of locally compact groups, Trans. Am. Math. Soc., Volume 237 (1978), pp. 1-33 | DOI | MR | Zbl
[34] Generalized model sets and dynamical systems, Directions in mathematical quasicrystals (CRM Monograph Series), Volume 13, American Mathematical Society, 2000, pp. 143-159 | MR | Zbl
[35] Product set estimates for non-commutative groups, Combinatorica, Volume 28 (2008) no. 5, pp. 547-594 | DOI | MR | Zbl
[36] Volume of spheres in doubling metric measured spaces and in groups of polynomial growth, Bull. Soc. Math. Fr., Volume 135 (2007) no. 1, pp. 47-64 smf4.emath.fr/en/publications/bulletin/135/html/smf_bull_135_47-64.html | DOI | Numdam | MR | Zbl
[37] Sparse complete Gabor systems on a lattice, Appl. Comput. Harmon. Anal., Volume 16 (2004) no. 1, pp. 60-67 | DOI | MR | Zbl
[38] Return times theorem for amenable groups, Isr. J. Math., Volume 204 (2014), pp. 85-96 | DOI | MR | Zbl
Cité par Sources :