[L’isotopie de Moser pour les structures symplectiques holomorphes et C-symplectiques]
Une structure C-symplectique est une 2-forme à valeurs complexes qui est holomorphiquement symplectique pour une structure complexe appropriée. Nous prouvons un analogue du théorème d’isotopie de Moser pour les familles de structures C-symplectiques et donnons plusieurs applications de ce résultat. Nous prouvons que la déformation twistorielle dégénérée associée à une fibration lagrangienne holomorphe est localement triviale sur la base de cette fibration. Ceci est utilisé pour étendre plusieurs théorèmes sur les fibrations lagrangiennes, connues pour les variétés hyperkähler projectives, au cas non projectif. Nous présentons également de nouveaux exemples de variétés complexes non compactes avec une infinité de compactifications algébriques non birationnelles deux-à-deux.
A C-symplectic structure is a complex-valued 2-form which is holomorphically symplectic for an appropriate complex structure. We prove an analogue of Moser’s isotopy theorem for families of C-symplectic structures and list several applications of this result. We prove that the degenerate twistorial deformation associated to a holomorphic Lagrangian fibration is locally trivial over the base of this fibration. This is used to extend several theorems about Lagrangian fibrations, known for projective hyperkähler manifolds, to the non-projective case. We also exhibit new examples of non-compact complex manifolds with infinitely many pairwise non-birational algebraic compactifications.
Révisé le :
Accepté le :
Première publication :
Keywords: Symplectic manifold, Lagrangian fibration, twistor family
Mots-clés : Variété symplectique, fibration lagrangienne, famille twistorielle
Soldatenkov, Andrey 1, 2 ; Verbitsky, Misha 2, 3
@unpublished{AIF_0__0_0_A142_0, author = {Soldatenkov, Andrey and Verbitsky, Misha}, title = {The {Moser} isotopy for holomorphic symplectic and {C-symplectic} structures}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3684}, language = {en}, note = {Online first}, }
TY - UNPB AU - Soldatenkov, Andrey AU - Verbitsky, Misha TI - The Moser isotopy for holomorphic symplectic and C-symplectic structures JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3684 LA - en ID - AIF_0__0_0_A142_0 ER -
Soldatenkov, Andrey; Verbitsky, Misha. The Moser isotopy for holomorphic symplectic and C-symplectic structures. Annales de l'Institut Fourier, Online first, 18 p.
[1] Shafarevich–Tate groups of holomorphic Lagrangian fibrations (2021) | arXiv
[2] On families of Lagrangian tori on hyperkähler manifolds, J. Geom. Phys., Volume 71 (2013), pp. 53-57 | DOI | MR | Zbl
[3] Symplectic singularities, Invent. Math., Volume 139 (2000) no. 3, pp. 541-549 | DOI | MR | Zbl
[4] Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR, Volume 243 (1978) no. 5, pp. 1101-1104 | MR | Zbl
[5] Complex manifolds and algebraic foliations (1996) (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/bogomolov_RIMS1084.pdf)
[6] Sections of Lagrangian fibrations on holomorphically symplectic manifolds and degenerate twistorial deformations, Adv. Math., Volume 405 (2022), 108479, 14 pages | DOI | MR | Zbl
[7] Local projectivity of Lagrangian fibrations on hyperkähler manifolds, Manuscr. Math., Volume 164 (2021) no. 3-4, pp. 589-591 | DOI | MR | Zbl
[8] Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, Integrable systems and quantum groups (Montecatini Terme, 1993) (Lecture Notes in Mathematics), Volume 1620, Springer, 1996, pp. 1-119 | DOI | MR | Zbl
[9] Moduli spaces of irreducible symplectic manifolds, Compos. Math., Volume 146 (2010) no. 2, pp. 404-434 | DOI | MR | Zbl
[10] Ample subvarieties of algebraic varieties. Notes written in collaboration with C. Musili, Lecture Notes in Mathematics, 156, Springer, 1970, xiv+256 pages | DOI | MR | Zbl
[11] The moduli space of complex Lagrangian submanifolds, Asian J. Math., Volume 3 (1999) no. 1, pp. 77-91 (Sir Michael Atiyah: a great mathematician of the twentieth century) | DOI | MR | Zbl
[12] Compact hyperkähler manifolds, Calabi-Yau manifolds and related geometries (Nordfjordeid, 2001) (Universitext), Springer, 2003, pp. 161-225 | DOI | MR | Zbl
[13] Brilliant families of K3 surfaces: twistor spaces, Brauer groups, and Noether-Lefschetz loci, Ann. Fac. Sci. Toulouse, Math., Volume 32 (2023) no. 2, pp. 397-421 | DOI | MR | Zbl
[14] Simple examples of affine manifolds with infinitely many exotic models, Adv. Math., Volume 284 (2015), pp. 112-121 | DOI | MR | Zbl
[15] Symplectic singularities from the Poisson point of view, J. Reine Angew. Math., Volume 600 (2006), pp. 135-156 | DOI | MR | Zbl
[16] Period map for non-compact holomorphically symplectic manifolds, Geom. Funct. Anal., Volume 12 (2002) no. 6, pp. 1265-1295 | DOI | MR | Zbl
[17] On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. Math., Volume 71 (1960), pp. 43-76 | DOI | MR | Zbl
[18] Lagrangian fibrations of holomorphic-symplectic varieties of -type, Algebraic and complex geometry (Springer Proceedings in Mathematics & Statistics), Volume 71, Springer, 2014, pp. 241-283 | DOI | MR | Zbl
[19] On fibre space structures of a projective irreducible symplectic manifold, Topology, Volume 38 (1999) no. 1, pp. 79-83 | DOI | MR | Zbl
[20] Holomorphic symplectic manifolds and Lagrangian fibrations, Acta Appl. Math., Volume 75 (2003) no. 1-3, pp. 117-123 Monodromy and differential equations (Moscow, 2001) | DOI | MR
[21] Higher direct images of dualizing sheaves of Lagrangian fibrations, Am. J. Math., Volume 127 (2005) no. 2, pp. 243-259 http://muse.jhu.edu/journals/american_journal_of_mathematics/v127/127.2matsushita.pdf | DOI | MR | Zbl
[22] On deformations of Lagrangian fibrations, K3 surfaces and their moduli (Progress in Mathematics), Volume 315, Birkhäuser/Springer, 2016, pp. 237-243 | DOI | MR | Zbl
[23] Introduction to symplectic topology, Oxford Mathematical Monographs, Clarendon Press, 1995, viii+425 pages (Oxford Science Publications) | DOI | MR | Zbl
[24] On the volume elements on a manifold, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286-294 | DOI | MR | Zbl
[25] Torelli’s theorem for algebraic surfaces of type , Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572 | MR
[26] Homotopically stratified sets, J. Am. Math. Soc., Volume 1 (1988) no. 2, pp. 441-499 | DOI | MR | Zbl
[27] Decomposition theorem for proper Kähler morphisms, Tôhoku Math. J., Volume 42 (1990) no. 2, pp. 127-147 | DOI | MR | Zbl
[28] Nonabelian Hodge theory, Proceedings of the international congress of mathematicians (ICM), August 21–29, 1990, Kyoto, Japan. Volume I, Mathematical Society of Japan (1991), pp. 747-756 | MR | Zbl
[29] Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989) no. 1, pp. 13-52 | DOI | MR | Zbl
[30] Degenerate twistor spaces for hyperkähler manifolds, J. Geom. Phys., Volume 91 (2015), pp. 2-11 | DOI | MR | Zbl
Cité par Sources :