Attractor invariants, brane tilings and crystals
[Invariants d’attracteurs, pavages branaires et crystaux]
Annales de l'Institut Fourier, Online first, 84 p.

Les états liés supersymétriques de D-branes sur une variété de Calabi-Yau 𝒳 tridimensionnelle sont comptés par les invariants de Donaldson-Thomas généralisés Ω Z (γ). Ceux-ci dépendent du caractère de Chern (ou charge électromagnétique) γH * (𝒳) et d’une condition de stabilité (ou charge centrale) Z. Ces invariants DT se déduisent des invariants d’attracteur Ω * (γ), un cas particulier d’invariant DT où Z=Z γ est une perturbation générique de la condition d’auto-stabilité. Difficiles à calculer en général, ces invariants deviennent tractables dans le cas où 𝒳 est une résolution crépante d’une variété de Calabi-Yau torique singulière, associée à un pavage périodique, et ainsi à un carquois avec potentiel. Nous passons en revue des résultats connus et des conjectures sur les invariants DT raffinés, encadrés ou non, et calculons explicitement les invariants d’attracteur pour une classe de variétés Calabi-Yau qui inclut l’espace total du fibré canonique sur une surface projective torique régulière, et la résolution crépante des quotients 3 /G. Dans tous ces cas, nous vérifions que Ω * (γ)=0 pour tous les vecteurs γ à l’exception de ceux associés à une représentation simple du carquois et ceux dans le noyau de la forme d’Euler antisymétrisée. Sur la base de calculs explicites en dimension basse, nous conjecturons la valeur de tous les invariants d’attracteur, donnant ainsi une solution au problème du calcul des invariants DT pour toute condition de stabilité. Nous calculons également les invariants DT raffinés non-commutatifs et vérifions l’accord avec le comptage des cristaux fondus dans la limite non-raffinée.

Supersymmetric D-brane bound states on a Calabi–Yau threefold 𝒳 are counted by generalized Donaldson–Thomas invariants Ω Z (γ), depending on a Chern character (or electromagnetic charge) γH * (𝒳) and a stability condition (or central charge) Z. Attractor invariants Ω * (γ) are special instances of DT invariants, where Z is the attractor stability condition Z γ (a generic perturbation of self-stability), from which DT invariants for any other stability condition can be deduced. While difficult to compute in general, these invariants become tractable when 𝒳 is a crepant resolution of a singular toric Calabi–Yau threefold associated to a brane tiling, and hence to a quiver with potential. We survey some known results and conjectures about framed and unframed refined DT invariants in this context, and compute attractor invariants explicitly for a variety of toric Calabi–Yau threefolds, in particular when 𝒳 is the total space of the canonical bundle of a smooth projective surface, or when 𝒳 is a crepant resolution of 3 /G. We check that in all these cases, Ω * (γ)=0 unless γ is the dimension vector of a simple representation or belongs to the kernel of the skew-symmetrized Euler form. Based on computations in small dimensions, we predict the values of all attractor invariants, thus potentially solving the problem of counting DT invariants of these threefolds in all stability chambers. We also compute the non-commutative refined DT invariants and verify that they agree with the counting of molten crystals in the unrefined limit.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3682
Classification : 14F05, 14J60, 14N10, 16G20
Keywords: Quivers, Donaldson–Thomas invariants, Toric Calabi–Yau threefolds
Mots-clés : invariants de Donaldson-Thomas, variété de Calabi-Yau

Mozgovoy, Sergey 1, 2 ; Pioline, Boris 3

1 School of Mathematics Trinity College Dublin Dublin 2, Ireland
2 Hamilton Mathematics Institute Trinity College Dublin Dublin 2, Ireland
3 Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Université and CNRS UMR 7589 Campus Pierre et Marie Curie 4 place Jussieu 75005, Paris, France
@unpublished{AIF_0__0_0_A126_0,
     author = {Mozgovoy, Sergey and Pioline, Boris},
     title = {Attractor invariants, brane tilings and crystals},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3682},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Mozgovoy, Sergey
AU  - Pioline, Boris
TI  - Attractor invariants, brane tilings and crystals
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3682
LA  - en
ID  - AIF_0__0_0_A126_0
ER  - 
%0 Unpublished Work
%A Mozgovoy, Sergey
%A Pioline, Boris
%T Attractor invariants, brane tilings and crystals
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3682
%G en
%F AIF_0__0_0_A126_0
Mozgovoy, Sergey; Pioline, Boris. Attractor invariants, brane tilings and crystals. Annales de l'Institut Fourier, Online first, 84 p.

[1] Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun The Topological vertex, Commun. Math. Phys., Volume 254 (2005), pp. 425-478 | DOI | MR | Zbl

[2] Aganagic, Mina; Schaeffer, Kevin Wall Crossing, Quivers and Crystals, J. High Energy Phys., Volume 1210 (2012), 153 | DOI | MR | Zbl

[3] Alexandrov, Sergei Rank N Vafa–Witten invariants, modularity and blow-up, Adv. Theor. Math. Phys., Volume 25 (2021) no. 2, pp. 275-308 | DOI | MR | Zbl

[4] Alexandrov, Sergei; Manschot, Jan; Pioline, Boris S-duality and refined BPS indices, Commun. Math. Phys., Volume 380 (2020) no. 2, pp. 755-810 | DOI | MR | Zbl

[5] Alexandrov, Sergei; Pioline, Boris Attractor flow trees, BPS indices and quivers, Adv. Theor. Math. Phys., Volume 23 (2019) no. 3, pp. 627-699 | DOI | MR | Zbl

[6] Alim, Murad; Cecotti, Sergio; Cordova, Clay; Espahbodi, Sam; Rastogi, Ashwin; Vafa, Cumrun BPS Quivers and Spectra of Complete N=2 Quantum Field Theories, Commun. Math. Phys., Volume 323 (2013), pp. 1185-1227 | DOI | MR | Zbl

[7] Andriyash, Evgeny; Denef, Frederik; Jafferis, Daniel L.; Moore, Gregory W. Wall-crossing from supersymmetric galaxies, J. High Energy Phys., Volume 1201 (2012), 115 | DOI | MR | Zbl

[8] Aspinwall, Paul S. D-branes on Calabi–Yau manifolds (2004) | arXiv

[9] Aspinwall, Paul S.; Fidkowski, Lukasz M. Superpotentials for quiver gauge theories, J. High Energy Phys., Volume 10 (2006), 47 | DOI | MR

[10] Aspinwall, Paul S.; Katz, Sheldon Computation of superpotentials for D-branes, Commun. Math. Phys., Volume 264 (2006), pp. 227-253 | DOI | MR | Zbl

[11] Aspinwall, Paul S.; Melnikov, Ilarion V. D-branes on vanishing del Pezzo surfaces, J. High Energy Phys., Volume 12 (2004), 42 | DOI | MR

[12] Aspinwall, Paul S.; Morrison, David R. Quivers from Matrix Factorizations, Commun. Math. Phys., Volume 313 (2012), pp. 607-633 | DOI | MR | Zbl

[13] Banerjee, Sibasish; Longhi, Pietro; Romo, Mauricio Exploring 5d BPS Spectra with Exponential Networks, Ann. Henri Poincaré, Volume 20 (2019) no. 12, pp. 4055-4162 | DOI | MR | Zbl

[14] Banerjee, Sibasish; Longhi, Pietro; Romo, Mauricio Exponential BPS graphs and D-brane counting on toric Calabi–Yau threefolds: Part II (2020)

[15] Banerjee, Sibasish; Longhi, Pietro; Romo, Mauricio Exponential BPS Graphs and D Brane Counting on Toric Calabi–Yau Threefolds: Part I, Commun. Math. Phys., Volume 388 (2021) no. 2, pp. 893-945 | DOI | MR | Zbl

[16] Beaujard, Guillaume; Manschot, Jan; Pioline, Boris Vafa-Witten invariants from exceptional collections, Commun. Math. Phys., Volume 385 (2021) no. 1, pp. 101-226 | DOI | MR | Zbl

[17] Behrend, Kai Donaldson–Thomas type invariants via microlocal geometry, Ann. Math., Volume 170 (2009) no. 3, pp. 1307-1338 | DOI | MR | Zbl

[18] Behrend, Kai; Bryan, Jim; Szendrői, Balázs Motivic degree zero Donaldson–Thomas invariants, Invent. Math., Volume 192 (2013) no. 1, pp. 111-160 | DOI | MR | Zbl

[19] Bena, Iosif; Berkooz, Micha; de Boer, Jan; El-Showk, Sheer; Van den Bleeken, Dieter Scaling BPS Solutions and pure-Higgs States, J. High Energy Phys., Volume 1211 (2012), 171 | DOI | MR | Zbl

[20] Bender, Martin; Mozgovoy, Sergey Crepant resolutions and brane tilings II: Tilting bundles (2009) | arXiv

[21] Berenstein, David; Douglas, Michael R. Seiberg duality for quiver gauge theories (2002) | arXiv

[22] Van den Bergh, Michel Non-commutative crepant resolutions, The legacy of Niels Henrik Abel, Springer, 2004, pp. 749-770 | DOI | MR | Zbl

[23] Bousseau, Pierrick Scattering diagrams, stability conditions, and coherent sheaves on 2 , J. Algebr. Geom., Volume 31 (2022) no. 4, pp. 593-686 | DOI | MR | Zbl

[24] Bridgeland, Tom Stability conditions on triangulated categories, Ann. Math., Volume 166 (2007) no. 2, pp. 317-345 | DOI | MR | Zbl

[25] Bridgeland, Tom Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom., Volume 4 (2017) no. 5, pp. 523-561 | DOI | MR | Zbl

[26] Bryan, Jim; Morrison, Andrew Motivic classes of commuting varieties via power structures, J. Algebr. Geom., Volume 24 (2015) no. 1, pp. 183-199 | DOI | MR | Zbl

[27] Cazzaniga, Alberto; Morrison, Andrew; Pym, Brent; Szendroi, Balazs Motivic Donaldson–Thomas invariants of some quantized threefolds (2015) | arXiv

[28] Choi, Jinwon; Katz, Sheldon; Klemm, Albrecht The refined BPS index from stable pair invariants, Commun. Math. Phys., Volume 328 (2014), pp. 903-954 | DOI | MR | Zbl

[29] Chuang, Wu-yen; Jafferis, Daniel L. Wall Crossing of BPS States on the Conifold from Seiberg Duality and Pyramid Partitions, Commun. Math. Phys., Volume 292 (2009), pp. 285-301 | DOI | MR | Zbl

[30] Cirafici, Michele; Sinkovics, Annamaria; Szabo, Richard J. Instantons, Quivers and Noncommutative Donaldson–Thomas Theory, Nucl. Phys., B, Volume 853 (2011), pp. 508-605 | DOI | MR | Zbl

[31] Cox, David A.; Little, John B.; Schenck, Henry K. Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011, xxiv+841 pages | DOI | MR

[32] Davison, Ben; Meinhardt, Sven Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras, Invent. Math., Volume 221 (2020) no. 3, pp. 777-871 | DOI | MR | Zbl

[33] Denef, Frederik Quantum quivers and Hall/hole halos, J. High Energy Phys., Volume 10 (2002), 23 | MR

[34] Denef, Frederik; Greene, Brian R.; Raugas, Mark Split attractor flows and the spectrum of BPS D-branes on the quintic, J. High Energy Phys., Volume 5 (2001), 12 | MR

[35] Denef, Frederik; Moore, Gregory W. Split states, entropy enigmas, holes and halos, J. High Energy Phys., Volume 1111 (2011), 129 | DOI | MR | Zbl

[36] Derksen, Harm; Weyman, Jerzy; Zelevinsky, Andrei Quivers with potentials and their representations. I: Mutations, Sel. Math., New Ser., Volume 14 (2008) no. 1, pp. 59-119 | DOI | MR | Zbl

[37] Dimofte, Tudor; Gukov, Sergei Refined, Motivic, and Quantum, Lett. Math. Phys., Volume 91 (2010) no. 1, pp. 1-27 | DOI | MR | Zbl

[38] Douglas, Michael R. D-branes, categories and N=1 supersymmetry, J. Math. Phys., Volume 42 (2001), pp. 2818-2843 | DOI | MR | Zbl

[39] Douglas, Michael R.; Fiol, Bartomeu; Romelsberger, Christian The Spectrum of BPS branes on a noncompact Calabi–Yau, J. High Energy Phys., Volume 509 (2005), 57 | DOI | MR

[40] Douglas, Michael R.; Greene, Brian R.; Morrison, David R. Orbifold resolution by D-branes, Nucl. Phys., Volume B506 (1997), pp. 84-106 | DOI | MR | Zbl

[41] Douglas, Michael R.; Moore, Gregory W. D-branes, quivers, and ALE instantons (1996) | arXiv

[42] Duan, Zhihao; Ghim, Dongwook; Yi, Piljin 5D BPS Quivers and KK Towers, J. High Energy Phys., Volume 2 (2021), 119 | DOI | MR | Zbl

[43] Eager, Richard; Franco, Sebastian Colored BPS Pyramid Partition Functions, Quivers and Cluster Transformations, J. High Energy Phys., Volume 9 (2012), 38 | DOI | MR | Zbl

[44] Eager, Richard; Selmani, Sam Alexandre; Walcher, Johannes Exponential Networks and Representations of Quivers, J. High Energy Phys., Volume 8 (2017), 63 | DOI | MR | Zbl

[45] Efimov, Alexander I. Cohomological Hall algebra of a symmetric quiver, Compos. Math., Volume 148 (2012) no. 4, pp. 1133-1146 | DOI | MR | Zbl

[46] Feng, Bo; Hanany, Amihay; He, Yang-Hui Phase structure of D-brane gauge theories and toric duality, J. High Energy Phys., Volume 8 (2001), 40 | DOI | MR

[47] Ferrara, Sergio; Kallosh, Renata; Strominger, Andrew N=2 extremal black holes, Phys. Rev., Volume D52 (1995), pp. 5412-5416

[48] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras I: Foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl

[49] Franco, Sebastian; Hanany, Amihay; Kennaway, Kristian D.; Vegh, David; Wecht, Brian Brane dimers and quiver gauge theories, J. High Energy Phys., Volume 1 (2006), 96 | DOI | MR

[50] Fulton, William Introduction to toric varieties. The William H. Roever Lectures in Geometry, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xii+157 pages | MR

[51] Gaiotto, Davide; Moore, Gregory W.; Neitzke, Andrew Framed BPS States, Adv. Theor. Math. Phys., Volume 17 (2013) no. 2, pp. 241-397 | DOI | MR | Zbl

[52] Galakhov, Dmitry; Longhi, Pietro; Moore, Gregory W. Spectral Networks with Spin, Commun. Math. Phys., Volume 340 (2015) no. 1, pp. 171-232 | DOI | MR | Zbl

[53] Gauntlett, Jerome P.; Martelli, Dario; Sparks, James; Waldram, Daniel Sasaki-Einstein metrics on S 2 ×S 3 , Adv. Theor. Math. Phys., Volume 8 (2004) no. 4, pp. 711-734 | DOI | MR | Zbl

[54] Gholampour, Amin; Jiang, Yunfeng Counting invariants for the ADE McKay quivers (2009) | arXiv

[55] Gopakumar, Rajesh; Vafa, Cumrun M-theory and topological strings. II (1998) | arXiv

[56] Gross, Mark; Hacking, Paul; Keel, Sean; Kontsevich, Maxim Canonical bases for cluster algebras, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | MR | Zbl

[57] Hanany, Amihay; Herzog, Christopher P.; Vegh, David Brane tilings and exceptional collections, J. High Energy Phys., Volume 7 (2006), 1 | DOI | MR

[58] Hanany, Amihay; Kennaway, Kristian D. Dimer models and toric diagrams (2005) | arXiv

[59] Hanany, Amihay; Seong, Rak-Kyeong Brane Tilings and Reflexive Polygons, Fortschr. Phys., Volume 60 (2012), pp. 695-803 | DOI | MR

[60] Herzog, Christopher P. Exceptional collections and del Pezzo gauge theories, J. High Energy Phys., Volume 4 (2004), 69 | DOI | MR

[61] Huybrechts, Daniel; Lehn, Manfred The geometry of moduli spaces of sheaves, Cambridge University Press, 2010, xviii+325 pages | DOI | MR

[62] Iqbal, Amer; Kozcaz, Can; Vafa, Cumrun The Refined topological vertex, J. High Energy Phys., Volume 10 (2009), 69 | DOI | MR

[63] Iqbal, Amer; Nekrasov, Nikita; Okounkov, Andrei; Vafa, Cumrun Quantum foam and topological strings, J. High Energy Phys., Volume 4 (2008), 11 | DOI | MR | Zbl

[64] Jafferis, Daniel L.; Moore, Gregory W. Wall crossing in local Calabi Yau manifolds (2008) | arXiv

[65] Joyce, Dominic Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. Math., Volume 217 (2008) no. 1, pp. 125-204 | DOI | MR | Zbl

[66] Joyce, Dominic; Song, Yinan A theory of generalized Donaldson–Thomas invariants, Memoirs of the American Mathematical Society, 1020, American Mathematical Society, 2012, v+199 pages

[67] Keller, Bernhard; Yang, Dong Derived equivalences from mutations of quivers with potential., Adv. Math., Volume 226 (2011) no. 3, pp. 2118-2168 | DOI | MR | Zbl

[68] Kim, Heeyeon; Lee, Seung-Joo; Yi, Piljin Mutation, Witten Index, and Quiver Invariant, J. High Energy Phys., Volume 7 (2015), 93 | DOI | MR | Zbl

[69] King, Alastair D. Moduli of representations of finite-dimensional algebras, Q. J. Math., Volume 45 (1994) no. 180, pp. 515-530 | DOI | MR | Zbl

[70] Kontsevich, Maxim Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser (1995), pp. 120-139 | DOI | MR | Zbl

[71] Kontsevich, Maxim; Soibelman, Yan Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (2008) | arXiv

[72] Kontsevich, Maxim; Soibelman, Yan Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys., Volume 5 (2011), pp. 231-352 | DOI | MR | Zbl

[73] Kontsevich, Maxim; Soibelman, Yan Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and Mirror Symmetry (2013) | arXiv

[74] Lee, Seung-Joo; Wang, Zhao-Long; Yi, Piljin BPS States, Refined Indices, and Quiver Invariants, J. High Energy Phys., Volume 1210 (2012), 94 | DOI | MR | Zbl

[75] Lee, Seung-Joo; Wang, Zhao-Long; Yi, Piljin Quiver Invariants from Intrinsic Higgs States, J. High Energy Phys., Volume 1207 (2012), 169 | DOI | MR | Zbl

[76] Lee, Seung-Joo; Yi, Piljin Witten Index for Noncompact Dynamics, J. High Energy Phys., Volume 6 (2016), 89 | DOI | MR | Zbl

[77] Li, Wei; Yamazaki, Masahito Quiver Yangian from Crystal Melting, J. High Energy Phys., Volume 11 (2020), 35 | DOI | MR | Zbl

[78] Manschot, Jan Wall-crossing of D4-branes using flow trees, Adv. Theor. Math. Phys., Volume 15 (2011), pp. 1-42 | DOI | MR | Zbl

[79] Manschot, Jan; Pioline, Boris; Sen, Ashoke A Fixed point formula for the index of multi-centered N=2 black holes, J. High Energy Phys., Volume 1105 (2011), 57 | DOI | MR | Zbl

[80] Manschot, Jan; Pioline, Boris; Sen, Ashoke Wall Crossing from Boltzmann Black Hole Halos, J. High Energy Phys., Volume 1107 (2011), 59 | DOI | MR | Zbl

[81] Manschot, Jan; Pioline, Boris; Sen, Ashoke, 2013 (unpublished)

[82] Manschot, Jan; Pioline, Boris; Sen, Ashoke On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants, J. High Energy Phys., Volume 5 (2013), 166 | DOI | MR | Zbl

[83] Manschot, Jan; Pioline, Boris; Sen, Ashoke Generalized quiver mutations and single-centered indices, J. High Energy Phys., Volume 1 (2014), 50 | DOI

[84] Manschot, Jan; Pioline, Boris; Sen, Ashoke The Coulomb Branch Formula for Quiver Moduli Spaces, Confluentes Math., Volume 2 (2017), pp. 49-69 | DOI | Numdam | MR | Zbl

[85] Martelli, Dario; Sparks, James Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Commun. Math. Phys., Volume 262 (2006), pp. 51-89 | DOI | MR | Zbl

[86] Maulik, Davesh; Nekrasov, Nikita; Okounkov, Andrei; Pandharipande, Rahul Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math., Volume 142 (2006) no. 5, pp. 1263-1285 | DOI | MR | Zbl

[87] Meinhardt, Sven; Reineke, Markus Donaldson–Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math., Volume 754 (2019), pp. 143-178 | DOI | MR | Zbl

[88] Morrison, Andrew Motivic invariants of quivers via dimensional reduction, Sel. Math., New Ser., Volume 18 (2012) no. 4, pp. 779-797 | DOI | MR | Zbl

[89] Morrison, Andrew; Mozgovoy, Sergey; Nagao, Kentaro; Szendroi, Balazs Motivic Donaldson–Thomas invariants of the conifold and the refined topological vertex, Adv. Math., Volume 230 (2012), pp. 2065-2093 | DOI | MR | Zbl

[90] Morrison, Andrew; Nagao, Kentaro Motivic Donaldson–Thomas invariants of small crepant resolutions, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 767-813 | DOI | MR | Zbl

[91] Mou, Lang Scattering diagrams of quivers with potentials and mutations (2019) | arXiv

[92] Mozgovoy, Sergey Crepant resolutions and brane tilings I: Toric realization (2009) | arXiv

[93] Mozgovoy, Sergey Motivic Donaldson–Thomas invariants and McKay correspondence (2011) | arXiv

[94] Mozgovoy, Sergey Wall-crossing formulas for framed objects, Q. J. Math., Volume 64 (2013), pp. 489-513 | DOI | MR | Zbl

[95] Mozgovoy, Sergey Operadic approach to wall-crossing, J. Algebra, Volume 596 (2022), pp. 53-88 | DOI | MR | Zbl

[96] Mozgovoy, Sergey Translation quiver varieties, J. Pure Appl. Algebra, Volume 227 (2023) no. 1, 107156 | DOI | MR | Zbl

[97] Mozgovoy, Sergey; Reineke, Markus On the noncommutative Donaldson–Thomas invariants arising from brane tilings, Adv. Math., Volume 223 (2010) no. 5, pp. 1521-1544 | DOI | MR | Zbl

[98] Mozgovoy, Sergey; Reineke, Markus Donaldson–Thomas invariants for 3-Calabi–Yau varieties of dihedral quotient type, Q. J. Math., Volume 73 (2022) no. 2, pp. 759-776 | DOI | MR | Zbl

[99] Nagao, Kentaro; Nakajima, Hiraku Counting invariant of perverse coherent sheaves and its wall-crossing, Int. Math. Res. Not., Volume 2011 (2011), pp. 3885-3938 | MR | Zbl

[100] Okounkov, Andrei; Reshetikhin, Nikolai; Vafa, Cumrun Quantum Calabi–Yau and classical crystals, The unity of mathematics (Progress in Mathematics), Volume 244, Birkhäuser, 2006, pp. 597-618 | DOI | Zbl

[101] Ooguri, Hirosi; Yamazaki, Masahito Crystal Melting and Toric Calabi–Yau Manifolds, Commun. Math. Phys., Volume 292 (2009), pp. 179-199 | DOI | MR | Zbl

[102] Reineke, Markus The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., Volume 152 (2003) no. 2, pp. 349-368 | DOI | MR | Zbl

[103] Segal, Ed The A deformation theory of a point and the derived categories of local Calabi–Yaus, J. Algebra, Volume 320 (2008) no. 8, pp. 3232-3268 | DOI | MR | Zbl

[104] Sen, Ashoke Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Relativ. Gravitation, Volume 40 (2008), pp. 2249-2431 | DOI | MR | Zbl

[105] Sethi, Savdeep; Stern, Mark D-brane bound states redux, Commun. Math. Phys., Volume 194 (1998), pp. 675-705 | DOI | MR | Zbl

[106] Strominger, Andrew; Vafa, Cumrun Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B, Volume B379 (1996), pp. 99-104 | DOI | MR | Zbl

[107] Szendrői, Balázs Non-commutative Donaldson–Thomas invariants and the conifold, Geom. Topol., Volume 12 (2008) no. 2, pp. 1171-1202 | DOI | MR | Zbl

[108] Thomas, R. P. A holomorphic Casson invariant for Calabi–Yau 3-folds, and bundles on K3 fibrations, J. Differ. Geom., Volume 54 (2000) no. 2, pp. 367-438 | DOI | MR | Zbl

[109] Witten, Edward String theory dynamics in various dimensions, Nucl. Phys., Volume B443 (1995), pp. 85-126 | DOI

[110] Yi, Piljin Witten Index and Threshold Bound States of D-Branes, Nucl. Phys., Volume B505 (1997), pp. 307-318 | DOI | MR | Zbl

[111] Young, Benjamin Computing a pyramid partition generating function with dimer shuffling, J. Comb. Theory, Ser. A, Volume 116 (2009) no. 2, pp. 334-350 | DOI | MR | Zbl

[112] Young, Benjamin Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds, Duke Math. J., Volume 152 (2010) no. 1, pp. 115-153 (with an appendix by Bryan, Jim) | DOI | MR | Zbl

Cité par Sources :