[Invariants d’attracteurs, pavages branaires et crystaux]
Les états liés supersymétriques de D-branes sur une variété de Calabi-Yau tridimensionnelle sont comptés par les invariants de Donaldson-Thomas généralisés . Ceux-ci dépendent du caractère de Chern (ou charge électromagnétique) et d’une condition de stabilité (ou charge centrale) . Ces invariants DT se déduisent des invariants d’attracteur , un cas particulier d’invariant DT où est une perturbation générique de la condition d’auto-stabilité. Difficiles à calculer en général, ces invariants deviennent tractables dans le cas où est une résolution crépante d’une variété de Calabi-Yau torique singulière, associée à un pavage périodique, et ainsi à un carquois avec potentiel. Nous passons en revue des résultats connus et des conjectures sur les invariants DT raffinés, encadrés ou non, et calculons explicitement les invariants d’attracteur pour une classe de variétés Calabi-Yau qui inclut l’espace total du fibré canonique sur une surface projective torique régulière, et la résolution crépante des quotients . Dans tous ces cas, nous vérifions que pour tous les vecteurs à l’exception de ceux associés à une représentation simple du carquois et ceux dans le noyau de la forme d’Euler antisymétrisée. Sur la base de calculs explicites en dimension basse, nous conjecturons la valeur de tous les invariants d’attracteur, donnant ainsi une solution au problème du calcul des invariants DT pour toute condition de stabilité. Nous calculons également les invariants DT raffinés non-commutatifs et vérifions l’accord avec le comptage des cristaux fondus dans la limite non-raffinée.
Supersymmetric D-brane bound states on a Calabi–Yau threefold are counted by generalized Donaldson–Thomas invariants , depending on a Chern character (or electromagnetic charge) and a stability condition (or central charge) . Attractor invariants are special instances of DT invariants, where is the attractor stability condition (a generic perturbation of self-stability), from which DT invariants for any other stability condition can be deduced. While difficult to compute in general, these invariants become tractable when is a crepant resolution of a singular toric Calabi–Yau threefold associated to a brane tiling, and hence to a quiver with potential. We survey some known results and conjectures about framed and unframed refined DT invariants in this context, and compute attractor invariants explicitly for a variety of toric Calabi–Yau threefolds, in particular when is the total space of the canonical bundle of a smooth projective surface, or when is a crepant resolution of . We check that in all these cases, unless is the dimension vector of a simple representation or belongs to the kernel of the skew-symmetrized Euler form. Based on computations in small dimensions, we predict the values of all attractor invariants, thus potentially solving the problem of counting DT invariants of these threefolds in all stability chambers. We also compute the non-commutative refined DT invariants and verify that they agree with the counting of molten crystals in the unrefined limit.
Révisé le :
Accepté le :
Première publication :
Keywords: Quivers, Donaldson–Thomas invariants, Toric Calabi–Yau threefolds
Mots-clés : invariants de Donaldson-Thomas, variété de Calabi-Yau
Mozgovoy, Sergey 1, 2 ; Pioline, Boris 3
@unpublished{AIF_0__0_0_A126_0, author = {Mozgovoy, Sergey and Pioline, Boris}, title = {Attractor invariants, brane tilings and crystals}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3682}, language = {en}, note = {Online first}, }
Mozgovoy, Sergey; Pioline, Boris. Attractor invariants, brane tilings and crystals. Annales de l'Institut Fourier, Online first, 84 p.
[1] The Topological vertex, Commun. Math. Phys., Volume 254 (2005), pp. 425-478 | DOI | MR | Zbl
[2] Wall Crossing, Quivers and Crystals, J. High Energy Phys., Volume 1210 (2012), 153 | DOI | MR | Zbl
[3] Rank Vafa–Witten invariants, modularity and blow-up, Adv. Theor. Math. Phys., Volume 25 (2021) no. 2, pp. 275-308 | DOI | MR | Zbl
[4] S-duality and refined BPS indices, Commun. Math. Phys., Volume 380 (2020) no. 2, pp. 755-810 | DOI | MR | Zbl
[5] Attractor flow trees, BPS indices and quivers, Adv. Theor. Math. Phys., Volume 23 (2019) no. 3, pp. 627-699 | DOI | MR | Zbl
[6] BPS Quivers and Spectra of Complete N=2 Quantum Field Theories, Commun. Math. Phys., Volume 323 (2013), pp. 1185-1227 | DOI | MR | Zbl
[7] Wall-crossing from supersymmetric galaxies, J. High Energy Phys., Volume 1201 (2012), 115 | DOI | MR | Zbl
[8] D-branes on Calabi–Yau manifolds (2004) | arXiv
[9] Superpotentials for quiver gauge theories, J. High Energy Phys., Volume 10 (2006), 47 | DOI | MR
[10] Computation of superpotentials for D-branes, Commun. Math. Phys., Volume 264 (2006), pp. 227-253 | DOI | MR | Zbl
[11] D-branes on vanishing del Pezzo surfaces, J. High Energy Phys., Volume 12 (2004), 42 | DOI | MR
[12] Quivers from Matrix Factorizations, Commun. Math. Phys., Volume 313 (2012), pp. 607-633 | DOI | MR | Zbl
[13] Exploring 5d BPS Spectra with Exponential Networks, Ann. Henri Poincaré, Volume 20 (2019) no. 12, pp. 4055-4162 | DOI | MR | Zbl
[14] Exponential BPS graphs and D-brane counting on toric Calabi–Yau threefolds: Part II (2020)
[15] Exponential BPS Graphs and D Brane Counting on Toric Calabi–Yau Threefolds: Part I, Commun. Math. Phys., Volume 388 (2021) no. 2, pp. 893-945 | DOI | MR | Zbl
[16] Vafa-Witten invariants from exceptional collections, Commun. Math. Phys., Volume 385 (2021) no. 1, pp. 101-226 | DOI | MR | Zbl
[17] Donaldson–Thomas type invariants via microlocal geometry, Ann. Math., Volume 170 (2009) no. 3, pp. 1307-1338 | DOI | MR | Zbl
[18] Motivic degree zero Donaldson–Thomas invariants, Invent. Math., Volume 192 (2013) no. 1, pp. 111-160 | DOI | MR | Zbl
[19] Scaling BPS Solutions and pure-Higgs States, J. High Energy Phys., Volume 1211 (2012), 171 | DOI | MR | Zbl
[20] Crepant resolutions and brane tilings II: Tilting bundles (2009) | arXiv
[21] Seiberg duality for quiver gauge theories (2002) | arXiv
[22] Non-commutative crepant resolutions, The legacy of Niels Henrik Abel, Springer, 2004, pp. 749-770 | DOI | MR | Zbl
[23] Scattering diagrams, stability conditions, and coherent sheaves on , J. Algebr. Geom., Volume 31 (2022) no. 4, pp. 593-686 | DOI | MR | Zbl
[24] Stability conditions on triangulated categories, Ann. Math., Volume 166 (2007) no. 2, pp. 317-345 | DOI | MR | Zbl
[25] Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom., Volume 4 (2017) no. 5, pp. 523-561 | DOI | MR | Zbl
[26] Motivic classes of commuting varieties via power structures, J. Algebr. Geom., Volume 24 (2015) no. 1, pp. 183-199 | DOI | MR | Zbl
[27] Motivic Donaldson–Thomas invariants of some quantized threefolds (2015) | arXiv
[28] The refined BPS index from stable pair invariants, Commun. Math. Phys., Volume 328 (2014), pp. 903-954 | DOI | MR | Zbl
[29] Wall Crossing of BPS States on the Conifold from Seiberg Duality and Pyramid Partitions, Commun. Math. Phys., Volume 292 (2009), pp. 285-301 | DOI | MR | Zbl
[30] Instantons, Quivers and Noncommutative Donaldson–Thomas Theory, Nucl. Phys., B, Volume 853 (2011), pp. 508-605 | DOI | MR | Zbl
[31] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011, xxiv+841 pages | DOI | MR
[32] Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras, Invent. Math., Volume 221 (2020) no. 3, pp. 777-871 | DOI | MR | Zbl
[33] Quantum quivers and Hall/hole halos, J. High Energy Phys., Volume 10 (2002), 23 | MR
[34] Split attractor flows and the spectrum of BPS D-branes on the quintic, J. High Energy Phys., Volume 5 (2001), 12 | MR
[35] Split states, entropy enigmas, holes and halos, J. High Energy Phys., Volume 1111 (2011), 129 | DOI | MR | Zbl
[36] Quivers with potentials and their representations. I: Mutations, Sel. Math., New Ser., Volume 14 (2008) no. 1, pp. 59-119 | DOI | MR | Zbl
[37] Refined, Motivic, and Quantum, Lett. Math. Phys., Volume 91 (2010) no. 1, pp. 1-27 | DOI | MR | Zbl
[38] D-branes, categories and N=1 supersymmetry, J. Math. Phys., Volume 42 (2001), pp. 2818-2843 | DOI | MR | Zbl
[39] The Spectrum of BPS branes on a noncompact Calabi–Yau, J. High Energy Phys., Volume 509 (2005), 57 | DOI | MR
[40] Orbifold resolution by D-branes, Nucl. Phys., Volume B506 (1997), pp. 84-106 | DOI | MR | Zbl
[41] D-branes, quivers, and ALE instantons (1996) | arXiv
[42] 5D BPS Quivers and KK Towers, J. High Energy Phys., Volume 2 (2021), 119 | DOI | MR | Zbl
[43] Colored BPS Pyramid Partition Functions, Quivers and Cluster Transformations, J. High Energy Phys., Volume 9 (2012), 38 | DOI | MR | Zbl
[44] Exponential Networks and Representations of Quivers, J. High Energy Phys., Volume 8 (2017), 63 | DOI | MR | Zbl
[45] Cohomological Hall algebra of a symmetric quiver, Compos. Math., Volume 148 (2012) no. 4, pp. 1133-1146 | DOI | MR | Zbl
[46] Phase structure of D-brane gauge theories and toric duality, J. High Energy Phys., Volume 8 (2001), 40 | DOI | MR
[47] extremal black holes, Phys. Rev., Volume D52 (1995), pp. 5412-5416
[48] Cluster algebras I: Foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[49] Brane dimers and quiver gauge theories, J. High Energy Phys., Volume 1 (2006), 96 | DOI | MR
[50] Introduction to toric varieties. The William H. Roever Lectures in Geometry, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xii+157 pages | MR
[51] Framed BPS States, Adv. Theor. Math. Phys., Volume 17 (2013) no. 2, pp. 241-397 | DOI | MR | Zbl
[52] Spectral Networks with Spin, Commun. Math. Phys., Volume 340 (2015) no. 1, pp. 171-232 | DOI | MR | Zbl
[53] Sasaki-Einstein metrics on , Adv. Theor. Math. Phys., Volume 8 (2004) no. 4, pp. 711-734 | DOI | MR | Zbl
[54] Counting invariants for the ADE McKay quivers (2009) | arXiv
[55] M-theory and topological strings. II (1998) | arXiv
[56] Canonical bases for cluster algebras, J. Am. Math. Soc., Volume 31 (2018) no. 2, pp. 497-608 | DOI | MR | Zbl
[57] Brane tilings and exceptional collections, J. High Energy Phys., Volume 7 (2006), 1 | DOI | MR
[58] Dimer models and toric diagrams (2005) | arXiv
[59] Brane Tilings and Reflexive Polygons, Fortschr. Phys., Volume 60 (2012), pp. 695-803 | DOI | MR
[60] Exceptional collections and del Pezzo gauge theories, J. High Energy Phys., Volume 4 (2004), 69 | DOI | MR
[61] The geometry of moduli spaces of sheaves, Cambridge University Press, 2010, xviii+325 pages | DOI | MR
[62] The Refined topological vertex, J. High Energy Phys., Volume 10 (2009), 69 | DOI | MR
[63] Quantum foam and topological strings, J. High Energy Phys., Volume 4 (2008), 11 | DOI | MR | Zbl
[64] Wall crossing in local Calabi Yau manifolds (2008) | arXiv
[65] Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. Math., Volume 217 (2008) no. 1, pp. 125-204 | DOI | MR | Zbl
[66] A theory of generalized Donaldson–Thomas invariants, Memoirs of the American Mathematical Society, 1020, American Mathematical Society, 2012, v+199 pages
[67] Derived equivalences from mutations of quivers with potential., Adv. Math., Volume 226 (2011) no. 3, pp. 2118-2168 | DOI | MR | Zbl
[68] Mutation, Witten Index, and Quiver Invariant, J. High Energy Phys., Volume 7 (2015), 93 | DOI | MR | Zbl
[69] Moduli of representations of finite-dimensional algebras, Q. J. Math., Volume 45 (1994) no. 180, pp. 515-530 | DOI | MR | Zbl
[70] Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser (1995), pp. 120-139 | DOI | MR | Zbl
[71] Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (2008) | arXiv
[72] Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys., Volume 5 (2011), pp. 231-352 | DOI | MR | Zbl
[73] Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and Mirror Symmetry (2013) | arXiv
[74] BPS States, Refined Indices, and Quiver Invariants, J. High Energy Phys., Volume 1210 (2012), 94 | DOI | MR | Zbl
[75] Quiver Invariants from Intrinsic Higgs States, J. High Energy Phys., Volume 1207 (2012), 169 | DOI | MR | Zbl
[76] Witten Index for Noncompact Dynamics, J. High Energy Phys., Volume 6 (2016), 89 | DOI | MR | Zbl
[77] Quiver Yangian from Crystal Melting, J. High Energy Phys., Volume 11 (2020), 35 | DOI | MR | Zbl
[78] Wall-crossing of D4-branes using flow trees, Adv. Theor. Math. Phys., Volume 15 (2011), pp. 1-42 | DOI | MR | Zbl
[79] A Fixed point formula for the index of multi-centered N=2 black holes, J. High Energy Phys., Volume 1105 (2011), 57 | DOI | MR | Zbl
[80] Wall Crossing from Boltzmann Black Hole Halos, J. High Energy Phys., Volume 1107 (2011), 59 | DOI | MR | Zbl
[81]
, 2013 (unpublished)[82] On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants, J. High Energy Phys., Volume 5 (2013), 166 | DOI | MR | Zbl
[83] Generalized quiver mutations and single-centered indices, J. High Energy Phys., Volume 1 (2014), 50 | DOI
[84] The Coulomb Branch Formula for Quiver Moduli Spaces, Confluentes Math., Volume 2 (2017), pp. 49-69 | DOI | Numdam | MR | Zbl
[85] Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Commun. Math. Phys., Volume 262 (2006), pp. 51-89 | DOI | MR | Zbl
[86] Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math., Volume 142 (2006) no. 5, pp. 1263-1285 | DOI | MR | Zbl
[87] Donaldson–Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math., Volume 754 (2019), pp. 143-178 | DOI | MR | Zbl
[88] Motivic invariants of quivers via dimensional reduction, Sel. Math., New Ser., Volume 18 (2012) no. 4, pp. 779-797 | DOI | MR | Zbl
[89] Motivic Donaldson–Thomas invariants of the conifold and the refined topological vertex, Adv. Math., Volume 230 (2012), pp. 2065-2093 | DOI | MR | Zbl
[90] Motivic Donaldson–Thomas invariants of small crepant resolutions, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 767-813 | DOI | MR | Zbl
[91] Scattering diagrams of quivers with potentials and mutations (2019) | arXiv
[92] Crepant resolutions and brane tilings I: Toric realization (2009) | arXiv
[93] Motivic Donaldson–Thomas invariants and McKay correspondence (2011) | arXiv
[94] Wall-crossing formulas for framed objects, Q. J. Math., Volume 64 (2013), pp. 489-513 | DOI | MR | Zbl
[95] Operadic approach to wall-crossing, J. Algebra, Volume 596 (2022), pp. 53-88 | DOI | MR | Zbl
[96] Translation quiver varieties, J. Pure Appl. Algebra, Volume 227 (2023) no. 1, 107156 | DOI | MR | Zbl
[97] On the noncommutative Donaldson–Thomas invariants arising from brane tilings, Adv. Math., Volume 223 (2010) no. 5, pp. 1521-1544 | DOI | MR | Zbl
[98] Donaldson–Thomas invariants for 3-Calabi–Yau varieties of dihedral quotient type, Q. J. Math., Volume 73 (2022) no. 2, pp. 759-776 | DOI | MR | Zbl
[99] Counting invariant of perverse coherent sheaves and its wall-crossing, Int. Math. Res. Not., Volume 2011 (2011), pp. 3885-3938 | MR | Zbl
[100] Quantum Calabi–Yau and classical crystals, The unity of mathematics (Progress in Mathematics), Volume 244, Birkhäuser, 2006, pp. 597-618 | DOI | Zbl
[101] Crystal Melting and Toric Calabi–Yau Manifolds, Commun. Math. Phys., Volume 292 (2009), pp. 179-199 | DOI | MR | Zbl
[102] The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., Volume 152 (2003) no. 2, pp. 349-368 | DOI | MR | Zbl
[103] The deformation theory of a point and the derived categories of local Calabi–Yaus, J. Algebra, Volume 320 (2008) no. 8, pp. 3232-3268 | DOI | MR | Zbl
[104] Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Relativ. Gravitation, Volume 40 (2008), pp. 2249-2431 | DOI | MR | Zbl
[105] D-brane bound states redux, Commun. Math. Phys., Volume 194 (1998), pp. 675-705 | DOI | MR | Zbl
[106] Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B, Volume B379 (1996), pp. 99-104 | DOI | MR | Zbl
[107] Non-commutative Donaldson–Thomas invariants and the conifold, Geom. Topol., Volume 12 (2008) no. 2, pp. 1171-1202 | DOI | MR | Zbl
[108] A holomorphic Casson invariant for Calabi–Yau 3-folds, and bundles on fibrations, J. Differ. Geom., Volume 54 (2000) no. 2, pp. 367-438 | DOI | MR | Zbl
[109] String theory dynamics in various dimensions, Nucl. Phys., Volume B443 (1995), pp. 85-126 | DOI
[110] Witten Index and Threshold Bound States of D-Branes, Nucl. Phys., Volume B505 (1997), pp. 307-318 | DOI | MR | Zbl
[111] Computing a pyramid partition generating function with dimer shuffling, J. Comb. Theory, Ser. A, Volume 116 (2009) no. 2, pp. 334-350 | DOI | MR | Zbl
[112] Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds, Duke Math. J., Volume 152 (2010) no. 1, pp. 115-153 (with an appendix by Bryan, Jim) | DOI | MR | Zbl
Cité par Sources :