Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces
[Quasi-applications tordues et dualité symplectique pour espaces hypertoriques]
Annales de l'Institut Fourier, Online first, 45 p.

Nous étudions l’espace de modules des quasi-applications tordues vers une variété hypertorique X, branche de Higgs d’une théorie de jauge supersymétrique abélienne en dimension 3. Ces variétés paramétrisent des systèmes stables d’applications entre faisceaux de rang 1 sur 1 . Nous identifions la cohomologie de ces espaces avec le groupe Ext d’une paire de modules holonomes d’un “espace de lacets quantique” de X, qui apparaît comme branche de Higgs d’une théorie avec un nombre infini de champs de matière. Sa branche de Coulomb est un analogue périodique de la branche de Coulomb associée à X. La dualité symplectique nous permet d’obtenir une formule pour la fonction génératrice des invariants des quasi-applications tordues, utilisant le caractère d’un module basculant sur la branche de Coulomb périodique. Nous donnons une formule close lorsque X est l’abélianisation du carquois associé au cotangent d’une variété de drapeaux.

We study moduli spaces of twisted quasimaps to a hypertoric variety X, arising as the Higgs branch of an abelian supersymmetric 3D gauge theory. These parametrize systems of maps between rank one sheaves on 1 , subject to a stability condition. We identify the singular cohomology of these moduli spaces with the Ext group of a pair of holonomic modules over the “quantized loop space” of X, which we view as a Higgs branch for a related theory with infinitely many matter fields. We construct the coulomb branch of this theory, as a periodic analogue of the coulomb branch associated to X. Using the formalism of symplectic duality, we derive an expression for the generating function of twisted quasimap invariants in terms of the character of a certain tilting module on the periodic coulomb branch. We give a closed formula when X arises as the abelianisation of the N-step flag quiver.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3681
Classification : 14N35, 14M25, 14J33, 53D30, 53D55
Keywords: Hypertoric variety, Quasimaps, Symplectic Duality, 3D mirror symmetry
Mots-clés : Variétés hypertoriques, quasi-applications, dualité symplectique, symétrie miroir 3D

McBreen, Michael 1 ; Sheshmani, Artan 2, 3 ; Yau, Shing-Tung 4

1 Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong (China)
2 Massachusetts Institute of Technology (MIT), IAiFi Institute, 182 Memorial Drive, Cambridge, MA 02139 (USA)
3 Yanqi Lake Beijing Institute for Mathematical Sciences and Applications (BIMSA). Huairou, Beijing, 101408 National Research University Higher School of Economics, Russian Federation, Laboratory of Mirror Symmetry, NRU HSE, 6 Usacheva str., Moscow (Russia), 119048
4 Yau center of mathematics, Tsinghua university, Beijing (China)
@unpublished{AIF_0__0_0_A124_0,
     author = {McBreen, Michael and Sheshmani, Artan and Yau, Shing-Tung},
     title = {Twisted {Quasimaps} and {Symplectic} {Duality} for {Hypertoric} {Spaces}},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3681},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - McBreen, Michael
AU  - Sheshmani, Artan
AU  - Yau, Shing-Tung
TI  - Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3681
LA  - en
ID  - AIF_0__0_0_A124_0
ER  - 
%0 Unpublished Work
%A McBreen, Michael
%A Sheshmani, Artan
%A Yau, Shing-Tung
%T Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3681
%G en
%F AIF_0__0_0_A124_0
McBreen, Michael; Sheshmani, Artan; Yau, Shing-Tung. Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces. Annales de l'Institut Fourier, Online first, 45 p.

[1] Aganagic, M.; Frenkel, E.; Okounkov, A. Quantum q-Langlands correspondence, Trans. Mosc. Math. Soc., Volume 79 (2018), pp. 1-83 | DOI | MR | Zbl

[2] Anderson, Michael T.; Kronheimer, Peter B.; LeBrun, Claude Complete Ricci-flat Kähler manifolds of infinite topological type, Comm. Math. Phys., Volume 125 (1989) no. 4, pp. 637-642 http://projecteuclid.org/euclid.cmp/1104179632 | DOI | MR | Zbl

[3] Anno, Rina; Bezrukavnikov, Roman; Mirković, Ivan Stability conditions for Slodowy slices and real variations of stability, Mosc. Math. J., Volume 15 (2015) no. 2, pp. 187-203 | DOI | MR | Zbl

[4] Beilinson, A; Ginsburg, Victor Mixed categories, Ext-duality and representations (results and conjectures), 1986

[5] Beilinson, Alexander; Ginzburg, Victor; Soergel, Wolfgang Koszul duality patterns in representation theory, J. Amer. Math. Soc., Volume 9 (1996) no. 2, pp. 473-527 | DOI | MR | Zbl

[6] Bezrukavnikov, R.; Kaledin, D. Fedosov quantization in algebraic context, Mosc. Math. J., Volume 4 (2004) no. 3, pp. 559-592 | DOI | MR | Zbl

[7] Bezrukavnikov, R; Okounkov, A Monodromy and derived equivalences preparation (cit. on pp. 859, 860)

[8] Bielawski, Roger; Dancer, Andrew S. The geometry and topology of toric hyperkähler manifolds, Comm. Anal. Geom., Volume 8 (2000) no. 4, pp. 727-760 | DOI | MR | Zbl

[9] Braden, Tom; Licata, Anthony; Proudfoot, Nicholas; Webster, Ben Gale duality and Koszul duality, Adv. Math., Volume 225 (2010) no. 4, pp. 2002-2049 | DOI | MR | Zbl

[10] Braden, Tom; Licata, Anthony; Proudfoot, Nicholas; Webster, Ben Hypertoric category 𝒪, Adv. Math., Volume 231 (2012) no. 3-4, pp. 1487-1545 | DOI | MR | Zbl

[11] Braden, Tom; Licata, Anthony; Proudfoot, Nicholas; Webster, Ben Quantizations of conical symplectic resolutions II: category 𝒪 and symplectic duality. With an appendix by I. Losev, Astérisque, 384, Société Mathématique de France, 2016, pp. 75-179 | MR | Zbl

[12] Braverman, Alexander; Finkelberg, Michael; Nakajima, Hiraku Towards a mathematical definition of Coulomb branches of 3-dimensional 𝒩=4 gauge theories, II, Adv. Theor. Math. Phys., Volume 22 (2018) no. 5, pp. 1071-1147 | DOI | MR | Zbl

[13] Bruhn, Henning; Diestel, Reinhard; Kriesell, Matthias; Pendavingh, Rudi; Wollan, Paul Axioms for infinite matroids, Adv. Math., Volume 239 (2013), pp. 18-46 | DOI | MR | Zbl

[14] Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; Hilburn, Justin; Kim, Hee-Cheol Vortices and Vermas, Adv. Theor. Math. Phys., Volume 22 (2018) no. 4, pp. 803-917 | DOI | MR | Zbl

[15] Ciocan-Fontanine, Ionuţ; Kim, Bumsig; Maulik, Davesh Stable quasimaps to GIT quotients, J. Geom. Phys., Volume 75 (2014), pp. 17-47 | DOI | MR | Zbl

[16] Dancer, Andrew; Swann, Andrew Hypertoric manifolds and hyperkähler moment maps, Special metrics and group actions in geometry (Springer INdAM Ser.), Volume 23, Springer, Cham, 2017, pp. 107-127 | DOI | MR | Zbl

[17] Dancso, Zuszsanna; McBreen, Michael; Shende, Vivek Deletion-contraction triangles for Hausel–Proudfoot varieties, J. Eur. Math. Soc., 2023 | DOI | Zbl

[18] De Wilde, Marc; Lecomte, Pierre B. A. Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys., Volume 7 (1983) no. 6, pp. 487-496 | DOI | MR | Zbl

[19] Etingof, Pavel; Ginzburg, Victor Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR | Zbl

[20] Fedosov, Boris V A simple geometrical construction of deformation quantization, J. Differ. Geom., Volume 40 (1994) no. 2, pp. 213-238 http://projecteuclid.org/euclid.jdg/1214455536 | DOI | MR | Zbl

[21] Goto, Ryushi On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method, Infinite analysis, Part A, B (Kyoto, 1991) (Adv. Ser. Math. Phys.), Volume 16, World Sci. Publ., River Edge, NJ, 1992, pp. 317-338 | DOI | MR | Zbl

[22] Hattori, Kota The volume growth of hyper-Kähler manifolds of type A , J. Geom. Anal., Volume 21 (2011) no. 4, pp. 920-949 | DOI | MR | Zbl

[23] Hausel, Tamás; Proudfoot, Nicholas Abelianization for hyperkähler quotients, Topology, Volume 44 (2005) no. 1, pp. 231-248 | DOI | MR | Zbl

[24] Hikita, Tatsuyuki An algebro-geometric realization of the cohomology ring of Hilbert scheme of points in the affine plane, Int. Math. Res. Not. IMRN (2017) no. 8, pp. 2538-2561 | DOI | MR | Zbl

[25] Hilburn, Justin; Kamnitzer, Joel; Weekes, Alex BFN Springer theory, Comm. Math. Phys., Volume 402 (2023) no. 1, pp. 765-832 | DOI | MR | Zbl

[26] Intriligator, K.; Seiberg, N. Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B, Volume 387 (1996) no. 3, pp. 513-519 | DOI | MR | Zbl

[27] Kamnitzer, Joel; McBreen, Michael; Proudfoot, Nicholas The quantum Hikita conjecture, Adv. Math., Volume 390 (2021), 107947, 53 pages | DOI | MR | Zbl

[28] Kamnitzer, Joel; Tingley, Peter; Webster, Ben; Weekes, Alex; Yacobi, Oded Highest weights for truncated shifted Yangians and product monomial crystals (2015) (https://arxiv.org/abs/1511.09131)

[29] Kim, Bumsig Stable quasimaps to holomorphic symplectic quotients, Schubert calculus—Osaka 2012 (Adv. Stud. Pure Math.), Volume 71, Math. Soc. Japan, Tokyo (2016), pp. 139-160 | DOI | MR | Zbl

[30] Losev, Ivan Isomorphisms of quantizations via quantization of resolutions, Adv. Math., Volume 231 (2012) no. 3-4, pp. 1216-1270 | DOI | MR | Zbl

[31] Maulik, Davesh; Okounkov, Andrei Quantum groups and quantum cohomology, Astérisque, Société Mathématique de France, 2019 no. 408, ix+209 pages | DOI | MR | Zbl

[32] Mazorchuk, Volodymyr; Ovsienko, Serge; Stroppel, Catharina Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc., Volume 361 (2009) no. 3, pp. 1129-1172 | DOI | MR | Zbl

[33] McBreen, Michael; Webster, Ben Homological Mirror Symmetry for Hypertoric Varieties I (2018) (https://arxiv.org/abs/1804.10646)

[34] Musson, Ian M.; Van den Bergh, Michel Invariants under tori of rings of differential operators and related topics, Mem. Amer. Math. Soc., 136, American Mathematical Society, Providence, RI, 1998 no. 650, viii+85 pages | DOI | MR | Zbl

[35] Nakajima, Hiraku Towards a mathematical definition of Coulomb branches of 3-dimensional 𝒩=4 gauge theories, I, Adv. Theor. Math. Phys., Volume 20 (2016) no. 3, pp. 595-669 | DOI | MR | Zbl

[36] Premet, Alexander Special transverse slices and their enveloping algebras, Adv. Math., Volume 170 (2002) no. 1, pp. 1-55 (With an appendix by Serge Skryabin) | DOI | MR | Zbl

[37] Proudfoot, Nicholas J. A survey of hypertoric geometry and topology, Toric topology. International conference, Osaka, Japan, May 28–June 3, 2006 (Contemp. Math.), Volume 460, American Mathematical Society, Providence, RI (2008), pp. 323-338 | DOI | MR | Zbl

[38] Pushkar, Petr P.; Smirnov, Andrey V.; Zeitlin, Anton M. Baxter Q-operator from quantum K-theory, Adv. Math., Volume 360 (2020), p. 106919, 63 | DOI | MR | Zbl

[39] Soergel, Wolfgang Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc., Volume 3 (1990) no. 2, pp. 421-445 | DOI | MR | Zbl

Cité par Sources :