[Quasi-applications tordues et dualité symplectique pour espaces hypertoriques]
Nous étudions l’espace de modules des quasi-applications tordues vers une variété hypertorique , branche de Higgs d’une théorie de jauge supersymétrique abélienne en dimension 3. Ces variétés paramétrisent des systèmes stables d’applications entre faisceaux de rang 1 sur . Nous identifions la cohomologie de ces espaces avec le groupe Ext d’une paire de modules holonomes d’un “espace de lacets quantique” de , qui apparaît comme branche de Higgs d’une théorie avec un nombre infini de champs de matière. Sa branche de Coulomb est un analogue périodique de la branche de Coulomb associée à . La dualité symplectique nous permet d’obtenir une formule pour la fonction génératrice des invariants des quasi-applications tordues, utilisant le caractère d’un module basculant sur la branche de Coulomb périodique. Nous donnons une formule close lorsque est l’abélianisation du carquois associé au cotangent d’une variété de drapeaux.
We study moduli spaces of twisted quasimaps to a hypertoric variety , arising as the Higgs branch of an abelian supersymmetric 3D gauge theory. These parametrize systems of maps between rank one sheaves on , subject to a stability condition. We identify the singular cohomology of these moduli spaces with the Ext group of a pair of holonomic modules over the “quantized loop space” of , which we view as a Higgs branch for a related theory with infinitely many matter fields. We construct the coulomb branch of this theory, as a periodic analogue of the coulomb branch associated to . Using the formalism of symplectic duality, we derive an expression for the generating function of twisted quasimap invariants in terms of the character of a certain tilting module on the periodic coulomb branch. We give a closed formula when arises as the abelianisation of the -step flag quiver.
Révisé le :
Accepté le :
Première publication :
Keywords: Hypertoric variety, Quasimaps, Symplectic Duality, 3D mirror symmetry
Mots-clés : Variétés hypertoriques, quasi-applications, dualité symplectique, symétrie miroir 3D
McBreen, Michael 1 ; Sheshmani, Artan 2, 3 ; Yau, Shing-Tung 4
@unpublished{AIF_0__0_0_A124_0, author = {McBreen, Michael and Sheshmani, Artan and Yau, Shing-Tung}, title = {Twisted {Quasimaps} and {Symplectic} {Duality} for {Hypertoric} {Spaces}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3681}, language = {en}, note = {Online first}, }
TY - UNPB AU - McBreen, Michael AU - Sheshmani, Artan AU - Yau, Shing-Tung TI - Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3681 LA - en ID - AIF_0__0_0_A124_0 ER -
McBreen, Michael; Sheshmani, Artan; Yau, Shing-Tung. Twisted Quasimaps and Symplectic Duality for Hypertoric Spaces. Annales de l'Institut Fourier, Online first, 45 p.
[1] Quantum -Langlands correspondence, Trans. Mosc. Math. Soc., Volume 79 (2018), pp. 1-83 | DOI | MR | Zbl
[2] Complete Ricci-flat Kähler manifolds of infinite topological type, Comm. Math. Phys., Volume 125 (1989) no. 4, pp. 637-642 http://projecteuclid.org/euclid.cmp/1104179632 | DOI | MR | Zbl
[3] Stability conditions for Slodowy slices and real variations of stability, Mosc. Math. J., Volume 15 (2015) no. 2, pp. 187-203 | DOI | MR | Zbl
[4] Mixed categories, Ext-duality and representations (results and conjectures), 1986
[5] Koszul duality patterns in representation theory, J. Amer. Math. Soc., Volume 9 (1996) no. 2, pp. 473-527 | DOI | MR | Zbl
[6] Fedosov quantization in algebraic context, Mosc. Math. J., Volume 4 (2004) no. 3, pp. 559-592 | DOI | MR | Zbl
[7] Monodromy and derived equivalences preparation (cit. on pp. 859, 860)
[8] The geometry and topology of toric hyperkähler manifolds, Comm. Anal. Geom., Volume 8 (2000) no. 4, pp. 727-760 | DOI | MR | Zbl
[9] Gale duality and Koszul duality, Adv. Math., Volume 225 (2010) no. 4, pp. 2002-2049 | DOI | MR | Zbl
[10] Hypertoric category , Adv. Math., Volume 231 (2012) no. 3-4, pp. 1487-1545 | DOI | MR | Zbl
[11] Quantizations of conical symplectic resolutions II: category and symplectic duality. With an appendix by I. Losev, Astérisque, 384, Société Mathématique de France, 2016, pp. 75-179 | MR | Zbl
[12] Towards a mathematical definition of Coulomb branches of 3-dimensional gauge theories, II, Adv. Theor. Math. Phys., Volume 22 (2018) no. 5, pp. 1071-1147 | DOI | MR | Zbl
[13] Axioms for infinite matroids, Adv. Math., Volume 239 (2013), pp. 18-46 | DOI | MR | Zbl
[14] Vortices and Vermas, Adv. Theor. Math. Phys., Volume 22 (2018) no. 4, pp. 803-917 | DOI | MR | Zbl
[15] Stable quasimaps to GIT quotients, J. Geom. Phys., Volume 75 (2014), pp. 17-47 | DOI | MR | Zbl
[16] Hypertoric manifolds and hyperkähler moment maps, Special metrics and group actions in geometry (Springer INdAM Ser.), Volume 23, Springer, Cham, 2017, pp. 107-127 | DOI | MR | Zbl
[17] Deletion-contraction triangles for Hausel–Proudfoot varieties, J. Eur. Math. Soc., 2023 | DOI | Zbl
[18] Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys., Volume 7 (1983) no. 6, pp. 487-496 | DOI | MR | Zbl
[19] Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR | Zbl
[20] A simple geometrical construction of deformation quantization, J. Differ. Geom., Volume 40 (1994) no. 2, pp. 213-238 http://projecteuclid.org/euclid.jdg/1214455536 | DOI | MR | Zbl
[21] On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method, Infinite analysis, Part A, B (Kyoto, 1991) (Adv. Ser. Math. Phys.), Volume 16, World Sci. Publ., River Edge, NJ, 1992, pp. 317-338 | DOI | MR | Zbl
[22] The volume growth of hyper-Kähler manifolds of type , J. Geom. Anal., Volume 21 (2011) no. 4, pp. 920-949 | DOI | MR | Zbl
[23] Abelianization for hyperkähler quotients, Topology, Volume 44 (2005) no. 1, pp. 231-248 | DOI | MR | Zbl
[24] An algebro-geometric realization of the cohomology ring of Hilbert scheme of points in the affine plane, Int. Math. Res. Not. IMRN (2017) no. 8, pp. 2538-2561 | DOI | MR | Zbl
[25] BFN Springer theory, Comm. Math. Phys., Volume 402 (2023) no. 1, pp. 765-832 | DOI | MR | Zbl
[26] Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B, Volume 387 (1996) no. 3, pp. 513-519 | DOI | MR | Zbl
[27] The quantum Hikita conjecture, Adv. Math., Volume 390 (2021), 107947, 53 pages | DOI | MR | Zbl
[28] Highest weights for truncated shifted Yangians and product monomial crystals (2015) (https://arxiv.org/abs/1511.09131)
[29] Stable quasimaps to holomorphic symplectic quotients, Schubert calculus—Osaka 2012 (Adv. Stud. Pure Math.), Volume 71, Math. Soc. Japan, Tokyo (2016), pp. 139-160 | DOI | MR | Zbl
[30] Isomorphisms of quantizations via quantization of resolutions, Adv. Math., Volume 231 (2012) no. 3-4, pp. 1216-1270 | DOI | MR | Zbl
[31] Quantum groups and quantum cohomology, Astérisque, Société Mathématique de France, 2019 no. 408, ix+209 pages | DOI | MR | Zbl
[32] Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc., Volume 361 (2009) no. 3, pp. 1129-1172 | DOI | MR | Zbl
[33] Homological Mirror Symmetry for Hypertoric Varieties I (2018) (https://arxiv.org/abs/1804.10646)
[34] Invariants under tori of rings of differential operators and related topics, Mem. Amer. Math. Soc., 136, American Mathematical Society, Providence, RI, 1998 no. 650, viii+85 pages | DOI | MR | Zbl
[35] Towards a mathematical definition of Coulomb branches of 3-dimensional gauge theories, I, Adv. Theor. Math. Phys., Volume 20 (2016) no. 3, pp. 595-669 | DOI | MR | Zbl
[36] Special transverse slices and their enveloping algebras, Adv. Math., Volume 170 (2002) no. 1, pp. 1-55 (With an appendix by Serge Skryabin) | DOI | MR | Zbl
[37] A survey of hypertoric geometry and topology, Toric topology. International conference, Osaka, Japan, May 28–June 3, 2006 (Contemp. Math.), Volume 460, American Mathematical Society, Providence, RI (2008), pp. 323-338 | DOI | MR | Zbl
[38] Baxter -operator from quantum -theory, Adv. Math., Volume 360 (2020), p. 106919, 63 | DOI | MR | Zbl
[39] Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc., Volume 3 (1990) no. 2, pp. 421-445 | DOI | MR | Zbl
Cité par Sources :