Moduli spaces of sheaves on Fano threefolds and K3 surfaces of genus 9
[Espaces de modules de faisceaux sur les 3-variétés de Fano et les surfaces K3 de genre 9]
Annales de l'Institut Fourier, Online first, 41 p.

Une 3-variété de Fano primitive complexe lisse X de genre 9 est reliée par dualité projective à une courbe quartique plane Γ. On utilise cette construction pour étudier la restriction de faisceaux de rang 2 stables avec classes de Chern prescrites sur X à une surface K3 anticanonique SX. Varier la variété X contenant S donne une fibration lagrangienne rationnelle S [2,1,3] 3 avec fibre générique birationnelle à l’espace de modules X (2,1,7) de faisceaux sur X. De plus, on prouve que cette fibration rationnelle s’étend en une vraie fibration sur un modèle birationnel de S [2,1,3].

Dans une dernière partie, on utilise les conditions de stabilité de Bridgeland pour exhiber tous les modèles birationnels K-triviaux de S [2,1,3], qui consistent en lui-même et . On prouve que ces modèles sont reliés par un flop, et on décrit les cônes positif, mobile et nef de S [2,1,3].

A complex smooth prime Fano threefold X of genus 9 is related via projective duality to a quartic plane curve Γ. We use this setup to study the restriction of rank 2 stable sheaves with prescribed Chern classes on X to an anticanonical K3 surface SX. Varying the threefold X containing S gives a rational Lagrangian fibration S [2,1,3] 3 with generic fibre birational to the moduli space X (2,1,7) of sheaves on X. Moreover, we prove that this rational fibration extends to an actual fibration on a birational model of S [2,1,3].

In a last part, we use Bridgeland stability conditions to exhibit all K-trivial smooth birational models of S [2,1,3], which consist in itself and . We prove that these models are related by a flop, and we describe the positive, movable and nef cones of S [2,1,3].

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3680
Classification : 14D20, 14J60, 14D06, 14F08
Keywords: Moduli spaces of sheaves, K3 surfaces, Fano threefolds, derived categories, Lagrangian fibration, stability conditions
Mots-clés : Espaces de modules de faisceaux, surfaces K3, 3-variétés de Fano, catégories dérivées, fibrations lagrangiennes, conditions de stabilité

Mattei, Dominique 1

1 Bonn Universität, Endenicher Allee 60, 53113 Bonn (Germany)
@unpublished{AIF_0__0_0_A160_0,
     author = {Mattei, Dominique},
     title = {Moduli spaces of sheaves on {Fano} threefolds and {K3} surfaces of genus $9$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3680},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Mattei, Dominique
TI  - Moduli spaces of sheaves on Fano threefolds and K3 surfaces of genus $9$
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3680
LA  - en
ID  - AIF_0__0_0_A160_0
ER  - 
%0 Unpublished Work
%A Mattei, Dominique
%T Moduli spaces of sheaves on Fano threefolds and K3 surfaces of genus $9$
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3680
%G en
%F AIF_0__0_0_A160_0
Mattei, Dominique. Moduli spaces of sheaves on Fano threefolds and K3 surfaces of genus $9$. Annales de l'Institut Fourier, Online first, 41 p.

[1] Barth, Wolf Some properties of stable rank-2 vector bundles on n , Math. Ann., Volume 226 (1977), pp. 125-150 https://eudml.org/doc/162947 | DOI | MR | Zbl

[2] Bayer, Arend; Macrì, Emanuele The space of stability conditions on the local projective plane, Duke Math. J., Volume 160 (2011) no. 2, pp. 263-322 | DOI | MR | Zbl

[3] Bayer, Arend; Macrì, Emanuele MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math., Volume 198 (2014) no. 3, pp. 505-590 | DOI | MR | Zbl

[4] Beauville, Arnaud Systèmes hamiltoniens complètement intégrables associés aux surfaces K3, Problems in the theory of surfaces and their classification (Cortona, 1988) (Symposia Mathematica), Volume 32, Academic Press Inc., 1991, pp. 25-31 | MR | Zbl

[5] Beauville, Arnaud Vector bundles on Fano threefolds and K3 surfaces (2019) | arXiv

[6] Brambilla, Maria C.; Faenzi, Daniele Rank-two stable sheaves with odd determinant on Fano threefolds of genus nine, Math. Z., Volume 275 (2013) no. 1-2, pp. 185-210 | DOI | MR | Zbl

[7] Brambilla, Maria C.; Faenzi, Daniele Vector bundles on Fano threefolds of genus 7 and Brill-Noether loci, Int. J. Math., Volume 25 (2014) no. 3, 1450023, 59 pages | DOI | MR | Zbl

[8] Bridgeland, Tom Stability conditions on triangulated categories, Ann. Math. (2), Volume 166 (2007) no. 2, pp. 317-345 | DOI | MR | Zbl

[9] Bridgeland, Tom Stability conditions on K3 surfaces, Duke Math. J., Volume 141 (2008) no. 2, pp. 241-291 | DOI | MR | Zbl

[10] Căldăraru, Andrei H. Derived categories of twisted sheaves on Calabi–Yau manifolds, Ph. D. Thesis, Cornell University (2000)

[11] Canonaco, Alberto; Stellari, Paolo Twisted Fourier–Mukai functors, Adv. Math., Volume 212 (2007) no. 2, pp. 484-503 | DOI | MR | Zbl

[12] Debarre, Olivier Hyperkähler manifolds (2018) | arXiv

[13] Flapan, Laure; Macrì, Emanuele; O’Grady, Kieran G.; Saccà, Giulia The geometry of antisymplectic involutions. I, Math. Z., Volume 300 (2022) no. 4, pp. 3457-3495 | DOI | MR | Zbl

[14] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR | Zbl

[15] Hartshorne, Robin Stable reflexive sheaves, Math. Ann., Volume 254 (1980), pp. 121-176 https://eudml.org/doc/163486 | DOI | MR | Zbl

[16] Hassett, Brendan; Tschinkel, Yuri Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., Volume 19 (2009) no. 4, pp. 1065-1080 | DOI | MR | Zbl

[17] Hoppe, Hans J. Generischer Spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang 4 auf 4 , Math. Z., Volume 187 (1984) no. 3, pp. 345-360 | DOI | MR | Zbl

[18] Huybrechts, Daniel Fourier–Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, Clarendon Press, 2006, viii+307 pages | DOI | MR | Zbl

[19] Huybrechts, Daniel Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016, xi+485 pages | DOI | MR | Zbl

[20] Huybrechts, Daniel; Lehn, Manfred The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010, xviii+325 pages | DOI | MR | Zbl

[21] Huybrechts, Daniel; Mattei, Dominique The special Brauer group and twisted Picard varieties (2023) | arXiv

[22] Iliev, Atanas; Ranestad, Kristian Geometry of the Lagrangian Grassmannian LG(3,6) with applications to Brill–Noether loci, Mich. Math. J., Volume 53 (2005) no. 2, pp. 383-417 | DOI | MR | Zbl

[23] Iskovskikh, Vasily A.; Prokhorov, Yuri G. Fano varieties, Algebraic geometry V: Fano varieties. Transl. from the Russian by Yu. G. Prokhorov and S. Tregub, Springer, 1999, pp. 1-245 | MR | Zbl

[24] Kuznetsov, Alexander Hyperplane sections and derived categories, Izv. Math., Volume 70 (2006) no. 3, pp. 23-128 | DOI | MR | Zbl

[25] Kuznetsov, Alexander Homological projective duality, Publ. Math., Inst. Hautes Étud. Sci., Volume 105 (2007), pp. 157-220 https://eudml.org/doc/104222 | DOI | Numdam | MR | Zbl

[26] Li, Jun Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differ. Geom., Volume 37 (1993) no. 2, pp. 417-466 | DOI | MR | Zbl

[27] Maciocia, Antony Computing the walls associated to Bridgeland stability conditions on projective surfaces, Asian J. Math., Volume 18 (2014) no. 2, pp. 263-280 | DOI | MR | Zbl

[28] Macrì, Emanuele; Schmidt, Benjamin Lectures on Bridgeland stability, Moduli of curves (Lecture Notes of the Unione Matematica Italiana), Volume 21, Springer, 2017, pp. 139-211 | DOI | MR | Zbl

[29] The Stacks Project Authors Stacks Project, https://stacks.math.columbia.edu, 2018

[30] Yoshioka, Kōta Some examples of Mukai’s reflections on K3 surfaces, J. Reine Angew. Math., Volume 515 (1999), pp. 97-123 | DOI | MR | Zbl

[31] Yoshioka, Kōta Moduli spaces of stable sheaves on abelian surfaces, Math. Ann., Volume 321 (2001) no. 4, pp. 817-884 | DOI | MR | Zbl

[32] Yoshioka, Kōta Moduli spaces of twisted sheaves on a projective variety, Moduli spaces and arithmetic geometry (Advanced Studies in Pure Mathematics), Volume 45, Mathematical Society of Japan, 2006, pp. 1-30 | DOI | MR | Zbl

[33] Yoshioka, Kōta Stability and the Fourier–Mukai transform. II, Compos. Math., Volume 145 (2009) no. 1, pp. 112-142 | DOI | MR | Zbl

Cité par Sources :