[Espaces de modules de faisceaux sur les -variétés de Fano et les surfaces K3 de genre ]
Une -variété de Fano primitive complexe lisse de genre est reliée par dualité projective à une courbe quartique plane . On utilise cette construction pour étudier la restriction de faisceaux de rang stables avec classes de Chern prescrites sur à une surface K3 anticanonique . Varier la variété contenant donne une fibration lagrangienne rationnelle avec fibre générique birationnelle à l’espace de modules de faisceaux sur . De plus, on prouve que cette fibration rationnelle s’étend en une vraie fibration sur un modèle birationnel de .
Dans une dernière partie, on utilise les conditions de stabilité de Bridgeland pour exhiber tous les modèles birationnels -triviaux de , qui consistent en lui-même et . On prouve que ces modèles sont reliés par un flop, et on décrit les cônes positif, mobile et nef de .
A complex smooth prime Fano threefold of genus is related via projective duality to a quartic plane curve . We use this setup to study the restriction of rank stable sheaves with prescribed Chern classes on to an anticanonical surface . Varying the threefold containing gives a rational Lagrangian fibration with generic fibre birational to the moduli space of sheaves on . Moreover, we prove that this rational fibration extends to an actual fibration on a birational model of .
In a last part, we use Bridgeland stability conditions to exhibit all -trivial smooth birational models of , which consist in itself and . We prove that these models are related by a flop, and we describe the positive, movable and nef cones of .
Révisé le :
Accepté le :
Première publication :
Keywords: Moduli spaces of sheaves, K3 surfaces, Fano threefolds, derived categories, Lagrangian fibration, stability conditions
Mots-clés : Espaces de modules de faisceaux, surfaces K3, 3-variétés de Fano, catégories dérivées, fibrations lagrangiennes, conditions de stabilité
Mattei, Dominique 1
@unpublished{AIF_0__0_0_A160_0, author = {Mattei, Dominique}, title = {Moduli spaces of sheaves on {Fano} threefolds and {K3} surfaces of genus $9$}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3680}, language = {en}, note = {Online first}, }
Mattei, Dominique. Moduli spaces of sheaves on Fano threefolds and K3 surfaces of genus $9$. Annales de l'Institut Fourier, Online first, 41 p.
[1] Some properties of stable rank-2 vector bundles on , Math. Ann., Volume 226 (1977), pp. 125-150 https://eudml.org/doc/162947 | DOI | MR | Zbl
[2] The space of stability conditions on the local projective plane, Duke Math. J., Volume 160 (2011) no. 2, pp. 263-322 | DOI | MR | Zbl
[3] MMP for moduli of sheaves on s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math., Volume 198 (2014) no. 3, pp. 505-590 | DOI | MR | Zbl
[4] Systèmes hamiltoniens complètement intégrables associés aux surfaces , Problems in the theory of surfaces and their classification (Cortona, 1988) (Symposia Mathematica), Volume 32, Academic Press Inc., 1991, pp. 25-31 | MR | Zbl
[5] Vector bundles on Fano threefolds and K3 surfaces (2019) | arXiv
[6] Rank-two stable sheaves with odd determinant on Fano threefolds of genus nine, Math. Z., Volume 275 (2013) no. 1-2, pp. 185-210 | DOI | MR | Zbl
[7] Vector bundles on Fano threefolds of genus 7 and Brill-Noether loci, Int. J. Math., Volume 25 (2014) no. 3, 1450023, 59 pages | DOI | MR | Zbl
[8] Stability conditions on triangulated categories, Ann. Math. (2), Volume 166 (2007) no. 2, pp. 317-345 | DOI | MR | Zbl
[9] Stability conditions on surfaces, Duke Math. J., Volume 141 (2008) no. 2, pp. 241-291 | DOI | MR | Zbl
[10] Derived categories of twisted sheaves on Calabi–Yau manifolds, Ph. D. Thesis, Cornell University (2000)
[11] Twisted Fourier–Mukai functors, Adv. Math., Volume 212 (2007) no. 2, pp. 484-503 | DOI | MR | Zbl
[12] Hyperkähler manifolds (2018) | arXiv
[13] The geometry of antisymplectic involutions. I, Math. Z., Volume 300 (2022) no. 4, pp. 3457-3495 | DOI | MR | Zbl
[14] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR | Zbl
[15] Stable reflexive sheaves, Math. Ann., Volume 254 (1980), pp. 121-176 https://eudml.org/doc/163486 | DOI | MR | Zbl
[16] Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., Volume 19 (2009) no. 4, pp. 1065-1080 | DOI | MR | Zbl
[17] Generischer Spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang auf , Math. Z., Volume 187 (1984) no. 3, pp. 345-360 | DOI | MR | Zbl
[18] Fourier–Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, Clarendon Press, 2006, viii+307 pages | DOI | MR | Zbl
[19] Lectures on 3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016, xi+485 pages | DOI | MR | Zbl
[20] The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010, xviii+325 pages | DOI | MR | Zbl
[21] The special Brauer group and twisted Picard varieties (2023) | arXiv
[22] Geometry of the Lagrangian Grassmannian LG(3,6) with applications to Brill–Noether loci, Mich. Math. J., Volume 53 (2005) no. 2, pp. 383-417 | DOI | MR | Zbl
[23] Fano varieties, Algebraic geometry V: Fano varieties. Transl. from the Russian by Yu. G. Prokhorov and S. Tregub, Springer, 1999, pp. 1-245 | MR | Zbl
[24] Hyperplane sections and derived categories, Izv. Math., Volume 70 (2006) no. 3, pp. 23-128 | DOI | MR | Zbl
[25] Homological projective duality, Publ. Math., Inst. Hautes Étud. Sci., Volume 105 (2007), pp. 157-220 https://eudml.org/doc/104222 | DOI | Numdam | MR | Zbl
[26] Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differ. Geom., Volume 37 (1993) no. 2, pp. 417-466 | DOI | MR | Zbl
[27] Computing the walls associated to Bridgeland stability conditions on projective surfaces, Asian J. Math., Volume 18 (2014) no. 2, pp. 263-280 | DOI | MR | Zbl
[28] Lectures on Bridgeland stability, Moduli of curves (Lecture Notes of the Unione Matematica Italiana), Volume 21, Springer, 2017, pp. 139-211 | DOI | MR | Zbl
[29] Stacks Project, https://stacks.math.columbia.edu, 2018
[30] Some examples of Mukai’s reflections on surfaces, J. Reine Angew. Math., Volume 515 (1999), pp. 97-123 | DOI | MR | Zbl
[31] Moduli spaces of stable sheaves on abelian surfaces, Math. Ann., Volume 321 (2001) no. 4, pp. 817-884 | DOI | MR | Zbl
[32] Moduli spaces of twisted sheaves on a projective variety, Moduli spaces and arithmetic geometry (Advanced Studies in Pure Mathematics), Volume 45, Mathematical Society of Japan, 2006, pp. 1-30 | DOI | MR | Zbl
[33] Stability and the Fourier–Mukai transform. II, Compos. Math., Volume 145 (2009) no. 1, pp. 112-142 | DOI | MR | Zbl
Cité par Sources :