Nous étudions la structure du groupe de Greenberg–Selmer cyclotomique attaché à un motif d’Artin irréductible général sur et muni d’une -stabilisation ordinaire. Nous prouvons que celui-ci est de torsion sur l’algèbre d’Iwasawa dans une multitude de cas, grâce à des résultats classiques issus de la théorie de la transcendance -adique. Nous exprimons en outre le terme constant de sa série caractéristique à l’aide d’un régulateur -adique et mettons en évidence un phénomène de zéros triviaux. Dans un deuxième temps, nous spécialisons notre étude aux motifs attachés à des formes modulaires classiques de poids 1. À l’aide de la géométrie de la courbe de Hecke en ces points, nous formulons une Conjecture Principale, dont nous prouvons une divisibilité à l’aide d’un théorème de Kato.
We study the structure of the cyclotomic Greenberg–Selmer group attached to a general irreducible Artin motive over and equipped with an ordinary -stabilization. We prove that it is torsion over the Iwasawa algebra in a multitude of cases, thanks to classical results from the theory of -adic transcendence. In addition, we express the constant term of its characteristic series using a -adic regulator and highlight an extra zeros phenomenon. In a second step, we specialize our study to motives attached to classical modular forms of weight 1. Using the geometry of the eigencurve at these points, we formulate a Main Conjecture, whose divisibility we prove using a theorem of Kato.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Théorie d’Iwasawa, Représentations d’Artin, Formes Modulaires, Théorie de la Transcendance $p$-adique
Keywords: Iwasawa Theory, Artin Representations, Modular Forms, $p$-adic Transcendence Theory
Maksoud, Alexandre 1
@unpublished{AIF_0__0_0_A125_0, author = {Maksoud, Alexandre}, title = {Th\'eorie {d{\textquoteright}Iwasawa} des motifs {d{\textquoteright}Artin} et des formes modulaires de poids 1}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3679}, language = {fr}, note = {Online first}, }
Maksoud, Alexandre. Théorie d’Iwasawa des motifs d’Artin et des formes modulaires de poids 1. Annales de l'Institut Fourier, Online first, 60 p.
[1] Distributions -adiques associées aux séries de Hecke, Journées arithmétiques de Bordeaux, 27 mai - 1er juin 1974 (Astérisque), Volume 24-25, Société Mathématique de France, 1975, pp. 119-131 | Numdam | MR | Zbl
[2] On the solutions of analytic equations, Invent. Math., Volume 5 (1968) no. 4, pp. 277-291 | DOI | MR | Zbl
[3] On the eigencurve at classical weight points, Duke Math. J., Volume 165 (2016) no. 2, pp. 245-266 | MR | Zbl
[4] On extra zeros of -adic -functions : the crystalline case, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 65-133 | DOI | MR | Zbl
[5] Algèbre commutative : Chapitres 5 à 7, Springer, 2007
[6] On the units of algebraic number fields, Mathematika, Volume 14 (1967), pp. 121-124 | DOI | MR
[7] Nearly ordinary Galois deformations over arbitrary number fields, J. Inst. Math. Jussieu, Volume 8 (2009) no. 1, pp. 99-177 | DOI | MR | Zbl
[8] Motivic -adic -functions, -functions and arithmetic (Durham, 1989) (London Mathematical Society Lecture Note Series), Volume 153, Cambridge University Press, 1991, pp. 141-172 | DOI | MR | Zbl
[9] Gross-Stark units and -adic iterated integrals attached to modular forms of weight one, Ann. Math. Qué., Volume 40 (2016) no. 2, pp. 325-354 | DOI | MR | Zbl
[10] Formes modulaires et representations -adiques, Séminaire Bourbaki vol. 1968/69 Exposés 347-363, Springer, 1971, pp. 139-172 | DOI | Zbl
[11] Values of abelian -functions at negative integers over totally real fields, Invent. Math., Volume 59 (1980) no. 3, pp. 227-286 | DOI | MR | Zbl
[12] On the local structure of ordinary Hecke algebras at classical weight one points, Automorphic Forms and Galois Representations vol.2 (Durham, 2011) (London Mathematical Society Lecture Note Series), Volume 415, Cambridge University Press, 2014, pp. 1-16
[13] On classical weight one forms in Hida families, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 3, pp. 669-690 | DOI | Numdam | MR | Zbl
[14] Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006) no. 3, pp. 523-580 | DOI | MR | Zbl
[15] On the behavior of -adic -functions at , Invent. Math., Volume 50 (1978/79) no. 1, pp. 91-102 | DOI | MR | Zbl
[16] On the local behaviour of ordinary -adic representations, Ann. Inst. Fourier, Volume 54 (2004) no. 7, pp. 2143-2162 | DOI | MR | Zbl
[17] Iwasawa theory and -adic deformations of motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1994, pp. 193-223 | MR | Zbl
[18] On the structure of certain Galois cohomology groups, Doc. Math. (2006) no. Extra Vol., pp. 335-391 | MR | Zbl
[19] On -adic Artin -functions II, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 227-245 | DOI | MR | Zbl
[20] On the structure of Selmer groups, Elliptic curves, modular forms and Iwasawa theory (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer (2016), pp. 225-252 | DOI | MR | Zbl
[21] Iwasawa theory for Artin representations I, Development of Iwasawa Theory–the Centennial of K. Iwasawa’s Birth, Mathematical Society of Japan (2020)
[22] -adic -series at , J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 28 (1981) no. 3, pp. 979-994 | MR | Zbl
[23] Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986) no. 3, pp. 545-613 | DOI | MR | Zbl
[24] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 2, pp. 231-273 | DOI | Numdam | MR | Zbl
[25] On -extensions of algebraic number fields, Ann. Math. (1973), pp. 246-326 | DOI | Zbl
[26] -adic Hodge theory and values of zeta functions of modular forms, -adic cohomology and arithmetic applications (III) (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | Zbl
[27] Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | DOI | MR | Zbl
[28] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[29] Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, Springer, 1990, xviii+433 pages (with an appendix by Karl Rubin) | DOI | MR
[30] Zur Arithmetik in abelschen Zahlkörpern, J. Reine Angew. Math., Volume 209 (1962), pp. 54-71 | DOI | MR | Zbl
[31] On the conductors of mod Galois representations coming from modular forms, J. Number Theory, Volume 31 (1989) no. 2, pp. 133-141 | DOI | MR | Zbl
[32] On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., Volume 84 (1986) no. 1, pp. 1-48 | DOI | MR | Zbl
[33] Modular forms, Springer, 2006 | MR
[34] Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006, viii+559 pages | Numdam | MR
[35] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008, xvi+825 pages | DOI | MR
[36] Pseudo-représentations, Math. Ann., Volume 306 (1996) no. 1, pp. 257-283 | DOI | MR
[37] Euler system for Galois deformations (Système d’Euler pour les déformations galoisiennes), Ann. Inst. Fourier, Volume 55 (2005) no. 1, pp. 113-146 | DOI | MR | Zbl
[38] On the two-variable Iwasawa main conjecture, Compos. Math., Volume 142 (2006) no. 5, pp. 1157-1200 | DOI | MR | Zbl
[39] Fonctions -adiques des représentations -adiques, Astérisque, 229, Société Mathématique de France, 1995, 198 pages | Numdam | MR
[40] The main conjecture for CM elliptic curves at supersingular primes, Ann. Math., Volume 159 (2004) no. 1, pp. 447-464 | DOI | MR | Zbl
[41] Caractérisation des caractères et pseudo-caractères, J. Algebra, Volume 180 (1996) no. 2, pp. 571-586 | DOI | MR | Zbl
[42] Matrices whose coefficients are linear forms in logarithms, J. Number Theory, Volume 41 (1992) no. 1, pp. 22-47 | DOI | MR | Zbl
[43] The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math., Volume 103 (1991) no. 1, pp. 25-68 | DOI | MR | Zbl
[44] Cohomologie galoisienne, Lecture Notes in Mathematics, 5, Springer, 1994, x+181 pages | DOI | MR
[45] Représentations linéaires des groupes finis, Hermann, 1998, 182 pages (cinquième édition, corrigée et augmentée de nouveaux exercices) | MR
[46] The Iwasawa main conjectures for , Invent. Math., Volume 195 (2014) no. 1, pp. 1-277 | DOI | MR | Zbl
[47] Relations between and Galois cohomology, Invent. Math., Volume 36 (1976), pp. 257-274 | DOI | MR | Zbl
[48] Les conjectures de Stark sur les fonctions d’Artin en , Progress in Mathematics, 47, Birkhäuser, 1984, 143 pages (lecture notes edited by Dominique Bernardi and Norbert Schappacher) | DOI | MR
[49] Non-Archimedean measures connected with Dirichlet series, Mat. Sb., Volume 141 (1976) no. 2, pp. 248-260
[50] Introduction to cyclotomic fields, 83, Springer, 1997 | DOI | MR
[51] On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | DOI | MR | Zbl
[52] The Iwasawa conjecture for totally real fields, Ann. Math., Volume 131 (1990) no. 3, pp. 493-540 | DOI | MR | Zbl
Cité par Sources :