Conformal transformations of Cahen–Wallach spaces
[Transformations conformes d’espaces de Cahen–Wallach]
Annales de l'Institut Fourier, Online first, 41 p.

Nous étudions les transformations conformes d’espaces symétriques lorentziens indécomposables de courbure sectionnelle non constante, appelés espaces de Cahen–Wallach. Lorsqu’un espace de Cahen–Wallach n’est pas conformement plat, ses transformations conformes sont des homothéties. En utilisant cela, nous montrons qu’une transformation conforme d’un espace de Cahen–Wallach qui n’est pas conformement plat est essentielle si et seulement si il a un point fixe. Nous explorons ensuite la possibilité de groupes proprement discontinus de transformations conformes agissant avec un espace d’orbites compact sur un espace de Cahen–Wallach non conformement plat. Nous montrons qu’un tel groupe ne peut centraliser une homothétie essentielle et que pour les espaces de Cahen–Wallach de type imaginaire, un tel groupe doit être contenu dans les isométries.

We study conformal transformations of indecomposable Lorentzian symmetric spaces of non-constant sectional curvature, the so-called Cahen–Wallach spaces. When a Cahen–Wallach space is conformally curved, its conformal transformations are homotheties. Using this we show that a conformal transformation of a conformally curved Cahen–Wallach space is essential if and only if it has a fixed point. Then we explore the possibility of properly discontinuous groups of conformal transformations acting with a compact orbit space on a conformally curved Cahen–Wallach space. We show that any such group cannot centralise an essential homothety and that for Cahen–Wallach spaces of imaginary type, such a group must be contained within the isometries.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3678
Classification : 53C50, 53C18, 53C35, 57S20
Keywords: Lorentzian manifolds, Lorentzian symmetric spaces, conformal geometry, conformal transformations, conformal group actions, cocompact group actions, essential conformal transformations
Mots-clés : Variétés lorentziennes, espaces symétriques lorentziens, géométrie conforme, transformations conformes, actions de groupe conformes, actions de groupe cocompactes, transformations conformes essentielles

Leistner, Thomas 1 ; Teisseire, Stuart 2

1 School of Computer and Mathematical Sciences, University of Adelaide, SA 5005, (Australia)
2 Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)
@unpublished{AIF_0__0_0_A143_0,
     author = {Leistner, Thomas and Teisseire, Stuart},
     title = {Conformal transformations of {Cahen{\textendash}Wallach} spaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3678},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Leistner, Thomas
AU  - Teisseire, Stuart
TI  - Conformal transformations of Cahen–Wallach spaces
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3678
LA  - en
ID  - AIF_0__0_0_A143_0
ER  - 
%0 Unpublished Work
%A Leistner, Thomas
%A Teisseire, Stuart
%T Conformal transformations of Cahen–Wallach spaces
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3678
%G en
%F AIF_0__0_0_A143_0
Leistner, Thomas; Teisseire, Stuart. Conformal transformations of Cahen–Wallach spaces. Annales de l'Institut Fourier, Online first, 41 p.

[1] Alekseevskiĭ, Dmitri V. Groups of conformal transformations of Riemannian spaces, Math. USSR, Sb., Volume 89(131) (1972), pp. 280-296 | DOI | MR | Zbl

[2] Alekseevskiĭ, Dmitri V. Self-similar Lorentzian manifolds, Ann. Global Anal. Geom., Volume 3 (1985) no. 1, pp. 59-84 | DOI | MR | Zbl

[3] Besse, Arthur L. Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 10, Springer, 1987, xii+510 pages | DOI | MR | Zbl

[4] Cahen, Michel Lorentzian symmetric spaces, Bull. Cl. Sci., VI. Sér., Acad. R. Belg., Volume 9 (1998) no. 7-12, pp. 325-330 | MR | Zbl

[5] Cahen, Michel; Kerbrat, Yvan Transformations conformes des espaces symétriques pseudo-riemanniens, C. R. Math. Acad. Sci. Paris, Volume 285 (1977) no. 5, p. A383-A385 | MR | Zbl

[6] Cahen, Michel; Kerbrat, Yvan Champs de vecteurs conformes et transformations conformes des espaces lorentziens symétriques, J. Math. Pures Appl., Volume 57 (1978) no. 2, pp. 99-132 | MR | Zbl

[7] Cahen, Michel; Kerbrat, Yvan Transformations conformes des espaces symétriques pseudo-riemanniens, Ann. Mat. Pura Appl., Volume 132 (1982), pp. 275-289 | DOI | MR | Zbl

[8] Cahen, Michel; Kerbrat, Yvan; Praet, G. Conformational completion of Lorentz symmetric spaces, Lett. Math. Phys., Volume 1 (1975/77) no. 5, pp. 417-422 | DOI | MR | Zbl

[9] Cahen, Michel; Kerbrat, Yvan; Praet, G. Complétions équivariantes conformes d’espaces lorentziens symétriques, Bull. Cl. Sci., V. Sér., Acad. R. Belg., Volume 62 (1976) no. 10, pp. 767-783 | MR | Zbl

[10] Cahen, Michel; Wallach, N. Lorentzian symmetric spaces, Bull. Am. Math. Soc., Volume 79 (1970), pp. 585-591 | DOI | MR | Zbl

[11] Calabi, Eugenio; Markus, Lawrence Relativistic space forms, Ann. Math., Volume 75 (1962), pp. 63-76 | DOI | MR | Zbl

[12] Carrière, Yves Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., Volume 95 (1989) no. 3, pp. 615-628 | DOI | MR | Zbl

[13] Ferrand, Jacqueline The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996) no. 2, pp. 277-291 | DOI | MR | Zbl

[14] Frances, Charles Sur les variétés lorentziennes dont le groupe conforme est essentiel, Math. Ann., Volume 332 (2005) no. 1, pp. 103-119 | DOI | MR | Zbl

[15] Frances, Charles Essential conformal structures in Riemannian and Lorentzian geometry, Recent developments in pseudo-Riemannian geometry (ESI Lectures in Mathematics and Physics), European Mathematical Society, 2008, pp. 231-260 | DOI | MR | Zbl

[16] Frances, Charles About pseudo-Riemannian Lichnerowicz conjecture, Transform. Groups, Volume 20 (2015) no. 4, pp. 1015-1022 | DOI | MR | Zbl

[17] Frances, Charles; Melnick, Karin Conformal actions of nilpotent groups on pseudo-Riemannian manifolds, Duke Math. J., Volume 153 (2010) no. 3, pp. 511-550 | DOI | MR | Zbl

[18] Frances, Charles; Melnick, Karin The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds, J. Reine Angew. Math., Volume 803 (2023), pp. 183-218 | DOI | MR | Zbl

[19] Kath, Ines; Olbrich, Martin Compact quotients of Cahen–Wallach spaces, Mem. Am. Math. Soc., Volume 262 (2019) no. 1264, p. v+84 | DOI | MR | Zbl

[20] Klingler, Bruno Complétude des variétés lorentziennes à courbure constante, Math. Ann., Volume 306 (1996) no. 2, pp. 353-370 | DOI | MR | Zbl

[21] Kühnel, Wolfgang; Rademacher, Hans-Bert Essential conformal fields in pseudo-Riemannian geometry, J. Math. Pures Appl., Volume 74 (1995) no. 5, pp. 453-481 | MR | Zbl

[22] Kühnel, Wolfgang; Rademacher, Hans-Bert Essential conformal fields in pseudo-Riemannian geometry. II, J. Math. Sci., Tokyo, Volume 4 (1997) no. 3, pp. 649-662 | MR | Zbl

[23] Kühnel, Wolfgang; Rademacher, Hans-Bert Conformal transformations of pseudo-Riemannian manifolds, Recent developments in pseudo-Riemannian geometry (ESI Lectures in Mathematics and Physics), European Mathematical Society, 2008, pp. 261-298 | DOI | MR | Zbl

[24] Kuiper, Nicolaas H. On conformally-flat spaces in the large, Ann. Math., Volume 50 (1949), pp. 916-924 | DOI | MR | Zbl

[25] Kulkarni, Ravi S. Proper actions and pseudo-Riemannian space forms, Adv. Math., Volume 40 (1981) no. 1, pp. 10-51 | DOI | MR | Zbl

[26] Leistner, Thomas; Munn, Thomas Completeness of certain compact Lorentzian locally symmetric spaces, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 819-824 | DOI | MR | Zbl

[27] Leistner, Thomas; Schliebner, Daniel Completeness of compact Lorentzian manifolds with abelian holonomy, Math. Ann., Volume 364 (2016) no. 3-4, pp. 1469-1503 | DOI | MR | Zbl

[28] Leistner, Thomas; Teisseire, Stuart Fundamental regions for non-isometric group actions, Geom. Dedicata, Volume 218 (2024) no. 5, 95, 13 pages | DOI | MR | Zbl

[29] Lelong-Ferrand, Jacqueline Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mém. Collect. Octavo (2), Volume 39 (1971) no. 5, pp. 3-44 | MR | Zbl

[30] Lichnerowicz, André Sur les transformations conformes d’une variété riemannienne compacte, C. R. Acad. Sci. Paris, Volume 259 (1964), pp. 697-700 | MR | Zbl

[31] Melnick, Karin Rigidity of transformation groups in differential geometry, Notices Am. Math. Soc., Volume 68 (2021) no. 5, pp. 721-732 | DOI | MR | Zbl

[32] Melnick, Vincent Karinand Pecastaing The conformal group of a compact simply connected Lorentzian manifold, J. Am. Math. Soc., Volume 35 (2021) no. 1, pp. 81-122 | DOI | MR | Zbl

[33] Obata, Morio The conjectures on conformal transformations of Riemannian manifolds, J. Differ. Geom., Volume 6 (1971), pp. 247-258 | MR | Zbl

[34] O’Neill, Barrett Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press Inc., 1983, xiii+468 pages | MR | Zbl

[35] Pecastaing, Vincent Essential conformal actions of PSL(2,R) on real-analytic compact Lorentz manifolds, Geom. Dedicata, Volume 188 (2017), pp. 171-194 | DOI | MR | Zbl

[36] Pecastaing, Vincent Lorentzian manifolds with a conformal action of SL(2,), Comment. Math. Helv., Volume 93 (2018) no. 2, pp. 401-439 | DOI | MR | Zbl

[37] Podoksënov, M. N. A Lorentzian manifold with a one-parameter group of homotheties that has a closed isotropic orbit, Sib. Mat. Zh., Volume 30 (1989) no. 5, pp. 135-137 | DOI | MR | Zbl

[38] Podoksënov, M. N. Conformally homogeneous Lorentzian manifolds. II, Sib. Mat. Zh., Volume 33 (1992) no. 6, pp. 154-161 | DOI | MR | Zbl

[39] Ratcliffe, John G. Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, Springer, 2006, xii+779 pages | DOI | MR | Zbl

[40] Silvester, John R. Determinants of Block Matrices, Math. Gaz., Volume 84 (2000) no. 501, pp. 460-467 http://www.jstor.org/stable/3620776 | DOI

[41] Teisseire, Stuart Conformal Group Actions on Cahen–Wallach Spaces, Master thesis, University of Adelaide, School of Mathematical Sciences (2021) (http://hdl.handle.net/2440/131752)

[42] Teschl, Gerald Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, 140, American Mathematical Society, 2012, xii+356 pages | DOI | MR | Zbl

Cité par Sources :