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CONFORMAL TRANSFORMATIONS OF
CAHEN–WALLACH SPACES

by Thomas LEISTNER & Stuart TEISSEIRE (*)

Abstract. — We study conformal transformations of indecomposable Lorent-
zian symmetric spaces of non-constant sectional curvature, the so-called Cahen–
Wallach spaces. When a Cahen–Wallach space is conformally curved, its conformal
transformations are homotheties. Using this we show that a conformal transfor-
mation of a conformally curved Cahen–Wallach space is essential if and only if it
has a fixed point. Then we explore the possibility of properly discontinuous groups
of conformal transformations acting with a compact orbit space on a conformally
curved Cahen–Wallach space. We show that any such group cannot centralise an
essential homothety and that for Cahen–Wallach spaces of imaginary type, such a
group must be contained within the isometries.

Résumé. — Nous étudions les transformations conformes d’espaces symétriques
lorentziens indécomposables de courbure sectionnelle non constante, appelés es-
paces de Cahen–Wallach. Lorsqu’un espace de Cahen–Wallach n’est pas conforme-
ment plat, ses transformations conformes sont des homothéties. En utilisant cela,
nous montrons qu’une transformation conforme d’un espace de Cahen–Wallach
qui n’est pas conformement plat est essentielle si et seulement si il a un point fixe.
Nous explorons ensuite la possibilité de groupes proprement discontinus de trans-
formations conformes agissant avec un espace d’orbites compact sur un espace de
Cahen–Wallach non conformement plat. Nous montrons qu’un tel groupe ne peut
centraliser une homothétie essentielle et que pour les espaces de Cahen–Wallach
de type imaginaire, un tel groupe doit être contenu dans les isométries.

1. Introduction

It is a remarkable feature of Lorentzian geometry that indecomposable
Lorentzian symmetric spaces either have constant sectional curvature or are
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universally covered by a Cahen–Wallach space, [4, 10]. A Cahen–Wallach
space is a Lorentzian manifold (Rn+2, gS) with n ⩾ 1 and Lorentzian metric

(1.1)
gS = 2 dv dt+ Sijx

ixj (dt)2 + δij dxi dxj

= 2 dv dt+ x⊤Sx(dt)2 + dx⊤dx,

where (t, x1, . . . , xn, v) = (t,x, v) are coordinates on Rn+2 and S = (Sij)
is a symmetric (n×n)-matrix with non-zero determinant (using Einstein’s
summation convention). Whereas the constant sectional curvature spaces
are Einstein and conformally flat, the Cahen–Wallach spaces in general
are neither Einstein nor conformally flat. Motivated by the Clifford–Klein
program, one may ask which compact manifolds arise as compact quotients
of an indecomposable Lorentzian symmetric space by a group of isometries.
For the constant curvature spaces, Calabi and Markus [11] have shown
that a group that acts properly discontinuously on de Sitter space must be
finite and hence cannot produce a compact quotient. Moreover, Kulkarni
has shown [25] that the universal cover of anti-de Sitter space admits a
compact quotient if and only if its dimension is odd. For Cahen–Wallach
spaces this question only recently has been studied by Kath and Olbrich
in [19], who gave arithmetic criteria for Cahen–Wallach spaces to admit a
compact quotient by a properly discontinuously acting group of isometries.
Together with the completeness results in [12, 20, 26, 27] this paves the way
for a classification of Lorentzian compact locally symmetric spaces. Note
that for Cahen–Wallach spaces examples of compact quotients by isometries
exist and were given in [19], see also our Examples 4.11 and 4.12.

One may extend such questions to conformal structures, i.e. to manifolds
equipped with an equivalence class of conformally equivalent metrics. For
example, one may consider the conformal class of a Cahen–Wallach metric
and ask for groups of conformal transformation that yield interesting and
perhaps compact quotients. The resulting manifold would be equipped with
a conformal structure that is locally conformally equivalent to a Cahen–
Wallach metric. The local conformal geometry of Cahen–Wallach spaces,
and more generally pseudo-Riemannian symmetric spaces, in particular
their Killing vector fields, have been studied in papers by Cahen and Ker-
brat [5, 6, 7, 8, 9]. Questions about the global conformal geometry, and in
particular the existence of compact conformal quotients, to our knowledge
have not been considered in the literature, and in this paper we are going
to address some of these questions.

For our first result, we follow the convention in [19] and say that a Cahen–
Wallach space is of imaginary type if S is negative definite.
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CONFORMAL TRANSFORMATIONS OF CAHEN–WALLACH SPACES 3

Theorem 1.1. — Let (Rn+2, gS) be a conformally curved
Cahen–Wallach space of imaginary type and Γ a subgroup of its conformal
group. If Γ acts properly discontinuously and with compact orbit space
M = Rn+2/Γ, then Γ is a group of isometries. Consequently, M with the
metric induced from gS is locally isometric to (Rn+2, gS) and its conformal
group is equal to its isometry group.

Consequently, the question about compact conformal quotients of Cahen–
Wallach spaces of imaginary type is reduced to the case of compact isomet-
ric quotients and the results in [19]. Our proof of Theorem 1.1 relies on
an analysis of the group of conformal transformations of a Cahen–Wallach
space. First, it is straightforward to show that a Cahen–Wallach metric gS
is conformally flat (i.e. with vanishing Weyl tensor) if and only if the ma-
trix S is a scalar matrix, see Proposition 3.1. Since Cahen–Wallach spaces
are locally symmetric, a result in [7, Proposition 2.1] implies that the con-
formal group of a conformally curved Cahen–Wallach space is equal to its
homothety group. This implies in particular, that for compact quotients
by a group of isometries, the conformal group is equal to the isometry
group, see Corollary 2.4. The homothety group of a Cahen–Wallach space
is equal to Isom(Rn+2, gS) ⋊ R, and the isometry group Isom(Rn+2, gS) is
well-known [10, 19] to be isomorphic to

Hein⋊
(
Euc(1) × CO(n)(S)

)
,

where Hein is the 2n+ 1-dimensional Heisenberg group, Euc(1) = R⋊Z2
is the Euclidean group in one dimension, and CO(n)(S) is the centraliser
of the matrix S in O(n). For details about the group structure and the
result, see Section 3.2 and Corollary 3.10. Explicitly, each homothety ϕ of
(Rn+2, gS) is given by

(1.2)

 t

x

v

 ϕ7−→

 ϵ t+ c

esAx + β(t)
ϵ
(
e2sv + b− ⟨β̇(t), esAx + 1

2β(t)⟩
)
 ,

where (c, ϵ) ∈ R × {±1} = Euc(1), A ∈ CO(n)(S), b ∈ R, β : R →
Rn is a solution to β̈ = Sβ, and ⟨ · , ·⟩ is the standard Euclidean inner
product on Rn. For Cahen–Wallach spaces of imaginary type the solutions
to β̈ = Sβ are given by rotating the initial conditions. As a consequence,
the boundedness of the solutions will yield the result in Theorem 1.1. For
Cahen–Wallach spaces that are not of imaginary type (i.e. when S has at
least one positive eigenvalue), the solutions to β̈ = Sβ are not necessarily
bounded. Hence, the method of our proof does not immediately apply,
and we are not able to answer the question of whether there are properly
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4 Thomas LEISTNER & Stuart TEISSEIRE

discontinuous groups of homotheties acting with a compact orbit space. In
Section 4.3 we illustrate the difficulties that arise when trying to construct
an example of such group.

A motivation for studying conformal transformations of Cahen–Wallach
spaces also comes from rigidity questions in conformal geometry, namely
the question for which conformal manifolds the group of conformal trans-
formations is essential, i.e. not contained in the isometry group of a metric
in the conformal class. Of course, by definition, the group of conformal
transformations of a semi-Riemannian manifold is larger than the group of
isometries, however, examples of manifolds with essential conformal trans-
formations are relatively rare. In fact, for Riemannian manifolds, Ferrand
[29] and Obata [33] showed that a compact Riemannian manifold with es-
sential conformal transformations must be conformally diffeomorphic to
the round sphere. More surprisingly, any non-compact Riemannian mani-
fold with essential conformal transformations must be conformally diffeo-
morphic to Euclidean space, [13]. These results confirmed the Lichnerowicz
conjecture, [30]. The conjecture can be extended to conformal structures
of indefinite metrics, however already in Lorentzian signature it turns out
to be false: there are many non compact Lorentzian manifolds that are
not conformally flat but which have essential conformal transformations
[2, 21, 22, 37, 38], and Cahen–Wallach spaces are amongst them. In Sec-
tion 3.3 we determine which conformal transformations of a conformally
curved Cahen–Wallach space are essential.

Theorem 1.2. — Let ϕ be a homothety of a Cahen–Wallach space that
is not an isometry. Then the following are equivalent:

(1) ϕ is essential;
(2) ϕ has a fixed point;
(3) in equation (1.2) for ϕ it is ϵ = −1 or c = 0.

In particular, when the Cahen–Wallach space is not conformally flat, then
every essential conformal transformation is given by a homothety with the
above properties.

Returning to the compact case in the Lichnerowicz conjecture for indef-
inite metrics, in [14] Frances constructed examples of compact Lorentzian
manifolds with essential conformal transformations that are not confor-
mally diffeomorphic to the flat model of constant curvature, however, all
of the examples constructed by Frances are conformally flat, i.e. have
vanishing Weyl tensor. This leads to the generalised pseudo-Riemannian
Lichnerowicz conjecture: any compact pseudo-Riemannian manifold with
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CONFORMAL TRANSFORMATIONS OF CAHEN–WALLACH SPACES 5

essential conformal transformations must have vanishing Weyl tensor.
Again Frances constructed counterexamples in all but Lorentzian signa-
ture [16], which leaves us with the Lorentzian Lichnerowicz conjecture: any
compact Lorentzian manifold with essential conformal transformations is
conformally flat. This conjecture remains unproven in general, although
substantial progress has been made [17, 31, 35, 36] and it has recently has
been proved for compact real analytic manifolds that are simply connected
[32] or of dimension three [18].

The counterexamples constructed by Frances [16] in signatures beyond
Lorentzian signature start with a locally symmetric space in signature
(2 + p, 2 + q) which admits a group of homotheties that acts with com-
pact quotient and centralises an essential homothety, which then descends
to the compact quotient manifold. These examples are a motivation for
our results in Section 4.2. Here we study whether, for a given essential
homothety ϕ of a Cahen–Wallach space, there is a group Γ of conformal
transformations that acts properly discontinuously and cocompactly, and
such that ϕ is in the centraliser of Γ. In this case, ϕ would descend to an
essential conformal transformation of the compact conformal manifold M .
We will show however, that this is not possible.

Theorem 1.3. — For a conformally curved Cahen–Wallach space, a
group of conformal transformations that centralises an essential homothety
cannot act properly discontinuously and cocompactly.

This does not entirely exclude the possibility of compact conformal quo-
tients of Cahen–Wallach spaces with essential conformal transformation.
We believe however, that no such quotient exists.

The structure of the paper is as follows: in Section 2 we recall some
basic notations and facts from conformal geometry including a short sec-
tion about group actions; in Section 3 we give a criterion for conformal
flatness, describe the isometries, homotheties and conformal transforma-
tions of Cahen–Wallach spaces and prove Theorem 1.2; Section 4 contains
the proofs of the non-existence results in Theorems 1.1 and 1.3. The article
concludes with a few examples that illustrate the obstacles for constructing
compact conformal quotients.
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2. Preliminaries on conformal geometry

2.1. Curvature conventions and conformal rescalings

Let (M, g) be a semi-Riemannian manifold of dimension m and ∇ the
Levi-Civita connection. Our convention for the curvature tensors are as
follows: the Riemannian curvature as a 2-form with values in so(TM, g),
or equivalently as a (1, 3)-tensor, is defined as

R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ],

and the (0, 4)-curvature tensor as

R(X,Y, Z, V ) = g(R(X,Y )V,Z).

The Ricci-tensor is the trace of the (1, 3)-curvature tensor

Ric(Y,Z) = tr(X 7−→ R(X,Y )Z).

We denote the corresponding endomorphism also by Ric and and the scalar
curvature scal as its trace. Moreover, we define the Schouten tensor P by

Ric = (m− 2)P + scal
2(m− 1)g,

and the (0, 4)-Weyl tensor as

W (X,Y, Z, V ) = R(X,Y, Z, V ) − g ? P,

where ? is the Kulkarni–Nomizu product of two symmetric bilinear forms
defined as

A?B(X,Y, Z, V ) = A(X,Z)B(Y, V ) +B(X,Z)A(Y, V )
−A(X,V )B(Y,Z) +B(X,V )A(Y, Z),

that produces a (0, 4)-tensor with the same symmetries as the Riemannian
curvature tensor. We define the (1, 3)-Weyl tensor by

g(W (X,Y )Z, V ) = W (X,Y, Z, V ).

We say that g is Weyl-flat if the Weyl tensor of g vanishes.
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CONFORMAL TRANSFORMATIONS OF CAHEN–WALLACH SPACES 7

If ĝ = e2fg is a conformally equivalent metric to g, where f is a smooth
function on M , then the Levi-Civita connection, the (0, 4)-curvature tensor,
and the Ricci and scalar curvatures change as follows, see [3, Section 1.J],

(2.1)

∇̂XY = ∇XY + df(X)Y + df(Y )X − g(X,Y )∇f,

e−2f R̂ = R− g ?
(

∇df − (df)2 + 1
2g(∇f,∇f)g

)
,

R̂ic = Ric−(m−2)
(
∇df−(df)2)+(∆f−(m−2)g(∇f,∇f)) g,

e2f ŝcal = scal + (m− 1) (2∆f − (m− 2)g(∇f,∇f)) ,

whereas the (1, 3)-Weyl tensor is conformally invariant. Here ∇f and ∆f
are the gradient and the Laplacian of f , both with respect to g. We observe
the following useful relation.

Lemma 2.1. — If g and ĝ = e2fg both have vanishing scalar curvature,
then

e−2f R̂ = R+ 1
m− 2g ?

(
R̂ic − Ric

)
.

2.2. Homotheties, conformal and essential conformal
transformations

A conformal diffeomorphism between semi-Riemannian manifolds (M, g)
and (M̂, ĝ) is a diffeomorphism ϕ : M → M̂ for which there is a smooth
function f on M such that

ϕ∗ĝ = e2fg.

A conformal diffeomorphism for which f is constant is called a homothety.
We call a homothety strict if it is not an isometry. We denote by Conf(M, g)
the conformal transformations of (M, g), i.e. the conformal diffeomorphisms
from (M, g) to itself, by Homoth(M, g) the homotheties of (M, g), and by
Isom(M, g) the isometries of (M, g).

We say that (M, g) is conformally flat if each point admits a local con-
formal diffeomorphism from a neighbourhood into a flat semi-Riemannian
manifold. If there is a global conformal diffeomorphism from M to a flat
semi-Riemannian manifold, we say that (M, g) globally conformally flat.
All manifolds of dimension 2 are conformally flat. In dimension 3, (M, g)
is conformally flat if and only if the Cotton tensor A of g vanishes, which
is defined as

A(X,Y, Z) = ∇Y P(Z,X) − ∇ZP(Y,X).

TOME 0 (0), FASCICULE 0
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When dim(M) ⩾ 4, (M, g) is conformally flat if and only if g is Weyl-
flat. Moreover, if two metrics g and ĝ on M are conformally equivalent,
i.e. ĝ = e2fg, then the identity transformation is a conformal diffeomor-
phism between (M, g) and (M, ĝ).

Let (M, g) be a semi-Riemannian manifold. The map Homoth(M, g) → R
that sends a homothety ϕ with ϕ∗g = e2sg to s is a group homomorphism
with kernel Isom(M, g). Hence we have that

Homoth(M, g) = Isom(M, g) ⋊H,

for some subgroup H of R. Further, if for each s ∈ R, there is a hs such that
h∗
sg = e2sg, then Homoth(M, g) = Isom(M, g) ⋊ R. An important result

for our purposes is the following:

Theorem 2.2 (Cahen & Kerbrat [7, Proposition 2.1]). — Let (M, g) be
a connected semi-Riemannian manifold of dimension m ⩾ 4 with parallel
Weyl tensor, ∇W = 0. Let U ⊂ M be open and ϕ : U → ϕ(U) ⊂ M be
a conformal diffeomorphism. Then ϕ is a homothety or the Weyl tensor is
identically zero.

Since ∇R = 0 implies that ∇W = 0, we obtain:

Corollary 2.3. — Let (M, g) be a connected, locally symmetric, semi-
Riemannian manifold of dimension m ⩾ 4. Let U ⊂ M be open, and let
ϕ : U → ϕ(U) ⊂ M be a conformal diffeomorphism. Then ϕ is a homothety,
or the Weyl tensor is identically zero.

If ϕ is a homothety with ϕ∗g = e2sg, the volume form ν of a semi-
Riemannian manifold satisfies that ϕ∗ν = emsν. Hence, compact semi-
Riemannian manifolds cannot have any strict homotheties (see for example
[2]). This yields another result, which we could not find in the literature.

Corollary 2.4. — Let (M, g) be a connected, compact and locally
symmetric semi-Riemannian manifold of dimension m ⩾ 4. Then the con-
formal group is equal to its isometry group.

A conformal transformation ϕ on a semi-Riemannian manifold (M, g) is
called essential if there is no conformally equivalent metric onM for which ϕ
is an isometry. Similarly, the conformal group Conf(M, g) is called essential
if there is no conformally equivalent metric ĝ on M for which Conf(M, g) is
contained in the isometries of (M, ĝ). Clearly, if (M, g) admits an essential
conformal transformation, then its conformal group is essential, however the
converse, that an essential conformal group contains an essential conformal
transformation, is not obvious. For Riemannian conformal structures this
implication follows from the confirmed Lichnerowicz conjecture [13, 29, 33].

ANNALES DE L’INSTITUT FOURIER
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For homotheties, there is a sufficient condition for being essential.

Proposition 2.5. — Let (M, g) be a semi-Riemannian manifold and
let ϕ be a strict homothety with a finite orbit point p, i.e. for some k > 0,
ϕk(p) = p. Then ϕ is essential. In particular, a strict homothety with a
fixed point is essential.

Proof. — Let ϕ∗g = e2sg for s ∈ R. Assume ϕk(p) = p for p ∈ M and
that ϕ is not essential: let f be a smooth function on M such that ϕ is an
isometry of e2fg. Then we evaluate at p,

(e2fg)|p = (ϕk)∗(e2fg)|p = e2f◦ϕk

(p)((ϕk)∗g)|p
= e2kse2f(p)g|p = e2ks(e2fg)|p.

But this implies s = 0, and so ϕ is an isometry. □

We will see in Theorem 3.14 that for Cahen–Wallach spaces also the
converse holds, so that the essential homotheties are exactly those with a
fixed point.

Remark 2.6. — In [2, Theorem 2.1] the converse of Proposition 2.5 is
claimed for causal Lorentzian manifolds, i.e. that every fixed point free
homothety of a causal Lorentzian manifold is inessential. This relied on
a claim in [1], the proof of which has a gap. An example of an essential
homothety without fixed point on a causal Lorentzian manifold is easily
constructed.

2.3. Properly discontinuous cocompact and conformal group
actions

Let Γ be a group of diffeomorphisms acting on a smooth manifold M .
The group action is properly discontinuous if it satisfies the following two
conditions
(PD1) For each point x ∈ M , there is a neighbourhood U of x such that

if γU meets U , i.e. γU ∩ U ̸= ∅ for γ ∈ Γ, then γ = e, where e is
the identity element.

(PD2) For all pairs of points x, y ∈ M in different orbits, there are neigh-
bourhoods U of x, and V of y, such that for all γ ∈ Γ, γU and V

are disjoint, i.e. γU ∩ V = ∅.
Clearly, (PD1) implies that Γ acts freely, that is, its elements act without
fixed points. If a group Γ acts properly discontinuously on a manifold M ,
then there is a unique smooth manifold structure on the orbit space M/Γ
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and π : M → M/Γ is a covering map, see for example [34, Proposition 7 in
Chapter 7].

If a group Γ acts by diffeomorphisms on M such that the orbit space
M/Γ is compact we say that Γ acts cocompactly. If a group Γ acts by
diffeomorphisms on M and admits a fundamental region with compact
closure, then M/Γ is compact. The converse is not true in general in the
sense that a Γ acting on M can have a compact orbit space but admits
fundamental domains with non-compact closures. For metric spaces the
converse holds if the fundamental region is assumed to be locally finite
[39, Chapter 6]. In [28, 41] we prove a converse that holds also for non-
isometric (in the metric space sense) group actions, but requires a stronger
assumption on the fundamental region. Although this notion may shorten
some of our proofs here, we will not use it in the following for the sake of
being self-contained.

Now let (M̃, g̃) be a semi Riemannian manifold and Γ a group that acts
properly discontinuously on M̃ . If Γ is contained in the isometry group of
(M̃, g̃), then the orbit space M = M̃/Γ is equipped with a unique semi-
Riemannian metric g such that π∗g = g̃, where π : M̃ → M is the covering
map. Similarly, when Γ is a group of conformal transformations, the orbit
space M = M̃/Γ is equipped with a conformal structure c such that π :
M̃ → M is a conformal covering map, that is, π is a covering map and for
each g ∈ c there is a function f ∈ C∞(M̃) such that π∗g = e2f g̃. Note that
the original metric g̃ on M̃ in general is not a lift of a metric in c. This
is only the case if Γ is consists of isometries. For more details and results,
see [41].

3. Conformal transformations of Cahen–Wallach spaces

3.1. Conformal flatness of Cahen–Wallach space

In [4, 10] M. Cahen and N. Wallach have shown that an indecomposable
simply connected Lorentzian symmetric space either has constant curvature
or is isometric to a Cahen–Wallach space, which is defined as a Lorentzian
manifold (Rn+2, gS) with n ⩾ 1 and gS is the metric in (1.1) defined by
a symmetric (n × n)-matrix S = (Sij) with non-zero determinant. The
condition that Sij is invertible is to ensure that (M, g) is indecomposable.
If Sij is not invertible, then the metric gS is a product of Euclidean space
Rk and a Cahen–Wallach space of dimension n+ 2 −k. Some of our results
remain valid when S is not invertible, and we will point out when this is

ANNALES DE L’INSTITUT FOURIER
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the case. Clearly, if S is the zero matrix, gS is just the Minkowski metric.
We call the metric gS a Cahen–Wallach metric, even when it is only defined
on an open subset of Rn+2.

We denote by Σ the spectrum of the matrix S and by Σ± the positive
and negative eigenvalues. A Cahen–Wallach space is of real type if Σ = Σ+
and of imaginary type if Σ = Σ−. Otherwise it is of mixed type, see [19].
Two Cahen–Wallach spaces are isometric if and only if the corresponding
matrices S and Ŝ have the same spectrum with the same multiplicities up
to multiplication by a positive number, so that Σ̂ = aΣ, with a > 0.

For the metric gS , even when S is degenerate, the vector field ∂v =
∂
∂v , and consequently the one-form dt = g(∂v, .), are parallel and null.
Moreover,

(3.1) ∇∂i = xjSij dt⊗ ∂v, ∇∂t = xiSij
(
dxj ⊗ ∂v − dt⊗ ∂j

)
,

where we use Einstein’s summation convention. By slightly abusing nota-
tion, we define the symmetric bilinear form S = Sijdxidxj on M , so that
the curvature of gS is given as

(3.2) R = −S ? (dt)2,

and consequently ∇R = 0, and the Ricci curvature is

(3.3) Ric = −tr(S)(dt)2,

where tr(S) is the trace of the matrix S. Hence, gS has vanishing scalar
curvature and Weyl tensor

(3.4) W = −S ? (dt)2 + tr(S)
n

gS ? (dt)2 =
(

tr(S)
n

I − S

)
? dt2,

where we define I = δij dxi dxj and use that

gS ? (dt)2 = I ? (dt)2.

This yields the following result:

Proposition 3.1. — The metric gS is conformally flat if and only if S
is a scalar matrix.

Note that this result includes the case of dimension 3, i.e. when n = 1:
since the Ricci tensor is parallel, the Cotton tensor of a Cahen–Wallach
metric always vanishes. It also implies that in each dimension there are
exactly two non-isometric Weyl-flat Cahen–Wallach spaces, namely those
with S = ±1, where 1 is the identity matrix of n dimensions. We denote
their metrics by g±. Since g± are conformally flat, every local conformal
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transformation is given, via conjugation with the local conformal diffeomor-
phism to R1,n+1, by a local conformal transformation of Minkowski space,
that is, by the composition of a similarity and a local inversion of R1,n+1.

Due to Kuiper’s result about the conformal development map [24], see
also [23] for a survey, a conformally flat Cahen–Wallach space (Rn+2, g±)
embeds into the conformally flat model space, the Einstein universe S1 ×
Sn+1 with conformal class defined by the product metric −dθ2 + gSn+1 ,
which has the conformal group PO(2, n+ 2), see [15] for a survey. Hence,
the Lie algebra of conformal vector fields of a conformally flat Cahen–
Wallach space (Rn+2, g±) has maximal dimension, that is 1

2 (n+ 4)(n+ 3).
An explicit basis for the Lie algebra of conformal vector fields was given in
[6, Proposition 4.4].

Since our focus is on the conformally curved case, we will not study
the conformal group of (Rn+2, g±) further, we will only make a few more
comments on the difference between the real and the imaginary case. In
terms of global rescaling to a flat metric we have:

Proposition 3.2. — Let (Rn+2, g±) be the conformally flat Cahen–
Wallach spaces of dimension n + 2. Then any conformal rescaling to a
Ricci-flat metric is a rescaling to a flat metric and

(1) the metric g0 = e2tg+ on Rn+2 is flat;
(2) there is no global rescaling f ∈ C∞(Rn+2) such that e2fg− is flat.

Proof. — With S = ϵI, with ϵ = ±1, the curvature of gϵ is

R = −ϵ I ? (dt)2 = −ϵ gS ? (dt)2.

Now assume that f is a rescaling to a Ricci-flat metric ĝ = e2fgϵ. Both
metrics have vanishing scalar curvature, so Lemma 2.1 and equations (3.2)
and (3.3) yield

e−2f R̂ = R− 1
n
gS ? Ric =

(
−ϵ+ tr(S)

n

)
gS ? (dt)2 = 0,

as tr(S) = nϵ. Hence, ĝ is not only Ricci-flat, but also flat.
By equations (2.1), a conformal rescaling f to a Ricci-flat metric satisfies

2∆f = ng(∇f,∇f) and hence is a solution to

(3.5) 0 = ϵ(dt)2 +
(
∇df − (df)2)+ 1

2g(∇f,∇f)g.

If ϵ = 1, then a solution to this equation is f = t. Indeed, df = dt, and
hence ∇df = 0 and g(∇f,∇f) = 0.

Now assume that ϵ = −1 and that f ∈ C∞(M) is a global solution
to equation (3.5). We consider the function h(t) = f(t, 0, . . . , 0) which is
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defined on R. Evaluating the equation in the ∂t direction and only along
(t, 0, . . . , 0) yields

0 = −1 + ∂2
t f − xi∂if − (∂tf)2 − ∥x∥2

2 g(∇f,∇f) = −1 + ∂2
t f − (∂tf)2,

which shows that h satisfies the ODE

ḧ = ḣ2 + 1.

Its derivative y = ḣ ∈ C∞(R) satisfies the first order separable equation

ẏ = y2 + 1.

Since
∫ 1
y2+1 dy = arctan(x) is bounded, the maximal domain of the solu-

tions y is also bounded (see for example [42, p. 9]), which contradicts the
assumption. □

In the real type case this proposition shows that g+ is globally confor-
mally equivalent to a flat Lorentzian metric ĝ on Rn+2. We will see that
this flat metric is in fact a geodesically incomplete Lorentzian metric. For
this, use (2.1) and (3.1) to show that the vector fields

∂v, Yi := e−t (∂i + xi∂v
)
,

and
Z := e−2t∂t − e−txkYk = e−2t (∂t − xk∂k − ∥x∥2∂v

)
on Rn+2 are parallel for ∇̂ and satisfy

ĝ(∂v, ∂v) = ĝ(∂v, Yi) = ĝ(Yi, Z) = ĝ(Z,Z) = 0,

as well as
ĝ(∂v, Z) = 1, ĝ(Yi, Yj) = δij .

Observe now that the vector field Z is not complete. For example, its
maximal integral curve through the origin is given as

γ(s) =

t(s) = 1
2 ln(2s+ 1)

0
0

 .

Since Z is parallel, this is also a maximal geodesic for ĝ, which consequently
is a geodesically incomplete flat Lorentzian metric on Rn+2.

We will find an explicit conformal transformation between (Rn+2, g+)
and an open set in Minkowski space R1,n+1. Since ∂v, Yi and Z are parallel,
their metric duals are closed 1-forms and we can find a diffeomorphism

ϕ =

u

yi

z
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of Rn+2 by integrating the equations

du = ĝ(∂v, .) = e2tdt,

dyi = ĝ(Yi, .) = et dxi + etxi dt,

dz = ĝ(Z, .) = dv − xk dxk.

A solution that yields a diffeomeorphism ϕ : Rn+2 → {u > 0} ⊂ R1,n+1 is
given by

u = e2t

2 , yi = etxi, z = v − ∥x∥2

2 .

Hence we arrive at:

Proposition 3.3. — Let (Rn+2, g+) be the Weyl-flat Cahen–Wallach
space of real type and let (M, g0) be the Minkowski half space,

M = {(u, y1, . . . , yn, z) ∈ Rn+2 | u > 0}, g0 = 2dudz + δijdyidyj .

Then ϕ defined by

Rn+2 ∋

 t

x

v

 ϕ7−→

 u = e2t

2
y = etx

z = v − ∥x∥2

2

 ∈ M

is a global conformal diffeomorphism between (Rn+2, g+) and (M, g0) with
ϕ∗g0 = e2tg+.

Remark 3.4. — Note that the inverse of ϕ isuy
z

 ϕ−1

7−→


t = 1

2 ln(2u)
x = y√

2u

v = z + ∥y∥2

4u

 ,

so that (ϕ−1)∗g+ = 1
2ug0. Under conjugation by ϕ, the isometries of

(Rn+2, g+) that are given by a translation in the t-component by c (see
next section),  t

x

v

 7−→

t+ c

x

v

 ,

are mapped to strict homotheties of (M, g0) of the formuy
z

 7−→

e2cu

ecy
z

 ,
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whereas the isometry of g+, t

x

v

 7−→

−t
x

−v

 ,

is mapped to the non-homothetic conformal transformation of g0 given byuy
z

 η7−→


1

4u
y
2u

−z − ∥y∥2

2u

 ,

that satisfies η∗g0 = 1
4u2 g0.

In the imaginary case, only local rescalings to a flat metric ĝ exist, for
example,

ĝ = 1
cos2(t) g−.

Similarly to the real case, one can show that the parallel vector fields of ĝ
on {t ̸= (2k+1)π

2 } are

∂v, Yi = cos(t) ∂i + xi sin(t) ∂v,

and
Z = cos2(t)∂t − xi sin(t)Yi + ∥x∥2

2 ∂v

= cos2(t)∂t − xi

2 sin(2t)∂i + ∥x∥2

2 cos(2t)∂v.

Note that now the integral curves of Z through the origin are given by

γ(s) =

arctan(s)
0
0


and hence are defined for all s. As before, for finding a diffeomeorphism
ϕ = (u, yi, z) we can integrate the equations

du = ĝ(∂v, .) = 1
cos2(t)dt,

dyi = ĝ(Yi, .) = 1
cos(t)dxi + tan(t)

cos(t) x
idt,

dz = ĝ(Z, .) = dv − xk tan(t)dxk − ∥x∥2

2 cos2(t)dt

and get a diffeomeorphism ϕ : {−π
2 < t < π

2 } → R1,n+1, given by

u = tan(t), yi = xi

cos(t) , z = v − ∥x∥2

2 tan(t).
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Indeed, for the Minkowski metric g0 = 2dudz +
∑n
i=1(dyi)2 on R1,n+1, we

have that

ϕ∗g0 = 1
cos2(t)g−.

3.2. Isometries, homotheties and conformal transformations

In this section we are going to determine the homothety group of a
Cahen–Wallach space, and consequently by virtue of Corollary 2.3, in the
conformally curved case also its conformal group. First we describe its
isometry group, which is well-known since [10], see also [19].

Let (Rn+2, gS) be a Cahen–Wallach space defined by the matrix S, which,
for the moment, is not assumed to be invertible. We denote by CO(n)(S)
the orthogonal matrices commuting with S and by VS the 2n-dimensional
solution space of the ODE system β̈ = Sβ,

VS := {β : R −→ Rn | β̈ = Sβ}.

It is straightforward to check that the following diffeomorphisms are isome-
tries of gS ,

(3.6) ψ = ψc,ϵ,b,β,A :

 t

x

v

 7−→

 ϵ t+ c

Ax + β(t)
ϵ
(
v + b− ⟨β̇(t), Ax + 1

2β(t)⟩
)
 ,

where c ∈ R, ϵ ∈ {±1}, A ∈ CO(n)(S), b ∈ R, β ∈ VS and ⟨., .⟩ is the
standard Euclidean inner product on Rn. Moreover, when S is invertible,
using the fact that an isometry preserves the parallel null vector field ∂v,
one can show that every isometry of gS is of this form (see [41, Section 4.2]
for an explicit calculation).

In order to describe the group structure of the isometry group we will
identify several subgroups of the isometry group and their relation to each
other. All of these groups come with their natural action on Rn+2 via
formula (3.6).

First note that R × {±1} is a subgroup of the isometries with the group
structure of the Euclidean group of R, Euc(1) = R ⋊ Z2. We denote its
elements by either (c, ϵ) or by Ec,ϵ when we refer to the Euclidean motion
Ec,ϵ(t) = ϵ t+ c of R. Next, note that Euc(1) and CO(n)(S) commute with
each other and that Euc(1)×CO(n)(S) forms a subgroup of Isom(Rn+2, gS),
and we denote its elements by pairs (Ec,ϵ, A).
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Furthermore, also R × VS , with its elements denoted by (b, β), forms a
subgroup with group operation

(b, β) +ω (̂b, β̂) := (b+ b̂+ ω(β, β̂), β + β̂),

where ω is the symplectic form on VS , defined by

ω(β, β̂) := 1
2

(
⟨β(0), ˙̂

β(0)⟩ − ⟨β̇(0), β̂(0)⟩
)
.

Note that the function t 7→ ⟨β(t), ˙̂
β(t)⟩ − ⟨β̇(t), β̂(t)⟩ is actually constant,

so in order to define ω we could have evaluated it at any other t ̸= 0. In
particular, ω satisfies

(3.7) ω(β, β̂ ◦ Ec,ϵ) = ϵω(β ◦ E−1
c,ϵ , β̂), for all Ec,ϵ ∈ Euc(1),

which will turn out to be useful, as well as

(3.8) ω(Aβ,Aβ̂) = ω(β, β̂), for all A ∈ O(n).

This shows that R×VS has the group structure of the (2n+1)-dimensional
Heisenberg group

Hein := R ×ω VS ,

which is the central extension of VS by R.
The subgroup Hein is normal in Isom(Rn+2, gS). In fact, if Ec,ϵ ∈ Euc(1)

and A ∈ CO(n)(S), we have for (b, β) ∈ Hein that

(Ec,ϵ, A)(b, β)(Ec,ϵ, A)−1 = (Ec,ϵ, A)(b, β)(Eϵ,−ϵc, A⊤)
= (ϵb, Aβ ◦ E−ϵc,ϵ) ∈ Hein .

Note that the translations R ⊂ Euc(1) = R ⋉ Z2 act on solutions β ∈
VS ⊂ Hei(n) by a shift β(t) 7→ β(t − c). In the case of a Cahen–Wallach
space of imaginary type, (i.e. when S has only negative eigenvalues), the
shifted solutions are given by rotations of the initial conditions (see the
proof of Lemma 4.5 for details). Hence, in this case R ⊂ Euc(1) acts by
rotations of the elements in VS ⊂ Hei(n). This will be important in the
proof of Theorem 1.1.

Finally, any isometry ψ as in (3.6) is a product of elements from Hein
and Euc(1) × CO(n)(S). Indeed, it is

ψ = ψc,ϵ,b,β,A = Eϵ,c︸︷︷︸
∈Euc(1)

(b, β)︸ ︷︷ ︸
∈Hein

A︸︷︷︸
∈CO(n)(S)

= (ϵb, β ◦ E−ϵc,ϵ)︸ ︷︷ ︸
∈Hein

(Ec,ϵ, A)︸ ︷︷ ︸
∈Euc(1)×CO(n)(S)

.

The reader may have noticed that, in order to keep the notation brief, we
use it quite flexibly: for example by A we refer to ψ0,1,0,0,A, by (Ec,ϵ, A)
to ψc,ϵ,0,0,A, by (b, β) to Ψ0,1,b,β,1, etc., and the group product the is the
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composition when acting on Rn+2. Hence, we have arrived at the well known
fact [10, 19]:

Proposition 3.5. — The isometry group of a Cahen–Wallach space
(Rn+2, gS) is isomorphic to the semidirect product

Hein⋊α
(
Euc(1) × CO(n)(S)

)
,

where Hein is the (2n+1)-dimensional Heisenberg group, Euc(1) = R⋊Z2
is the Euclidean group in one dimension, CO(n)(S) is the centraliser of
the matrix S in O(n), and the homomorphism α : Euc(1) × CO(n)(S) →
Aut(Hein) is defined as

α(c,ϵ,A)(b, β) :=
(
ϵb, Aβ ◦ E−1

c,ϵ

)
.

The isomorphism maps ψc,ϵ,b,β,A in (3.6) to

((ϵb, β ◦ E−ϵc,ϵ), Ec,ϵ, A) ∈ Hein⋊(Euc(1) × CO(n)(S)).

To be very explicit, let us emphasise again that the action of an ele-
ment ((b, β), (Ec,ϵ, A)) of Hein⋊α

(
Euc(1) × CO(n)(S)

)
on Rn+2 is given

via (3.6) as

((b, β), (Ec,ϵ, A)) (t,x, v) = ψ0,1,b,β,1 (ψc,ϵ,0,0,A(t,x, v)) .

Moreover, the explicit formula for the group product in

Hein⋊α
(
Euc(1) × CO(n)(S)

)
is

(3.9)
(

(b, β), (Ec,ϵ, A)
)(

(̂b, β̂), (Eĉ,ϵ̂, Â)
)

=
((

(b, β) +ω αc,ϵ,A(̂b, β̂)
)
,
(
Ec,ϵ ◦ Eĉ,ϵ̂, AÂ

))
=
((

(b+ ϵ̂b+ ω(β,Aβ̂ ◦ E−ϵc,ϵ), β +Aβ̂ ◦ E−ϵc,ϵ

)
, (Ec+ϵĉ,ϵϵ̂, AÂ)

)
,

where (b, β) and (̂b, β̂) are elements from Hein and (Ec,ϵ, A) and (Eĉ,ϵ̂, Â)
from Euc(1) × CO(n)(S). The formula for the inverse is

(3.10)
(

(b, β), (Ec,ϵ, A)
)−1

=
(

(−ϵb,−A⊤β ◦ Ec,ϵ), (E−ϵc,ϵ, A
⊤)
)
.

Remark 3.6. — We should also point out that if S is not invertible, then
the isometry group of gS contains the group Hein⋊α

(
Euc(1) × CO(n)(S)

)
,

but in general is larger, for example when S = 0, in which case gS is the
Minkowski metric.

When S is not zero but has a kernel of dimension k ⩾ 1, the metric gS
is isometric to a product of an indecomposable Cahen–Wallach space of di-
mension n−k+2 and Euclidean space of dimension k. Interestingly, since it
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contains Hein⋊α
(
Euc(1) × CO(n)(S)

)
, the isometry group is larger than

the product of the isometry groups of both manifolds, whose dimension is

dim(CO(n−k)(S)) + 2(n+ 1) + 1
2k(k − 3).

On the other hand, since the centraliser of S in O(n) is CO(n−k)(S)×O(k),
the dimension of Hein⋊α

(
Euc(1) × CO(n)(S)

)
is

dim(CO(n−k)(S)) + 2(n+ 1) + 1
2k(k − 1).

Moreover, observe that if (Rn+2, gS) is conformally flat, then

Isom(Rn+2, gS) = Hein⋊α (Euc(1) × O(n)) ,

and hence the dimension of the isometry group is reduced by n + 1 from
the dimension of the isometry group of Minkowski space R1,n+1, which is
1
2 (n+ 2)(n+ 3).

Remark 3.7. — The transvection group within the isometry group is the
solvable group Hei⋉αR, where R are the translations in Euc(1). The sta-
biliser in Isom(Rn+2, gS) of the origin is given as

LS ⋊α (Z2 × CO(n)(S)),

where
LS := {β ∈ VS | β(0) = 0} ⊂ Hein

is a Lagrangian subspace in VS and hence a subgroup of Hein. Similarly
the stabiliser in the transvections is the abelian group LS and we have

(Rn+2, gS) = (Hei⋉αR)/LS .

Now we turn to the homotheties of (Rn+2, gS). Clearly, for each s ∈ R
the linear map given by the matrix hs := diag(1, es, . . . , es, e2s),

(3.11)

 t

x

v

 hs7−→

 t

esx
e2sv


is a homothety of gS . We call hs a pure homothety. The pure homotheties
are a subgroup in the homotheties which we denote by R. The isometries
are normal in the homotheties and we have that

(3.12) hs ((b, β) · (c, ϵ, A))h−1
s = (e2sb, esβ) · (c, ϵ, A).

In particular, the pure homotheties commute with Euc(1)×CO(n)(S). This
yields
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Proposition 3.8. — The homothety group of a Cahen–Wallach space
is isomorphic to

Hein⋊φ
(
Euc(1) × CO(n)(S) × R

)
,

where φ : Euc(1) × CO(n)(S) × R → Aut(Hein) is defined as

φ(c, ϵ, A, s)(b, β) :=
(
ϵe2sb, esAβ ◦ E−1

c,ϵ

)
.

In the following we will denote

(3.13) HS := Hein⋊φ
(
Euc(1) × CO(n)(S) × R

)
,

and identify it with the the homothety group of the Cahen–Wallach space
(Rn+2, gS). From the proposition it follows that there is a surjective group
homomorphism

HS −→ HS/Hein ≃ Euc(1) × CO(n)(S) × R,

and for a homothety ϕ we denote the image under this projection by

(Eϕ, Aϕ, sϕ) = (cϕ, ϵϕ, Aϕ, sϕ)

which is an element in

Euc(1) × CO(n)(S) × R = (R⋉ Z2) × CO(n)(S) × R.

Remark 3.9. — It was already noted in [2], see also [37, 38], that the
diffeomorphism hs in (3.11) is a homothety for many Lorentzian metrics,
namely those of the form

2dt
(
dv + Pij(t)xidxj +

(
Qij(t)xixj +R(t)v

)
dt
)

+ δijdxidxj ,

including the so-called pp-waves, of which the Cahen–Wallach metrics are
a special case.

In the non Weyl-flat case with n ⩾ 2, the conformal group of (Rn+2, gS),
reduces to the homotheties by Corollary 2.3.

Corollary 3.10. — Let (Rn+2, gS) be a Cahen–Wallach space of di-
mension n+2 ⩾ 4 such that S has at least two different eigenvalues, i.e. gS
is not Weyl-flat. If ϕ : U → ϕ(U) is a conformal transformation on an open
set U , then ϕ is a homothety. In particular,

Conf(Rn+2, gS) = HS = Hein⋊φ
(
Euc(1) × CO(n)(S) × R

)
.

ANNALES DE L’INSTITUT FOURIER



CONFORMAL TRANSFORMATIONS OF CAHEN–WALLACH SPACES 21

3.3. Fixpoints and essential homotheties

In this section, we will prove Theorem 1.2. For this, we detail various
sufficient conditions for a homothety of a Cahen–Wallach space to have a
fixed point and hence be essential. Using this, we will show the converse of
Proposition 2.5. Throughout this section, we denote by ϕ = ϕc,ϵ,b,β,A,s the
homothety
(3.14)

ϕ = ϕc,ϵ,b,β,A,s :

 t

x

v

 7−→

 ϵ t+ c

esAx + β(t)
ϵ
(
e2sv + b− ⟨β̇(t), esAx + 1

2β(t)⟩
)
 ,

and by Eϕ the Euclidean motion Ec,ϵ that maps t to ϵ t+ c.

Proposition 3.11. — A strict homothety ϕ of (Rn+2, gS) has a fixed
point if and only if the Euclidean motion Eϕ of R has a fixed point, i.e. if
and only if ϵ = −1 or c = 0.

Proof. — Recall that Eϕ is defined by Eϕ(t) = ϵ t+ c. If Eϕ has no fixed
point, then ϕ cannot fix any point.

Conversely, let t be a fixed point of Eϕ. Then one can verify that t

−(esA− 1)−1β(t)
−(e2sa− 1)−1a

(
b− ⟨β̇(t),−esA(esA− In)−1β(t) + 1

2β(t)⟩
)


is a fixed point of ϕ. The assumption that ϕ is a strict homothety is crucial
for the inverses of (e2sϵ− 1) and (esA− 1) to exist. □

Lemma 3.12. — Let ϕ be an isometry of (Rn+2, gS) with ϵ = −1. Then
ϕ fixes a point if and only if x 7→ Ax + β( c2 ) fixes a point.

Proof. — Note that c
2 is the unique fixed point of Eϕ = Ec,−1 : t 7→

−t+ c, so if Ax + β( c2 ) does not have a fixed point, then ϕ cannot fix any
point.

Conversely, let y = Ay + β( c2 ). Then one can check that c
2
y

− 1
2
(
b− ⟨β̇( c2 ), Ay + 1

2β( c2 )⟩
)


is a fixed point of ϕ. □

Proposition 3.13. — Let ϕ be a homothety of (Rn+2, gS) with ϕk = id
for some k > 0. Then ϕ fixes a point.
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Proof. — We construct a point y fixed by ϕ. We start with the t compo-
nent of y: If ϵ = 1, then t ◦ ϕk = t+ kc. This can only fix a point for k > 0
if c = 0, so we conclude either c = 0 or ϵ = −1. In either case

t(y) := c

2
is a fixed point of t 7→ ϵ t + c. From this we also get by Proposition 3.11,
that ϕ either has a fixed point or is an isometry. So we assume that ϕ is an
isometry. Define β0 := β( c2 ) and β̇0 := β̇( c2 ).

Next we consider the x component: since ϕk( c2 , 0, 0) = ( c2 , 0, 0) we get
that the Euclidean motion Eβ0,A(x) = Ax + β0 satisfies Ekβ0,A

≡ Id. In
particular,

Ekβ0,A(0) =
k−1∑
i=0

Aiβ0 = 0.

In general any euclidean motion E satisfying Ek(x) = x fixes a point. This
fixed point is given by the centre of mass (in our case, x = 0),

y := 1
k

k∑
i=1

Eiβ0,A(0).

Now when ϵ = −1, Lemma 3.12 gives us a fixed point of ϕ. When ϵ = 1,
to have a fixed point we require that b − ⟨β̇0, Ay + 1

2β0⟩ = 0. But since
ϕ( c2 ,y, .) = ( c2 ,y, . . .), we get

ϕk

 c
2
y

0

 =

 c
2
y

k(b− ⟨β̇0, Ay + 1
2β0⟩)

 =

 c
2
y

0

 .

Hence b − ⟨β̇0, Ay + 1
2β0⟩ = 0, and so any choice of v(y), for example

v(y) := 0 makes ( c2 ,y, 0) a fixed point of ϕ. □

Now we give a characterisation of essential homotheties of Cahen–Wallach
spaces. The non-trivial part of the proof is a special case of the results in
[28, 41], however we will present it here for the sake of completeness.

Theorem 3.14. — A strict homothety ϕ of a Cahen–Wallach space is
essential if and only if it fixes a point.

Proof. — First, if ϕ has a fixed point, then by Proposition 2.5, ϕ is
essential. For the converse, assume that ϕ is essential but without fixed
point. Then by Proposition 3.11, t◦ϕ(x) = t(x)+ c for some c > 0. We will
now construct a function f such that ϕ is an ismometry for the metric e2fg.
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The group ⟨ϕ⟩ admits a fundamental domain D = Rn+1 × (0, c). Let
h : R → R>0 be a smooth function of t such that h|[0,c] ≡ 1 and with
support in (− c

4 ,
5c
4 ). Then define functions {hk}k∈Z on Rn+2 by

h0(t,x, v) = h(t), hk := h0 ◦ ϕ−k,

so that hk = hk+1 ◦ ϕ. Since {supp(hk)}k∈Z is locally finite, the function∑
k∈Z hk is well defined. Since D is a fundamental domain and hk ⩾ 0, the

function
∑
k∈Z hk has no zeros. Hence,

fk := hk∑
k∈Z hk

is a partition of unity on Rn+2 that satisfies fk = fk+1 ◦ ϕ. If ϕ∗g = e2sg,
we set

f := −s
∑
k∈Z

kfk,

which yields that ϕ is an isometry for e2fg as

f ◦ ϕ = −s
∑
k∈Z

kfk−1 = f − s
∑
k∈Z

fk = f − s.

Therefore, ϕ is not essential and we arrive at a contradiction, so that ϕ
must have a fixed point. □

4. Non-existence results for compact conformal quotients
of Cahen–Wallach spaces

4.1. Conformal compact quotients of imaginary type

In this section we show that conformal compact quotients of Cahen–
Wallach spaces of imaginary type must be isometric quotients.

We start with some technical results about cocompact conformal group
actions of Cahen–Wallach spaces. Recall the definition of HS in (3.13),
which is the group of homotheties of the Cahen–Wallach space (Rn+2, gS),
i.e. when S is invertible. The technical statements that will lead up to
Theorem 4.7 however will not require that S is invertible. First we show
that cyclic groups of homotheties cannot act cocompactly.

Lemma 4.1. — If γ ∈ HS , then ⟨γ⟩ does not act cocompactly.
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Proof. — Assume that ⟨γ⟩ acts cocompactly. Then Γ := ⟨γ2⟩ acts co-
compactly and we have that t ◦ γ2 = t+ c, where t is the coordinate

t : Rn+2 −→ R, (t,x, v) 7−→ t.

If c = 0, then the smooth map t is invariant under Γ and descends to a
smooth, surjective map f : Rn+2/Γ → R. This contradicts the compactness
of Rn+2/Γ.

If c ̸= 0, consider D = Rn+1 × (0, c) and choose an unbounded contin-
uous function f on the closure of D with support in D. This defines an
unbounded function f̃ on Rn+2 by

f̃(t,x, v) = f(γ−2n(t,x, v)), if t ∈ [nc, (n+ 1)c].

This function descends to an unbounded continuous function on the com-
pact quotient Rn+2/Γ, which is a contradiction. □

In regards to a group of homotheties acting properly discontinuously, we
obtain from Proposition 3.11 the following corollary.

Corollary 4.2. — If Γ is a group of homotheties acting properly dis-
continuously, then every strict homothety γ ∈ Γ \ Isom must have ϵ = 1
and c ̸= 0.

Next, we find an obstruction for a homothety group acting properly dis-
continuously and cocomapactly. Recall that Σ+ denotes the set of positive
eigenvalues of S.

Proposition 4.3. — Let Γ ⊂ HS be a subgroup that acts cocompactly.
If Γ contains a strict homothety

γ = (cγ , Aγ , sγ) ∈ R × CO(n)(S) × R

with the property

(4.1) s2
γ − λ2

i c
2
γ > 0 for all λ2

i ∈ Σ+,

then Γ cannot act properly discontinuously.

Proof. — Since Γ acts cocompactly, by Lemma 4.1 it cannot be cyclic, so
there is a homothety ϕ ∈ Γ\⟨γ⟩, which we fix. Without loss of generality, we
can assume that ϕ is a strict homothety, otherwise we multiply ϕ by γ. Let
ϕ = ϕc,ϵ,b,β,A,s be a homothety as in (3.14). For a proof by contradiction,
assume that Γ acts properly discontinuously. This implies that ϵ = 1 and
c ̸= 0, as otherwise, by Proposition 3.11, ϕ would have a fixed point and Γ
could not act properly discontinuously.
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Furthermore, if β, b are both zero, then for any sequence of rational
numbers pi/qi → c/cγ , we have that γpiϕ−qi(0) → 0, contradicting PD1.
Hence at least one of b or β is non-zero.

The assumption that

0 < s2
γ − λ2

i c
2
γ = (sγ + λicγ)(sγ − λicγ)

means that (sγ + λcγ) and (sγ − λcγ) have the same sign. Without loss of
generality, we assume that both are positive (if both are negative, we use
γ−1 in what follows). Now consider the sequence

yk = γ−kϕγk(0) =

 c

e−ksγ (A⊤
γ )kβ(kcγ)

e−2ksγ
(
b− ⟨β̇(kcγ), 1

2β(kcγ)⟩
)
 .

Let βi : R → R, i = 1, . . . , n be the components of β ∈ VS . For those i for
which the eigenvalues of S are negative, the sequence βj(kcγ) is bounded
and hence e−ksγβj(kcγ) converges to zero when k goes to infinity.

For those j that correspond to the kernel of S, βi is linear and again
e−ksγβi(kcγ) converges to zero when k goes to infinity.

For those i for which the eigenvalues λ2
i of S is positive we have

(4.2)
βi(kcγ) = bi cosh(λikcγ) + ci sinh(λikcγ)

= bi + ci

2 eλikcγ + bi − ci

2 e−λikcγ ,

for some constants bi and ci, not both zero. By the assumption that both
(sγ + λicγ) and (sγ − λicγ) are positive, we have that

e−ksγβi(kcγ) = bi + ci

2 e−k(sγ −λicγ ) + bi − ci

2 e−k(sγ +λicγ )

(no summation over i), is a non-constant sequence that converges to zero
when k → ∞. Since Aγ is an orthogonal matrix this implies that yik is a
non-constant sequence converging to zero for k → ∞.

Finally for vk = v(yk) = e−2ksγ (b − ⟨β̇(kcγ), 1
2β(kcγ)⟩, using the for-

mula (4.2) for the βis, we have that

lim
k→∞

vk = 1
4

p∑
i=1

lim
k→∞

(
e−2k(sγ −λicγ ) − e−2k(sγ +λicγ )

)
= 0,

since both (sγ ± λcγ) are positive.
Hence, yk = γ−kϕγk(0) is a non-constant sequence in the Γ-orbit of

0 that converges to (c, 0, 0). This contradicts the assumption that Γ acts
properly discontinuously. □
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Remark 4.4. — The assumption of Proposition 4.3 can be formulated as

s2

c2 > λ2
max,

where λ2
max is the largest positive eigenvalue of S. Note that we have not

assumed that S is non-degenerate. Also, this condition is invariant in the
isometry class of gS . Indeed, for a ∈ R>0 and α(t, x, v) = (at, x, a−1v), we
get that α∗gS = ga2S and the homotheties of ga2S are given by conjugation
with α, i.e. by γ̂ = α−1 ◦γ ◦α. Then ĉ of γ̂ is given by cγ

a , s is not changed,
and the largest eigenvalue of a2S is a2λmax, so that(

ŝ

ĉ

)2
= a2

(s
c

)2
> a2λmax.

The proof also shows that if Γ contains a γ = (cγ , Aγ , sγ) ∈ R ×
CO(n)(S) × R and acts cocompactly and properly discontinuously, then
for all ϕ ∈ Γ\⟨γ⟩ the corresponding β must have at least one exponentially
growing component, that is, β must have a non-vanishing component in an
eigenspace for a positive eigenvalue.

As the next step we show that under certain conditions, every strict
homothety is conjugated to a homothety γ ∈ R × CO(n)(S) × R. This
requires the following technical result.

Lemma 4.5. — Let β̂ ∈ VS , A ∈ CO(n)(S), s ∈ R, s ̸= 0, and c ∈ R.
Unless ( sc )2 is an eigenvalue of S, there is a β ∈ VS such that

(4.3) esAβ ◦ σc − β = β̂,

where σc = Ec,1 ∈ Euc(1) is the shift by c in R, σc(t) = t+ c.

Proof. — Since A commutes with S, it preserves the eigenspaces of S and
it suffices to determine β on each eigenspace separately. We abuse notation
by denoting by β and β̂ their component on each eigenspace and by n the
dimension of an eigenspace. Since β ∈ VS and β̂ ∈ VS , both are determined
by their initial values β0 := β(0), β̂0 := β̂(0) and derivatives β1 := β′(0)
and β̂1 := β̂′(0) we have to show that we can choose β0 and β1 such that
the corresponding solution β satisfies (4.3). First we consider the case of a
negative eigenvalue −µ2. A solution β is given as

β(t) = β0 cos(µt) + β1

µ
sin(µt).
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Hence we are looking for initial conditions β0 and β1 satisfying the linear
system of 2n equations

(4.4)
(
µ(es cos(µc)A− 1) es sin(µc)A

−µes sin(µc)A es cos(µc)A− 1

)
︸ ︷︷ ︸

=:M

(
β0
β1

)
=
(
µβ̂0

β̂1

)

This system has a solution for any given right-hand-side if the matrix M is
invertible. Since the bottom two blocks commute, we get the determinant

det(M) = µn det
(

e2sA2 − 2es cos(µc)A+ 1
)
,

see [40] for details. We know that A is orthogonal and hence is diagonalis-
able over C with complex eigenvalues z1, . . . , zn which lie on the unit circle,
|zi| = 1. So we compute this determinant by diagonalisation to obtain

det(M) =
n∏
i=1

(
e2sz2

i − 2es cos(µc)zi + 1
)
.

Hence, the determinant of M can only be zero if one of the zi’s is a root of

e2sz2 − 2es cos(µc)z + 1.

However, the roots of this quadratic polynomial are given by the complex
numbers z = e−s±iµc, which do not lie on the unit circle as s ̸= 0. Hence M
is invertible and by inverting it we find suitable initial conditions β0 and
β1 so that β solves (4.3).

Secondly, we consider the case of a positive eigenvalue λ2. Now a solution
β is given as

β(t) = β0 cosh(λt) + β1

λ
sinh(λt).

The corresponding linear system for β0 and β1 that replaces (4.4) now is
given by the matrix

M =
(
λ(es cosh(λc)A− 1) es sinh(λc)A

λes sinh(λc)A es cosh(λc)A− 1

)
with determinant

det(M) = λn det
(
e2sA2 − 2es cosh(λc)A+ 1

)
=

n∏
i=1

(
e2sz2

i − 2es cosh(λc)zi + 1
)
.

Again, the determinant of M can only be zero if one of the zi’s is a root of

e2sz2 − 2es cosh(λc)z + 1.
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Now the roots are real numbers z = e−s±λc which do not lie on the unit
circle unless s = ±λc. This however was excluded in the assumption and
so M is invertible and yields a solution β to (4.3).

Finally, in the case of eigenvalue zero, the solutions are affine, β(t) =
β1t+ β0, so that (4.3) is equivalent to

(esA− 1)β1 = β̂1, (esA− 1)β0 = β̂0 − cesAβ1.

Inverting (esA− 1) gives the result also in this case. □

Proposition 4.6. — Let ϕ̂ ∈ HS be a strict homothety such that ϵϕ̂ =

1. Unless
(
sϕ̂

cϕ̂

)2
is an eigenvalue of S, the homothety ϕ̂ is conjugate by an

isometry from Hein⋊Z2 to a strict homothety ϕ ∈ Euc(1) ×CO(n)(S) ×R
with ϵϕ = 1 and cϕ ⩾ 0.

Proof. — Let ϕ̂ be a strict homothety with ϵϕ̂ = 1. Then ϕ̂ = ψ̂ ◦ hŝ
with an isometry ψ̂ = (̂b, β̂) ◦ (ĉ, 1, Â) with (̂b, β̂) ∈ Hein and (ĉ, 1, Â) ∈
Euc(1) × CO(n)(S), and hŝ a pure homothety with ŝ = sϕ̂ ̸= 0. First, we
are searching for an isometry ψ = (b, β) ∈ Hein such that

(4.5) ψϕ̂ψ−1 = ψψ̂hŝψ
−1 ∈ Euc(1) × CO(n)(S) × R.

Note that, since ϵϕ̂ = 1 we automatically have that ϵψϕ̂ψ−1 = 1. Denoting by

(4.6) φs := φ(0, 1,1, s)

with φ : Euc(1) × CO(n)(S) × R → Aut(Hein) from Proposition 3.8 and
using using 3.12), we have

ψϕ̂ψ−1 = ψψ̂hŝψ
−1 = ψψ̂φŝ(ψ−1)hŝ.

Hence condition (4.5) is equivalent to

ψψ̂φŝ(ψ−1) ∈ Euc(1) × CO(n)(S).

Now we compute using the formulas (3.9), (3.10) and (3.12),

ψψ̂φŝ(ψ−1) =
((

(b+ b̂+ ω(β, β̂), β + β̂
)
, (ĉ, 1, Â)

)
(−be2ŝ,−eŝβ),

which is equal to(
(1+ω(β, β̂)−e2ŝ)b+ b̂−eŝω(β+ β̂, Â β ◦σ−ĉ), β + β̂−eŝÂβ ◦σ−ĉ

)(
ĉ,1, Â

)
,
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where σ−ĉ(t) = t − ĉ denotes the shift by −ĉ. By Lemma 4.5, there is a
solution β ∈ VS to

eŝÂ β ◦ σ−ĉ − β = β̂.

Given this β, we can solve for b such that the first entry in the above
display is zero, i.e. such that ψψ̂φŝ(ψ−1) ∈ Euc(1) × CO(n)(S). Finally,
we can conjugate ψψ̂φŝ(ψ−1) to the required ϕ by ϵ ∈ Z2 to achieve that
cϕ = ϵĉ ⩾ 0. □

This leads to the following result:

Theorem 4.7. — Let (M, gS) be a Cahen–Wallach space and Γ be a
group of homotheties acting properly discontinuously and cocompactly.
Then Γ is contained in the isometries, unless S has at least one positive
eigenvalue and all elements in Γ \ Isom satisfy

(4.7)
(
sγ
cγ

)2
⩽ λ2

max,

where λ2
max is the largest positive eigenvalue.

In particular, if (M, gS) is of imaginary type, then Γ is contained in the
isometries.

Proof. — Assume for contradiction that Γ acts properly discontinuously
and contains a strict homothety γ, i.e. with sγ ̸= 0. By Corollary 4.2, γ must
have ϵγ = 1 and cγ ̸= 0. If all eigenvalues of S are nonpositive (including
zero), or if

( sγ

cγ

)2
> λ2

max, we can use Proposition 4.6 to conjugate by an
isometry Γ to Γ̂, which still acts properly discontinuously and cocompactly
but now contains a strict homothety with the same sγ and cγ but in R ×
CO(n)(S) × R. Then we can apply Proposition 4.3 to get a contradiction.
Hence, unless all γ ∈ Γ \ Isom satisfy inequality (4.7), we get that Γ is
contained in the isometries.

For (M, gS) of imaginary type, S has no positive eigenvalue and hence Γ
is contained in the isometries. □

For the remainder of the proof of Theorem 1.1, recall from by Proposi-
tion 2.2 that if (Rn+2, gS) is conformally curved, Γ is a group of homotheties
and by Theorem 2.2 a group of isometries. Then the metric endowed to the
quotient is locally isometric to (Rn+2, gS) and hence locally symmetric,
so by Corollary 2.4, the conformal group of the quotient is equal to its
isometry group.
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4.2. Cocompact groups in the centraliser of an essential
homothety

In this section we are going to provide another non-existence result. We
will show that given an essential conformal transformation η on a confor-
mally curved Cahen–Wallach space, there is no subgroup in the centraliser
of η that acts cocompactly and properly discontinuously. The motivation
for this was explained in the introduction: if there was such a subgroup,
then the essential conformal transformation would descend to the compact
quotient (see [41] for details) and hence would provide a counterexample to
the Lorentzian Lichnerowicz conjecture. The counterexamples to the con-
jecture in signatures beyond Lorentzian in [16] are constructed in this way.
Our result excludes this possibility.

Recall the definition of HS in (3.13) and consider a pure homothety

hs = diag(1, es1, e2s) ∈ HS .

It is straightforward to compute its centraliser in HS as

CHS
(hs) = Euc(1) × CO(n)(S) × R.

Furthermore, denote by p the projection

p : HS −→ Euc(1) × CO(n)(S) × R ≃ HS/Hein,

which is a group homomorphism with kernel Hein.

Proposition 4.8. — Let η ∈ HS a strict homothety fixing the origin in
Rn+2 and with ϵη = 1 and let CHS

(η) be its centraliser in the homotheties.
Then the group homomorphism

q := p|CHS
(η) : CHS

(η) 7−→ Euc(1) × CO(n)(S) × R,

is injective.
Moreover, let γn = (bn, βn) · (cn, ϵn, An, sn) ∈ CHS

(η) such that cn →
n→∞0. Then bn → 0, and βn(0) → 0. In particular, if cn → 0, then
γn(0) → 0.

Proof. — First, observe that since η(0) = 0 and ϵη = 1, we have that
cη = 0 and η = ψhs with

ψ = (0, βη) ·Aη ∈ VS ⋊φ CO(n)(S) ⊂ Hein⋊φCO(n)(S)

an isometry fixing the origin, i.e. with βη(0) = 0.
Let γ = (b, β) ∈ ker(q) = Hein ∩ CHS

(η). By (3.12) we have that γ ∈
CHS

(η) if and only if

(4.8) ψ = γ · ψ · φs(γ−1) = (b, β) · ψ ·
(
−e2sb,−esβ

)
,
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where φs was defined in (4.6), and equivalently by (3.9) that

0 = (1 − e2s)b+ ⟨β(0), β̇η(0)⟩ and esAηβ(t) = β(t) for all t.

Since s ̸= 0, the second equation implies that β ≡ 0, and with that the first
gives b = 0. Therefore, γ = id and q is injective.

To show the second part of the proposition, we first determine the inverse
of q on its image. For (c, ϵ, A, r) = q(γ) in the image of q we need to find
(b, β) ∈ Hein such that γ = ϕhr ∈ CHS

(hs) with

ϕ = (b, β) · (c, ϵ, A) ∈ Hein⋊φ(Euc(1) × CO(n)(S).

Since homotheties commute and using (3.12) again, η = γηγ−1 yields the
equation

ψ = ϕhrψhsh
−1
r ϕ−1h−1

s = ϕφr(ψ)φs(ϕ−1).
Using (3.9) this can be seen to be equivalent to Aη = AAηA

⊤,

(1 − esAη)β(t) = βη(t) − erAβη(ϵ(t− c))

and

b(1 − ϵe2s) = −erω ((1 − ϵesAη)β,Aβη ◦ E−ϵc,ϵ) + esω (β,Aηβ) ,

where we use (3.7) and (3.8). Evaluating these equations at t = 0 and
taking into account that βη(0) = 0 we get

(1 − esAη)β(0) = −erAβη(−ϵc))

and

2b(1 − ϵe2s)

= −er
(
⟨(1 − ϵesAη)β(0), Aβ̇η(−ϵc)⟩ − ⟨(1 − ϵesAη)β̇(0), Aβη(−ϵc)⟩

)
+ es⟨(β(0), Aηβ̇(0)⟩.

If γn is a sequence as in the proposition, i.e. with cn → 0, using that s ̸= 0,
the first equation implies that βn(0) → 0 and consequently the second
implies that bn → 0. Hence, γn(0) converges to 0. □

Theorem 4.9. — Let η be a strict homothety in HS that fixes zero.
Let Γ be a subgroup of the centraliser of η in HS . Then Γ does not act
properly discontinuously and cocompactly.

Proof. — Assume for contradiction that Γ is a subgroup of CHS
(η) acting

properly discontinuously and cocompactly. Without loss of generality we
can assume that ϵη = 1. If not, η2 has this property and we still have that Γ
is contained in the centraliser of η. We will derive a contradiction to (PD1).
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We can apply Proposition 4.8 to get an isomorphism between Γ and
a subgroup Γ̂ = q(Γ) of Euc(1) × CO(n)(S) × R. We briefly justify that
Γ̂ = q(Γ) is discrete when the homotheties are given the product topology:

Let Γ be equipped with a topology such that the action of Γ is continuous,
i.e. the map (γ, x) 7→ γ(x) is continuous. Note that the map Θ(γ, x) =
(x, γ(x)) is then also continuous. Because of (PD1), there is an open set U
such that Θ−1(U × U) = {id} × U . Then, with with Θ being continuous,
{id} is open in Γ and hence Γ is discrete. Hence, since the homotheties act
continuously when given the product topology, Γ is discrete with respect
to this topology. Then we note that p is a projection map and hence is
an open map. Therefore Γ̂ = q(Γ) = p(Γ) is discrete. We remark that this
argument does not require us to claim that the compact-open topology on
the homotheties coincides with the product topology.

By the second part of Proposition 4.8, if we have γ ∈ Γ such that cγ = 0,
then γ(0) = 0. Then by freeness of Γ, γ = id. So for all non-identity
elements γ ∈ Γ we have cγ ̸= 0. Note that by Proposition 3.13, Γ has no
torsion elements. Then we also conclude that ϵγ = 1 for all non-identity
elements γ ∈ Γ, since otherwise cγ2 = 0.

Now we observe that the projection

ρ : Γ̂ = q(Γ) −→ R2, γ = (cγ , ϵγ , Aγ , sγ) 7−→ (cγ , sγ)

is an injective homomorphism. Indeed, its kernel is contained in the com-
pact group K = Z2×CO(n)(S). Since Γ̂ is discrete, any non-identity element
in the kernel must be torsion, which would imply that Γ does not act freely
by Proposition 3.13. Therefore ρ is injective.

Since ρ is a projection map, it is also an open map, i.e. ρ(q(Γ)) is a
discrete subgroup of R2. Hence, using that Γ cannot be cyclic and also
act cocompactly by Lemma 4.1, Γ is a discrete non-cyclic subgroup of
R2. Therefore Γ must contain a subgroup that is isomorphic to Z2. Let
γ, ϕ ∈ Γ be two generators of Z2, i.e. such that ⟨γ⟩ ∩ ⟨ϕ⟩ = {id}. By
earlier in this proof, cϕ ̸= 0, and so we take a sequence of rational numbers
pn/qn approaching cγ/cϕ. Then we consider the sequence γpnϕ−qn . This is
a sequence of elements for which the component cn approaches 0. Hence
by the second part in Proposition 4.8, γpnϕ−qn(0) → 0, contradicting PD1
in the definition of proper discontinuity. □

Theorem 4.10. — A group of homotheties of a Cahen–Wallach space
centralising an essential homothety cannot act properly discontinuously
and cocompactly.
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Proof. — Let η be the essential homothety. By Theorem 3.14, η has a
fixed point. Since Cahen–Wallach spaces are homogeneous, the isometry
group acts transitively. We conjugate η and Γ by the isometry that sends
0 to the fixed point of η. Note that Γ acts properly discontinuously and
cocompactly if and only if its conjugate acts properly discontinuously and
cocompactly. Hence, without loss of generality, we assume that η fixes 0.
Since Γ centralises η, by Theorem 4.9, Γ does not act properly discontinu-
ously and cocompactly. □

Combining this result with Proposition 2.2, we obtain Theorem 1.3.

4.3. Examples

In this last section we are going to illustrate some of the difficulties that
arise when attempting to construct compact quotients of Cahen–Wallach
spaces by groups of conformal transformations. We start with some exam-
ples of isometric quotients.

Example 4.11 (Compact isometric quotient of imaginary type). — For
Cahen–Wallach spaces of imaginary type, the function β in an isometry is
given by trigonometric functions. This makes it relatively straightforward
to find groups of isometries that act properly discontinuously and cocom-
pactly. For simplicity, let (R4, g−) be a conformally flat Cahen–Wallach
space of imaginary type of dimension 4.

Solutions to β̈ = Sβ are of the form u cos(t)+w sin(t), where u,w ∈ R2.
Let Γ be generated by the following isometries,

γ

 t

x

v

 :=

t+ π
2

x

v

 , η

 t

x

v

 :=

 t

x

v + 1

 ,

where x = (x1, x2) and

ζ

 t

x

v

 :=

 t

x + β(t)
v − ⟨β(t),x⟩

 , with β(t) =
(

cos(t)
sin(t)

)
Consider the diffeomorphism f : R4 → (R4, g−) given by

f


u

x

y

v

 :=


u

x

(
cos(u)
sin(u)

)
+ y

(
− sin(u)
cos(u)

)
−v − xy

 ,
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with inverse

f−1


t

x1

x2

v

=


t

x1
(

cos(−t)
sin(−t)

)
+ x2

(
− sin(−t)
cos(−t)

)
−v −

(
x1 cos(−t) − x2sin(−t)

) (
x1 sin(−t) + x2 cos(−t)

)
.

Then the action on R4 by Γ is given by

f−1γf


u

x

y

v

 =


u+ π

2
y

−x
v

 , f−1ηf


u

x

y

v

 =


u

x

y

v − 1

 ,

and

f−1ζf


u

x

y

v

 =


u

x+ 1
y

v

 .

The conjugation has removed the dependence of the group action on t.
Γ acts properly discontinuously and cocompactly on R4: observe that

Λ := f⟨γ4, ζ, γ−1ζγ, η⟩f−1 = ⟨2πe1, e2, e3,−e4⟩

is a subgroup of fΓf−1 of index 4 and a lattice isomorphic to Z4, so Λ
acts properly and cocompactly. Hence fΓf−1 acts properly and cocom-
pactly. Then we observe that fΓf−1 and Λ both act freely. Hence fΓf−1

acts properly discontinuously and cocompactly on R4. Therefore, Γ acts
properly discontinuously and cocompactly on (R4, g−) and R4/Γ is four-
fold covered by the 4-torus R4/Λ.

Example 4.12 (Compact isometric quotient of real type). — Here we give
an example of a group Γ acting properly discontinuously and cocompactly
by isometries on a conformally flat Cahen–Wallach space of real type and
of dimension 4. We will also show why an attempt to generalise this to a
group of homotheties fails. We follow the construction in [19, Chapter 5].
For r ∈ N⩾3, consider the polynomial

f(x) = x2 − rx+ 1,

and let ρ ̸= 1
ρ be its roots. Let (R4, gρ) be the conformally flat Cahen–

Wallach space of real type defined by gρ := gS with S = (ln |ρ|)21, i.e.

gρ = 2 dtdv + (ln |ρ|)2(x2 + y2)dt2 + dx2 + dy2.
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According to [19, Proposition 8.8], (R4, gρ) admits a subgroup of the
transvections, Γ ⊂ Hei2 ⋊φR, such that R4/Γ is a compact manifold. Such
Γ can be given as follows:

Let

β(t) =
(
ρt

ρ−t

)
and β̂(t) = β(t+ 1)

be solutions to β̈ = Sβ and denote the corresponding isometries also by η
and η̂. Let αb be the translation in the v-component by b and define γc as
the translation by c in the t-component,

t

x

y

v

 αb7−→


t

x

y

v + b

 ,


t

x

y

v

 γc7−→


t+ c

x

y

v


and let Γ be the group of isometries generated by α := α1, η, η̂ and γ := γ1.
An arbitrary group element in Γ is given as

t

x

y

v

 ϕ7−→


t+ k

x+ ρt(n+mρ)
y + ρ−t(n+ m

ρ )
ϕv


with k, l,m, n ∈ Z and where ϕv is equal to

v+l−ln |ρ|

(
(n+mρ)xρt+ (n+mρ)2

2 ρ2t+
(
n+m

ρ

)
yρ−t+

(n+ m
ρ )2

2 ρ−2t

)
.

In order to show that Γ acts cocompactly and properly discontinuously, we
use [19, Proposition 4.8]). First we note that

β(0) =
(

1
1

)
, β̂(0) =

(
ρ
1
ρ

)
are linearly independent. This is condition (a) in [19, Proposition 4.8]).
Note that L = spanR(β, β̂) is a Lagrangian subspace for ω, i.e. ω(β, β̂) =
0. For condition (b) [19, Proposition 4.8]) we need to find a lattice Λ in
R × L ⊂ Hei2 that is invariant under the shift τ : t 7→ t+ 1. Note that

β̂(t+ 1) − rβ̂(t) + β(t) =
(

ρtf(ρ)

ρ−tf(ρ−1)

)
= 0,

so that

τ(η) = η̂, τ(η̂) = −η + rη̂, τ−1(η̂) = η, τ−1(η) = rη − η̂.
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Hence, the lattice Λ0 = spanZ{η, η̂} is stable under the action of the group
⟨τ⟩ and so is the lattice Λ = spanZ{α, η, η̂} in R × L ⊂ Hei2. Hence,
by [19, Proposition 4.8]), Γ is a group of isometries that acts properly
discontinously and cocompactly on R4.

In order to generalise this to a group Γ̂ of homotheties acting cocompactly
and properly discontinuously one could try to replace α by the translation
αρ by ρ in the v-component and γ by the homothety γ̂,

t

x

y

v

 γc7−→


t+ 1
ρx

ρy

ρ2v


and Γ̂ be the subgroup of H = (Hei⋊φ(R×R) that is generated by αρ, η,
η̂, γ̂,

Γ = ⟨α, η, η̂, γ̂⟩.

Then one may try use ideas in [19, Chapters 3 & 4] to show that Γ acts
properly discontinuously and cocompactly on R4. For this we need a group
G that is a semidirect product of a nilpotent group with R. Note that also
Hei2 is invariant under conjugation with Rγ̂ in H = (Hei⋊φ(R × R) and
we set

G = Hei2 ⋊φRγ̂.

Note that even though Hei2 is normal in G, Λ3 is not normal in Γ, in fact

γ̂k(mα+ nη + n̂η̂)γ̂l = γ̂k (mα+ nσlη + n̂σlη̂ + γ̂l)

= mαρ1+2k + nρkσlη + n̂ρkσlη̂ + γ̂k+l.

This shows that the group Γ is not discrete. Indeed, the sequence

γ̂−kαγ̂k = αρ1−2k

for k ∈ N converges to the identity.

Example 4.13. — The previous example demonstrates the issues that
arise when attempting to modify a properly discontinuous and cocompact
group of isometries of a Weyl-flat Cahen–Wallach space of real type to a
group of homotheties by maintaining the translations in the v-direction. In
this example we will try a different approach that avoids these translations.

For simplicity, let (R3, g1) be a three dimensional Cahen–Wallach space
of real type. Solutions to β̈ = Sβ are of the form aet+be−t, where a, b ∈ R.
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As before, we consider the homothety γ and the isometry η

γ :

tx
v

 7−→

t+ 1
ex

e2v

 , η :

tx
v

 7−→

 x

x+ ket
v − ⟨ket, x+ 1

2ket⟩

 .

We define a diffeomorphism f : R3 → R3 and its inverse by

f :

ty
z

 7−→

 t

ety

e2t(z − y2/2)

 , f−1 :

tx
v

 7−→

 t

e−tx

e−2t(v + x2/2)

 .

The conjugates are

f−1γf :

xy
z

 7−→

x+ 1
y

z

 , f−1ηf :

xy
z

 7−→

 x

y + k

z

 .

At this stage it looks promising, but we still have a remaining direction to
compactify. The issue that occurs in general at this stage is that when we
have a strict homothety γ of the simplest form possible without admitting
fixed points as in Proposition 3.11, introducing an element α that translates
in the v-direction will not help us, for the same reason as in the previous
example: γ−iαγi(0) will approach 0. What this means is that it seems we
will require β-terms to compactify in n+ 1 directions. However this turns
out to be difficult: if

ζ :

tx
v

 7−→

 t

x+ ke−t

v − ke−t (x+ 1
2ke−t)

 ,

then

f−1ζf :

xy
z

 7−→

 x

y + le−2x

z

 .

This demonstrates two issues: first that the conjugated element fails to act
at all on the z direction — which is the direction still remaining to be
compactified. And secondly, that when we have a homothety in the form
of γ, we see immediately that only n of the β dimensions are able to grow
fast enough to avoid γ−iζγi(0) → 0. This is because it is not sufficient that
β be exponential, it must grow exponentially in the same direction as γ. So
this example too cannot lead to a properly discontinuous and cocompact
action.
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Example 4.14 (Compact homothetic quotient of an open subset). — In
this example, we produce a compact quotient of an open submanifold of a
Cahen–Wallach space by homotheties.

Consider the metric gS on U := Rn+2 \ {(t, 0, 0) | t ∈ R}. We have
removed all fixed points of a pure homothety, allowing us to use a pure
homothety to compactify: set

γ

 t

x

v

 :=

t+ 1
x

v

 , η

 t

x

v

 :=

 t

2x

4v

 ,

and Γ := ⟨γ, η⟩. We now show that Γ acts properly discontinuously and
cocompactly on U .

A fundamental region for this action is a product of the unit interval and
an annulus in the last n+ 1 dimensions. Define

R := (0, 1) × ((−2, 2)n × (−4, 4)) \ [−1, 1]n+1.

It is not hard to see that ϕ(R), ϕ ∈ Γ does not meetR, soR is a fundamental
region. We take a neighbourhood V of R:

V := (−1, 2) × ((−4, 4)n × (−16, 16)) \
([

−1
2 ,

1
2

]n
×
[
−1

4 ,
1
4

])
.

Note that ϕ(V ) meets V only for

{γiηj | i, j ∈ {−2,−1, 0, 1, 2}}.

In particular, by results in [28, 41], R is locally finite, so U/Γ is homeomor-
phic to R/Γ. Then, since R/Γ is a manifold, we get that Γ acts properly
discontinuously and since R is compact, Γ also acts cocompactly. Hence
the action on the open submanifold U is properly discontinuous and co-
compact. However, the homotheties centralised by Γ are not essential. We
have

CHS
(Γ) = R × CO(n)(S) × R,

and define
f(t,x, v) = (∥x∥4 + (v)2)−1/2.

Then for ϕ ∈ CHS
(Γ),

ϕ∗(fg)|x = (∥esAx∥4 +(e2sv)2)−1/2e2sg|x = (∥x∥2 +(v)2)−1/2g|x = (fg)|x,

so ϕ is inessential on U . Note that this same choice of f works for all
such ϕ, and thus CHS

(Γ) is inessential. In this example we can go further
and conclude that the normaliser of Γ is inessential as well, since ϕγrηt =
γr

′
ηt

′
ϕ implies already that t = t′, and that r′ = ar. Hence, we see that
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the normaliser is simply Euc(1) ×CO(n)(S) ×R, and the same f as before
makes the normaliser inessential.

We stress that this is not a proof that U/Γ has an inessential conformal
structure: it is possible to have an essential transformation on the quotient
which does not lift or whose lift is not essential, or a transformation may
be preserved without normalising Γ. For details see [41, Section 5.4].

Remark 4.15. — In this final remark we address the fact that our re-
sults are about compact quotients of a complete Cahen–Wallach space
(Rn+2, gS), whereas the construction in [16] starts with an incomplete lo-
cally symmetric space that has the origin removed. That construction how-
ever, relies on the existence of a pair of strict homotheties with different
sets of fixed points (one fixes a line, the other fixes only a point). Such
a pair of homotheties is not available to us in Cahen–Wallach spaces. For
this, note that every non-isometric conformal transformation of a confor-
mally curved Cahen–Wallach space is a homothety and hence either has no
fixed points or it has a line of finite-orbit points parameterised by t. Now
assume that we have two strict homotheties γ and ϕ, each with finite-orbit
points, such that ϕ descends to the quotient by a group Γ containing γ.
Then γ and ϕ must have the same line of finite-orbit points, since ϕ must
map finite-orbit points of γ to finite-orbit points of γ. Consequently, if Γ is
acting on an open subset of a Cahen–Wallach space that has the finite-orbit
points removed, so that it acts properly discontinuously, then also ϕ has
had its finite-orbit points removed and therefore can no longer be expected
to be essential.
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