[Bornes optimales sur la croissance des sommes itérées d’ensembles dans les semigroupes abéliens]
We provide optimal upper bounds on the growth of iterated sumsets $hA=A+\dots +A$ for finite subsets $A$ of abelian semigroups. More precisely, we show that the new upper bounds recently derived from Macaulay’s theorem in commutative algebra are best possible, i.e., are actually reached by suitable subsets of suitable abelian semigroups. Our constructions, in a multiplicative setting, are based on certain specific monomial ideals in polynomial algebras and on their deformation into appropriate binomial ideals via Gröbner bases.
Nous obtenons des bornes supérieures optimales sur la croissance des sommes itérées $hA=A+\dots +A$ de sous-ensembles finis $A$ de semigroupes abéliens. Plus précisément, nous montrons que les nouvelles bornes supérieures récemment obtenues via le Théorème de Macaulay en algèbre commutative sont les meilleures possibles, autrement dit sont effectivement atteintes par des sous-ensembles appropriés de semigroupes abéliens appropriés. Nos constructions, dans un langage multiplicatif, sont basées sur certains idéaux monomiaux spécifiques dans des algèbres de polynômes et sur leurs déformations en idéaux binomiaux convenables via des bases de Gröbner.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Additive combinatorics, Plünnecke inequality, Standard graded algebra, Hilbert function, Binomial representation, Lexideal, Gröbner basis
Mots-clés : Combinatoire additive, inégalité de Plünnecke, algèbre graduée standard, fonction de Hilbert, représentation binomiale, lexidéal, base de Gröbner
Eliahou, Shalom 1 ; Mazumdar, Eshita 2

@article{AIF_2025__75_6_2321_0, author = {Eliahou, Shalom and Mazumdar, Eshita}, title = {Optimal {Bounds} on the {Growth} of {Iterated} {Sumsets} in {Abelian} {Semigroups}}, journal = {Annales de l'Institut Fourier}, pages = {2321--2339}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {75}, number = {6}, year = {2025}, doi = {10.5802/aif.3674}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3674/} }
TY - JOUR AU - Eliahou, Shalom AU - Mazumdar, Eshita TI - Optimal Bounds on the Growth of Iterated Sumsets in Abelian Semigroups JO - Annales de l'Institut Fourier PY - 2025 SP - 2321 EP - 2339 VL - 75 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3674/ DO - 10.5802/aif.3674 LA - en ID - AIF_2025__75_6_2321_0 ER -
%0 Journal Article %A Eliahou, Shalom %A Mazumdar, Eshita %T Optimal Bounds on the Growth of Iterated Sumsets in Abelian Semigroups %J Annales de l'Institut Fourier %D 2025 %P 2321-2339 %V 75 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3674/ %R 10.5802/aif.3674 %G en %F AIF_2025__75_6_2321_0
Eliahou, Shalom; Mazumdar, Eshita. Optimal Bounds on the Growth of Iterated Sumsets in Abelian Semigroups. Annales de l'Institut Fourier, Tome 75 (2025) no. 6, pp. 2321-2339. doi : 10.5802/aif.3674. https://aif.centre-mersenne.org/articles/10.5802/aif.3674/
[1] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1993, xii+403 pages | MR | Zbl
[2] Minimal resolutions of some monomial ideals, J. Algebra, Volume 129 (1990) no. 1, pp. 1-25 | DOI | MR | Zbl
[3] Iterated sumsets and Hilbert functions., J. Algebra, Volume 593 (2022), pp. 274-294 | DOI | MR | Zbl
[4] An introduction to Gröbner bases, Pure and Applied Mathematics, John Wiley & Sons, 1997, x+177 pages | MR | Zbl
[5] Combinatorial number theory and additive group theory. With a foreword by Javier Cilleruelo, Marc Noy and Oriol Serra (Coordinators of the DocCourse), Advanced Courses in Mathematics – CRM Barcelona, Birkhäuser, 2009, xii+330 pages | DOI | Zbl
[6] Monomial ideals, Graduate Texts in Mathematics, 260, Springer, 2011, xvi+305 pages | DOI | MR | Zbl
[7] The Newton polytope, the Hilbert polynomial and sums of finite sets, Funkts. Anal. Prilozh., Volume 26 (1992) no. 4, p. 57-63, 96 | DOI | Zbl
[8] Sums of finite sets, orbits of commutative semigroups and Hilbert functions, Funkts. Anal. Prilozh., Volume 29 (1995) no. 2, p. 36-50, 95 | DOI | Zbl
[9] Some Properties of Enumeration in the Theory of Modular Systems, Proc. Lond. Math. Soc., Volume 26 (1927), pp. 531-555 | DOI | Zbl
[10] The numbers of faces of simplicial polytopes, Isr. J. Math., Volume 9 (1971), pp. 559-570 | DOI | MR | Zbl
[11] Hilbert functions and lex ideals, J. Algebra, Volume 313 (2007) no. 2, pp. 642-656 | DOI | MR | Zbl
[12] Additive number theory. Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, 165, Springer, 1996, xiv+293 pages | DOI | MR | Zbl
[13] Growth of sumsets in abelian semigroups, Semigroup Forum, Volume 61 (2000) no. 1, pp. 149-153 | DOI | MR | Zbl
[14] Polynomial growth of sumsets in abelian semigroups, J. Théor. Nombres Bordeaux, Volume 14 (2002) no. 2, pp. 553-560 | DOI | Numdam | MR | Zbl
[15] Graded syzygies, Algebra and Applications, 14, Springer, 2011, xii+302 pages | DOI | MR | Zbl
[16] The Plünnecke–Ruzsa inequality: an overview, Combinatorial and additive number theory – CANT 2011 and 2012 (Springer Proceedings in Mathematics & Statistics), Volume 101, Springer, 2014, pp. 229-241 | DOI | MR | Zbl
[17] Eine zahlentheoretische Anwendung der Graphentheorie, J. Reine Angew. Math., Volume 243 (1970), pp. 171-183 | DOI | MR | Zbl
[18] Hilbert functions of graded algebras, Adv. Math., Volume 28 (1978) no. 1, pp. 57-83 | DOI | Zbl
[19] Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006, xviii+512 pages | DOI | MR | Zbl
Cité par Sources :