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OPTIMAL BOUNDS ON THE GROWTH OF ITERATED
SUMSETS IN ABELIAN SEMIGROUPS

by Shalom ELIAHOU & Eshita MAZUMDAR (*)

Abstract. — We provide optimal upper bounds on the growth of iterated sum-
sets hA = A + · · · + A for finite subsets A of abelian semigroups. More precisely,
we show that the new upper bounds recently derived from Macaulay’s theorem in
commutative algebra are best possible, i.e., are actually reached by suitable sub-
sets of suitable abelian semigroups. Our constructions, in a multiplicative setting,
are based on certain specific monomial ideals in polynomial algebras and on their
deformation into appropriate binomial ideals via Gröbner bases.

Résumé. — Nous obtenons des bornes supérieures optimales sur la croissance
des sommes itérées hA = A + · · · + A de sous-ensembles finis A de semigroupes
abéliens. Plus précisément, nous montrons que les nouvelles bornes supérieures
récemment obtenues via le Théorème de Macaulay en algèbre commutative sont
les meilleures possibles, autrement dit sont effectivement atteintes par des sous-
ensembles appropriés de semigroupes abéliens appropriés. Nos constructions, dans
un langage multiplicatif, sont basées sur certains idéaux monomiaux spécifiques
dans des algèbres de polynômes et sur leurs déformations en idéaux binomiaux
convenables via des bases de Gröbner.

1. Introduction

Let A be a nonempty finite subset of an abelian semigroup (G, +). Esti-
mating the growth of the iterated sumsets hA = A + · · · + A︸ ︷︷ ︸

h

as h increases

is a core problem in additive combinatorics. Khovanskii [7, 8] showed that
|hA| is asymptotically polynomial in h. See also [13, 14]. But not much is
known about this polynomial and, for h small, the behavior of |hA| may
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Hilbert function, Binomial representation, Lexideal, Gröbner basis.
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wildly vary with A, even when |A| is fixed. A classical estimate, originally
derived using graph theory, is given by Plünnecke’s inequality [17], namely

(1.1) |hA| ⩽ |iA|h/i

for all 1 ⩽ i ⩽ h. See [5, 12, 16, 19] for in-depth treatments of this
and related inequalities. We recently improved (1.1) by deriving it from
Macaulay’s 1927 theorem on the growth of Hilbert functions of standard
graded algebras [3]. Macaulay’s theorem involves a certain operation a 7→
a⟨h⟩ on positive integers related to binomial representations. In short, if
a =

∑h
j=1

(
aj

j

)
with decreasing integers ah > · · · > a1 ⩾ 0, then a⟨h⟩ =∑h

j=1
(

aj+1
j+1

)
, and this is well-defined. See Section 2 for more details. Using

this notation, here is part of our improvement to (1.1) obtained in [3].

Theorem 1.1. — Let A be a nonempty finite subset of an abelian semi-
group G. Set dh = |hA| for all h. Then d0 = 1 and

(1.2) dh+1 ⩽ d
⟨h⟩
h

for all h ⩾ 1.

Example 1.2. — For comparison purposes, let A ⊂ Z be a subset such
that |6A| = 1000. While Plünnecke’s inequality (1.1) yields

|5A| ⩾ 317, |7A| ⩽ 3162,

inequality (1.2) yields the much sharper – and nearly optimal – bounds

(1.3) |5A| ⩾ 511, |7A| ⩽ 1827.

See Example 2.3 below for the derivation of |7A| ⩽ 1827 from |6A| = 1000
and (1.2).

Our purpose in this paper is to prove that the upper bounds in The-
orem 1.1 are best possible. That is, if (di)i⩾0 is any sequence of positive
integers such that d0 = 1 and di+1 ⩽ d

⟨i⟩
i for all i ⩾ 1, then there exists an

abelian semigroup G and a subset A ⊆ G such that

(1.4) dh = |hA|

for all h ⩾ 0. Our construction of such a pair G, A is in multiplicative
notation and proceeds as follows. Let n = d1 and S = K[X1, . . . , Xn], the
n-variable polynomial algebra over a field K with its standard grading.
Then G will be a multiplicative submonoid of a quotient ring R = S/J ,
where J is an appropriate graded ideal of S. Denoting by π : S → R the
quotient map, and setting xj = π(Xj) for 1 ⩽ j ⩽ n, we consider the subset
A = {x1, . . . , xn} of R and its h-fold iterated product sets Ah = A · · · A.

ANNALES DE L’INSTITUT FOURIER
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The problem then amounts to uncover a suitable ideal J of S so as to
realize, for this subset A of S/J , the equality dh = |Ah| for all h. For
an almost sharp realization, a specific monomial ideal J = L establishing
the converse part of Macaulay’s theorem suffices. A sharp realization is
then achieved by deforming L into a binomial ideal L̂ via a Gröbner basis
construction so as to preserve the Hilbert function of S/L.

The contents of this paper are as follows. Section 2 provides some back-
ground on binomial representations, Macaulay’s theorem and lexideals. In
Section 3, after recalling basic facts about monomial ideals, we prove that
the bounds provided by Theorem 1.1 are almost sharp in an appropriate
sense. In Section 4, after recalling basic facts about Gröbner bases, we pro-
ceed to prove the full sharpness of these bounds. The analogous problem
restricted to abelian groups remains open. This is briefly discussed in the
concluding Section 5.

2. Background

Given sets A, B in an abelian semigroup (G, +), their sumset is A + B =
{a + b | a ∈ A, b ∈ B}. For A = B, we denote 2A = A + A, and more
generally hA = A + · · · + A︸ ︷︷ ︸

h

for all h ⩾ 2. Macaulay’s theorem involves a

certain operation a 7→ a⟨h⟩ on N related to binomial representations, which
we now recall.

2.1. Binomial representation

Proposition 2.1. — Let h ⩾ 1 be a fixed integer. Then for any integer
a ⩾ 1, there are unique integers ah > ah−1 > · · · > a1 ⩾ 0 such that

a =
h∑

j=1

(
aj

j

)
.

Proof. — See e.g. the relevant chapters in [1, 6, 15]. □

This expression is called the h-binomial representation of a. Producing
it is computationally straightforward: take for ah the largest integer such
that

(
ah

h

)
⩽ a, and complete that first summand by adding to it the (h−1)-

binomial representation of a −
(

ah

h

)
. The unicity follows from the classical

formula

(2.1)
(

n + h

h

)
=

h∑
j=0

(
n − 1 + j

j

)
.

TOME 0 (0), FASCICULE 0
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Notation 2.2. — Let a ⩾ h ⩾ 1 be integers. Let a =
∑h

j=1
(

aj

j

)
be its

unique h-binomial representation. We then denote a⟨h⟩ =
∑h

j=1
(

aj+1
j+1

)
. We

also set 0⟨h⟩ = 0.

Note that the right-hand side
∑h

j=1
(

aj+1
j+1

)
is a valid (h + 1)-binomial

representation of some positive integer, namely of the integer it sums to.

Example 2.3. — Let h = 6 and a = 1000. Then

1000 =
(

12
6

)
+

(
8
5

)
+

(
6
4

)
+

(
4
3

)
+

(
2
2

)
+

(
0
1

)
,

whence

1000⟨6⟩ =
(

13
7

)
+

(
9
6

)
+

(
7
5

)
+

(
5
4

)
+

(
3
3

)
+

(
1
2

)
= 1827.

This explains the upper bound in (1.3) using Theorem 1.1.

2.2. Macaulay’s theorem

Let R =
⊕

i⩾0 Ri be a standard graded algebra over a field R0 = K.
That is, R is a graded commutative algebra which is finitely generated by
R1 as a K-algebra. It follows that Ri = Ri

1, the i-fold product set of R1,
and that Ri is finite-dimensional as a vector space over K for all i ⩾ 0.
The Hilbert function of R is the numerical function i 7→ di = dimK Ri.

Macaulay’s classical theorem gives necessary and sufficient conditions
for any numerical function i 7→ di to be the Hilbert function of a standard
graded algebra [9]. Here it is.

Theorem 2.4 (Macaulay). — Let R =
⊕

i⩾0 Ri be a standard graded
algebra over a field K, with Hilbert function di = dim Ri. Then d0 = 1 and

(2.2) di+1 ⩽ d
⟨i⟩
i

for all i ⩾ 1. Conversely, let (di)i⩾0 be a sequence of nonnegative integers
such that d0 = 1 and di+1 ⩽ d

⟨i⟩
i for all i ⩾ 1. Then there exists a standard

graded K-algebra R =
⊕

i⩾0 Ri such that di = dim Ri for all i ⩾ 0.

With the notation of Theorem 2.4, note that if di = 0 for some i ⩾ 2, then
dj = 0 for all j ⩾ i, and this occurs if and only if R is finite-dimensional
as a K-vector space. A more detailed version of the converse statement,
needed for our present purposes, is given below.

ANNALES DE L’INSTITUT FOURIER
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2.3. Lexideals

For the converse part in Theorem 2.4, the desired algebra R may be
constructed as a quotient of a polynomial algebra by a suitable monomial
ideal (see Section 3.1), and more specifically by a lexideal L. Here are some
details needed in the sequel.

Let (di)i⩾0 be a sequence of nonnegative integers such that d0 = 1
and di+1 ⩽ d

⟨i⟩
i for all i ⩾ 1. Set d1 = n. In the polynomial alge-

bra S = K[X1, . . . , Xn] over the field K, with its standard grading given
by deg(Xj) = 1 for all j, we endow the set M of monomials in S with
the graded lexicographic order relative to X1 > · · · > Xn. That is, for
u =

∏
j X

aj

j , v =
∏

j X
bj

j ∈ M, we set u > v if either deg(u) > deg(v), or
else deg(u) = deg(v) and u comes before v lexicographically, i.e. the first
nonzero difference aj − bj is positive.

Example 2.5. — With this ordering, the monomials of degree 2 in
K[X1, X2, X3] are ordered as follows:

X2
1 > X1X2 > X1X3 > X2

2 > X2X3 > X2
3 .

For all i ⩾ 0, we denote by Mi the set of monomials of degree i in S.
Thus M0 = {1}, M1 = {X1, . . . , Xn} and Mi = Mi

1, the i-fold product
set of M1.

Definition 2.6. — A lexsegment is a subset C of Mi for some i ⩾ 1
such that C = {u ∈ Mi | u ⩾ v} for some v ∈ Mi. A lexideal L in S is a
monomial ideal such that L ∩ Mi is a lexsegment for all i ⩾ 1 such that
L ∩ Mi ̸= ∅.

It is easy to verify that if C ⊆ Mi is a lexsegment, then M1C ⊆ Mi+1
is a lexsegment as well, where M1C = {Xju | u ∈ C, 1 ⩽ j ⩽ n}. The
converse in Macaulay’s theorem may be expressed in the following more
detailed form. See e.g. [1, 6, 11, 15].

Theorem 2.7. — Let (di)i⩾0 be a sequence in N such that d0 = 1
and di+1 ⩽ d

⟨i⟩
i for all i ⩾ 1. Set n = d1. There exists a lexideal L in

S = K[X1, . . . , Xn] such that for R = S/L =
⊕

i⩾0 Ri, we have di = dim Ri

for all i ⩾ 0.

This result is constructive, implying in turn that our results, namely
Theorems 3.5 and 4.12, are constructive as well. A concrete illustration is
given in the extended Example 3.6 below. One key point is the following
intimate link between lexsegments and the numerical operation a 7→ a⟨i⟩.

TOME 0 (0), FASCICULE 0
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Lemma 2.8. — Let C ⊂ Mi be a lexsegment such that |Mi \ C| = a.
Then |Mi+1 \ M1C| = a⟨i⟩.

2.4. An additive version of Macaulay’s theorem

Consider the abelian semigroup G = Nn. For 1 ⩽ i ⩽ n, denote by ei

the ith canonical basis element of G, i.e. ei = (δij)1⩽j⩽n where δij is the
Kronecker symbol. Let B = {e1, . . . , en} ⊂ G. Note that for all h ⩾ 1, the
h-fold iterated sumset hB consists of all elements in G whose coordinate
sum is equal to h. Of course, G is canonically isomorphic to the set M of
monomials in K[X1, . . . , Xn], viewed as a multiplicative abelian semigroup.
We order G by transfering the graded lexicographic order ⩽ on M via
the canonical isomorphism induced by Xj ↔ ej for all j. The following
statement is equivalent to Macaulay’s Theorem 2.4.

Theorem 2.9. — Let G = Nn and B = {e1, . . . , en} ⊂ G. For all h ⩾ 1
and all subsets A ⊆ hB, we have

|A + B| ⩾ |Alex + B|,

where Alex ⊆ hB denotes the unique lexsegment of cardinality |Alex| = |A|.

Proof. — See [11, Theorem 4.1] for an analogous statement in terms of
monomial subspaces, shown there to be equivalent to Theorem 2.4. □

Macaulay’s theorem is fundamental in commutative algebra and alge-
braic geometry, and since the 1970’s in combinatorics too, thanks to the
pioneering work on polytopes by McMullen [10] and Stanley [18] among
others. The additive version given by Theorem 2.9 shows that Macaulay’s
theorem squarely belongs to additive combinatorics as well.

3. An Almost Sharp Realization

We show here that if (di)i⩾0 is a sequence of positive integers satisfying
d0 = 1 and

(3.1) 1 ⩽ di+1 ⩽ d
⟨i⟩
i

for all i ⩾ 1, then there exists an abelian semigroup G and a subset A ⊆ G

such that

(3.2) dh ⩽ |hA| ⩽ dh + 1

ANNALES DE L’INSTITUT FOURIER
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for all h ⩾ 0. Our proof of this almost sharp realization relies on the
sufficiency condition in Macaulay’s theorem, and more specifically on The-
orem 2.7. To proceed, we need a few relevant facts concerning monomial
ideals.

3.1. Monomial ideals

Let S = K[X1, . . . , Xn] be the n-variable polynomial algebra over the
field K, endowed with its standard grading S =

⊕
i⩾0 Si induced by

deg(Xj) = 1 for all j. As earlier, we denote by M the set of monomi-
als in S and by Mi = M ∩ Si the subset of monomials of degree i for all
i ⩾ 0.

A monomial ideal in S = K[X1, . . . , Xn] is an ideal J of S generated
by monomials. Of course, J is a graded ideal, so that J =

⊕
i⩾0 Ji, where

Ji = J ∩ Si. Macaulay proved that for every graded ideal I of S, there
exists a monomial ideal J of S such that S/I and S/J have the same
Hilbert function. See Proposition 4.2 below.

Lemma 3.1. — Let J ⊂ S be a monomial ideal. Let f ∈ S. Then f ∈ J

if and only if every monomial with a nonzero coefficient in f belongs to J .

Proof. — Easily follows from the fact that J is spanned by monomials
in M and that M is a K-basis of S. □

Proposition 3.2 (Macaulay, [9]). — Let J ⊂ S be a monomial ideal.
Let π : S → S/J be the quotient map. Then the family F = {π(u) | u ∈
M \ J} is a K-basis of S/J .

Proof. — The family F spans S/J , since M spans S and π(M∩J) = {0}.
And F is free, for if f =

∑
u∈M\J λuu and π(f) = 0, then f ∈ ker(π) = J .

Lemma 3.1 then implies λu = 0 for all u ∈ M \ J , i.e. f = 0. □

Even though we have already encountered iterated product sets above,
we formally recall the notation here.

Notation 3.3. — Let G be an abelian semigroup in multiplicative nota-
tion. For any subset A ⊆ G, we denote by Ah = A · · · A︸ ︷︷ ︸

h

its h-fold iterated

product set.

We need one more auxiliary result.

TOME 0 (0), FASCICULE 0
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Proposition 3.4. — Let J be a monomial ideal in S. Let R = S/J =⊕
i⩾0 Ri and let π : S → R = S/J be the quotient map. Let xj = π(Xj)

for all j and set A = {x1, . . . , xn} ⊂ R. Then for all h ⩾ 1, we have

(3.3) |Ah| =
{

dim Rh if Jh = {0},

dim Rh + 1 if not,

where Ji = Si ∩ J for all i.

Proof. — We have J =
⊕

i⩾0 Ji, and Ji has for vector subspace basis
Mi ∩ J for all i ⩾ 0. Since A = π(M1), and since Mh = Mh

1 for all h ⩾ 1,
we have

(3.4) Ah = π(Mh)

for all h ⩾ 1. Since J = ker(π), we have

(3.5) π(Mh) =
{

π(Mh \ Jh) if Mh ∩ Jh = ∅,

π(Mh \ Jh) ⊔ {0} if not.

It follows from Proposition 3.2 that

(3.6) dim Rh = |Mh \ Jh| = |π(Mh \ Jh)|.

Combining (4.8), (3.5) and (3.6) yields the claimed formula (3.3). □

3.2. First construction

Combining the above results with the sufficiency part of Macaulay’s the-
orem, we obtain an almost sharp realization of dh as |hA| for some subset
A of some abelian semigroup.

Theorem 3.5. — Let (di)i⩾0 be a sequence of nonnegative integers such
that d0 = 1 and di+1 ⩽ d

⟨i⟩
i for all i ⩾ 1. Then there exists an abelian

semigroup G and A ⊆ G such that dh ⩽ |hA| ⩽ dh + 1 for all h ⩾ 0.

Proof. — Set n = d1. By Macaulay’s theorem, there exists a standard
graded algebra R =

⊕
i⩾0 Ri such that di = dim Ri for all i ⩾ 0. By

Theorem 2.7, one may take R = S/L, where S = K[X1, . . . , Xn] with
its standard grading, and L is a suitable lexideal in S. Let π : S → R be
the quotient map. For the required abelian semigroup, in multiplicative
notation, we may take G = (R, ·) or, more economically, G = π(M). Set
xj = π(Xj) for all j and A = {x1, . . . , xn} ⊂ G. It then follows from
Proposition 3.4 that |Ah| ∈ {dh, dh + 1} for all h ⩾ 0, as desired. □

ANNALES DE L’INSTITUT FOURIER
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Given a sequence (di)i⩾0 satisfying the conditions of Theorem 3.5, the
following extended example shows how to explicitly construct a pair G, A

satisfying the conclusion of this theorem.

Example 3.6. — Let (d0, d1, d2, d3, d4, d5, . . . ) = (1, 5, 13, 25, 42, 63, . . . ).
Then di+1 ⩽ d

⟨i⟩
i for 1 ⩽ i ⩽ 4. Indeed, we have

d1 = 5 =
(

5
1

)
−→ d

⟨1⟩
1 =

(
6
2

)
= 15;

d2 = 13 =
(

5
2

)
+

(
3
1

)
−→ d

⟨2⟩
2 =

(
6
3

)
+

(
4
2

)
= 26;

d3 = 25 =
(

6
3

)
+

(
3
2

)
+

(
2
1

)
−→ d

⟨3⟩
3 =

(
7
4

)
+

(
4
3

)
+

(
3
2

)
= 42;

d4 = 42 =
(

7
4

)
+

(
4
3

)
+

(
3
2

)
−→ d

⟨4⟩
4 =

(
8
5

)
+

(
5
4

)
+

(
4
3

)
= 65.

Hence the differences d
⟨i⟩
i − di+1 assume the following nonnegative values,

as claimed:

(3.7) d
⟨1⟩
1 − d2 = 2, d

⟨2⟩
2 − d3 = 1, d

⟨3⟩
3 − d4 = 0, d

⟨4⟩
4 − d5 = 2.

Set n = d1 = 5 and S = K[X1, . . . , X5]. We now use (3.7) to construct
a lexideal L ⊂ S such that the quotient R = S/L =

⊕
i⩾0 Ri satisfies

dim Ri = di for 0 ⩽ i ⩽ 5. To do so, it suffices to exhibit a minimal system
of monomial generators G satisfying the following requirements:

(1) |G ∩ Mi+1| = d
⟨i⟩
i − di+1 for all 1 ⩽ i ⩽ 4,

(2) the resulting ideal L = (G) is a lexideal.
The first condition arises from Lemma 2.8. Using these constraints as a
construction tool, we obtain the following solution:

G = {X2
1 , X1X2, X1X2

3 , X1X3X3
4 , X1X3X2

4 X5}.

As required, we do have |G∩M2| = d
⟨1⟩
1 −d2 = 2, |G∩M3| = 1, |G∩M4| = 0,

|G∩M5| = 2, and L∩Mi is a lexsegment for all i ⩾ 2. Let π : S → R = S/L

be the quotient map. Again, the sought-for semigroup may be taken as
G = (R, ·), or more simply G = π(M). Set xj = π(Xj) for 1 ⩽ j ⩽ 5, and
A = {x1, . . . , x5} ⊂ G. Then

|A| = d1, |Ah| = dh + 1

for all 2 ⩽ h ⩽ 5, as desired. For instance, for h = 2 we have x2
1 = x1x2 = 0

in G, and

A2 = {0} ⊔ {x1x3,x1x4,x1x5,x
2
2,x2x3,x2x4,x2x5,x

2
3,x3x4,x3x5,x

2
4,x4x5,x

2
5},

so that |A2| = 14 = d2 + 1.

TOME 0 (0), FASCICULE 0
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4. Main Result

In order to show that the bounds given by Theorem 1.1 are best possible,
we now aim for a sharp realization. That is, given any sequence (di)i⩾0 of
positive integers satisfying d0 = 1 and

1 ⩽ di+1 ⩽ d
⟨i⟩
i

for all i ⩾ 1, we shall construct an abelian semigroup G and a subset A ⊆ G

such that
dh = |hA|

for all h ⩾ 0. Note that the condition dh ⩾ 1 for all h is necessary here,
since |hA| ⩾ 1 for any nonempty subset A of a semigroup (G, +). To that
end, we shall deform the lexideal L ⊂ S, used above for our almost sharp
realization, into a binomial ideal L̂ ⊂ S with the same Hilbert function as
L, i.e. such that dim L̂ ∩ Si = dim L ∩ Si = for all i. The latter constraint
can be achieved with a Gröbner basis construction.

4.1. Gröbner bases

We recall here the few relevant facts on Gröbner bases needed for our
constructions, and refer to [4, 6, 15] for more details. Again, let M de-
note the set of monomials in K[X1, . . . , Xn]. The notion of Gröbner basis
is relative to a given ordering of M. Here we only consider the graded
lexicographic ordering ⩽ on M relative to X1 > · · · > Xn as defined in
Section 2.3.

Denote M∗ = M \ {1}. For any u, v ∈ M, let gcd(u, v) ∈ M denote
their greatest common divisor. We further need the following notation and
definitions.

Notation 4.1. — For a nonzero polynomial f ∈ K[X1, . . . , Xn], we denote
by in(f) ∈ M its leading monomial with respect to the given ordering on
M, and by lc(f) ∈ K∗ its leading coefficient, i.e. the coefficient of in(f) in
f . The leading term of f is

lt(f) = lc(f)in(f).

For a proper ideal I ⊊ K[X1, . . . , Xn], we denote by in(I) the monomial
ideal generated by the set {in(f) | f ∈ I \ {0}}.

The importance of the ideal in(I) stems from the following property.

ANNALES DE L’INSTITUT FOURIER
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Proposition 4.2 (Macaulay, [9]). — Let I be a proper graded ideal in
S = K[X1, . . . , Xn]. Then the graded algebras

S/I and S/in(I)

have the same Hilbert function.

Definition 4.3. — A finite set {g1, . . . , gs} ⊂ K[X1, . . . , Xn] \ K of
nonconstant polynomials is a Gröbner basis if, for any nonzero element f of
the ideal I = (g1, . . . , gs), we have in(f) ∈ (in(g1), . . . , in(gs)); equivalently,
in(f) is divisible by in(gi) for some 1 ⩽ i ⩽ s. We then say that {g1, . . . , gs}
is a Gröbner basis of I.

Note that every proper ideal I ⊊ K[X1, . . . , Xn] admits a Gröbner basis;
this follows from the fact that K[X1, . . . , Xn] is noetherian, whence in(I) is
finitely generated. A key property of Gröbner bases is the following direct
consequence of Proposition 4.2.

Corollary 4.4. — Let {g1, . . . , gs} ⊂ K[X1, . . . , Xn]\K be a Gröbner
basis, with gj homogeneous for all j. Then the graded algebras

S/(g1, . . . , gs) and S/(in(g1), . . . , in(gs))

have the same Hilbert function.

Proof. — Let I = (g1, . . . , gs). Then I is a graded ideal since the gj

are homogeneous for all j. Moreover, in(I) = (in(g1), . . . , in(gs)) since
{g1, . . . , gs} is a Gröbner basis by hypothesis. We conclude with Propo-
sition 4.2. □

Buchberger developed an algorithm to construct Gröbner bases for any
proper ideal of K[X1, . . . , Xn], including a stopping criterion to recognize
them. Here are the relevant details for the sequel.

Definition 4.5. — Let f, g, h ∈ K[X1, . . . , Xn] with f, h nonzero. We
say that f properly reduces to g with respect to h if in(h) divides in(f) in
M, and if g is obtained by eliminating the leading term of f with that of
h, i.e.

g = f − lt(f)
lt(h)h.

We write f
h→ g when this occurs. In particular, if f

h→ g, then either g = 0
or else in(g) < in(f).
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Definition 4.6. — More generally, let H ⊂ K[X1, . . . , Xn] be a set of
nonconstant polynomials, and let f, g ∈ K[X1, . . . , Xn] with f ̸= 0. We say
that f properly reduces to g with respect to H, and we write f

H→ g, if
there is a sequence of proper reductions from f to g of the form

f = f0
h1−→ f1

h2−→ . . .
hℓ−→ fℓ = g

with h1, . . . , hℓ ∈ H.

A key ingredient in Buchberger’s algorithm is the notion of S-polynomial.

Definition 4.7. — Let f, g ∈ K[X1, . . . , Xn] \ K. Let

v = gcd(in(f), in(g)) ∈ M.

The S-polynomial of f, g is

S(f, g) = lt(g)
v

f − lt(f)
v

g.

Theorem 4.8 (Buchberger’s criterion). — A set H = {f1, . . . , fr} of
polynomials in K[X1, . . . ,Xn]\K is a Gröbner basis if and only if S(fi, fj) H→
0 for all 1 ⩽ i < j ⩽ r.

4.2. A Gröbner basis of binomials

We construct here a Gröbner basis made of certain homogeneous bino-
mials, i.e. of differences u − v of monomials u, v of same degree. As above,
M is the set of monomials in K[X1, . . . , Xn], endowed with the graded
lexicographic order ⩽, and M∗ = M \ {1}.

Notation 4.9. — For u ∈ M∗, we denote by min(u) the smallest index
i ⩾ 1 such that Xi divides u, and by max(u) the largest index j ⩾ 1 such
that Xj divides u.

For instance, for u = X4
2 X3X3

5 , we have min(u) = 2 and max(u) = 5.

Definition 4.10. — Let φ : M∗ → M∗ be the map defined for all
u ∈ M∗ by

φ(u) = uXn/Xmin(u).
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Note that if min(u) < n, then u > φ(u) and hence in(u − φ(u)) =
u. For instance, for u = X4

2 X3X3
5 again, taken here as an element of

K[X1, . . . , X5], i.e. with n = 5, we have

φ(u) = X3
2 X3X4

5

and, as stated, X4
2 X3X3

5 > X3
2 X3X4

5 in M5.

Proposition 4.11. — Let u1, . . . , ur ∈ M∗ satisfy min(ui) ⩽ n − 1 for
all i. Then the set of binomials

Hr = {ui − φ(ui) | 1 ⩽ i ⩽ r}

is a Gröbner basis.

Proof. — The case r = 1 is trivial. Let r = 2, and let u1, u2 ∈ M∗ satisfy
min(u1), min(u2) ⩽ n − 1. With Theorem 4.8 in mind, we will show that

(4.1) S(u1 − φ(u1), u2 − φ(u2)) H2−→ 0.

Without loss of generality, we may assume u1 > u2 and min(u1) = 1. Let
i = min(u2). Thus i ∈ {1, . . . , n − 1} by hypothesis. Write u1 = X1v1 and
u2 = Xiv2 with v1, v2 ∈ M and min(v1) ⩾ 1, min(v2) ⩾ i. Then

u1 − φ(u1) = (X1 − Xn)v1,

u2 − φ(u2) = (Xi − Xn)v2.

Let now v = gcd(v1, v2) ∈ M.
• Assume first i = 1. Then X1v = gcd(u1, u2), and we have

S(u1 − φ(u1), u2 − φ(u2)) = S((X1 − Xn)v1, (X1 − Xn)v2)
= (X1 − Xn)v1v2/v − (X1 − Xn)v2v1/v

= 0.

• Assume now i ⩾ 2. Then

S(u1 − φ(u1), u2 − φ(u2)) = S((X1 − Xn)v1, (Xi − Xn)v2)
= (X1 − Xn)Xiv1v2/v − (Xi − Xn)X1v2v1/v

u1−φ(u1)−−−−−−→ X1Xnv2v1/v − XiXnv1v2/v

u2−φ(u2)−−−−−−→ X2
nv2v1/v − X2

nv1v2/v

= 0.

By Buchberger’s criterion in Theorem 4.8, the set H2 is a Gröbner basis,
as desired. For r ⩾ 3, the analog of formula (4.1) remains valid for any pair
ui − φ(ui), uj − φ(uj) with 1 ⩽ i < j ⩽ r. Hence, by Buchberger’s criterion
again, the set Hr is a Gröbner basis, and the proof is complete. □
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4.3. Sharp realization

We are now in a position to prove our main result in this paper.

Theorem 4.12. — Let (di)i⩾0 be a sequence of positive integers such
that d0 = 1 and 1 ⩽ di+1 ⩽ d

⟨i⟩
i for all i ⩾ 1. Then there exists an abelian

semigroup G and A ⊆ G such that dh = |hA| for all h ⩾ 0.

Proof. — Set n = d1 and S = K[X1, . . . , Xn] =
⊕

i⩾0 Si with its stan-
dard grading. By Theorem 2.7, there exists a lexideal L ⊆ S such that, for
R = S/L =

⊕
i⩾0 Ri, we have

di = dim Ri

for all i ⩾ 0. Denoting Li = L ∩ Si, we have L =
⊕

i⩾0 Li and Ri = Si/Li

for all i. In particular, since n = d1 = dim R1, we have L1 = {0}.

Claim 1. — For all u ∈ M ∩ L, we have

(4.2) min(u) ⩽ n − 1.

For otherwise, let u ∈ M ∩ L be such that min(u) = n. Therefore u = Xk
n

for some k ⩾ 1. This implies L ⊃ Mk since Xk
n = min(Mk) and L ∩ Mk

is a lexsegment. Hence Rk = {0}, contradicting dk ⩾ 1. This proves the
claim.

Let G ⊂ M ∩ L be the minimal system of monomial generators of L, so
that L = (G). Of course G is finite and consists of all monomials in L which
are not the product of two monomials in L. Denote Gi = G ∩ Si = G ∩ Mi

for all i ⩾ 1. We have G1 = ∅ since L1 = {0}.
Since L is a lexideal, it is a stable monomial ideal. As such, its minimal

system of generators G may be characterized as follows [2]: for all u ∈ M∩L,
there is a unique monomial factorisation

u = vw

with v, w ∈ M such that

(4.3)
{

v ∈ G,

max(v) ⩽ min(w).

Using the map φ : M∗ → M∗ of Definition 4.10, denote

Ĝ = {u − φ(u) | u ∈ G}.
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It follows from (4.2) and the definition of φ that u > φ(u) for all u ∈ G. Set
L̂ = (Ĝ), the homogeneous binomial ideal of S generated by Ĝ. Denote by

π : S −→ R = S/L =
⊕
i⩾0

Ri,

π̂ : S −→ R̂ = S/L̂ =
⊕
i⩾0

R̂i

the respective quotients and quotient maps of S. Applying Proposition 4.11
to Ĝ, as allowed by (4.2), it follows that Ĝ is a Gröbner basis of L̂. Therefore,
by Corollary 4.4, the Hilbert functions of L and L̂ are the same. That is,
for all i ⩾ 0, we have

(4.4) dim(R̂i) = dim(Ri) = di.

Claim 2. — For all u ∈ M ∩ L, we have

(4.5) φ(u) ≡ u mod L̂.

Indeed, consider the unique monomial decomposition u = vw with v ∈ G
provided by (4.3). Hence min(u) = min(v), implying

φ(u) = φ(vw) = φ(v)w

by definition of φ. Therefore

u − φ(u) = vw − φ(vw) = vw − φ(v)w = (v − φ(v))w.

Since v − φ(v) ∈ Ĝ, this proves (4.5).
Claim 3. — For all u ∈ M ∩ L, there is a least exponent ℓ ⩾ 1 such that

(4.6) φℓ(u) ∈ M \ L,

where φℓ = φ ◦ · · · ◦ φ︸ ︷︷ ︸
ℓ

. Indeed, at each application of φ, the exponent of

Xn increases by 1 while the degree remains constant. And Xk
n ∈ M \ L for

all k by (4.2). This proves the claim.
Claim 4. — We have π̂(M) = π̂(M \ L). That is, for all u ∈ M, there

exists w ∈ M \ L such that

(4.7) u ≡ w mod L̂.

Indeed, if u ∈ M \ L, take w = u. If u ∈ M ∩ L, let w = φℓ(u) ∈ M \ L

with ℓ minimal as given by (4.6). We have

u − φℓ(u) =
ℓ−1∑
i=0

(φi(u) − φi+1(u)).
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By minimality of ℓ with respect to (4.6), we have φi(u) ∈ M ∩ L for all
0 ⩽ i ⩽ ℓ − 1. Hence, since v ≡ φ(v) mod L̂ for all v ∈ M ∩ L by (4.5), it
follows that

u ≡ φℓ(u) mod L̂.

This shows that (4.7) holds with w = φℓ(u) ∈ M \ L, as desired. This
settles the claim.

Finally, let A = π̂(M1) ⊂ R̂. Then for all h ⩾ 0, we have

(4.8) Ah = π̂(Mh) = π̂(Mh \ Lh)

since Mh = Mh
1 . Moreover, π̂(M \ L) is a K-basis of R̂. This follows from

the facts that π̂(M \ L) spans R̂, that π(M \ L) is a K-basis of R by
Proposition 3.2, and by (4.4). We conclude that

|Ah| = dim(R̂h) = dim(Rh) = dh

for all h ⩾ 0, as desired. □

Example 4.13. — Revisiting Example 3.6, let (d0, d1, d2, d3, d4, d5, . . . ) =
(1, 5, 13, 25, 42, 63, . . . ). Let S = K[X1, . . . , X5], and let L ⊂ S be the
lexideal with minimal monomial generating set

G = {X2
1 , X1X2, X1X2

3 , X1X3X3
4 , X1X3X2

4 X5}.

Using the map φ from Definition 4.10, let Ĝ = {u − φ(u) | u ∈ G}. Then

Ĝ = {X2
1 − X1X5, X1X2 − X2X5, X1X2

3 − X2
3 X5, X1X3X3

4 − X3X3
4 X5,

X1X3X2
4 X5 − X3X2

4 X2
5 }.

This is a Gröbner basis by Proposition 4.11. Let L̂ = (Ĝ). Denote by
π̂ : S → R̂ = S/L̂ the quotient map, set xj = π̂(Xj) for 1 ⩽ j ⩽ 5, and
A = {x1, . . . , x5} ⊂ R̂. Then by Theorem 4.12, we have

|Ah| = dh

for all 0 ⩽ h ⩽ 5, as desired.

5. Concluding Remarks

Theorem 4.12 provides optimal upper bounds on the growth of iterated
sumsets relative to all abelian semigroups. However, restricted to abelian
groups only, the analogous problem remains open.
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As recalled in Theorem 1.1, we have shown in [3] that the arithmetic
conditions di+1 ⩽ d

⟨i⟩
i for all i are satisfied by all sequences (di)i⩾0 occuring

as dh = |hA| for all h, with A a nonempty finite subset of an abelian
semigroup G. But the arithmetic conditions di+1 ⩽ d

⟨i⟩
i for all i do not

imply that this sequence is nondecreasing. Yet relative to groups, and in
contrast with semigroups in general, monotonicity is a necessary condition,
since

(5.1) |hA| ⩽ |(h + 1)A|

for all finite subsets A of groups and for all h. On the other hand, this
monotonicity condition is far from being sufficient. For instance, consider
the eventually constant sequence

(d0, d1, d2, d3, . . . ) = (1, 3, 3, 4, 4, 4, . . . )

with di = 4 for all i ⩾ 3. The conditions di+1 ⩽ d
⟨i⟩
i for all i ⩾ 1 are satisfied

here. Yet this sequence cannot be of the form (|hA|)h⩾0 for a subset A of
a group G. For if |A| = |2A| = 3, then A is a translate of a subgroup of
order 3, whence |hA| = 3 for all h ⩾ 1. This follows from the following well
known lemma, whose short proof we recall for convenience.

Lemma 5.1. — Let A be a nonempty finite subset of a group (G, +).
Then |hA| = |(h + 1)A| for some h ⩾ 0 if and only if A is a translate of a
subgroup of G of cardinality |hA|. In particular, |hA| = |h′A| for all h′ ⩾ h.

Proof. — Without loss a generality, we may assume that A contains 0.
Let B = hA, where h ⩾ 0 satisfies |hA| = |(h + 1)A|. Then |hA| = |h′A|
for all h′ ⩾ h, and in fact hA = h′A for all h′ ⩾ h since hA ⊆ h′A as A

contains 0. It follows that B is a finite subset of G satisfying 0 ∈ B and
2B = B. Hence, for all b ∈ B, there exists c ∈ B such that b + c = 0. It
follows that B is both stable under addition and taking opposites. Hence
it is a subgroup of G. □

Besides the problem of finding an analog of Theorem 4.12 restricted to
abelian groups, the following general problem is completely open.

Problem. — Characterize the nondecreasing sequences (di)i⩾0 of posi-
tive integers arising as iterated sumsets cardinalities in abelian groups, i.e.
such that there exists an abelian group G and a nonempty finite subset
A ⊆ G such that dh = |hA| for all h ⩾ 0.
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