[Une obstruction quantique aux chirurgies purement cosmétiques]
Nous donnons de nouvelles obstructions pour qu’un nœud dans admette des chirurgies purement cosmétiques, qui proviennent de l’étude des invariants de Witten-Reshetikhin-Turaev à niveau fixé.
En particulier, nous montrons que si a des chirurgies purement cosmétiques alors les pentes sont de la forme , sauf si , où est le polynôme de Jones de . Pour tout nombre premier , nous donnons aussi une obstruction pour ce que ait une chirurgie purement cosmétique de pentes avec qui fait intervenir les premiers polynômes de Jones coloriés de en une racine -ème de l’unité. Nous vérifions la conjecture pour tous les nœuds à moins de croisements.
We present new obstructions for a knot in to admit purely cosmetic surgeries, which arise from the study of Witten–Reshetikhin–Turaev invariants at fixed level, and can be framed in terms of the colored Jones polynomials of .
In particular, we show that if has purely cosmetic surgeries then the slopes of the surgery are of the form , except if , where is the Jones polynomial of . For any odd prime , we also give an obstruction for to have a surgery slope with that involves the values of the first colored Jones polynomials of at an -th root of unity. We verify the purely cosmetic surgery conjecture for all knots with at most crossings.
Révisé le :
Accepté le :
Première publication :
Keywords: Dehn surgery, cosmetic surgeries, Jones polynomial, Reshetikhin–Turaev TQFTs
Mots-clés : chirurgie de Dehn, chirurgies cosmétiques, polynôme de Jones, TQFTs de Reshetikhin-Turaev
Detcherry, Renaud 1
@unpublished{AIF_0__0_0_A159_0, author = {Detcherry, Renaud}, title = {A quantum obstruction for purely cosmetic surgeries}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3673}, language = {en}, note = {Online first}, }
Detcherry, Renaud. A quantum obstruction for purely cosmetic surgeries. Annales de l'Institut Fourier, Online first, 19 p.
[1] The Turaev genus of an adequate knot, Topology Appl., Volume 156 (2009) no. 17, pp. 2704-2712 | DOI | MR | Zbl
[2] Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995) no. 4, pp. 883-927 | DOI | MR | Zbl
[3] Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math., Volume 405 (1990), pp. 181-220 | MR | Zbl
[4] et al. Regina: Software for low-dimensional topology, http://regina-normal.github.io/, 1999–2023
[5] Effective bilipschitz bounds on drilling and filling (2019) (to appear in Geometry & Topology) | arXiv
[6] The mapping cone formula in Heegaard Floer homology and Dehn surgery on knots in , Algebr. Geom. Topol., Volume 17 (2017) no. 4, pp. 1917-1951 | DOI | MR | Zbl
[7] On the Witten-Reshetikhin-Turaev representations of mapping class groups, Proc. Am. Math. Soc., Volume 127 (1999) no. 8, pp. 2483-2488 | DOI | MR | Zbl
[8] Dehn surgery on knots, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Mathematical Society of Japan, 1991, pp. 631-642 | MR | Zbl
[9] Heegaard Floer homology and cosmetic surgeries in (2019) (to appear in J. Eur. Math. Soc.) | arXiv
[10] A note on Jones polynomial and cosmetic surgery (2016) | arXiv
[11] Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Commun. Math. Phys., Volume 147 (1992) no. 3, pp. 563-604 | DOI | MR | Zbl
[12] The 3-manifold invariants of Witten and Reshetikhin–Turaev for , Invent. Math., Volume 105 (1991) no. 3, pp. 473-545 | DOI | MR | Zbl
[13] On knot Floer width and Turaev genus, Algebr. Geom. Topol., Volume 8 (2008) no. 2, pp. 1141-1162 | DOI | MR | Zbl
[14] Closed 3-manifolds unchanged by Dehn surgery, J. Knot Theory Ramifications, Volume 1 (1992) no. 3, pp. 279-296 | DOI | MR | Zbl
[15] Cosmetic surgeries on knots in , J. Reine Angew. Math., Volume 706 (2015), pp. 1-17 | DOI | MR | Zbl
[16] Knot Floer homology and rational surgeries, Algebr. Geom. Topol., Volume 11 (2011) no. 1, pp. 1-68 | DOI | MR | Zbl
[17] Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 1, pp. 547-597 | DOI | MR | Zbl
[18] Cable knots do not admit cosmetic surgeries, J. Knot Theory Ramifications, Volume 28 (2019) no. 4, 1950034, 11 pages | DOI | MR | Zbl
[19] Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 2016, xii+596 pages | DOI | MR
[20] Verification of the Jones unknot conjecture up to 22 crossings, J. Knot Theory Ramifications, Volume 27 (2018) no. 3, 1840009, 18 pages | DOI | MR | Zbl
[21] On Witten’s 3-manifold invariants, https://canyon23.net/math/1991TQFTNotes.pdf, 1991 (Preliminary version #2)
[22] Cosmetic surgeries on genus one knots, Algebr. Geom. Topol., Volume 6 (2006), pp. 1491-1517 | DOI | MR | Zbl
[23] Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989) no. 3, pp. 351-399 | DOI | MR | Zbl
[24] Cosmetic surgery in L-space homology spheres, Geom. Topol., Volume 15 (2011) no. 2, pp. 1157-1168 | DOI | MR | Zbl
Cité par Sources :