A quantum obstruction for purely cosmetic surgeries
[Une obstruction quantique aux chirurgies purement cosmétiques]
Annales de l'Institut Fourier, Online first, 19 p.

Nous donnons de nouvelles obstructions pour qu’un nœud K dans S 3 admette des chirurgies purement cosmétiques, qui proviennent de l’étude des invariants de Witten-Reshetikhin-Turaev à niveau fixé.

En particulier, nous montrons que si K a des chirurgies purement cosmétiques alors les pentes sont de la forme ±1 5k, sauf si J K e 2iπ 5 =1, où J K est le polynôme de Jones de K. Pour tout nombre premier r5, nous donnons aussi une obstruction pour ce que K ait une chirurgie purement cosmétique de pentes ±1 k avec rk qui fait intervenir les premiers r-3 2 polynômes de Jones coloriés de K en une racine r-ème de l’unité. Nous vérifions la conjecture pour tous les nœuds à moins de 17 croisements.

We present new obstructions for a knot K in S 3 to admit purely cosmetic surgeries, which arise from the study of Witten–Reshetikhin–Turaev invariants at fixed level, and can be framed in terms of the colored Jones polynomials of K.

In particular, we show that if K has purely cosmetic surgeries then the slopes of the surgery are of the form ±1 5k, except if J K e 2iπ 5 =1, where J K is the Jones polynomial of K. For any odd prime r5, we also give an obstruction for K to have a ±1 k surgery slope with rk that involves the values of the first r-3 2 colored Jones polynomials of K at an r-th root of unity. We verify the purely cosmetic surgery conjecture for all knots with at most 17 crossings.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3673
Classification : 57M25
Keywords: Dehn surgery, cosmetic surgeries, Jones polynomial, Reshetikhin–Turaev TQFTs
Mots-clés : chirurgie de Dehn, chirurgies cosmétiques, polynôme de Jones, TQFTs de Reshetikhin-Turaev

Detcherry, Renaud 1

1 Institut de Mathématiques de Bourgogne, UMR 5584 CNRS Université Bourgogne Europe 21000 Dijon, France
@unpublished{AIF_0__0_0_A159_0,
     author = {Detcherry, Renaud},
     title = {A quantum obstruction for purely cosmetic surgeries},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3673},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Detcherry, Renaud
TI  - A quantum obstruction for purely cosmetic surgeries
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3673
LA  - en
ID  - AIF_0__0_0_A159_0
ER  - 
%0 Unpublished Work
%A Detcherry, Renaud
%T A quantum obstruction for purely cosmetic surgeries
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3673
%G en
%F AIF_0__0_0_A159_0
Detcherry, Renaud. A quantum obstruction for purely cosmetic surgeries. Annales de l'Institut Fourier, Online first, 19 p.

[1] Abe, Tetsuya The Turaev genus of an adequate knot, Topology Appl., Volume 156 (2009) no. 17, pp. 2704-2712 | DOI | MR | Zbl

[2] Blanchet, Christian; Habegger, Nathan; Masbaum, Gregor; Vogel, Pierre Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995) no. 4, pp. 883-927 | DOI | MR | Zbl

[3] Boyer, Steven; Lines, Daniel Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math., Volume 405 (1990), pp. 181-220 | MR | Zbl

[4] Burton, Benjamin A.; Budney, Ryan; Pettersson, William et al. Regina: Software for low-dimensional topology, http://regina-normal.github.io/, 1999–2023

[5] Futer, David; Purcell, Jessica S.; Schleimer, Saul Effective bilipschitz bounds on drilling and filling (2019) (to appear in Geometry & Topology) | arXiv

[6] Gainullin, Fyodor The mapping cone formula in Heegaard Floer homology and Dehn surgery on knots in S 3 , Algebr. Geom. Topol., Volume 17 (2017) no. 4, pp. 1917-1951 | DOI | MR | Zbl

[7] Gilmer, Patrick M. On the Witten-Reshetikhin-Turaev representations of mapping class groups, Proc. Am. Math. Soc., Volume 127 (1999) no. 8, pp. 2483-2488 | DOI | MR | Zbl

[8] Gordon, Cameron McA. Dehn surgery on knots, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Mathematical Society of Japan, 1991, pp. 631-642 | MR | Zbl

[9] Hanselman, Jonathan Heegaard Floer homology and cosmetic surgeries in S 3 (2019) (to appear in J. Eur. Math. Soc.) | arXiv

[10] Ichihara, Kazuhiro; Wu, Zhongtao A note on Jones polynomial and cosmetic surgery (2016) | arXiv

[11] Jeffrey, Lisa C. Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Commun. Math. Phys., Volume 147 (1992) no. 3, pp. 563-604 | DOI | MR | Zbl

[12] Kirby, Robion; Melvin, Paul The 3-manifold invariants of Witten and Reshetikhin–Turaev for sl(2,), Invent. Math., Volume 105 (1991) no. 3, pp. 473-545 | DOI | MR | Zbl

[13] Lowrance, Adam M. On knot Floer width and Turaev genus, Algebr. Geom. Topol., Volume 8 (2008) no. 2, pp. 1141-1162 | DOI | MR | Zbl

[14] Mathieu, Yves Closed 3-manifolds unchanged by Dehn surgery, J. Knot Theory Ramifications, Volume 1 (1992) no. 3, pp. 279-296 | DOI | MR | Zbl

[15] Ni, Yi; Wu, Zhongtao Cosmetic surgeries on knots in S 3 , J. Reine Angew. Math., Volume 706 (2015), pp. 1-17 | DOI | MR | Zbl

[16] Ozsváth, Peter S.; Szabó, Zoltán Knot Floer homology and rational surgeries, Algebr. Geom. Topol., Volume 11 (2011) no. 1, pp. 1-68 | DOI | MR | Zbl

[17] Reshetikhin, Nicolai; Turaev, Vladimir G. Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 1, pp. 547-597 | DOI | MR | Zbl

[18] Tao, Ran Cable knots do not admit cosmetic surgeries, J. Knot Theory Ramifications, Volume 28 (2019) no. 4, 1950034, 11 pages | DOI | MR | Zbl

[19] Turaev, Vladimir G. Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 2016, xii+596 pages | DOI | MR

[20] Tuzun, Robert E.; Sikora, Adam S. Verification of the Jones unknot conjecture up to 22 crossings, J. Knot Theory Ramifications, Volume 27 (2018) no. 3, 1840009, 18 pages | DOI | MR | Zbl

[21] Walker, Kevin On Witten’s 3-manifold invariants, https://canyon23.net/math/1991TQFTNotes.pdf, 1991 (Preliminary version #2)

[22] Wang, Jiajun Cosmetic surgeries on genus one knots, Algebr. Geom. Topol., Volume 6 (2006), pp. 1491-1517 | DOI | MR | Zbl

[23] Witten, Edward Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989) no. 3, pp. 351-399 | DOI | MR | Zbl

[24] Wu, Zhongtao Cosmetic surgery in L-space homology spheres, Geom. Topol., Volume 15 (2011) no. 2, pp. 1157-1168 | DOI | MR | Zbl

Cité par Sources :