[Un théorème à la Dvoretzky pour les sous-ensembles localement finis d’un espace de Hilbert]
Le résultat principal de l’article : étant donné , chaque sous-ensemble localement fini de admet un plongement -bilipschitz dans n’importe quel espace de Banach de dimension infinie. Le résultat est basé sur deux résultats qui présentent un intérêt indépendant :
(1) Une somme directe de deux espaces euclidiens de dimension finie contient une sous-somme de dimension contrôlée qui est -proche d’une somme directe par rapport à une base -inconditionnelle dans un espace à deux dimensions.
(2) Pour tout espace de Banach de dimension finie et sa somme directe avec lui-même par rapport à une base -inconditionnelle dans un espace à deux dimensions, il existe un plongement -bilipschitz de dans qui coïncide, sur une petite boule, avec l’identité sur la première composante, et qui coïncide, sur le complément d’une grosse boule, avec l’identité sur la deuxième composante.
The main result of the paper: Given any , every locally finite subset of admits a -bilipschitz embedding into an arbitrary infinite-dimensional Banach space. The result is based on two results which are of independent interest:
(1) A direct sum of two finite-dimensional Euclidean spaces contains a sub-sum of a controlled dimension which is -close to a direct sum with respect to a -unconditional basis in a two-dimensional space.
(2) For any finite-dimensional Banach space and its direct sum with itself with respect to a -unconditional basis in a two-dimensional space, there exists a -bilipschitz embedding of into which on a small ball coincides with the identity map onto the first summand and on the complement of a large ball coincides with the identity map onto the second summand.
Révisé le :
Accepté le :
Première publication :
Keywords: Bilipschitz embedding, Dvoretzky Theorem, Finite-dimensional decomposition, Unconditional
Mots-clés : Plongement bilipschitz, Théorème de Dvoretzky, décomposition finie-dimensionnelle, base inconditionnelle
Catrina, Florin 1 ; Ostrovska, Sofiya 2 ; Ostrovskii, Mikhail I. 1
@unpublished{AIF_0__0_0_A152_0, author = {Catrina, Florin and Ostrovska, Sofiya and Ostrovskii, Mikhail I.}, title = {Dvoretzky-type theorem for locally finite subsets of a {Hilbert} space}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3672}, language = {en}, note = {Online first}, }
TY - UNPB AU - Catrina, Florin AU - Ostrovska, Sofiya AU - Ostrovskii, Mikhail I. TI - Dvoretzky-type theorem for locally finite subsets of a Hilbert space JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3672 LA - en ID - AIF_0__0_0_A152_0 ER -
%0 Unpublished Work %A Catrina, Florin %A Ostrovska, Sofiya %A Ostrovskii, Mikhail I. %T Dvoretzky-type theorem for locally finite subsets of a Hilbert space %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3672 %G en %F AIF_0__0_0_A152_0
Catrina, Florin; Ostrovska, Sofiya; Ostrovskii, Mikhail I. Dvoretzky-type theorem for locally finite subsets of a Hilbert space. Annales de l'Institut Fourier, Online first, 43 p.
[1] Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, 202, American Mathematical Society, 2015, xx+451 pages | DOI | MR | Zbl
[2] Asymptotic geometric analysis. Part II, Mathematical Surveys and Monographs, 261, American Mathematical Society, 2021, xxxvii+645 pages | DOI | MR | Zbl
[3] Ramsey-type theorems for metric spaces with applications to online problems, J. Comput. Syst. Sci., Volume 72 (2006) no. 5, pp. 890-921 | DOI | MR | Zbl
[4] On metric Ramsey-type phenomena, Ann. Math., Volume 162 (2005) no. 2, pp. 643-709 | DOI | MR | Zbl
[5] Embeddings of locally finite metric spaces into Banach spaces, Proc. Am. Math. Soc., Volume 136 (2008) no. 3, pp. 1029-1033 | DOI | MR | Zbl
[6] The coarse geometry of Tsirelson’s space and applications, J. Am. Math. Soc., Volume 31 (2018) no. 3, pp. 699-717 | DOI | MR | Zbl
[7] Geometric nonlinear functional analysis. Vol. 1, Colloquium Publications, 48, American Mathematical Society, 2000, xii+488 pages | DOI | MR | Zbl
[8] On Hilbertian subsets of finite metric spaces, Isr. J. Math., Volume 55 (1986) no. 2, pp. 147-152 | DOI | MR | Zbl
[9] Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society, 2007, xii+200 pages | DOI | MR | Zbl
[10] Constructions preserving Hilbert space uniform embeddability of discrete groups, Trans. Am. Math. Soc., Volume 355 (2003) no. 8, pp. 3253-3275 | DOI | MR | Zbl
[11] Real analysis, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser/Springer, 2016, xxxii+596 pages | DOI | MR | Zbl
[12] A theorem on convex bodies and applications to Banach spaces, Proc. Natl. Acad. Sci. USA, Volume 45 (1959), pp. 223-226 | DOI | MR | Zbl
[13] Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, 1961, pp. 123-160 | MR | Zbl
[14] Gaussian processes and almost spherical sections of convex bodies, Ann. Probab., Volume 16 (1988) no. 1, pp. 180-188 | DOI | MR | Zbl
[15] Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky–Rogers, Bol. Soc. Mat. São Paulo, Volume 8 (1953), pp. 81-110 | MR | Zbl
[16] Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften, 336, Springer, 2007, xiv+578 pages | DOI | MR | Zbl
[17] Basic concepts in the geometry of Banach spaces, Handbook of the geometry of Banach spaces. Volume 1, Elsevier, 2001, pp. 1-84 | DOI | MR | Zbl
[18] There is no finitely isometric Krivine’s theorem, Houston J. Math., Volume 44 (2018) no. 1, pp. 309-317 | MR | Zbl
[19] Almost ellipsoidal sections and projections of convex bodies, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 529-546 | DOI | MR | Zbl
[20] Classical Banach spaces. I. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer, 1977, xiii+188 pages | MR | Zbl
[21] Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, 1979, x+243 pages | DOI | MR | Zbl
[22] Lectures on discrete geometry, Graduate Texts in Mathematics, 212, Springer, 2002, xvi+481 pages | DOI | MR | Zbl
[23] Ramsey partitions and proximity data structures, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 253-275 | DOI | MR | Zbl
[24] Ultrametric subsets with large Hausdorff dimension, Invent. Math., Volume 192 (2013) no. 1, pp. 1-54 | DOI | MR | Zbl
[25] A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkts. Anal. Prilozh., Volume 5 (1971) no. 4, pp. 28-37 | MR
[26] Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov, Lecture Notes in Mathematics, 1200, Springer, 1986, viii+156 pages | MR | Zbl
[27] An introduction to the Ribe program, Jpn. J. Math. (3), Volume 7 (2012) no. 2, pp. 167-233 | DOI | MR | Zbl
[28] Scale-oblivious metric fragmentation and the nonlinear Dvoretzky theorem, Isr. J. Math., Volume 192 (2012) no. 1, pp. 489-504 | DOI | MR | Zbl
[29] On coarse embeddability into -spaces and a conjecture of Dranishnikov, Fundam. Math., Volume 189 (2006) no. 2, pp. 111-116 | DOI | MR | Zbl
[30] Large scale geometry, EMS Textbooks in Mathematics, European Mathematical Society, 2012, xiv+189 pages | DOI | MR | Zbl
[31] The distortion problem, Acta Math., Volume 173 (1994) no. 2, pp. 259-281 | DOI | MR | Zbl
[32] Distortion in the finite determination result for embeddings of locally finite metric spaces into Banach spaces, Glasg. Math. J., Volume 61 (2019) no. 1, pp. 33-47 | DOI | MR
[33] On embeddings of locally finite metric spaces into , J. Math. Anal. Appl., Volume 474 (2019) no. 1, pp. 666-673 | DOI | MR | Zbl
[34] Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry, Quaest. Math., Volume 17 (1994) no. 3, pp. 259-319 | DOI | MR | Zbl
[35] On comparison of the coarse embeddability into a Hilbert space and into other Banach spaces (2006) (available at http://facpub.stjohns.edu/ostrovsm)
[36] Coarse embeddability into Banach spaces, Topol. Proc., Volume 33 (2009), pp. 163-183 | MR | Zbl
[37] Metric embeddings. Bilipschitz and coarse embeddings into Banach spaces, De Gruyter Studies in Mathematics, 49, Walter de Gruyter, 2013, xii+372 pages | DOI | MR | Zbl
[38] Isometric embeddings of finite subsets of into infinite-dimensional Banach spaces (2015) (available at https://mathoverflow.net/questions/221181/)
[39] Dichotomies, structure, and concentration in normed spaces, Adv. Math., Volume 332 (2018), pp. 438-464 | DOI | MR | Zbl
[40] Two observations regarding embedding subsets of Euclidean spaces in normed spaces, Adv. Math., Volume 200 (2006) no. 1, pp. 125-135 | DOI | MR | Zbl
[41] Not every Banach space contains an imbedding of or , Funct. Anal. Appl., Volume 8 (1974), pp. 138-141 | DOI | Zbl
Cité par Sources :