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DVORETZKY-TYPE THEOREM FOR LOCALLY FINITE
SUBSETS OF A HILBERT SPACE

by Florin CATRINA,
Sofiya OSTROVSKA & Mikhail I. OSTROVSKII (*)

Abstract. — The main result of the paper: Given any ε > 0, every locally
finite subset of ℓ2 admits a (1 + ε)-bilipschitz embedding into an arbitrary infinite-
dimensional Banach space. The result is based on two results which are of inde-
pendent interest:

(1) A direct sum of two finite-dimensional Euclidean spaces contains a sub-
sum of a controlled dimension which is ε-close to a direct sum with respect to a
1-unconditional basis in a two-dimensional space.

(2) For any finite-dimensional Banach space Y and its direct sum X with itself
with respect to a 1-unconditional basis in a two-dimensional space, there exists a
(1 + ε)-bilipschitz embedding of Y into X which on a small ball coincides with
the identity map onto the first summand and on the complement of a large ball
coincides with the identity map onto the second summand.

Résumé. — Le résultat principal de l’article : étant donné ε > 0, chaque sous-
ensemble localement fini de ℓ2 admet un plongement (1 + ε)-bilipschitz dans n’im-
porte quel espace de Banach de dimension infinie. Le résultat est basé sur deux
résultats qui présentent un intérêt indépendant :

(1) Une somme directe de deux espaces euclidiens de dimension finie contient
une sous-somme de dimension contrôlée qui est ε-proche d’une somme directe par
rapport à une base 1-inconditionnelle dans un espace à deux dimensions.

(2) Pour tout espace de Banach de dimension finie Y et sa somme directe X
avec lui-même par rapport à une base 1-inconditionnelle dans un espace à deux
dimensions, il existe un plongement (1 + ε)-bilipschitz de Y dans X qui coïncide,
sur une petite boule, avec l’identité sur la première composante, et qui coïncide,
sur le complément d’une grosse boule, avec l’identité sur la deuxième composante.
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1. Introduction

All normed vector spaces considered in this paper are over the reals.
Recall the classical Dvoretzky Theorem [12, 13] which proved Grothen-

dieck’s conjecture [15, Section 7].

Theorem 1.1 ([13, Section 7]). — Let k ∈ N, k ⩾ 2, and 0 < ε < 1.
There exists N = N(k, ε) ∈ N so that every normed space having more
than N dimensions, in particular every infinite-dimensional normed space,
has a k-dimensional subspace whose Banach–Mazur distance from the k-
dimensional Hilbert space is less than (1 + ε).

In this connection, it is natural to call a result establishing the significant
presence of Hilbert space structures in an arbitrary infinite-dimensional
Banach space a Dvoretzky-type theorem.

The following classes of spaces and embeddings are very important in
applications, see [7, 30, 37].

Recall that a metric space is called locally finite if each ball of finite
radius in it contains finitely many elements. A map F : M → L between
two metric spaces (M, dM) and (L, dL) is called a bilipschitz embedding if
there exist constants C1, C2 > 0 so that for all u, v ∈ M

C1dM(u, v) ⩽ dL(F (u), F (v)) ⩽ C2dM(u, v).

The distortion of F is defined as Lip(F ) · Lip(F−1|F (M)), where Lip(·)
denotes the Lipschitz constant. A bilipschitz embedding whose distortion
does not exceed C ∈ [1,∞) is called C-bilipschitz. An embedding satisfying
dL(F (u), F (v)) = dM(u, v) is called an isometric embedding.

A map F : (M, dM) → (L, dL) between two metric spaces is called a
coarse embedding if there exist non-decreasing functions ρ1, ρ2 : [0,∞) →
[0,∞) such that limt→∞ ρ1(t) = ∞ and

∀u, v ∈ M ρ1(dM(u, v)) ⩽ dL(F (u), F (v)) ⩽ ρ2(dM(u, v)).

The main goal of this paper is to prove the following Dvoretzky-type
theorem:

Theorem 1.2. — Given any ε > 0, every locally finite subset of ℓ2
admits a (1+ε)-bilipschitz embedding into an arbitrary infinite-dimensional
Banach space.

Note that there exist locally finite subsets of ℓ2 which do not admit
isometric embeddings into some infinite-dimensional Banach spaces, see [33,
Theorem 1.8].
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At this point, it is appropriate to present a short overview of the available
Dvoretzky-type results and related open problems.

First, we recall the open problem on the validity of a finite isometric
Dvoretzky Theorem for all infinite-dimensional Banach spaces.

Problem 1.3 ([38], published in [18]). — Do there exist a finite subset
F of ℓ2 and an infinite-dimensional Banach space X such that F does not
admit an isometric embedding into X?

A related negative result for spaces ℓp, 1 < p < ∞, p ̸= 2 was proved
in [18].

The following weaker version of Theorem 1.2 was proved in [35, Theo-
rem 1].

Theorem 1.4. — Each locally finite subset of ℓ2 admits a coarse em-
bedding into an arbitrary infinite-dimensional Banach space.

Using the technique of [5], different from that employed in [35], Theo-
rem 1.4 was strengthened to

Theorem 1.5 ([36, Theorem 4.3]). — Each locally finite subset of ℓ2
admits a bilipschitz embedding into arbitrary infinite-dimensional Banach
space.

The upper estimate for the distortion of embeddings of a locally finite
subspace of ℓ2 into an arbitrary infinite-dimensional Banach space obtained
in [36] is 100. The present paper aims to prove the best possible result in
this direction.

As another development, Nowak [29] showed that the embedding tech-
niques of [10] can be used to find coarse embeddings of Hilbert space into
Banach spaces for which such an embeddability appeared to be somewhat
unexpected. Later, Ostrovskii [36] combined the technique of Nowak [29]
with the results of [31] and strengthened Nowak’s result as follows:

Theorem 1.6 ([36, Theorem 5.1]). — Let X be a Banach space con-
taining a subspace with an unconditional basis which does not contain ℓn∞
uniformly. Then ℓ2 embeds coarsely into X.

Theorem 1.6 together with Theorem 1.4 led to the problem: Is it true that
ℓ2 embeds coarsely into an arbitrary infinite-dimensional Banach space?
This problem was posed in [35, pp. 1–2] and published in [36, Problem 4.1].
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A positive answer to this problem would be a significant strengthening
of Theorem 1.4, yet, as the matter stands, it was answered in the nega-
tive in [6, Corollary B], a typical counterexample is the Tsirelson space
constructed in [41].

One of the most important directions related to the Dvoretzky Theorem
is finding optimal estimates for the function N(k, ε) in the statement of
Theorem 1.1 (see [1, 2, 25, 26, 39, 40]).

Starting with the paper of Bourgain–Figiel–Milman [8], a parallel theory
for metric spaces was developed. In this theory the main goal is estimat-
ing from below the size (defined either as cardinality or in some measure-
theoretic ways) of subsets of a metric space which admit low-distortion em-
beddings into a Hilbert space. We list a representative selection of papers
devoted to the results of this type and their applications: [3, 4, 23, 24, 28].
See also a short survey in [27, Section 8].

Our proof of the main Theorem 1.2 will be presented according to the
scheme below:

• First, an almost-unconditionality result for sums of two Euclidean
spaces will be established in Theorem 2.2.

• Next, Theorem 3.4 provides a bending result for two-dimensional
unconditional sums.

• Finally, combining these results in the spirit of [32], Theorem 1.2
will be proved in Section 4.

In addition, we prove a non-bending result, see Theorem 5.2. It is related
to the following open problem:

Problem 1.7 ([32, Problem 5.1]). — Do there exist α > 1, a locally
finite metric space M, and a Banach space X such that all finite subsets
of M admit isometric embeddings into X, but any bilipschitz embedding
of M into X has distortion at least α?

We use the standard terminology and notation of Banach space theory [7,
17, 20, 21], local theory [1, 2, 26], and theory of metric embeddings [22, 37].

Acknowledgements

We thank the anonymous referee for many helpful comments.
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2. Almost-unconditionality result

Definition 2.1. — Let Y1 ⊕Y2 be a direct sum in which the subspaces
Y1 and Y2 are Euclidean, and let ε ∈ [0, 1). The sum Y1 ⊕ Y2 is endowed
with a norm whose restrictions to Y1 and Y2 are the Euclidean norms. We
say Y1 ⊕ Y2 is ε-invariant if for any orthogonal operator O1 on Y1 and any
orthogonal operator O2 on Y2, the inequality

(1 − ε)∥y1 + y2∥ ⩽ ∥O1y1 +O2y2∥ ⩽ (1 + ε)∥y1 + y2∥

holds.

As it will be shown below, this invariance is related to unconditionality,
see Lemmas 2.3 and 2.4.

For a direct sum X = X1 ⊕ X2 by direct sum projections we mean
projections P1 : X → X1 and P2 : X → X2 given by P (x1, x2) = x1 and
P (x1, x2) = x2, respectively.

Theorem 2.2. — Given n ∈ N, ε ∈ (0, 1), and A ∈ [1,∞) there exists
N ∈ N, such that, for every direct sum X = X1 ⊕X2 with both X1 and X2
isometric to ℓN2 , and the direct sum projections having norms ⩽ A, there
are n-dimensional subspaces Y1 ⊂ X1 and Y2 ⊂ X2, such that the norm on
Y1 ⊕ Y2 induced from X is ε-invariant.

To see that Theorem 2.2 can be understood as an almost-unconditionality
result we need the following two lemmas.

Lemma 2.3. — Let Y = Y1 ⊕Y2 be a direct sum of Euclidean subspaces
with an ε-invariant norm ∥ · ∥. Let

|||y1 + y2||| = sup
O1,O2 orthogonal on Y1,Y2

∥O1y1 +O2y2∥, y1 ∈ Y1, y2 ∈ Y2.

Then ||| · ||| is a norm on Y1 ⊕ Y2 satisfying

∥y1 + y2∥ ⩽ |||y1 + y2||| ⩽ (1 + ε)∥y1 + y2∥

and
|||V1y1 + V2y2||| = |||y1 + y2|||

for every orthogonal operators V1 on Y1 and V2 on Y2. Also, the norms ∥ · ∥
and ||| · ||| coincide on Y1 and Y2. Thus, the norm ||| · ||| is 0-invariant on
Y = Y1 ⊕ Y2.

Proof. — Proof is straightforward. □

A norm ∥(a, b)∥ on R2 is called 1-unconditional if ∥(±a,±b)∥ = ∥(a, b)∥
for every (a, b) ∈ R2.

TOME 0 (0), FASCICULE 0
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Lemma 2.4. — If a norm on a direct sum Y = Y1 ⊕Y2 of two Euclidean
spaces satisfies

(2.1) ∥O1y1 +O2y2∥ = ∥y1 + y2∥

for all y1 ∈ Y1, y2 ∈ Y2 and all orthogonal operators O1 on Y1 and O2 on
Y2, then there exists a 1-unconditional norm ∥ · ∥Z on R2 such that

∥y1 + y2∥ = ∥(∥y1∥, ∥y2∥)∥Z .

Proof. — If the norm of Y1 ⊕Y2 = ℓn1
2 ⊕ ℓn2

2 satisfies (2.1), we can define
a nonnegative function f on the nonnegative quadrant of R2 by

f(a1, a2) = ∥y1 + y2∥,

where y1 ∈ Y1 is such that ∥y1∥ = a1 and y2 ∈ Y2 is such that ∥y2∥ =
a2. Equality (2.1) in combination with the transitivity of the group of
orthogonal operators on any 0-centered sphere implies that the resulting
function f(a1, a2) is well-defined.

We extend f to R2 by

f(a1, a2) = f(|a1|, |a2|).

It remains to verify that the resulting function f(a1, a2) is a 1-uncondi-
tional norm on R2.

The only norm property that needs checking is the triangle inequality
since the others are immediate from the definition of f .

Let us verify the triangle inequality. Clearly,

f(a1 +b1, a2 +b2) = f(|a1 +b1|, |a2 +b2|) = f(ρ1|a1|+σ1|b1|, ρ2|a2|+σ2|b2|),

for some ρ’s and σ’s belonging to the set {−1,+1}. Hence, taking u1 ∈ Y1
and u2 ∈ Y2 to be unit vectors, one has:

f(a1 + b1, a2 + b2)
= ∥(ρ1|a1| + σ1|b1|)u1 + (ρ2|a2| + σ2|b2|)u2∥
⩽ ∥ρ1|a1|u1 + ρ2|a2|u2∥ + ∥σ1|b1|u1 + σ2|b2|u2∥
= ∥|a1|(ρ1u1) + |a2|(ρ2u2)∥ + ∥|b1|(σ1u1) + |b2|(σ2u2)∥
= f(|a1|, |a2|) + f(|b1|, |b2|) = f(a1, a2) + f(b1, b2). □

Proof of Theorem 2.2. — We start by picking N ∈ N, ε > 0, A ∈ [1,∞),
and a direct sum X1 ⊕ X2 satisfying the conditions of Theorem 2.2. Our
goal is to find n such that the conditions of Theorem 2.2 are satisfied, and
to establish that n → ∞ as N → ∞.

We will consider two metric structures on X1 ⊕ X2. One of them is
induced by the norm of X, the other is a Euclidean structure on X1 ⊕X2

ANNALES DE L’INSTITUT FOURIER
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for which X1 and X2 are orthogonal and have the same Euclidean norms
as in X.

To find the subspaces Y1 and Y2 for a given ε and A, we start with
an asymmetric problem. More precisely, for some x1 ∈ S(X1) (the unit
sphere of X1, it is the same in both norms), consider the space lin(X2 ∪
{x1}) where lin denotes the linear span of X2 ∪ {x1}. The “asymmetric
problem” to which we refer above is to find a subspace E(X2, x1) of X2
such that the closed unit ball B (in the norm of the space X) of the space
lin(E(X2, x1) ∪ {x1}) is ω-invariant with respect to orthogonal operators
on the space E(X2, x1), in the sense that

(1 − ω)∥αx1 + y1∥ ⩽ ∥αx1 +Oy1∥ ⩽ (1 + ω)∥αx1 + y1∥

for every α ∈ R, every y1 ∈ E(X2, x1), and every orthogonal operator O
on E(X2, x1). A selection of ω > 0 needed to get an ε-invariant norm will
be specified later. As the first step in the desired direction, we observe that
an application of [14, Theorem 7 and Remark 8], which is a quantitative
version for the result of [19, Corollary of Theorem 2], yields Lemma 2.5
below.

By a pointed convex body in a k-dimensional affine space L we mean a
pair consisting of a full-dimensional bounded convex body and a point in
its interior. We say that a pointed convex body (K, z) in an affine space
L with a Euclidean structure is δ-equivalent (δ > 0) to a Euclidean ball
if there exists r > 0 such that the following inclusion holds for Euclidean
balls in L centered at z:

B(z, r) ⊂ K ⊂ B(z, (1 + δ)r).

Lemma 2.5. — For any x1 ∈ S(X1), for any 0 < δ < 1, there exists a
subspace E(X2, x1) of X2 satisfying the conditions:

(1) Its dimension can be estimated from below in terms of N (recall
that X2 = ℓN2 ) and δ; and this dimension tends to ∞ if δ is fixed
and N → ∞. For convenience, δ will be chosen in such a way that
k := 1

δ ∈ N.
(2) Pointed convex bodies whose components are sections of B by

affine subspaces E(X2, x1) + sδx1 and points sδx1, where s =
0, 1, . . . , 1

δ − 1, are δ-equivalent to Euclidean balls in the Euclidean
structure described above. If ((E(X2, x1)+x1)∩B, x1) is a pointed
convex body in E(X2, x1) + x1, it is also required to satisfy the
same condition.

Proof. — We use [14, Theorem 7] to construct the subspace E(X2, x1)
by reducing the space X2 to E(X2, x1) in k = 1

δ steps. Let step m be

TOME 0 (0), FASCICULE 0
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such that after this step the condition of δ-equivalence to Euclidean balls is
satisfied for levels 0, 1, . . . ,m (that is, for subspaces E(X2, x1) + sδx1 with
s = 0, 1, . . . ,m).

Observe that the intersection of the ball of X with X2 is a Euclidean
ball, therefore the condition of the item (2) for m = 0 is satisfied.

After that we start reducing the subspace X2 as follows.

Step 1 corresponding to m = 1. — We start with the subspace E0 = X2
and denote the unit ball of lin(E0 ∪ {x1}) in the X-norm by B0. Consider
the intersection of B0 and the affine subspace δx1 + E0. Since δ < 1, it is
clear that δx1 is an interior point of this section (recall that x1 is a unit
vector in X1). By [14, Theorem 7 and Remark 8], there is a linear subspace
E1 ⊂ E0 such that the intersection of B0 with δx1 + E1 is δ-equivalent to
a Euclidean ball (centered at δx1) and dimE1 ⩾ g(dimE0, δ), where g is
given by

(2.2) g(N, δ) = δ2 ln(σN)/β

for some universal constants σ > 0 and 0 < β < ∞. Step 1 is complete.
Denote by g{s} the function obtained as the sth iteration of g, that is,

g{s}(N, δ) = g(g . . . g(g(N, δ), δ) . . . , δ), δ), s times.

Step m. — We start with a subspace Em−1 ⊂ X2 whose dimension is at
least g{m−1}(N, δ). Denote the unit ball of lin(Em−1 ∪{x1}) in the X-norm
by Bm−1.

Note that the intersections of Bm−1 with the affine subspaces iδx1 +E1
for i = 1, . . . ,m− 1 are δ-equivalent to Euclidean balls centered at iδx1.

Now, consider the intersection of Bm−1 and the affine subspace mδx1 +
Em−1. It is clear that mδx1 is an interior point of this section (if m < 1

δ ).
By [14, Theorem 7], there exists a linear subspace Em ⊂ Em−1 such that
the intersection of Bm−1 with mδx1 +Em is δ-equivalent to the Euclidean
ball centered at mδx1 and dimEm ⩾ g(dimEm−1, δ).

If x1 is an interior point of Bk−1 ∩ (x1 +Ek−1), we stop after doing Step
k = 1

δ . Otherwise, we stop one step earlier.
We denote the subspace obtained at the end of this procedure by

E(X2, x1). It is clear that dimE(X2, x1) ⩾ g{k}(N, δ). Since k depends
only on δ, the condition (1) of Lemma 2.5 is satisfied.

It is clear that after this procedure Condition (2) is satisfied for all levels,
except, possibly, level k. □

We are going to prove that the established in Lemma 2.5 properties of
the ball B imply its ω(δ)-invariance with respect to orthogonal operators

ANNALES DE L’INSTITUT FOURIER



DVORETZKY-TYPE THEOREM 9

in E(X2, x1), where ω(δ) is a function defined for positive δ and satisfying
limδ↓0 ω(δ) = 0.

To do this, we define the function r for t ∈ [0, 1] in the following manner.
Let Bh(tx1) be the largest Euclidean ball in the affine subspace E(X2, x1)+
tx1 centered at tx1 which is contained in B. The value r(t) is defined to be
the radius of this ball.

Consider the union C+ :=
⋃
t∈[0,1] Bh(tx1), and let C− be its image under

the central symmetry about 0. Since we consider the Euclidean structure
in which x1 is orthogonal to X2 and Bh(tx1) is a Euclidean ball centered
at tx1, the sets C+ and C− are reflections of each other in the subspace
E(X2, x1). Their union will be denoted by D, that is, D = C+ ∪ C−. The
function r is extended as an even function on [−1, 1].

The following statement holds:

Lemma 2.6. — The function r is concave and continuous on [−1, 1], and
it is non-increasing on [0, 1].

Proof. — Consider −1 ⩽ t1 < t2 ⩽ 1. By the convexity of B, the ball
Bh(t3x1) with t3 = αt1 + (1 − α)t2 (for some 0 < α < 1) contains the ball
at level t3x1 of radius αr(t1) + (1 − α)r(t2). Therefore, r(t3) ⩾ αr(t1) +
(1 − α)r(t2), and r is concave.

The continuity of r on the interval (−1, 1) follows from concavity: A
function concave on an interval is continuous everywhere except, possibly,
at the endpoints of the interval (see, e.g., the introductory chapter in [16]).

Monotonicity on [0, 1] follows from the concavity of r and the fact that
it is even on [−1, 1].

The continuity of r at t = 1 (and therefore at t = −1 also) follows since
r is a decreasing function bounded below by 0 and therefore has a limit L
from the left at t = 1. This limit coincides with r(1) because B is closed and
its intersection with E(X2, x1) + tx1 contains a ball of radius L centered
at tx1 for all t ∈ [0, 1). □

Next we prove:

Lemma 2.7. — For some ω(δ) > 0 satisfying limδ↓0 ω(δ) = 0, the inclu-
sion B ⊂ (1 + ω(δ))D holds and thus, B is ω(δ)-invariant with respect to
orthogonal operators on E(X2, x1).

The proof of Lemma 2.7 will be given below following two preparatory
propositions. These propositions will be applied to two-dimensional sec-
tions of B and D. Results about the set A below will be applied to two-
dimensional sections of D.

TOME 0 (0), FASCICULE 0
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In R2 endowed with a Cartesian system of coordinates (x, y) consider
a closed convex domain A symmetric about the coordinate axes and con-
taining the points (±1, 0) and (0,±1) on its boundary. The boundary of
A is represented by the thick black curves in Figure 2.1. For some natu-
ral number k ⩾ 5 let δ = 1/k and denote by {(ri, 1 − iδ) | 1 ⩽ i ⩽ k} the
coordinates of the points in the first quadrant at the intersection of the
boundary of A with the horizontal lines y = 1 − iδ, 1 ⩽ i ⩽ k.

P0 R0

P1

Rk−1

Pk0 1 x

y
P0

R0

P1

Rk−1

Pk0 1 x

y

Figure 2.1. Flat top r0 > 0 (Left) and Sharp top r0 = 0 (Right)

For i = 0, let r0 be the largest x-coordinate among the points at the
intersection of A and the line y = 1. Note that r0 may be positive if A has
a flat top, or it may be zero. We will distinguish between the two cases.

Define a polygonal line with vertices alternating from the set of points Pi
with coordinates ((1+δ)ri, 1−iδ), 1 ⩽ i ⩽ k and the set of points Ri at the
intersection of pairs of lines through (ri−1, 1−(i−1)δ), ((1+δ)ri, 1−iδ) and
((1 + δ)ri+1, 1 − (i+ 1)δ), (ri+2, 1 − (i+ 2)δ), 1 ⩽ i ⩽ k− 2 (see Figures 2.1
and 2.2). Let P0 be the point of coordinates (0, 1).

We define Rk−1 as the intersection of the line through (rk−1,−δ) and
(1 + δ, 0) with the line through (rk−2, 2δ) and ((1 + δ)rk−1, δ).

According to the cases r0 > 0 and r0 = 0, we define:
(i) In the case r0 > 0, let R0 be the intersection of the line through

((1 + δ)r1, 1 − δ) and (r2, 1 − 2δ) with the line y = 1.
(ii) In the case r0 = 0, let R0 be the intersection of the line through

(−r1, 1 − δ) and (0, 1) with the line through (1, 0) and
((1 + δ)r1, 1 − δ).

Comment. — This choice of R0 could look artificial, but it works for our
goals and makes the computation easier.

ANNALES DE L’INSTITUT FOURIER
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Consider the closed domain C bounded by the polygon obtained from the
reflections of the polygonal line P0, R0, P1, R1, P2, R2, . . . , Pk−1, Rk−1, Pk
about the coordinate axes and about the origin.

Proposition 2.8. — For 0 < δ < 1/4, the domain C is contained in
(1 + ω(δ))A (the homothetic dilation of A) where ω(δ) = 4δ + δ

1
2 .

Proof. — Because both A and C are symmetric about the coordinate
axes, we will focus on the parts of A and C contained in the first quadrant.

The proof will proceed in two steps:
(1) We show that the region of C with points (x, y) with y ⩽ 1 − δ

1
2 is

contained in the (1 + ω(δ)) horizontal stretch of A, i.e. in the set

{((1 + ω(δ))x, y) | (x, y) ∈ A} .

(2) We show that the points of C above the line y = 1 − δ
1
2 are covered

by the full dilation (1 + ω(δ))A.
The proof of the proposition follows from the convexity of A and from
items (1) and (2).

Li+1 ri+1

Li
ri

ri−1Li−1

Pi : ri(1 + δ)

Ti : ri + 2δri−1 + (Li−1 − Li)

Pi−1 : ri−1(1 + δ)

Qi−1 : ri−1 + 2δri + (Li − Li+1)

Ri−1

ri−2

δ

δ

δ

Figure 2.2. Analysis at the boundary of C.
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Figure 2.2 displays:
• Labels ri which indicate the points of coordinates (ri, 1 − iδ) on the

boundary of A.
• Horizontal intervals of length Li := ri−ri−1 ending at the points ri.
• Labels (1+δ)ri which indicate the points of coordinates ((1+δ)ri,

1 − iδ) denoted above by Pi.
• For 1 ⩽ i ⩽ k − 1, the number ri−1 + 2δri + (Li − Li+1) which

represents the x-coordinate of the point Qi−1 at the intersection of
the line through ((1 + δ)ri, 1 − iδ), (ri+1, 1 − (i+ 1)δ) and the line
y = 1 − (i − 1)δ. We define the point Qk−1 as the intersection of
the line through the points (1 + δ, 0), (rk−1,−δ) and the line y = δ;
it has coordinates (2 + 2δ − rk−1, δ).

• The number ri + 2δri−1 + (Li−1 − Li) which represents the x-
coordinate of the point Ti at the intersection of the line through
(ri−2, 1− (i−2)δ), ((1+ δ)ri−1, 1− (i−1)δ) and the line y = 1− iδ.

• The point Ri−1 at the intersection of the line through Pi−1, Ti
and the line through Qi−1, Pi. The intersection looks as is shown in
Figures 2.1 and 2.2 because of the monotonicity of {Li}ki=1 observed
below.

The points Pi−1, Ri−1, Pi are consecutive vertices of the polygon that
bounds the region C described above.

Define L0 := r0. Observe that the convexity of the domain A implies that
L1 ⩾ L2 ⩾ · · · ⩾ Lk, while nothing of this type can be claimed about L0.

To prove step (1) we show that for each δ−1/2 + 1 ⩽ i ⩽ k − 1 the
following inequalities hold:

(2.3) (1 + ω(δ))ri−1 ⩾ ri−1 + 2δri + (Li − Li+1),

(2.4) (1 + ω(δ))ri ⩾ ri + 2δri−1 + (Li−1 − Li).

Our proof shows (2.4) for i = k also. We prove a suitable version of (2.3)
below, see (2.5).

Indeed, if (2.3) fails, we get

(4δ + δ1/2)ri−1 < 2δri + (Li − Li+1),

or
δ1/2ri−1 < 4δ (ri/2 − ri−1) + (Li − Li+1).

For i ⩾ 2, the inequality Li ⩽ Li−1 implies ri/2 ⩽ ri−1, and thus the last
inequality implies

δ1/2ri−1 < (Li − Li+1) ⩽ Li ⩽ Li−1 ⩽ · · · ⩽ L1.
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Therefore (i − 1)δ1/2ri−1 <
∑i−1
j=1 Lj = ri−1 − r0 ⩽ ri−1, implying

(i− 1) < δ−1/2, contrary to the assumption.

Meanwhile, if (2.4) fails, we get

(4δ + δ1/2)ri < 2δri−1 + (Li−1 − Li).

Since ri−1 ⩽ ri, we get

(2δ + δ1/2)ri−1 ⩽ (4δ + δ1/2)ri < 2δri−1 + (Li−1 − Li).

This inequality implies

δ1/2ri−1 < (Li−1 − Li) ⩽ Li−1 ⩽ · · · ⩽ L1.

As in the previous case, this implies (i − 1) < δ−1/2, contrary to the as-
sumption.

Thus, for δ−1/2 + 1 ⩽ i ⩽ k− 1 the inequalities (2.3) and (2.4) hold, and
this implies that the points Qi−1, Ti, and consequently Ri−1, are covered
by the horizontal (1 + ω(δ)) stretch of A.

Now we show that the point Qk−1 is also covered by the horizontal
(1 + ω(δ)) stretch of A.

For any δ < 1/4 it holds that

δ1/2(1 − 4δ3/2 − δ) ⩾ 0.

This is equivalent to

(2 + 4δ + δ1/2)(1 − δ) ⩾ 2 + 2δ.

Since rk = 1 and r0 ⩾ 0, the convexity of A requires that rk−1 ⩾ 1 − δ.
Therefore,

(2 + 4δ + δ1/2)rk−1 ⩾ 2 + 2δ
and thus

(2.5) (1 + ω(δ))rk−1 ⩾ 2 + 2δ − rk−1,

which is what we needed to show.
Consequently, for each δ−1/2 + 1 ⩽ i ⩽ k the corners Ri−1, Pi of the

polygon bounding C are covered by the horizontal (1 + ω(δ)) stretch of A.
We now prove step (2). We use the fact that multiplication of A by

(1 + ω(δ)) stretches A in all directions, not only horizontally.
After the horizontal stretch of A, on level i (i.e., on the line y = 1 − iδ),

we obtain an interval of length (1 + ω(δ))ri. It is easy to see that it is at
least as long as the interval of level (i−1) of length ri−1 +2δri+(Li−Li+1).
Indeed,

(1+ω(δ))ri > (1+4δ)ri = ri−1 +4δri+ri−ri−1 ⩾ ri−1 +2δri+(Li−Li+1).
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By the convexity of the image of A, it is enough to cover the interval of
this length, provided that the vertical stretch moves level i on or above the
level (i− 1), that is, we need the inequality

(2.6) (1 + ω(δ))(1 − iδ) ⩾ (1 − (i− 1)δ)

for each i satisfying (i− 1) < δ−1/2.
We assumed that δ < 1

4 . With this in mind, 1 − (i− 1)δ > 1 − δ−1/2δ =
1 − δ1/2 ⩾ 1/2. Since the fraction a−δ

a is increasing in a for a > 0, we have

1 − iδ

1 − (i− 1)δ = (1 − (i− 1)δ) − δ

1 − (i− 1)δ ⩾
1
2 − δ

1
2

.

To prove (2.6) it suffices to show that

(1 + ω(δ))
1
2 − δ

1
2

⩾ 1.

Since ω(δ) > 4δ, the left-hand side in the last inequality is at least

(1 + 4δ) (1 − 2δ) = 1 + 2δ − 8δ2 > 1

if δ < 1
4 .

Now it remains to consider points of C which are above level y = 1.
Note that such points can exist only if r0 = 0. In this case we have L1 =
r1 > 0. We show that the point R0 (sketched in Figure 2.1 (Right)) at
the intersection of the line through (−r1, 1 − δ), (0, 1) and the line through
(1, 0), ((1 + δ)r1, 1 − δ), is covered by (1 + ω(δ))A. For this it suffices to
show that the coordinates of R0 satisfy

(2.7) (1 + ω(δ))r1 ⩾ xR0 ,

and

(2.8) (1 + ω(δ))(1 − δ) ⩾ yR0 .

Direct calculation gives that xR0 = r1α and yR0 = δα + 1 where α =
(1+δ)r1−δ

(1−2δ−δ2)r1+δ . Thus, the inequality (2.7) is equivalent to (1 + ω(δ)) ⩾ α

and the inequality (2.8) is equivalent to (1 − δ)ω(δ) ⩾ δ(1 + α).
If (2.7) holds, then necessarily (2.8) is also true. Indeed, since by direct

verification (1 − δ)ω(δ) ⩾ δ(2 + ω(δ)), it follows from (1 + ω(δ)) ⩾ α that
(1 − δ)ω(δ) ⩾ δ(1 +α) which is equivalent to (2.8). Therefore, it will suffice
to show that (2.7) holds.

Now we check that (2.7) holds. Note that (1 +ω(δ)) ⩾ α is equivalent to

(2.9) ω(δ) ⩾ δ
(3 + δ)r1 − 2

(1 − 2δ − δ2)r1 + δ
,
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which leads to the following two cases:

(1) the case (3 + δ)r1 ⩽ 2 when the inequality (2.9) holds trivially, and
(2) the case (3 + δ)r1 > 2, which means r1 >

2
3+δ .

Since in case (2), if we increase r1 to 1 in the numerator of the fraction
on the right hand side and decrease r1 to 2

3+δ in the denominator we obtain

δ
3 + 4δ + δ2

2 − δ − δ2 ⩾ δ
(3 + δ)r1 − 2

(1 − 2δ − δ2)r1 + δ
.

Since 0 < δ < 1/4, a direct check shows that 4δ is larger than the left-hand
side of the inequality above. Thus, since ω(δ) > 4δ, the inequality (2.9)
holds in both cases.

Therefore, we obtain that the portion of C above level 1 is contained
inside the (1 + ω(δ)) homothetic image of A. □

Define a family I of 4(k−1) closed horizontal intervals, which consists of
the intervals with endpoints (ri, 1− iδ) and ((1+δ)ri, 1− iδ), 1 ⩽ i ⩽ k−1,
together with their reflection about the coordinate axes and about the
origin.

Proposition 2.9. — Any closed convex domain H which contains A,
and whose boundary intersects all the intervals in I and passes through the
points (±1, 0), (0,±1), is contained in (1+ω(δ))A (the homothetic dilation
of A) where ω(δ) = 4δ + δ

1
2 .

Proof. — From the requirement that the domain H is convex it follows
that H is contained in the polygonal domain C described in Proposition 2.8.
Since C is contained in (1 + ω(δ))A, it follows that so is H. □

Proof of Lemma 2.7. — Consider any unit vector x2 in E(X2, x1). In the
plane spanned by x1 and x2 we consider the Cartesian system of coordinates
with the x-axis in the direction of x2 and the y-axis in the direction of x1.
Define the domains A and H as the respective intersections of D and the
unit ball B with this plane. The hypotheses of Proposition 2.9 are satisfied
and therefore H is contained in (1+ω(δ))A. Since this holds for any choice
of x2, the inclusion B ⊂ (1 + ω(δ))D follows. Because D ⊂ B and D is
invariant under any orthogonal map on E(X2, x1) we conclude that B is
ω(δ)-invariant. □

Let G be a function, G : N × (0,∞) → N ∪ {0}. We say that G is
indefinitely growing (IG) if limN→∞ G(N, δ) = ∞ for every δ > 0.
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Observation 2.10. — Finite iterations of IG functions with fixed
δ > 0, that is, iterations of the form

G(G(. . . G(G(N, δ), δ) . . . , δ), δ),

are also IG functions.

Proposition 2.11. — There exists an IG function G(= G(N,α)) such
that, for each subspace U of X2, each α > 0, and each v ∈ S(X1), there
exists a subspace E(U, v) ⊂ U with dimE(U, v) ⩾ G(dimU,α) and such
that the X-norm on lin(E(U, v) ∪ {v}) is α-invariant with respect to the
orthogonal operators on E(U, v).

Proof. — For the given α > 0 select δ > 0 so that k := 1
δ ∈ N and

ω(δ) < α. Applying Lemmas 2.5 and 2.7 for this value of δ, X2 = U and
x1 = v, we obtain the subspace E(U, v) ⊂ U with dimension bounded below
by g{k}(dimU, δ), the kth iteration of the function (2.2), such that the X-
norm on lin(E(U, v) ∪ {v}) is α-invariant with respect to the orthogonal
operators on E(U, v).

Since we may assume that δ = 1
k satisfies both ω(δ) < α and ω

(
1

k−1

)
⩾

α we can regard g{k}(dimU, δ) as G(dimU,α) for some IG function G. □

Combining Observation 2.10 and Proposition 2.11 with the known fact
that the cardinality of an α-net in the unit sphere of a t-dimensional normed
space can be estimated from above in terms of t and α > 0 only, we arrive
at the following statements.

(1) For every α > 0 and n,M ∈ N, there exists N ∈ N such that if we
apply Proposition 2.11 to X1 with dimX1 = N and all points x2
in an α-net N2 of the unit sphere of an M -dimensional subspace
U ⊂ X2, we obtain a subspace Y1 in X1 of dimension at least n,
such that

(1 − α)∥y1 + y2∥ ⩽ ∥O1y1 + y2∥ ⩽ (1 + α)∥y1 + y2∥

for every y1 ∈ Y1, y2 being any scalar multiple of an element of
x2 ∈ N2, and any orthogonal operator O1 on Y1.

(2) For every α > 0 and n ∈ N, there exists M ∈ N such that applying
Proposition 2.11 to a subspace U ⊂ X2 of dimension dimU ⩾
M and all points x1 in an α-net N1 of the unit sphere of an n-
dimensional subspace Y1 ⊂ X1, brings out a subspace Y2 ⊂ U ⊂ X2
with dimY2 ⩾ n such that

(1 − α)∥y1 + y2∥ ⩽ ∥y1 +O2y2∥ ⩽ (1 + α)∥y1 + y2∥
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for every y1 being a scalar multiple of an element x1 ∈ N1, any
y2 ∈ Y2, and any orthogonal operator O2 on Y2.

We use items (1) and (2) as follows. First we use n to find values of M
and later N . Thereafter, we pick any N -dimensional subspaces X1 and X2
satisfying the conditions of Theorem 2.2.

After that we apply item (1) to an arbitrarily chosen M -dimensional
subspace U ⊂ X2, and get a subspace Y1 ⊂ X1.

Finally, with the help of item (2), for the chosen U and Y1 constructed
in the previous step we obtain Y2.

To conclude the proof of Theorem 2.2 we need the following approxima-
tion lemma for each step of the construction. Let

A = max{∥P1∥, ∥P2∥},

where P1 : X1 ⊕ X2 → X1 and P2 : X1 ⊕ X2 → X2 are projections with
kernels X2 and X1, respectively, and the norm is the X-norm.

Lemma 2.12. — The conditions of items (1) and (2) imply that, for any
y1 ∈ Y1, y2 ∈ Y2, and any orthogonal operators O1 on Y1 and O2 on Y2, we
have

(2.10) (1 − α(1 + (2 − α)A))2∥y1 + y2∥
⩽ ∥O1y1 +O2y2∥

⩽ (1 + α(1 + (2 + α)A))2∥y1 + y2∥,

provided (1 − α(1 + (2 − α)A)) > 0.

Proof. — We may assume that y1 ̸= 0 and y2 ̸= 0. Let z2 be a multiple
of an element from N2 such that ∥z2 − y2∥ < α∥y2∥. Then

(2.11) ∥O1y1 + y2∥ ⩽ ∥O1y1 + z2∥ + ∥z2 − y2∥
⩽ (1 + α)∥y1 + z2∥ + ∥z2 − y2∥
⩽ (1 + α)∥y1 + y2∥ + (2 + α)∥z2 − y2∥
< (1 + α)∥y1 + y2∥ + (2 + α)α∥y2∥
⩽ (1 + α(1 + (2 + α)A))∥y1 + y2∥.
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Similarly (assume that α < 1),

(2.12) ∥O1y1 + y2∥ ⩾ ∥O1y1 + z2∥ − ∥z2 − y2∥
⩾ (1 − α)∥y1 + z2∥ − ∥z2 − y2∥
⩾ (1 − α)∥y1 + y2∥ − (2 − α)∥z2 − y2∥
> (1 − α)∥y1 + y2∥ − (2 − α)α∥y2∥
⩾ (1 − α(1 + (2 − α)A))∥y1 + y2∥.

Now we apply the same argument for any w1 ∈ Y1 and any z1 in the
direction of an element of N1 satisfying ∥w1 − z1∥ < α∥w1∥. We get

(2.13) (1−α(1+(2−α)A))∥w1 +y2∥ ⩽ ∥w1 +O2y2∥
⩽ (1 + α(1 + (2 + α)A))∥w1 + y2∥.

Plugging w1 = O1y1 and using (2.11), (2.12), and (1−α(1+(2−α)A)) >
0, we get (2.10). □

To complete the proof of Theorem 2.2 we pick α > 0 in such a way that
(1 + α(1 + (2 + α)A))2 < 1 + ε and (1 − α(1 + (2 − α)A))2 > 1 − ε. □

3. Bending in unconditional sums of two spaces

Let X and Y be (possibly finite-dimensional) Banach spaces such that
there exist two linear isometric embeddings I1 : Y → X and I2 : Y → X

with distinct images Y1 = I1(Y ) and Y2 = I2(Y ).

Definition 3.1. — Let C ∈ [1,∞). A mapping T : Y → X is called
a C-bending of Y in the space X from I1 to I2, with parameters (r,R),
0 < r < R < ∞, if it is a C-bilipschitz embedding such that the restriction
of T to the ball of radius r coincides with I1 and the restriction of T to the
exterior of the ball of radius R in Y coincides with I2.

Let Z = (R2, ∥ · ∥Z) be a two-dimensional Banach space in which the
unit vectors (1, 0) and (0, 1) form a normalized 1-unconditional basis. This
means

(3.1) ∥(1, 0)∥Z = ∥(0, 1)∥Z = 1 and ∥(a, b)∥Z = ∥(±a,±b)∥Z .

Given a Banach space Y , we use X = Y ⊕Z Y to denote the Banach
space consisting of pairs (u, v) with u, v ∈ Y with the norm

∥(u, v)∥X = ∥(∥u∥Y , ∥v∥Y )∥Z .

When we consider a C-bending of Y in the space X = Y ⊕Z Y we restrict
our attention to the case where I1(y) = (y, 0) and I2(y) = (0, y) and call
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such bending a C-bending of Y in the space X = Y ⊕Z Y with parameters
(r,R), 0 < r < R < ∞.

To state the main result of this section, Theorem 3.4, we need to intro-
duce some additional parameters. Define

mZ = min
τ

∥(cos τ, sin τ)∥Z and MZ = max
τ

∥(cos τ, sin τ)∥Z .

Observation 3.2. — It is easy to see that the unit ball of Z satisfying
(3.1) contains the unit ball of ℓ2

1 and is contained in the unit ball of ℓ2
∞,

thereby mZ ⩾ 1√
2 and MZ ⩽

√
2.

Let
u(τ) = (cos τ, sin τ)

∥(cos τ, sin τ)∥Z
∈ Z.

Condition (3.1) implies that u(0) = (1, 0) and u(π/2) = (0, 1). We need the
following

Proposition 3.3. — The set of all quotients
∥u(τ2) − u(τ1)∥Z

τ2 − τ1

for 0 ⩽ τ1 < τ2 ⩽ π
2 is bounded. Let

(3.2) cZ := sup
0⩽τ1<τ2⩽π

2

∥u(τ2) − u(τ1)∥Z
τ2 − τ1

.

Then

(3.3) 2
π

⩽
2
√

2mZ

π
⩽ cZ ⩽

2MZ

mZ
⩽ 4.

The last inequality follows from Observation 3.2. Since in this paper we
do not need tight estimates for cZ , we do not dwell on their evaluation.

Proof. — To begin with, we write:

u(τ2) − u(τ1) = (cos τ2 − cos τ1, sin τ2 − sin τ1)
∥(cos τ2, sin τ2)∥Z

− (cos τ1, sin τ1)
∥(cos τ2, sin τ2)∥Z − ∥(cos τ1, sin τ1)∥Z
∥(cos τ1, sin τ1)∥Z ∥(cos τ2, sin τ2)∥Z

.

Applying the triangle inequality to the numerator of the norm of the
second term in the right-hand side, we conclude that the norm of the second
term does not exceed the norm of the first term. Therefore,

∥u(τ2) − u(τ1)∥Z ⩽
2
mZ

∥(cos τ2 − cos τ1, sin τ2 − sin τ1)∥Z .
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Trigonometric identities imply the following vector version of a spherical
Mean Value Theorem

(cos τ2 − cos τ1, sin τ2 − sin τ1) =
(

− sin τ1 + τ2

2 , cos τ1 + τ2

2

)
2 sin τ2 − τ1

2 .

Therefore

∥(cos τ2 − cos τ1, sin τ2 − sin τ1)∥Z ⩽MZ(τ2 − τ1),

and the inequality cZ ⩽ 2MZ

mZ
follows.

To get the bound from below on cZ in (3.3) we substitute τ1 = 0 and
τ2 = π

2 in the quotient in (3.2). □

The main result of this section is the following theorem.

Theorem 3.4. — Let Y be a finite-dimensional Banach space, and let
Z be a 2-dimensional space satisfying (3.1). Then for every ε > 0 and every
pair (r,R) of positive numbers satisfying the condition

(3.4) ε

cZ
ln
(
R

r

)
= π

2 ,

there is a
( 1+ε

1−ε
)
-bending T of Y into the sum X = Y ⊕Z Y with parameters

(r,R). Furthermore, the bending T satisfies

∥Tx∥X = ∥x∥Y for all x ∈ Y,

and

(3.5) (1 − ε)∥x− y∥Y ⩽ ∥Tx−Ty∥X ⩽ (1 + ε)∥x− y∥Y for all x, y ∈ Y.

Remark 3.5. — Any C-bending with parameters (r,R) is also a
C-bending with parameters (r1, R1) if 0 < r1 ⩽ r < R ⩽ R1 < ∞. For this
reason, the exact value of cZ is not important.

Proof of Theorem 3.4. — We follow the construction in [32, Section 2.2].

Let ε ∈ (0, 1), r > 0 be any numbers. For real numbers t ⩾ r, define the
function

τ(t) = τε,r,Z(t) := ε

cZ
ln
(
t

r

)
,

where cZ is defined in Proposition 3.3. The function τ(t) is increasing and,
by (3.4), maps the interval [r,R] onto [0, π/2]. The Mean Value Theorem
implies that

(3.6) τ(t2) − τ(t1) ⩽ ε

cZ

t2 − t1
t1

for r ⩽ t1 ⩽ t2 ⩽ R.
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We introduce the functions

(3.7) c(x) =


1 if ∥x∥ ⩽ r

cos τ(∥x∥)
∥(cos τ(∥x∥),sin τ(∥x∥))∥Z

if r ⩽ ∥x∥ ⩽ R

0 if ∥x∥ ⩾ R,

and

(3.8) s(x) =


0 if ∥x∥ ⩽ r

sin τ(∥x∥)
∥(cos τ(∥x∥),sin τ(∥x∥))∥Z

if r ⩽ ∥x∥ ⩽ R

1 if ∥x∥ ⩾ R.

It is clear that

(3.9) ∥(c(x), s(x))∥Z = 1

and

(3.10) (c(x), s(x)) = u (τ(∥x∥Y ))

for every x ∈ Y with r ⩽ ∥x∥Y ⩽ R.
We claim that the desired bending is the map

T : Y −→ X = Y ⊕Z Y

given by

(3.11) Tx = (c(x)x, s(x)x).

Remark 3.6. — It is worth mentioning that T is a development of the
well-known in geometry logarithmic spirals in the plane, see [9, p. 4].

Equation (3.9) implies that ∥Tx∥X = ∥x∥Y for every x ∈ Y . It is also
clear that T satisfies the condition (3.5) whenever x, y are both in the ball
of radius r or in the exterior of the ball of radius R.

When estimating ∥Tx− Ty∥X , from now on we assume without loss of
generality that

(3.12) ∥x∥Y ⩾ ∥y∥Y .

Next, we write

Tx− Ty = (c(x)x, s(x)x) − (c(y)y, s(y)y)

in the form

(3.13) Tx− Ty = (c(x)(x− y), s(x)(x− y))
+ ((c(x) − c(y))y, (s(x) − s(y))y) .
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For the first summand in the right-hand side of (3.13), we have:

∥(c(x)(x− y), s(x)(x− y))∥X = ∥(c(x)∥x− y∥Y , s(x)∥x− y∥Y )∥Z .

We conclude that

(3.14) ∥(c(x)(x− y), s(x)(x− y))∥X = ∥x− y∥Y ∥(c(x), s(x))∥Z
= ∥x− y∥Y .

For the second summand in the right-hand side of (3.13), there holds

(3.15) ∥((c(x) − c(y))y, (s(x) − s(y))y)∥X
= ∥y∥Y ∥(|c(x) − c(y)| , |s(x) − s(y)|)∥Z .

For x ∈ Y , set

U(x) := (c(x), s(x)) ∈ Z.

According to (3.7), (3.8), and (3.10), we have

(3.16) U(x) =


u(τ(r)) if ∥x∥Y ⩽ r,

u(τ(∥x∥Y )) if r ⩽ ∥x∥Y ⩽ R,

u(τ(R)) if ∥x∥Y ⩾ R.

Combining the definition of U with (3.13), (3.14), and (3.15), for any
x, y ∈ Y we obtain

(3.17) ∥x− y∥Y − ∥y∥Y ∥U(x) − U(y)∥Z
⩽ ∥Tx− Ty∥X
⩽ ∥x− y∥Y + ∥y∥Y ∥U(x) − U(y)∥Z .

Now, we show that for any x, y ∈ Y satisfying (3.12) we have

(3.18) ∥y∥Y ∥U(x) − U(y)∥Z ⩽ ε ∥x− y∥Y .

This inequality, together with (3.17) immediately implies (3.5), and, thus,
concludes the proof of the theorem.

We prove a stronger version of (3.18), namely,

(3.19) ∥U(x) − U(y)∥Z ⩽ ε
∥x∥Y − ∥y∥Y

∥y∥Y
.
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It is clear that combining (3.19) with the triangle inequality we ob-
tain (3.18). On the other hand,

(3.20) ∥U(x) − U(y)∥Z
(3.16)= ∥u (τ(min {R, ∥x∥Y })) − u (τ(max {r, ∥y∥Y }))∥
(3.2)
⩽ cZ (τ(min {R, ∥x∥Y }) − τ(max {r, ∥y∥Y }))

(3.6)
⩽ ε

min {R, ∥x∥Y } − max {r, ∥y∥Y }
max {r, ∥y∥Y }

⩽ ε
∥x∥Y − ∥y∥Y

∥y∥Y
.

This completes the proof of Theorem 3.4. □

4. Construction of the embedding

Proof of Theorem 1.2. — Let X be an infinite-dimensional Banach
space, M be a locally finite subset in ℓ2, and ε ∈ (0, 1). We assume that
0 ∈ M. Our goal is to find an embedding of M into X with distortion
⩽ 1 + ε.

To achieve the distortion (1 + ε) we need to introduce additional param-
eters γ, ψ, ζ ∈ (0, 1), and d ∈ N, such that the maximal quotient of the
right-hand sides and respective left-hand sides in (4.1), (4.2), (4.5) does
not exceed (1 + ε). Such values exist because the values of all coefficients
go to 1 as γ, ψ, ζ ↓ 0 and d → ∞. Also, we introduce a decreasing sequence
{γi}∞

i=1, γi > 0, such that
∏∞
i=1(1 + γi) < 1 + γ.

Next, we define recursively an increasing sequence {Ri}∞
i=1 of positive

numbers as follows:
(1) R1 = 1.
(2) ψ

4 ln R2i

R2i−1
= π

2 for all i ∈ N.

Note. — We use the number 4 in this formula because it is our upper
estimate for cZ which works for every Z, see (3.3).

(3) R2i+1
R2i

= d
ε for all i ∈ N.

Let B(R) ⊂ M denote the ball of radius R centered at 0, while Fi denotes
the subspace of ℓ2 spanned by B(R4i) and ni = dimFi.

To prove Theorem 1.2 we need the following lemma about FDDs (finite-
dimensional Schauder decompositions) in an arbitrary infinite-dimensional
Banach space X. See [17, p. 11] or [20, Section 1.g] for a basic information
on FDDs.
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Lemma 4.1. — Let {γi}∞
i=1 and ζ be the numbers chosen at the begin-

ning of Section 4, and {Fi}∞
i=1 be the subspaces chosen above. Introduce

the sequence {µi}∞
i=1 by µ1 = γ1, µ2i = µ2i+1 = γi+1.

There exists an infinite-dimensional subspace V ⊂ X having an FDD
{Vi}∞

i=1 for which there exist isomorphisms Ji : Fj(i) → Vi, such that

j(i) =
{

(i+ 1)/2 if i is odd;
i/2 if i is even,

(that is, for each j ∈ N there are two isomorphisms Ji with domain Fj)
with the following properties

(i) ∀v ∈ Fj(i) ∥v∥2 ⩽ ∥Jiv∥X ⩽ (1 + µi)∥v∥2.
(ii) There exist 1-unconditional norms ∥ ∥Zi

on R2 such that the maps
J2i−1,2i : Fj(2i−1) ⊕Zi

Fj(2i) → V2i−1 ⊕V2i given by J2i−1,2i(u, v) =
(J2i−1u, J2iv) satisfy

∥J2i−1u+ J2iv∥X ⩽ ∥(∥u∥2, ∥v∥2)∥Zi
⩽ (1 + ζ)(1 + γi)2∥J2i−1u+ J2iv∥X .

(iii) The maps J2i,2i+1 : Fj(2i) ⊕2 Fj(2i+1) → V2i ⊕ V2i+1 given by
J2i,2i+1(u, v) = (J2iu, J2i+1v) satisfy

∥J2iu+ J2i+1v∥X ⩽ (∥u∥2
2 + ∥v∥2

2)1/2 ⩽ (1 + γi+1)∥J2iu+ J2i+1v∥X .

To proceed without interruption, we demonstrate how Lemma 4.1 is
applied to derive Theorem 1.2, while its proof is postponed to the end
of the section.

At this point, a low-distortion embedding Φ : M → X will be con-
structed as a piecewise defined map.

Let R0 = 0. For any two nonnegative integers j, k (j < k), consider the
annulus

Aj,k = {m ∈ M : Rj ⩽ d(m, 0) ⩽ Rk}.

Obviously when j = 0 it is a ball. Observe that {Fi}∞
i=1 forms an increasing

sequence of subspaces of ℓ2. Consequently there exist natural isometric
embeddings of Fi into Fi+1.

First, we define a sequence of embeddings of annuli A2i,2i+3 into sums
of the form Fi ⊕Zi

Fi and Fi ⊕2 Fi+1 as restrictions of bendings according
to the following procedure:

• Define T1 : A0,3 → F1 ⊕Z1 F1 as the restriction to A0,3 of the
existing by Theorem 3.4

(
1+ψ
1−ψ

)
-bending of F1 into F1 ⊕Z1 F1 with

parameters (R1, R2).
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• Consider the restriction to A2,5 of the existing by Theorem 3.4(
1+ψ
1−ψ

)
-bending of F2 into F2 ⊕2 F2 with parameters (R3, R4). Ob-

serve that because A2,4 is a subset of F1, the formula (3.11) for
bending implies that the image of this map is contained in F1 ⊕2F2.
Define T2 : A2,5 → F1 ⊕2 F2 as the resulting map.

• . . .
• Define T2i−1 : A4i−4,4i−1 → Fi⊕ZiFi as the restriction to A4i−4,4i−1

of the existing by Theorem 3.4
(

1+ψ
1−ψ

)
-bending of Fi into Fi ⊕Zi

Fi

with parameters (R4i−3, R4i−2).
• Consider the restriction to A4i−2,4i+1 of the existing by Theo-

rem 3.4
(

1+ψ
1−ψ

)
-bending of Fi+1 into Fi+1 ⊕2 Fi+1 with parameters

(R4i−1, R4i). Observe that because A4i−2,4i is a subset of Fi, the
formula (3.11) for bending implies that the image of this map is
contained in Fi⊕2Fi+1. Define T2i : A4i−2,4i+1 → Fi⊕2Fi+1 as the
resulting map.

• . . .
To get embeddings into V ⊂ X, we consider compositions:

Φ2i−1 := J2i−1,2i ◦ T2i−1 : A4i−4,4i−1 −→ V2i−1 ⊕ V2i

and
Φ2i := J2i,2i+1 ◦ T2i : A4i−2,4i+1 −→ V2i ⊕ V2i+1.

Our next goal is to show that combining these maps we get a well-defined
(1 + ε)-bilipschitz map of M into V ⊂ X.

We start with checking that on A4i−2,4i−1, where both Φ2i−1 and Φ2i
are defined, they coincide. Similarly, we need to check that on A4i−4,4i−3
where both Φ2i−2 and Φ2i−1 are defined, they coincide. The proofs are
the same. We do it only for the first case. The maps T2i−1 and T2i map
A4i−2,4i−1 isometrically into Fi. Since both J2i−1,2i and J2i,2i+1 map Fi
onto V2i using J2i, the maps coincide.

Therefore, the formula

Φ(x) =
{

J2i−1,2i ◦ T2i−1(x) ∈ V2i−1 ⊕ V2i if x ∈ A4i−4,4i−1, i ∈ N,
J2i,2i+1 ◦ T2i(x) ∈ V2i ⊕ V2i+1 if x ∈ A4i−2,4i+1, i ∈ N,

in which we consider V2i−1 ⊕ V2i as subspaces of V , gives a well-defined
map. It remains to prove that Φ is a (1 + ε)-bilipschitz embedding. To
achieve this goal it suffices to establish bilipschitz inequalities in the three
cases:
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Case 1. — x, y ∈ A4i−4,4i−1. Since Φ2i−1 = J2i−1,2i ◦ T2i−1, by Theo-
rem 3.4,

(1 − ψ)∥x− y∥2 ⩽ ∥T2i−1x− T2i−1y∥Fi⊕Zi
Fi

⩽ (1 + ψ)∥x− y∥2,

and by Lemma 4.1(ii),

(4.1) 1 − ψ

(1 + ζ)(1 + γ)2 ∥x− y∥2 ⩽ ∥Φ2i−1x− Φ2i−1y∥X ⩽ (1 + ψ)∥x− y∥2.

Case 2. — x, y ∈ A4i−2,4i+1. Since Φ2i = J2i,2i+1 ◦ T2i, by Theorem 3.4,

(1 − ψ)∥x− y∥2 ⩽ ∥T2ix− T2iy∥Fi⊕2Fi+1 ⩽ (1 + ψ)∥x− y∥2,

and by Lemma 4.1(iii),

(4.2) 1 − ψ

1 + γ
∥x− y∥2 ⩽ ∥Φ2ix− Φ2iy∥X ⩽ (1 + ψ)∥x− y∥2.

Case 3. — x and y are not in the same annulus of the form A2i,2i+3.
Obviously, it suffices to consider the case ∥y∥ ⩽ ∥x∥. Let R2i be the smallest
“even” R such that ∥y∥ ⩽ R2i. Then necessarily R2i+1 ⩽ ∥x∥, for otherwise
x and y would both be in A2i−2,2i+1. Applying condition (3) for choosing
R2i+1, one obtains that in this case ∥y∥ ⩽ ε

d∥x∥, and

(4.3)
(

1 − ε

d

)
∥x∥ ⩽ ∥x∥ − ∥y∥ ⩽ ∥x− y∥ ⩽ ∥x∥ + ∥y∥ ⩽

(
1 + ε

d

)
∥x∥.

We recall the fact that Tj are norm-preserving. Together with inequalities
for Jj,j+1 in Lemma 4.1, it implies

(4.4)
(

1
(1 + ζ)(1 + γ)2 − ε

d

)
∥x∥

⩽
1

(1 + ζ)(1 + γ)2 ∥x∥ − ∥y∥ ⩽ ∥Φx∥ − ∥Φy∥

⩽ ∥Φx− Φy∥ ⩽ ∥Φx∥ + ∥Φy∥

⩽ ∥x∥ + ∥y∥ ⩽
(

1 + ε

d

)
∥x∥.

Combining (4.3) and (4.4), we get

(4.5) 1
1 + ε

d

(
1

(1 + ζ)(1 + γ)2 − ε

d

)
∥x− y∥ ⩽ ∥Φx− Φy∥

⩽
1 + ε

d

1 − ε
d

∥x− y∥.

The conclusion that Φ is a (1 + ε)-bilipschitz embedding of M into X

now follows from the choice of γ, ψ, ζ, and d made at the beginning of
Section 4. □
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To complete the picture, we need to prove Lemma 4.1. This is done in
the remaining part of Section 4.

Proof of Lemma 4.1. — Let ζ, γ, {γi}∞
i=1 ∈ (0, 1) be the numbers, and

{Fi}∞
i=1 be the subspaces of ℓ2 introduced at the beginning of Section 4,

and, as before, ni = dimFi, i ∈ N.
By Theorem 2.2 with ε = ζ and A = 1, for each ni there exists Ni ∈ N

such that any direct sum ℓNi
2 ⊕ ℓNi

2 with direct sum projections of norm 1
contains a ζ-invariant sub-sum ℓni

2 ⊕ ℓni
2 .

In what follows, our construction of FDD uses the Mazur method for con-
structing basic sequences [20, p. 4]. To implement it, we need the definition
below.

Definition 4.2. — Let Ω ∈ (0, 1]. A subspace N ⊂ X∗ is called Ω-
norming over a subspace Y ⊂ X if

∀y ∈ Y sup{f∗(y) : f∗ ∈ N , ∥f∗∥ ⩽ 1} ⩾ Ω∥y∥.

Let N ∈ N and let η > 0. Denote by K(N, η) ∈ N the least number for
which the unit sphere of any N -dimensional normed space contains a η-net
of cardinality at most K(N, η). It is well known that such K(N, η) exists
(see, for example, [37, Lemma 9.18]).

Since X is infinite-dimensional, by the Dvoretzky Theorem, there is a
subspace U1 ⊂ X with

dimU1 = N1 +K(N1, γ1/(1 + γ1)) and dBM(U1, ℓ
dimU1
2 ) ⩽ (1 + γ1).

We pick a finite-dimensional subspace N1 ⊂ X∗ which is 1
1+γ1

-norming
over U1 (see, for example, [32, Lemma 4.2] for the proof of existence of
such subspace).

Using the Dvoretzky Theorem again, we find a subspace U2 ⊂ (N1)⊤ :=
{x ∈ X : x∗(x) = 0 ∀x∗ ∈ N1} such that

dimU2 = N1 +N2 +K(N2, γ2/(1 + γ2))

and dBM(U2, ℓ
dimU2
2 ) ⩽ (1+γ2). Next, we pick a finite-dimensional subspace

N2 ⊂ X∗ which is 1
1+γ2

-norming over lin(U1 ∪U2). Proceeding like this, in
Step k we apply the Dvoretzky Theorem to find a subspace Uk ⊂ (Nk−1)⊤
such that

dimUk = Nk−1 +Nk +K(Nk, γk/(1 + γk))
and dBM(Uk, ℓdimUk

2 ) ⩽ (1+γk). Next, we pick a finite-dimensional subspace
Nk ⊂ X∗ which is 1

1+γk
-norming over lin

(⋃k
i=1 Ui

)
, and so on.

The fact that the sequence {Ui}∞
i=1 forms an FDD of its closed linear

span can be derived from the following lemma.
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Lemma 4.3. — Let F be a subspace in X. If a subspace N ⊂ X∗ is Ω-
norming over F , and E is a subspace of N⊤, then the projection P : E⊕F →
F given by P (e+ f) = f , where e ∈ E , f ∈ F satisfies ∥P∥ ⩽ 1/Ω.

Proof. — We need to show that ∥f∥ ⩽ 1
Ω ∥e+ f∥. Let ε > 0 be arbitrary

and f∗ ∈ N be such that ∥f∗∥ = 1 and f∗(f) ⩾ (Ω − ε) ∥f∥. Since e ∈ N⊤,
one has

∥e+ f∥ ⩾ f∗(e+ f) ⩾ (Ω − ε) ∥f∥.

Since ε > 0 is arbitrary, the proof is completed. □

Lemma 4.3 with F = lin{Ui}ki=1 and E = lin{Ui}∞
i=k+1 implies that for

any k ∈ N the projection Pk of lin{Ui}∞
i=1 onto F containing E in the kernel

has norm ⩽ (1 + γk). Now, the standard argument [20, p. 47] implies that
{Ui}∞

i=1 forms an FDD of its linear span. It also follows that for all i ⩾ 1 the
projections Ui ⊕ Ui+1 → Ui given by (x1, x2) → x1, have norm ⩽ (1 + γi).

Further, we define subspaces {Wi}∞
i=1 as follows. The subspace W2i, i ∈

N, is picked as an arbitrary Ni-dimensional subspace of Ui+1.
Before defining {W2k−1}∞

k=1, we endow each Ui with a Euclidean inner
product and norm from a Euclidean space Ũ i on which the Banach–Mazur
distance dBM(Ui, ℓdimUi

2 ) is attained.
We denote this norm on Ui by ∥·∥i∼ and assume that it satisfies the

condition

(4.6) ∀x ∈ Ui
1

1 + γi
∥x∥i∼ ⩽ ∥x∥X ⩽ ∥x∥i∼.

Let G2i+1 be the orthogonal complement of W2i in Ui+1 endowed with
the inner product of Ũ i+1, and G1 be U1. As such, Gi is defined for odd i

only.
We say that a set D is η-dense (η > 0) in a metric space M if, for every

m ∈ M, there is x ∈ D such that ∥m− x∥ < η.
By the definition of K(N, η), there is a γi/(1 + γi)-dense set Di of car-

dinality K(Ni, γi/(1 + γi)) in the unit sphere S(W2i). For each w ∈ Di,
consider a supporting functional w∗

w ∈ X∗ such that w∗
w(w) = ∥w∗

w∥ = 1.
The choice of dimension of G2i−1 is such that the intersection

(4.7) G2i−1
⋂( ⋂

w∈Di

kerw∗
w

)

has dimension at least Ni (it can be more because some of the supporting
functionals can be linearly dependent). We pick in the intersection (4.7) a
subspace of dimension Ni and denote it W2i−1.
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The verification that the functionals {w∗
w}w∈Di

span a subspace which
is
(
1 − γi

1+γi

)
= 1

1+γi
-norming over W2i is immediate. Applying Lemma 4.3

again, with F = W2i and E = W2i−1, we obtain that the projections
W2i−1⊕W2i → W2i given by (x1, x2) → x2, have norm ⩽ (1+γi). Therefore,
we conclude that the norms of both direct sum projections in the direct
sum W2i−1 ⊕W2i (i ∈ N) do not exceed (1 + γi); recall that the bound on
the direct sum projection W2i−1 ⊕ W2i → W2i−1 follows from the bound
on the projection Ui ⊕ Ui+1 → Ui.

The fact that {Wi}∞
i=1 forms an FDD in its closed linear span follows

from the criterion in [20, p. 47].
Finally, we prove the next auxiliary result.

Lemma 4.4. — Let ∥·∥iN be the following norm on W2i−1 ⊕W2i:

∥(x1, x2)∥iN = max{∥x1∥i∼, ∥x2∥i+1
∼ , ∥(x1, x2)∥},

where ∥(x1, x2)∥ means ∥x1 +x2∥X and ∥·∥i∼ is the introduced above norm
on Ui. Then, the space

(
W2i−1 ⊕W2i, ∥·∥iN

)
has the direct sum projections

of norm 1 and

∥(x1, x2)∥ ⩽ ∥(x1, x2)∥iN ⩽ (1 + γi)2∥(x1, x2)∥.

Proof. — The statement about the norms of projections is immediate
from the definition.

Let (x1, x2) ∈ W2i−1 ⊕ W2i. Recall that from the norms of the direct
sum projections (as linear maps between subspaces of X with the induced
norm) we have

∥x1∥X ⩽ (1 + γi)∥(x1, x2)∥, ∥x2∥X ⩽ (1 + γi)∥(x1, x2)∥.

From the construction of {Ui}∞
i=1 we have

1
1 + γi

∥x1∥i∼ ⩽ ∥x1∥X ⩽ ∥x1∥i∼,

and
1

1 + γi
∥x2∥i+1

∼ ⩽
1

1 + γi+1
∥x2∥i+1

∼ ⩽ ∥x2∥X ⩽ ∥x2∥i+1
∼ .

Therefore,
∥(x1, x2)∥ ⩽ ∥(x1, x2)∥iN

= max{∥x1∥i∼, ∥x2∥i+1
∼ , ∥(x1, x2)∥}

⩽ max{(1 + γi)∥x1∥X , (1 + γi)∥x2∥X , ∥(x1, x2)∥}.

Hence,
∥(x1, x2)∥ ⩽ ∥(x1, x2)∥iN ⩽ (1 + γi)2∥(x1, x2)∥. □
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Next, we apply Theorem 2.2 to each of the sums (W2i−1 ⊕W2i, ∥·∥iN ) for
all i ∈ N. We find subspaces of dimension ni, which we denote F ′

i ⊂ W2i−1
and F ′′

i ⊂ W2i such that the norm ∥·∥iN restricted to F ′
i ⊕F ′′

i is ζ-invariant.
Applying Lemma 2.3 we obtain that the norm

|||y1 +y2|||i := sup
O1,O2 orthogonal on F ′

i
,F ′′

i

∥ (O1y1, O2y2) ∥iN , y1 ∈ F ′
i , y2 ∈ F ′′

i

on F ′
i ⊕ F ′′

i satisfies

(4.8) ∥ (y1, y2) ∥iN ⩽ |||y1 + y2|||i ⩽ (1 + ζ)∥ (y1, y2) ∥iN

and
|||O1y1 +O2y2|||i = |||y1 + y2|||i

for every orthogonal operators O1 on F ′
i and O2 on F ′′

i .
By Lemma 2.4 there exists a 1-unconditional norm ∥ · ∥Zi

on R2 such
that for any y1 ∈ F ′

i and y2 ∈ F ′′
i

|||y1 + y2|||i = ∥(∥y1∥i∼, ∥y2∥i+1
∼ )∥Zi

.

For i ∈ N define V2i−1 as the subspace of X that coincides with F ′
i and

V2i as the subspace of X that coincides with F ′′
i .

We choose isometries I ′
i : Fi → F ′

i and I ′′
i : Fi → F ′′

i and define J2i−1 :
Fi → V2i−1 and J2i : Fi → V2i as compositions of these isometries and the
mentioned above natural maps of F ′

i onto V2i−1 and F ′′
i onto V2i.

For v ∈ Fi ⊂ ℓ2 we have

∥v∥2 = ∥J2i−1v∥i∼ ⩽ (1+γi) ∥J2i−1v∥X ⩽ (1+γi) ∥J2i−1v∥i∼ = (1+γi) ∥v∥2 ,

and

∥v∥2 = ∥J2iv∥i+1
∼ ⩽ (1 + γi+1) ∥J2iv∥X

⩽ (1 + γi+1) ∥J2iv∥i+1
∼ = (1 + γi+1) ∥v∥2 .

This is property (i) in the Lemma 4.1.
To prove property (ii), note that for (u, v) ∈ F ′

i ⊕ F ′′
i , by (4.8) we have

∥(J2i−1u, J2iv)∥iN ⩽ |||J2i−1u+ J2iv|||i ⩽ (1 + ζ) ∥(J2i−1u, J2iv)∥iN .

Using the inequality on the left and Lemma 4.4 , we get

∥J2i−1u+ J2iv∥X ⩽ ∥(J2i−1u, J2iv)∥iN ⩽ |||J2i−1u+ J2iv|||i

=
∥∥∥(∥J2i−1u∥i∼ , ∥J2iv∥i+1

∼

)∥∥∥
Zi

= ∥(∥u∥2 , ∥v∥2)∥
Zi
,

which is the inequality on the left in (ii).
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On the other hand, we have

∥(∥u∥2 , ∥v∥2)∥
Zi

=
∥∥∥(∥J2i−1u∥i∼ , ∥J2iv∥i+1

∼

)∥∥∥
Zi

= |||J2i−1u+ J2iv|||i

⩽ (1 + ζ) ∥(J2i−1u, J2iv)∥iN
⩽ (1 + ζ)(1 + γi)2 ∥J2i−1u+ J2iv∥X ,

the last inequality being a consequence of Lemma 4.4.
To prove property (iii) note that because V2i and V2i+1 are orthogonal

subspaces of the Euclidean space Ũ i+1 (i.e. the space Ui+1 endowed with
the norm ∥·∥i+1

∼ ), for u ∈ Fi and v ∈ Fi+1 we have

∥J2iu+ J2i+1v∥X
(4.6)
⩽ ∥J2iu+ J2i+1v∥i+1

∼

=
((

∥J2iu∥i+1
∼

)2
+
(

∥J2i+1v∥i+1
∼

)2
) 1

2

=
(

∥u∥2
2 + ∥v∥2

2

) 1
2
.

On the other hand,(
∥u∥2

2 + ∥v∥2
2

) 1
2 =

((
∥J2iu∥i+1

∼

)2
+
(

∥J2i+1v∥i+1
∼

)2
) 1

2

= ∥J2iu+ J2i+1v∥i+1
∼

⩽ (1 + γi+1) ∥J2iu+ J2i+1v∥X .

Therefore property (iii) also holds.
In conclusion, {Vi}∞

i=1 forms an FDD of its closed linear span, satisfying
all conditions of Lemma 4.1. □

5. A counterexample to the general bending problem

It would be very interesting to prove analogues of our main result, The-
orem 1.2, for spaces which are different from the Hilbert space. To state
some relevant problems, we recall that a Banach space W is said to be
finitely represented in a Banach space X if, for every ε > 0 and every
finite-dimensional subspace F in W , there is a finite-dimensional subspace
G in X such that dimG = dimF and dBM(F,G) ⩽ 1 + ε.

The first question of interest is the following

Problem 5.1. — Let M be a locally finite subset of an infinite-dimen-
sional Banach space W and assume that W is finitely represented in a
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Banach space X. Does it imply that, for every ε > 0, the space M admits
a (1 + ε)-bilipschitz embedding into X?

To pave a way towards solving this problem, it is desirable to obtain an
affirmative answer to the problem below. Notice that its formulation uses
Definition 3.1.

General Bending Problem. — Let X and Y be finite-dimensional
Banach spaces such that there exist two linear isometric embeddings I1 :
Y → X and I2 : Y → X with distinct images, Y1 = I1(Y ) and Y2 = I2(Y ).
Assume that X is the direct sum of Y1 and Y2 and that the direct sum
projections of X = Y1 ⊕ Y2 have norm 1. Does it imply that for every
ε > 0 there exist (r,R) with 0 < r < R < ∞ for which there exists a
(1 + ε)-bending of Y in the space X from I1 to I2 with parameters (r,R)?

However, as the following theorem shows, the answer to this problem is
negative even in the case where Y is a two-dimensional Euclidean space.
Thence, the General Bending Problem as stated above is excessively strong,
one should look for weaker statements which might be true. Also, perhaps
suitable developments of Theorem 5.2 can be used to obtain the affirmative
answer to the question of Problem 1.7.

Theorem 5.2. — There exists a 4-dimensional Banach space X satis-
fying the conditions:

(1) It is a direct sum of two 2-dimensional Euclidean spaces Y1 and Y2
with direct sum projections having norm 1.

(2) There exists ε > 0 such that for any (r,R) satisfying 0 < r < R < ∞
and any isometric embeddings I1 : ℓ2

2 → Y1 and I2 : ℓ2
2 → Y2, there

is no (1+ε)-bending with parameters (r,R) of ℓ2
2 in X from I1 to I2.

Recall that, for a Banach space X, S(X) denotes the unit sphere in X.
The spherical opening between subspaces U and W of a Banach space X
is defined as:

Ω(U,W ) = max
{

sup
u∈S(U)

dist(u, S(W )), sup
w∈S(W )

dist(w, S(U))
}
.

It is easy to see that Ω is a metric on the set of all closed subspaces of a
Banach space, and that this metric space is compact if the Banach space
is finite-dimensional. We refer to [34, Section 3.12] for more properties of
this metric.
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Lemma 5.3. — Let Y1 and Y2 be 2-dimensional Euclidean spaces and
let δ > 0. There exists a norm on Y1 ⊕ Y2 such that the obtained normed
space (X, ∥ · ∥X) satisfies the conditions:

(1) On each of the summands Y1 and Y2 the norm is isometrically equiv-
alent to its original norm, the ℓ2

2 norm.
(2) The projection onto any of the summands Y1 or Y2, whose kernel

equals the other summand, has norm 1.
(3) For every sufficiently small γ > 0, there exists ε(γ) > 0 such that

every two-dimensional subspace Z of X satisfying Ω(Z, Y1) ⩾ γ

and Ω(Z, Y2) ⩾ γ, satisfies dBM(Z, ℓ2
2) ⩾ 1 + ε(γ), where dBM is the

Banach–Mazur distance.
(4) The norm of X is not far from the norm of Y1 ⊕2 Y2 denoted by

∥ · ∥2. Namely,

(5.1) ∀x ∈ X (1 − δ2/2)∥x∥X ⩽ ∥x∥2 ⩽ ∥x∥X .

Proof. — The main idea of our proof of Lemma 5.3 is to construct the
unit ball of X as the result of cutting from the unit ball of the Euclidean
space Y1 ⊕2 Y2 some collection of symmetric pairs of caps. By cap centered
at a unit vector w in R4 we mean the region of the unit ball in R4 separated
by a hyperplane orthogonal to the line spanned by w. The radius of the
cap is the chordal (Euclidean) distance from w to the 2-dimensional sphere
that is the intersection of the hyperplane and S(R4). In our construction,
these radii will be small enough to satisfy inequality (5.1). In constructing
the unit ball of X, sufficiently many caps will be removed so that each
two-dimensional subspace G of Y1 ⊕2 Y2, except Y1 and Y2, intersects the
interior of at least one of the caps and, therefore, the norm of X on G will
not be strictly convex; consequently G is not isometric to ℓ2

2.
It is clear that each space X constructed as described above satisfies the

conditions of items (1), (2), and (4).
Now we prove that the condition in item (3) holds. Let us assume the

contrary. Then, for every k ∈ N, there exists Zk satisfying Ω(Zk, Y1) ⩾ γ,
Ω(Zk, Y2) ⩾ γ, and dBM(Zk, ℓ2

2) < 1 + 1
k . Since the set of all subspaces

of X is compact with respect to the metric Ω, the sequence {Zk}∞
k=1

has an Ω-convergent subsequence. Let W be its limit. The fact that for
finite-dimensional spaces dBM is continuous with respect to Ω implies that
dBM(W, ℓ2

2) = 1, and, thereupon, W is isometric to ℓ2
2.

On the other hand, both Ω(W,Y1) ⩾ γ and Ω(W,Y2) ⩾ γ, whence W is
not the same as Y1 or Y2, and hence its unit sphere contains line segments.
This outcome contradicts the conclusion of the previous paragraph.
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We now give details on how the removed caps are to be selected. Denote
by G2(R4) the set of all two-dimensional subspaces of R4. It is a compact
space in the metric Ω. Let δ ∈ (0, 1

4 ). Using the standard approach, we find
in G2(R4) a finite subset ∆ such that

(1) Y1, Y2 ∈ ∆,
(2) ∀W1,W2 ∈ ∆, W1 ̸= W2, Ω(W1,W2) ⩾ δ,
(3) ∀L ∈ G2(R4), ∃W ∈ ∆, Ω(W,L) < δ.

For each W ∈ ∆ other than Y1 or Y2, we select a point w ∈ S(W ) which
is at distance at least δ to both S(Y1) and S(Y2). We then cut from the
unit ball of R4 two 0-symmetric caps of radius δ at w and −w. It is clear
that in such a way we cut finitely many caps and that “under” any of the
caps the resulting surface will be polyhedral.

Observe that the existence of w is guaranteed for every W ∈ ∆ except
Y1 and Y2. In fact, it is immediate that there are w1 and w2 in S(W ) with
both dist(w1, S(Y1)) ⩾ δ and dist(w2, S(Y2)) ⩾ δ. If neither w1 nor w2
works, meaning that both dist(w1, S(Y2)) < δ and dist(w2, S(Y1)) < δ, then
dist(w1, S(Y1)) >

√
2 − 1

4 and dist(w2, S(Y2)) >
√

2 − 1
4 . As a consequence,

moving along the sphere S(W ) from w1 to w2 we arrive at the desired
point.

We are “almost” done because, for every L ∈ G2(R4), there is W ∈ ∆
such that Ω(W,L) < δ. If W ̸= Y1, Y2, we are done because the cap which
we cut around the point w ∈ S(W ) will cut some piece under S(L). The
only subspaces L which are not covered by this reasoning are those that
are in the set

Ψ :=
{
L : min

W∈∆,W ̸=Y1,Y2
Ω(L,W ) ⩾ δ

}
.

This is a compact set. For this reason the function

ω(L) := min{Ω(L, Y1),Ω(L, Y2)}

attains its maximum on Ψ, and this maximum µ satisfies µ < δ.
Consider an orthonormal basis {e1, e2, e3, e4} in Y1 ⊕2 Y2 = R4 such that

Y1 = lin ({e1, e2}) and Y2 = lin ({e3, e4}). Choose a > 0 in such a way
that for the unit vector f = 1√

1+a2 e1 + a√
1+a2 e3 we have ∥e1 − f∥ = δ.

Specifically, this condition means that 1√
1+a2 = 1 − δ2

2 .
Let σ = 1√

1+a2 and τ = a√
1+a2 . We remove 16 caps of radius δ, tan-

gent to S(Y1), centered at the points with position vectors (±σe1 ± τe3),
(±σe1 ± τe4), and (±σe2 ± τe3), (±σe2 ± τe4). Similarly, we remove the
16 caps of radius δ, tangent to S(Y2), centered at the points with position
vectors (±σe3 ± τe1), (±σe3 ± τe2), and (±σe4 ± τe1), (±σe4 ± τe2).
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We now prove that for each L ∈ Ψ there will be some part cut out of
S(L) by some of the caps described above.

Let us choose L ∈ Ψ and since one (and only one) of the conditions
Ω(L, Y1) < δ or Ω(L, Y2) < δ holds we can assume that Ω(L, Y1) < δ. First,
we argue that S(L) intersects the hyperplane lin ({e1, e3, e4}) at unique
point of position vector l so that ∥e1 − l∥ < δ. Note that L cannot be a
subspace of lin ({e1, e3, e4}) since that would imply Ω(L, Y1) =

√
2.

Since S(L) is symmetric about the origin, if (x1, x2, x3, x4) ∈ S(L), then
so is its opposite, and because the coordinate functions are continuous
we necessarily have two diametrically opposite points with the coordinate
x2 = 0 (there are only two such points, for otherwise L ⊂ lin ({e1, e3, e4})).
Let ±l be the position vectors of the two points ±(x1, 0, x3, x4) ∈ S(L).
Since Ω(L, Y1) < δ we have that dist(l, S(Y1)) < δ and, therefore,

min
t

{
(x1 − cos t)2 + (0 − sin t)2 + x2

3 + x2
4
}
< δ2,

i.e. mint {2 − 2x1 cos t} < δ2. Note that dist(l, S(Y1)) is achieved when
x1 cos t = |x1| and without loss of generality we will assume that x1 > 0 and
therefore t = 0, i.e. the vector on S(Y1) closest to l is e1. Moreover, we may
assume without loss of generality that l = 1√

1+b2+c2 (e1 + be3 + ce4) for
coefficients b ⩾ c ⩾ 0 where at least b is positive. Indeed, if b = c = 0, then
l = e1 and in this case we repeat the argument near the vector e2 where we
search for points in S(L)∩ lin ({e2, e3, e4}). Again, this intersection consists
of a vector and its opposite. This time the vector near e2 cannot coincide
with e2 for this would imply L = Y1. If this happens, then we swap the
labels of e1 and e2 and we are in the situation claimed above, with l ̸= e1
and b > 0.

To show that a nonempty part will be cut out of S(L), we show that l is
in the open cap of radius δ centered at f = σe1 + τe3. For this it suffices to
show the inequality ⟨f, l⟩ > ⟨f, e1⟩ between inner products of unit vectors.
It is equivalent to

(5.2) 1 + ab√
1 + b2 + c2

> 1.

We remark that ∥e1 − f∥ = δ > ∥e1 − l∥ is equivalent to ⟨e1, l⟩ > ⟨e1, f⟩
which means

1√
1 + b2 + c2

>
1√

1 + a2
,

and therefore a > b.
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We thus have

(1 + ab)2 > 1 + 2ab > 1 + 2b2 ⩾ 1 + b2 + c2,

which implies (5.2).
Deleting these 32 caps together with caps centered at w ∈ S(W ) chosen

above from the unit ball of R4, we get the unit ball of X satisfying all of
the conditions of Lemma 5.3. □

Proof of Theorem 5.2. — We are going to prove that there exists ε > 0
such that the space X constructed in Lemma 5.3 does not admit a (1 + ε)-
bending of Y = ℓ2

2 with parameters (r,R) for any 0 < r < R < ∞.
To prove the statement by contradiction, select

6
√

2 − 1 > γ > 0,

so that

1 > (1 + γ)3
√

2
.

Let ε(γ) be the value given by item (3) in Lemma 5.3. We pick ε > 0 so
that

ε < min {γ, ε(γ)} .
Finally, we choose δ > 0 such that

(5.3) 1 − δ2

2 >
(1 + γ)3

√
2

.

Next, assume that there exists a (1 + ε)-bending T : Y → X with pa-
rameters (r,R), 0 < r < R < ∞. Conforming to the notation above, we
write T = (T1, T2) meaning

T1 : Y −→ Y1 and T2 : Y −→ Y2.

In view of the Rademacher theorem, this map is differentiable almost
everywhere. By a standard argument, the derivative DT (y), whenever it
exists, is a (1 + ε)-bilipschitz linear embedding of Y into X (see [7, Chap-
ter 7, Section 1]).

Remark 5.4. — Our construction of X yields that, for ε < ε(γ), item (3)
in Lemma 5.3 implies that at every point of differentiability y ∈ Y , either

Ω(DT (y)Y, Y1) < γ, or Ω(DT (y)Y, Y2) < γ.

Indeed, if both Ω(DT (y)Y, Y1) and Ω(DT (y)Y, Y2) are ⩾ γ, then
Lemma 5.3 item (3) implies that dBM (DT (y)Y, ℓ2

2) ⩾ 1 + ε(γ), which con-
tradicts the fact that T is a (1 + ε)-bending of Y = ℓ2

2 with ε < ε(γ).
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Let us paint Y in three colors:
• blue for the points where DT (y)Y is close to Y1,
• yellow for the points where DT (y)Y is close to Y2,
• red for the points where DT (y) does not exist.

Note that since γ is such that a two-dimensional subspace Z of X cannot
have simultaneously Ω(Z, Y1) < γ and Ω(Z, Y2) < γ, it follows that points
of differentiability of T cannot be simultaneously blue and yellow.

We continue by proving the following statement. There exists a line seg-
ment in Y such that:

(1) Almost all of its points are either blue or yellow.
(2) The set of points which are blue takes half of its measure.

To prove this statement consider the 0-centered disc of radius r in Y .
We fix Cartesian coordinates (x, y) in Y and denote by u the unit vector
in the positive y-direction. Consider the set of all vertical (parallel to u)
x-axis-symmetric line segments Ix of length 2R+r, whose intersection with
the disc are of length at least r (see Figure 5.1).

The Fubini theorem (e.g. Theorem 14.1 page 147 in [11]) applied to
the characteristic function of the set of differentiability points of T in the
rectangle

⋃
x∈[−

√
3

2 r,
√

3
2 r] Ix implies that the set of red points on Ix has

measure 0 for almost all x.
Also, the intersections of Ix with the blue and yellow sets are measurable

for almost all x. Hence, we can pick x for which the “vertical” line segment
is blue or yellow almost everywhere and blue-yellow pieces are measurable.
Consider a moving subsegment of length r/2 along this Ix line segment.
We claim that there is a position at which the measure of yellow points on
this segment is exactly r/4. This can be done as follows. For 0 ⩽ t ⩽ R,
consider a line segment [t, t + r

2 ] and the integral F (t) :=
∫ t+ r

2
t

c(s) ds,
where c(s) = −1 if (x, s) is blue and c(s) = 1 if (x, s) is yellow. Then
F (t) is a continuous function which varies from −r/2 to r/2 as t ranges
from 0 to R. This is because for s ∈ [0, r/2] we have ∥(x, s)∥ ⩽ r and
therefore DT (x, s)Y = Y1 and c(s) = −1, while for s ∈ [R,R + r/2] we
have ∥(x, s)∥ ⩾ R and DT (x, s)Y = Y2 and c(s) = 1. Therefore F attains
value 0 for some 0 ⩽ t0 ⩽ R.

The argument will be completed in the following way. Since T is a Lips-
chitz function, the norm equivalence (5.1) implies that each one of its four
components is also Lipschitz. Since the Fundamental Theorem of Calcu-
lus holds for absolutely continuous functions (e.g. Proposition 7.2 in [11]),
it holds for Lipschitz functions. We use [t0, t0 + r/2] to parameterize the
interval above (with the measure of blue set equal to the measure of the
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Rr x

y

R+ r/2

O
√

3
2 rx−

√
3

2 r

t

t + r
2

Ix

Figure 5.1. Looking for a suitable interval

yellow set equal to r/4) as

t0 ⩽ t ⩽ t0 + r/2 −→ p(t) = (x, t).

ANNALES DE L’INSTITUT FOURIER



DVORETZKY-TYPE THEOREM 39

Let a = p(t0) be the bottom endpoint and b = p(t0 + r/2) be the top
endpoint of the interval. Denote by I the set of those t ∈ [t0, t0 + r/2]
for which T is differentiable at p(t). I is not necessarily an interval but it
has 1-dimensional Lebesgue measure |I| = r/2. Applying the Fundamental
Theorem of Calculus to T , one obtains:

(5.4) T (b) − T (a) =
∫
I

DT (p(t))udt.

We claim that the X-norm of this integral cannot be (1 + ε)-equivalent
to ∥b− a∥ = r/2. Splitting the integral as

(5.5)
∫
I

DT (p(t))udt =
∫
I1

DT (p(t))udt+
∫
I2

DT (p(t))udt,

where on the right-hand side we consider integrals over values t ∈ I1 for
which p(t) is in the blue set and values t ∈ I2 for which p(t) is in the yellow
set. Note that I1 and I2 are measurable subsets of I and that |I1| = |I2| =
r/4 by the previous step. Now, we estimate the norm of the integral in (5.5)
from above.

With the notation T = (T1, T2), one has:

DT (p(t))u = DT1(p(t))u+DT2(p(t))u ∈ Y1 ⊕ Y2.

For t ∈ I1, the definition of I1 implies that

DT (p(t))u ∈ DT (p(t))Y with Ω (DT (p(t))Y, Y1) < γ.

Further, we need the following

Observation 5.5. — For any vector y = (y1, y2) ∈ Z in some 2-
dimensional subspace Z of X for which Ω(Z, Y1) ⩽ γ, it holds ∥y2∥ ⩽
γ ∥y∥X . Similarly if Ω(Z, Y2) ⩽ γ then ∥y1∥ ⩽ γ ∥y∥X .

Proof. — Assume that y = (y1, y2) ∈ Z, where Z is a 2-dimensional
subspace of X such that Ω(Z, Y1) ⩽ γ. This implies that dX(y, Y1) ⩽
γ ∥y∥X . Let w be a vector in Y1 such that

∥y − w∥X = dX(y, Y1).

Then,

∥y2∥ = ∥y − y1∥ ⩽ ∥y − w∥2

(5.1)
⩽ ∥y − w∥X ⩽ γ ∥y∥X . □

Using this observation, we obtain that for every t ∈ I1,

∥DT2(p(t))u∥ ⩽ γ ∥DT (p(t))u∥X ⩽ γ(1 + ε).

Similarly, for every t ∈ I2, we have:

DT (p(t))u ∈ DT (p(t))Y with Ω (DT (p(t))Y, Y2) < γ,
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and hence
∥DT1(p(t))u∥ ⩽ γ ∥DT (p(t))u∥X ⩽ γ(1 + ε).

Re-write (5.4) and (5.5) as

T (b) − T (a) =
(∫

I1

DT1(p(t))udt+
∫
I2

DT1(p(t))udt
)

+
(∫

I1

DT2(p(t))udt+
∫
I2

DT2(p(t))udt
)
.

The first parentheses contain a vector v1 in Y1 with norm bounded by

∥v1∥ =
∥∥∥∥∫

I1

DT1(p(t))udt+
∫
I2

DT1(p(t))udt
∥∥∥∥

⩽
∫
I1

∥DT1(p(t))u∥ dt+
∫
I2

∥DT1(p(t))u∥ dt

⩽
∫
I1

(1 + ε) dt+
∫
I2

γ(1 + ε) dt = (1 + γ)(1 + ε)r4 .

Similarly, the second parentheses contain a vector v2 in Y2 with the same
upper bound for the norm.

Therefore,

∥T (b) − T (a)∥X = ∥v1 + v2∥X
(5.1)
⩽

1
1 − δ2/2 ∥v1 + v2∥2

⩽
1

1 − δ2/2
√

2(1 + γ)(1 + ε)r4 ,

where the last inequality follows from the Pythagorean Theorem and the
estimates on the norms of v1 and v2.

Since
1

1 + ε

r

2 = 1
1 + ε

∥b− a∥ ⩽ ∥T (b) − T (a)∥X ,

we obtain
1

1 + ε

r

2 ⩽
1

1 − δ2/2
√

2(1 + γ)(1 + ε)r4 .

Thus,

1 − δ2

2 ⩽
(1 + γ)(1 + ε)2

√
2

.

As ε was chosen strictly less than γ, we derive:

1 − δ2

2 <
(1 + γ)3

√
2

.

However, this contradicts (5.3) and, thus, it contradicts the existence of
the function T with the required properties. □
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