A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations
[Une approche non-archimédienne à la K-stabilité, I : géométrie métrique des espaces de configurations test et de valuations]
Annales de l'Institut Fourier, Online first, 99 p.

Pour toute variété polarisée (X,L), nous montrons que les configurations test, et plus généralement les -configurations test (définies comme filtrations de type fini sur l’anneau des sections), peuvent être analysées en terme de fonctions de Fubini–Study sur l’analytifié de Berkovich de X pour la valuation triviale sur le corps de base. En s’appuyant sur la théorie du pluripotentiel non-archimédien, nous décrivons le complété (séparé) de l’espace des configurations test, relativement à deux pseudo-distances naturelles, en terme de fonctions plurisousharmoniques et de mesures d’énergie finie sur l’espace de Berkovich. Nous décrivons également le quotient séparé de l’espace de toutes les filtrations, et établissons une correspondance bijective entre normes divisorielles et mesures divisorielles, toutes deux déterminées par un nombre fini de valuations divisorielles.

For any polarized variety (X,L), we show that test configurations and, more generally, -test configurations (defined as finitely generated filtrations of the section ring) can be analyzed in terms of Fubini–Study functions on the Berkovich analytification of X with respect to the trivial absolute value on the ground field. Building on non-Archimedean pluripotential theory, we describe the (Hausdorff) completion of the space of test configurations, with respect to two natural pseudo-metrics, in terms of plurisubharmonic functions and measures of finite energy on the Berkovich space. We also describe the Hausdorff quotient of the space of all filtrations, and establish a 1–1 correspondence between divisorial norms and divisorial measures, both being determined in terms of finitely many divisorial valuations.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3668
Classification : 32Q26, 32P05
Keywords: K-stability, filtrations, valuations, test configurations, non-Archimedean geometry.
Mot clés : K-stabilité, filtrations, valuations, configurations test, géométrie non-archimédienne.

Boucksom, Sébastien 1 ; Jonsson, Mattias 2

1 Sorbonne Université and Université Paris Cité CNRS, IMJ-PRG F-75005 Paris (France)
2 Dept of Mathematics University of Michigan Ann Arbor, MI 48109-1043 (USA)
@unpublished{AIF_0__0_0_A115_0,
     author = {Boucksom, S\'ebastien and Jonsson, Mattias},
     title = {A {non-Archimedean} approach to {K-stability,} {I:} {Metric} geometry of spaces of test configurations and valuations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3668},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Boucksom, Sébastien
AU  - Jonsson, Mattias
TI  - A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3668
LA  - en
ID  - AIF_0__0_0_A115_0
ER  - 
%0 Unpublished Work
%A Boucksom, Sébastien
%A Jonsson, Mattias
%T A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3668
%G en
%F AIF_0__0_0_A115_0
Boucksom, Sébastien; Jonsson, Mattias. A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations. Annales de l'Institut Fourier, Online first, 99 p.

[1] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990, x+169 pages | DOI | MR | Zbl

[2] Berkovich, Vladimir G. Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci. (1993) no. 78, pp. 5-161 | DOI | Numdam | MR | Zbl

[3] Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed A variational approach to complex Monge-Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 179-245 | DOI | Numdam | MR | Zbl

[4] Berman, Robert J.; Boucksom, Sébastien; Jonsson, Mattias A variational approach to the Yau–Tian–Donaldson conjecture, J. Am. Math. Soc., Volume 34 (2021) no. 3, pp. 605-652 | DOI | MR | Zbl

[5] Blum, Harold; Jonsson, Mattias Thresholds, valuations, and K-stability, Adv. Math., Volume 365 (2020), 107062, 57 pages | DOI | MR | Zbl

[6] Blum, Harold; Liu, Yuchen; Qi, Lu Convexity of multiplicities of filtrations on local rings (2022) (https://arxiv.org/abs/2208.04902)

[7] Blum, Harold; Liu, Yuchen; Xu, Chenyang Openness of K-semistability for Fano varieties, Duke Math. J., Volume 171 (2022) no. 13, pp. 2753-2797 | DOI | MR | Zbl

[8] Blum, Harold; Liu, Yuchen; Xu, Chenyang; Zhuang, Ziquan The existence of the Kähler–Ricci soliton degeneration, Forum Math. Pi, Volume 11 (2023), e9, 28 pages | DOI | MR | Zbl

[9] Blum, Harold; Liu, Yuchen; Zhou, Chuyu Optimal destabilization of K-unstable Fano varieties via stability thresholds, Geom. Topol., Volume 26 (2022) no. 6, pp. 2507-2564 | DOI | MR | Zbl

[10] Blum, Harold; Xu, Chenyang Uniqueness of K-polystable degenerations of Fano varieties, Ann. Math., Volume 190 (2019) no. 2, pp. 609-656 | DOI | MR | Zbl

[11] Bosch, Siegfried; Güntzer, Ulrich; Remmert, Reinhold Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, 261, Springer, 1984, xii+436 pages | DOI | MR | Zbl

[12] Boucksom, Sébastien Corps d’Okounkov (d’après Okounkov, Lazarsfeld–Mustaţǎ et Kaveh–Khovanskii), Séminaire Bourbaki. Volume 2012/2013. Exposés 1059–1073. Avec table par noms d’auteurs de 1948/49 à 2012/13 (Astérisque), Volume 361, Société Mathématique de France, 2014, pp. vii, 1-41 | Numdam | MR | Zbl

[13] Boucksom, Sébastien; Chen, Huayi Okounkov bodies of filtered linear series, Compos. Math., Volume 147 (2011) no. 4, pp. 1205-1229 | DOI | MR | Zbl

[14] Boucksom, Sébastien; Eriksson, Dennis Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 124 pages | DOI | MR | Zbl

[15] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Singular semipositive metrics in non-Archimedean geometry, J. Algebr. Geom., Volume 25 (2016) no. 1, pp. 77-139 | DOI | MR | Zbl

[16] Boucksom, Sébastien; Gubler, Walter; Martin, Florent Differentiability of relative volumes over an arbitrary non-Archimedean field, Int. Math. Res. Not. (2022) no. 8, pp. 6214-6242 | DOI | MR | Zbl

[17] Boucksom, Sébastien; Hisamoto, Tomoyuki; Jonsson, Mattias Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs, Ann. Inst. Fourier, Volume 67 (2017) no. 2, pp. 743-841 | DOI | Numdam | MR | Zbl

[18] Boucksom, Sébastien; Jonsson, Mattias Global pluripotential theory over a trivially valued field, Ann. Fac. Sci. Toulouse, Math., Volume 31 (2022) no. 3, pp. 647-836 | DOI | Numdam | MR | Zbl

[19] Boucksom, Sébastien; Jonsson, Mattias Addendum to the article ‘Global pluripotential theory over a trivially valued field’ (2022) (to appear in Ann. Fac. Sci. Toulouse Math., https://arxiv.org/abs/2206.07183) | Numdam

[20] Boucksom, Sébastien; Jonsson, Mattias A non-Archimedean approach to K-stability, II: divisorial stability and openness (2023) (to appear in J. Reine Angew. Math., https://arxiv.org/abs/2206.09492)

[21] Boucksom, Sébastien; Jonsson, Mattias Non-Archimedean Green’s functions and Zariski decompositions (2023) (https://arxiv.org/abs/2304.00144)

[22] Boucksom, Sébastien; Küronya, Alex; Maclean, Catriona; Szemberg, Tomasz Vanishing sequences and Okounkov bodies, Math. Ann., Volume 361 (2015) no. 3-4, pp. 811-834 | DOI | MR | Zbl

[23] Bruhat, François; Tits, Jacques Groupes réductifs sur un corps local, Publ. Math., Inst. Hautes Étud. Sci. (1972) no. 41, pp. 5-251 | DOI | Numdam | MR | Zbl

[24] Burgos Gil, José Ignacio; Philippon, Patrice; Sombra, Martín Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, Société Mathématique de France, 2014 no. 360, vi+222 pages | Numdam | MR | Zbl

[25] Chambert-Loir, Antoine Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | DOI | MR | Zbl

[26] Chambert-Loir, Antoine; Ducros, Antoine Formes différentielles réelles et courants sur les espaces de Berkovich (2012) (https://arxiv.org/abs/1204.6277)

[27] Chen, Huayi; Maclean, Catriona Distribution of logarithmic spectra of the equilibrium energy, Manuscr. Math., Volume 146 (2015) no. 3-4, pp. 365-394 | DOI | MR | Zbl

[28] Chen, Huayi; Moriwaki, Atsushi Extension property of semipositive invertible sheaves over a non-archimedean field, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 1, pp. 241-282 | MR | Zbl

[29] Chen, Xiuxiong; Sun, Song; Wang, Bing Kähler–Ricci flow, Kähler–Einstein metric, and K-stability, Geom. Topol., Volume 22 (2018) no. 6, pp. 3145-3173 | DOI | MR | Zbl

[30] Codogni, Giulio Tits buildings and K-stability, Proc. Edinb. Math. Soc., II. Ser., Volume 62 (2019) no. 3, pp. 799-815 | DOI | MR | Zbl

[31] Darvas, Tamás The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | DOI | MR | Zbl

[32] Darvas, Tamás The Mabuchi completion of the space of Kähler potentials, Am. J. Math., Volume 139 (2017) no. 5, pp. 1275-1313 | DOI | MR | Zbl

[33] Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H. L 1 metric geometry of big cohomology classes, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 3053-3086 | DOI | Numdam | MR | Zbl

[34] Darvas, Tamás; Lu, Chinh H.; Rubinstein, Yanir A. Quantization in geometric pluripotential theory, Commun. Pure Appl. Math., Volume 73 (2020) no. 5, pp. 1100-1138 | DOI | MR | Zbl

[35] Darvas, Tamás; Xia, Mingchen The closures of test configurations and algebraic singularity types, Adv. Math., Volume 397 (2022), 108198, 56 pages | DOI | MR | Zbl

[36] Dervan, Ruadhaí Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. (2016) no. 15, pp. 4728-4783 | DOI | MR | Zbl

[37] Dervan, Ruadhaí; Legendre, Eveline Valuative stability of polarised varieties, Math. Ann., Volume 385 (2023) no. 1-2, pp. 357-391 | DOI | MR | Zbl

[38] Dervan, Ruadhaí; Székelyhidi, Gábor The Kähler-Ricci flow and optimal degenerations, J. Differ. Geom., Volume 116 (2020) no. 1, pp. 187-203 | DOI | MR | Zbl

[39] Donaldson, Simon K. Scalar curvature and stability of toric varieties, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 289-349 | DOI | MR | Zbl

[40] Ducros, Antoine Les espaces de Berkovich sont excellents, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1443-1552 | DOI | Numdam | MR | Zbl

[41] Ein, Lawrence; Lazarsfeld, Robert; Smith, Karen E. Uniform approximation of Abhyankar valuation ideals in smooth function fields, Am. J. Math., Volume 125 (2003) no. 2, pp. 409-440 http://muse.jhu.edu/journals/american_journal_of_mathematics/v125/125.2ein.pdf | DOI | MR | Zbl

[42] Fang, Y. Study of positively metrized line bundles over a non-Archimedean field via holomorphic convexity, Ph. D. Thesis, University of Paris (2019)

[43] Fujita, Kento Uniform K-stability and plt blowups of log Fano pairs, Kyoto J. Math., Volume 59 (2019) no. 2, pp. 399-418 | DOI | MR | Zbl

[44] Fujita, Kento A valuative criterion for uniform K-stability of -Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 309-338 | DOI | MR | Zbl

[45] Fulton, William Introduction to toric varieties. The William H. Roever Lectures in Geometry, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xii+157 pages (The William H. Roever Lectures in Geometry) | DOI | MR | Zbl

[46] Gale, David; Klee, Victor; Rockafellar, Ralph T. Convex functions on convex polytopes, Proc. Am. Math. Soc., Volume 19 (1968), pp. 867-873 | DOI | MR | Zbl

[47] Gubler, Walter Local heights of subvarieties over non-Archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | DOI | MR | Zbl

[48] Gubler, Walter; Jell, Philipp; Künnemann, Klaus; Martin, Florent Continuity of plurisubharmonic envelopes in non-archimedean geometry and test ideals. With an appendix by José Ignacio Burgos Gil and Martín Sombra, Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2331-2376 | DOI | MR | Zbl

[49] Han, Jiyuan; Li, Chi Algebraic uniqueness of Kähler-Ricci flow limits and optimal degenerations of Fano varieties (2020) (https://arxiv.org/abs/2009.01010)

[50] Inoue, Eiji Entropies in μ-framework of canonical metrics and K-stability, II – Non-archimedean aspect: non-archimedean μ-entropy and μK-semistability (2022) (https://arxiv.org/abs/2202.12168)

[51] Küronya, Alex A divisorial valuation with irrational volume, J. Algebra, Volume 262 (2003) no. 2, pp. 413-423 | DOI | MR | Zbl

[52] Lazarsfeld, Robert; Mustaţă, Mircea Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 5, pp. 783-835 | DOI | Numdam | MR | Zbl

[53] Li, Chi K-semistability is equivariant volume minimization, Duke Math. J., Volume 166 (2017) no. 16, pp. 3147-3218 | DOI | MR | Zbl

[54] Li, Chi G-uniform stability and Kähler-Einstein metrics on Fano varieties, Invent. Math., Volume 227 (2022) no. 2, pp. 661-744 | DOI | MR | Zbl

[55] Li, Chi Geodesic rays and stability in the cscK problem, Ann. Sci. Éc. Norm. Supér., Volume 55 (2022) no. 6, pp. 1529-1574 | DOI | MR | Zbl

[56] Li, Chi K-stability and Fujita approximation, Birational geometry, Kähler–Einstein metrics and degenerations (Springer Proceedings in Mathematics & Statistics), Volume 409, Springer, 2023, pp. 545-566 | DOI | MR | Zbl

[57] Li, Chi; Xu, Chenyang Stability of valuations and Kollár components, J. Eur. Math. Soc., Volume 22 (2020) no. 8, pp. 2573-2627 | DOI | MR | Zbl

[58] Liu, Yaxiong Openness of uniformly valuative stability on the Kähler cone of projective manifolds, Math. Z., Volume 303 (2023) no. 2, 52, 26 pages | DOI | MR | Zbl

[59] McKinnon, David; Roth, Mike Seshadri constants, diophantine approximation, and Roth’s theorem for arbitrary varieties, Invent. Math., Volume 200 (2015) no. 2, pp. 513-583 | DOI | MR | Zbl

[60] Mumford, David; Fogarty, John; Kirwan, Frances Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 34, Springer, 1994, xiv+292 pages | DOI | MR | Zbl

[61] Odaka, Yuji On parametrization, optimization and triviality of test configurations, Proc. Am. Math. Soc., Volume 143 (2015) no. 1, pp. 25-33 | DOI | MR | Zbl

[62] Poineau, Jérôme Les espaces de Berkovich sont angéliques, Bull. Soc. Math. Fr., Volume 141 (2013) no. 2, pp. 267-297 | DOI | Numdam | MR | Zbl

[63] Reboulet, Rémi The asymptotic Fubini–Study operator over general non-Archimedean fields, Math. Z., Volume 299 (2021) no. 3-4, pp. 2341-2378 | DOI | MR | Zbl

[64] Reboulet, Rémi Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy, J. Reine Angew. Math., Volume 793 (2022), pp. 59-103 | DOI | MR | Zbl

[65] Székelyhidi, Gábor Filtrations and test-configurations. With an appendix by Sebastien Boucksom, Math. Ann., Volume 362 (2015) no. 1-2, pp. 451-484 | DOI | MR | Zbl

[66] Temkin, Michael On local properties of non-Archimedean analytic spaces. II, Isr. J. Math., Volume 140 (2004), pp. 1-27 | DOI | MR | Zbl

[67] Temkin, Michael Introduction to Berkovich analytic spaces, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 3-66 | DOI | MR | Zbl

[68] Witt Nyström, David Test configurations and Okounkov bodies, Compos. Math., Volume 148 (2012) no. 6, pp. 1736-1756 | DOI | MR | Zbl

[69] Zhang, Kewei Valuative invariants with higher moments, J. Geom. Anal., Volume 32 (2022) no. 1, 10, 33 pages | DOI | MR | Zbl

[70] Zhang, Shouwu Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl

Cité par Sources :