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A NON-ARCHIMEDEAN APPROACH TO
K-STABILITY, I: METRIC GEOMETRY OF SPACES OF

TEST CONFIGURATIONS AND VALUATIONS

by Sébastien BOUCKSOM & Mattias JONSSON (*)

Abstract. — For any polarized variety (X, L), we show that test configurations
and, more generally, R-test configurations (defined as finitely generated filtrations
of the section ring) can be analyzed in terms of Fubini–Study functions on the
Berkovich analytification of X with respect to the trivial absolute value on the
ground field. Building on non-Archimedean pluripotential theory, we describe the
(Hausdorff) completion of the space of test configurations, with respect to two
natural pseudo-metrics, in terms of plurisubharmonic functions and measures of
finite energy on the Berkovich space. We also describe the Hausdorff quotient of
the space of all filtrations, and establish a 1–1 correspondence between divisorial
norms and divisorial measures, both being determined in terms of finitely many
divisorial valuations.

Résumé. — Pour toute variété polarisée (X, L), nous montrons que les confi-
gurations test, et plus généralement les R-configurations test (définies comme fil-
trations de type fini sur l’anneau des sections), peuvent être analysées en terme
de fonctions de Fubini–Study sur l’analytifié de Berkovich de X pour la valua-
tion triviale sur le corps de base. En s’appuyant sur la théorie du pluripotentiel
non-archimédien, nous décrivons le complété (séparé) de l’espace des configura-
tions test, relativement à deux pseudo-distances naturelles, en terme de fonctions
plurisousharmoniques et de mesures d’énergie finie sur l’espace de Berkovich. Nous
décrivons également le quotient séparé de l’espace de toutes les filtrations, et éta-
blissons une correspondance bijective entre normes divisorielles et mesures diviso-
rielles, toutes deux déterminées par un nombre fini de valuations divisorielles.

Introduction

The notion of K-stability was introduced in complex differential geometry
as a conjectural, and now partially confirmed, algebro-geometric criterion
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for the existence of special Kähler metrics. Lately, it has also become a
subject in its own respect. In a series of two (largely independent) papers
of which this is the first, we show how global pluripotential theory over a
trivially valued field, as developed in [18], can be used to study K-stability.

Let X be a projective variety (reduced and irreducible) of dimension n ⩾
1 over an algebraically closed field k (assumed to be of characteristic 0 in
this introduction), and L an ample Q-line bundle on X. The definition of K-
stability of the polarized variety (X,L), as given by Donaldson [39], involves
the sign of an invariant attached to (ample) test configurations for (X,L).
As shown in [17, 18], test configurations can be alternatively understood in
terms of (rational) Fubini–Study functions on the Berkovich analytification
Xan, and uniform K-stability becomes a linear growth condition for the
non-Archimedean K-energy on the set of such functions.

Filtrations of the section ring of (X,L) provide another, widely used
description of test configurations; more precisely, the latter correspond to Z-
filtrations of finite type [65, 68]. Recent works related to the Hamilton–Tian
conjecture [8, 29, 38, 49] have emphasized the importance of considering
more general R-test configurations, defined as R-filtrations of finite type,
and one first objective of this paper is to show that these can again be
understood as (real) Fubini–Study functions on Xan.

On the other hand, Chi Li’s recent breakthrough on the Yau–Tian–
Donaldson conjecture for cscK metrics [55] (based in part on the first ver-
sion of the present paper) involves a stronger form of uniform K-stability,
formulated as a linear growth condition for the K-energy on the space
of functions of finite energy on Xan. The latter are obtained as limits of
Fubini–Study functions, and are the central topic of pluripotential theory
on Xan [18]. Building on the latter technology, the second objective of this
paper is to show how functions and measures of finite energy can be used
to describe the completion of the space of test configurations with respect
to a natural metric, leading to a picture that is quite similar to the well-
developed complex analytic case [32, 34].

From test configurations to Fubini–Study functions

Denote by NR the space of (decreasing, left-continuous, separated, ex-
haustive) filtrations of the section algebra R(d) = R(X, dL) for d sufficiently
divisible. It is convenient to view these as norms χ : R(d) → R ∪ {+∞},
for which we use “additive” terminology, see Section 1.1. A norm χ ∈ NR
is of finite type if the associated graded algebra is finitely generated. For
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any subgroup Λ ⊂ R, let NΛ ⊂ NR be the set of norms with values in
Λ ∪ {+∞}, and denote by

TR ⊂ NR and TΛ := TR ∩ NΛ

the subsets of norms of finite type.
As is by now well-known (see [17, 65, 68]), the Rees construction provides

a 1–1 correspondence between TZ and the set of (ample) test configurations
for (X,L). In line with [38], we view TR as the space of R-test configurations.
Any χ ∈ TR lies in TΛ for some finitely generated subgroup Λ ≃ Zr, and χ

can be geometrically realized as a Gr
m-equivariant degeneration of (X,L)

to a polarized scheme (see Section A.3), which is further reduced iff χ is
homogeneous, in the sense that χ(sd) = dχ(s) for all d ∈ N.

The space NR comes equipped with a non-decreasing family (dp)1⩽p⩽∞
of natural pseudo-metrics. By [14], the space NR(V ) of norms on any finite
dimensional vector space V is indeed endowed with a metric dp for any
p ∈ [1,∞], the distance between two norms being the ℓp-length of their
relative spectrum, defined by joint diagonalization in some basis. For p = 2,
this is the classical Tits metric of NR(V ) as a Euclidean building, whose
relevance to K-stability was already emphasized in [30, 61].

Any χ ∈ NR restricts to a norm on Rm := H0(X,mL) for all m suffi-
ciently divisible, and we define the pseudometric dp on NR by setting

dp(χ, χ′) := lim sup
m

m−1 dp(χ|Rm
, χ′|Rm

),

where the limsup is actually a limit for p < ∞, by [13, 17, 27]. The Lp-norm
of a test configuration in TZ, as in [17, 39, 65], can be computed using dp.

The pseudo-metric dp is not a metric, even after restriction to TΛ, and our
first main result describes the Hausdorff quotient of (TΛ,dp) as a natural
space of functions on the Berkovich analytification of X (with respect to the
trivial absolute value on k). Recall that the latter is a compact Hausdorff
topological space Xan, whose elements are semivaluations v on X, i.e. R-
valued valuations on the function field of some subvariety of X, trivial on
k. The space Xan contains as a dense subset the space Xdiv of divisorial
valuations on X, induced (up to scaling) by a prime divisor on a birational
model of X.

For any v ∈ Xan and any section s of a line bundle on X, we can
define v(s) ∈ [0,+∞] by trivializing the line bundle at the center of v,
and setting |s|(v) := e−v(s) defines a continuous function |s| : Xan → [0, 1].
Given a subgroup Λ ⊂ R, a Λ-Fubini–Study function for L is a function
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φ ∈ C0 = C0(Xan) of the form

φ = 1
m

max
j

{log |sj | + λj},

where m ⩾ 1 is sufficiently divisible, (sj) is a finite set of sections of mL
without common zeroes, and λj ∈ Λ.

The set HΛ ⊂ C0 of Λ-Fubini–Study functions is stable under max and
the action of Λ by translation, and satisfies HΛ = HQΛ. It is related to the
space TΛ of Λ-test configurations by the Fubini–Study operator, a surjective
map

FS: TΛ −→ HΛ

that associates to χ ∈ TΛ the Fubini–Study function

FS(χ) = m−1 max
j

{log |sj | + χ(sj)},

where (sj) is any χ-orthogonal basis of Rm for m sufficiently divisible.
Viewed as a map from (usual) test configurations to Fubini–Study func-
tions, FS: TZ → HZ = HQ is compatible with the one constructed and
studied in [17, 18] (see Appendix A).

Theorem A. — For any polarized variety (X,L), any subgroup Λ ⊂ R
and p ∈ [1,∞], the Fubini–Study operator identifies the Hausdorff quotient
of the pseudo-metric space (TΛ,dp) with HΛ. For p = ∞, the induced metric
d∞ on HΛ further coincides with the supnorm metric.

It is enough to prove this for Λ = R. Let us first describe the case
p = ∞. The restrictions χ|Rd

of any norm χ ∈ NR generate a sequence of
canonical approximants χd ∈ TR, which allows us to extend the Fubini–
Study operator to a map

FS: NR −→ L∞

into the space of bounded functions onXan, by setting FS(χ) := limd FS(χd).
On the other hand, any φ ∈ L∞ defines an infimum norm IN(φ) ∈ NR,
the avatar of the usual supnorm supXan |s| e−mφ on Rm in our additive
terminology. This defines an operator

IN: L∞ −→ N hom
R

into the space of homogeneous norms. Using standard but nontrivial results
in non-Archimedean geometry, we show that:

• the composition IN ◦ FS: NR → N hom
R coincides with the homog-

enization operator χ 7→ χhom, where χhom(s) = limr→∞ r−1χ(sr),
which corresponds to the spectral radius construction in the usual
“multiplicative” terminology;
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• homogenization preserves the finite type condition, and hence maps
TR onto T hom

R := TR ∩ N hom
R ;

• on TR, both the Fubini–Study operator and the pseudo-metric d∞
factor through homogenization.

These results imply that FS: (TR,d∞) → (HR,d∞) is a surjective isometry,
which restricts to an isometric isomorphism (T hom

R ,d∞) ≃ (HR,d∞), where
d∞ on HR is the supnorm metric; this settles Theorem A for p = ∞.

For any p ∈ [1,∞), we have d1 ⩽ dp ⩽ d∞ as pseudo-metrics on NR. By
the previous step, the restriction of d∞ to TR factors through the Fubini–
Study operator. Thus dp |TR descends to a pseudo-metric on HR, and Theo-
rem A asserts that it is a metric, i.e. that it separates points. It is enough to
prove this for p = 1, which is accomplished via an explicit expression for d1
in terms of the Monge–Ampère energy, analogous to the known expression
for the Darvas metric in the complex analytic case [31].

Our approach is based on the close relation of the d1-pseudometric on
NR to the volume of a norm χ ∈ NR, defined as the limit

vol(χ) = lim
m
m−1 vol(χ|Rm

) ∈ R,

where vol(χ|Rm
) is the barycenter of the spectrum of χ|Rm

. Indeed, for all
χ, χ′ ∈ NR, we have

d1(χ, χ′) = vol(χ) + vol(χ′) − 2 vol(χ ∧ χ′),

with χ∧χ′ ∈ NR the pointwise min of χ and χ′. When χ ∈ TZ corresponds to
a test configuration (X ,L) → A1, with canonical compactification (X ,L) →
P1, it was proved in [17], using the Riemann–Roch formula, that

vol(χ) = (Ln+1)
(n+ 1)(Ln) ,

where the right-hand side is also, by definition, the Monge–Ampère energy
E(φ) of φ := FS(χ) ∈ HQ. Setting Ẽ(φ) := sup{E(ψ) | φ ⩾ ψ ∈ HQ}
defines the extended energy functional Ẽ : C0 → R, and an approximation
argument based on Okounkov bodies leads to the key formula vol(χ) =
Ẽ(FS(χ)), which implies

d1(χ, χ′) = E(φ) + E(φ′) − 2 Ẽ(φ ∧ φ′)

for all χ, χ′ ∈ HR, where φ = FS(χ), φ′ = FS(χ′). The right-hand side
thus defines a pseudo-metric d1 on HR, and a result of [18] allows us to
show that it separates points, thereby finishing the proof of Theorem A.
This formula also characterizes the metric d1 on HR as the unique one such

TOME 75 (2025), FASCICULE 2
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that d1(φ,φ′) = infφ′′⩽φ,φ′{d1(φ,φ′′) + d1(φ′′, φ′)} for all φ,φ′ ∈ HR, and
d1(φ,φ′) = E(φ) − E(φ′) when φ ⩾ φ′.

Darvas metrics on functions and measures of finite energy

By Theorem A, the Hausdorff completion of (TR,dp) can be identified
with the completion of the metric space (HR,dp). When p = ∞, this is
simply the closure of HR ⊂ C0 in the topology of uniform convergence,
which is, by definition, the space CPSH of continuous L-psh functions (in
line with [47, 70]).

For a norm χ ∈ NR, FS(χ) lies in CPSH as soon as it is continuous (by
Dini’s lemma); we show that the set N cont

R ⊂ NR of such norms coincides
with the d∞-closure in NR of the set TZ of (ample) test configurations, and
that it is a strict subset (except in the trivial case dimX = 0, see Sec-
tion 2.5).

Our next goal is to describe the completion of (HR,d1). The answer relies
on global pluripotential theory over a trivially valued field, as developed
in [18] (inspired in part by the discretely valued case studied in [15]). Let
us briefly describe the salient points of this theory.

Inspired by the complex analytic case, we define an L-psh function
φ : Xan → R∪{−∞} as an upper semicontinuous (usc) function that can be
written as the limit of a decreasing sequence (or net) in HR (or HZ = HQ),
excluding φ ≡ −∞. Such functions are uniquely determined by their re-
strictions to Xdiv ⊂ Xan, which are further finite valued, and we equip the
space PSH of L-psh functions with the topology of pointwise convergence
on Xdiv. By Dini’s Lemma, the space of continuous L-psh functions CPSH
considered above can be described as CPSH = PSH ∩ C0.

The Monge–Ampère energy E admits a unique usc, monotone increasing
extension

E: PSH −→ R ∪ {−∞},
given by E(φ) = inf{E(ψ) | φ ⩽ ψ ∈ CPSH}, and the space of L-psh
functions of finite energy is defined as

E1 := {E > −∞} ⊂ PSH .

A function in E1 is thus a decreasing limit of functions in HQ with bounded
energy. The space E1 is endowed with the strong topology, defined as the
coarsest refinement of the subspace topology from PSH ⊃ E1 for which
E: E1 → R is continuous. Any decreasing net in E1 is strongly convergent,
and HQ is thus dense in E1 in the strong topology.

ANNALES DE L’INSTITUT FOURIER
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To each φ ∈ E1 is associated a Monge–Ampère measure MA(φ), a
(Radon) probability measure on Xan that integrates functions in E1. When
φ ∈ HQ, MA(φ) has finite support in Xdiv, and can be described using in-
tersection numbers computed on the central fiber of an associated test
configuration. The Monge–Ampère operator φ 7→ MA(φ) is continuous on
E1 in the strong topology, and characterized as the derivative of E, i.e.

d
dt

∣∣∣∣
t=0

E ((1 − t)φ+ tψ) =
∫

Xan
(ψ − φ) MA(φ)

for all φ,ψ ∈ E1. It takes its values in the space M1 of measures of finite
energy, i.e. Radon probability measures µ on Xan for which the Legendre
transform

E∨(µ) := sup
φ∈E1

{
E(φ) −

∫
φdµ

}
∈ [0,+∞]

is finite. In analogy to the complex analytic case [3], the variational ap-
proach of [18] shows that µ = MA(φ) with φ ∈ E1 iff φ achieves the
supremum that defines E∨(µ).

The space M1 also comes with a strong topology, the coarsest refinement
of the weak topology of measures such that E∨ : M1 → R⩾0 is continuous.
A key result of [18] shows that the Monge–Ampère operator induces a
topological embedding with dense image

MA: E1/R ↪−→ M1

(with respect to the strong topologies), which is further onto iff the enve-
lope property holds for (X,L). The latter important property has several
equivalent formulations, including the compactness of the quotient space
PSH /R (a fundamental fact in the setting of compact complex manifolds);
it is established when X is smooth, using multiplier ideals, and we conjec-
ture that it holds as long as X is normal (or merely unibranch, which is in
turn a necessary condition).

The Monge–Ampère operator naturally induces a map MA: TR → M1

by setting MA(χ) := MA(FS(χ)); as mentioned above, when χ ∈ TZ, the
measure MA(χ) has finite support in Xdiv, and can be directly described
in terms of intersection numbers on (the integral closure of) the test con-
figuration corresponding to χ.

With these preliminaries in hand, we can now state:

Theorem B. — For any polarized variety (X,L), the following holds:
(i) there exists a unique metric d1 on E1 that defines the strong topol-

ogy and extends the metric d1 on HR ⊂ E1;
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836 Sébastien BOUCKSOM & Mattias JONSSON

(ii) there exists a unique metric d1 on M1 that defines the strong topol-
ogy and induces the quotient metric of d1 on E1/R ↪→ M1;

(iii) the metric space (M1,d1) is always complete, while (E1,d1) is com-
plete iff the envelope property holds for (X,L);

(iv) the Monge–Ampère operator MA: TR → M1 uniquely extends to
an isometry

MA: (NR/R,d1) −→ (M1,d1),

where d1 denotes the quotient pseudometric of d1.

In particular, the Monge–Ampère operator realizes M1 as the Hausdorff
completion of (TR/R,d1), while E1 is the Hausdorff completion of (TR,d1)
iff the envelope property holds, e.g. when X is smooth (see also [35] for an
approach based on geodesic rays, when k = C).

We call the metric d1 on E1 the Darvas metric; its complex analytic ana-
logue, introduced by T. Darvas [31], plays a crucial role in global pluripo-
tential theory, and in particular in the variational approach to the Yau–
Tian–Donaldson conjecture [4, 54, 55]. The space E1 is studied over more
general non-Archimedean fields in [64], where it is shown that (E1,d1) is a
geodesic metric space (assuming the envelope property). In analogy with
the complex analytic case [32, 34], we expect that, for any p ∈ [1,∞), the
completion of (HR,dp) can be identified with the space

Ep :=
{
φ ∈ E1 | φ ∈ Lp(MA(φ))

}
,

assuming the envelope property.
Among other things, the proof of Theorem B is based on a precise com-

parison between d1 and quasi-metrics on E1 and M1 studied in [18], using
estimates that ultimately derive from the Hodge Index Theorem. By con-
struction, MA: (TR/R,d1) → (M1,d1) is an isometry, and (iv) is thus a
consequence of (iii) and the d1-density of TZ in NR, which we prove using
Okounkov bodies (see Corollary 3.19).

If χ ∈ N cont
R is a continuous norm, then FS(χ) ∈ CPSH ⊂ E1, and

MA(χ) = MA(FS(χ)). If the envelope property holds for (X,L), then the
usc regularization FS⋆(χ) lies in E1 for any norm χ ∈ NR, and MA(χ) =
MA(FS⋆(χ)). In this case, we get a surjective isometry FS⋆ : (NR,d1) →
(E∞

↑ ,d1), where E∞
↑ is the set of L-psh functions that are regularizable from

below, i.e. limits in PSH of an increasing net in CPSH. This realizes E∞
↑

as the Hausdorff quotient of NR. We emphasize, however, that (iv) is valid
even without assuming the envelope property for (X,L).
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Finally, we show that the functional χ 7→ ∥χ∥ := E∨(MA(χ)) on NR
extends (up to a normalization constant) the minimum norm of a test
configuration in the sense of Dervan [36].

Divisorial norms and maximal norms

The set Xval of valuations on the function field of X, trivial on k, is a
dense subset of Xan. Following [22] we say that v ∈ Xval is of linear growth
if there exists C > 0 such that v(s) ⩽ Cm for all nonzero sections s ∈
Rm = H0(X,mL) with m sufficiently divisible. In terms of pluripotential
theory, the set X lin ⊂ Xval of valuations of linear growth coincides with the
set of points v ∈ Xan that are non-pluripolar, i.e. such that every φ ∈ PSH
is finite at v; in particular, it contains the set Xdiv of divisorial valuations.

Any v ∈ X lin defines a (homogeneous) norm χv ∈ N hom
R , simply by

setting χv(s) := v(s). We say that a norm χ ∈ NR is divisorial if it is of the
form χ = mini{χvi

+ ci} for a finite set (vi) in Xdiv and ci ∈ R. We denote
by N div

R the set of divisorial norms, and by N div
Q := N div

R ∩ NQ the subset
of rational divisorial norms, for which the ci can be chosen in Q. The latter
contains the homogenization χhom of any ample test configuration χ ∈ TZ,
and N div

Q can alternatively be described in terms of norms associated to
(possibly non-ample) test configurations (see Theorem A.10).

On the other hand, we define a divisorial measure as a Radon probability
measure µ on Xan with support a finite subset of Xdiv, i.e. µ =

∑
i miδvi

for a finite subset (vi) of Xdiv and mi ∈ R>0 such that
∑

i mi = 1. The set
Mdiv ⊂ M1 of divisorial measures is thus the convex hull of the image of
the canonical embedding Xdiv ↪→ M1 v 7→ δv. For any test configuration
χ ∈ TZ, the norm χhom and the measure MA(χ) = MA(χhom) are both
divisorial. More generally, we show:

Theorem C. — The Monge–Ampère operator induces an isometric iso-
morphism

MA: (N div
R /R,d1) ∼−→ (Mdiv,d1).

We emphasize that the envelope property is not assumed here. In the
companion paper [20], divisorial measures are used to define the notion of
divisorial stability, which implies (and is conjecturally equivalent to) uni-
form K-stability. Theorem C enables us to view divisorial stability as a
condition on divisorial norms, and leads to the equivalence between divi-
sorial stability and uniform K-stability with respect to norms/filtrations.

TOME 75 (2025), FASCICULE 2
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The proof of Theorem C is based on the variational approach to (non-
Archimedean) Monge–Ampère equations developed in [18], recast in terms
of norms.

Recall that the space of norms NR is equipped with pseudometrics
(dp)p∈[1,∞], such that d1 ⩽ dp ⩽ d∞. For χ, χ′ ∈ NR, the condition
dp(χ, χ′) = 0 is independent of p < ∞; we say that χ and χ′ are asymp-
totically equivalent when this holds. While d∞ becomes a metric upon
restriction to the space N hom

R of homogeneous norms, this is still not the
case for dp with p < ∞, and our next goal is to introduce a canonical
maximal subspace on which dp does become a metric.

To this end, we introduce the class N max
R ⊂ N hom

R of maximal norms,
of the form χ = infv∈Xdiv{χv + cv} for a bounded family of constants
(cv)v∈Xdiv . Any divisorial norm is maximal, and maximal norms can al-
ternatively be characterized as decreasing limits of divisorial norms. We
further show that any norm χv with v ∈ X lin is maximal.

The following result accounts for the chosen terminology.

Theorem D. — Any norm χ ∈ NR is asymptotically equivalent to a
unique maximal norm χmax ∈ N max

R , characterized as the largest norm in
the asymptotic equivalence class of χ. In particular, for any p ∈ [1,∞),
the restriction of the pseudometric dp to N max

R is a metric, and N max
R is

maximal in NR for this property.

To prove this result, we first construct a projection χ 7→ χmax onto N max
R ,

by setting χmax := infv∈Xdiv{χv + FS(χ)(v)}, and show that χmax = χ′ max

iff FS(χ) = FS(χ′) on Xdiv. Using Monge–Ampère estimates from [18], we
show that this holds if χ ∼ χ′. Conversely, we need to show χ ∼ χmax.
Since FS(χ) = supd FS(χd) is an envelope of L-psh functions, it follows
from [18, 19] that FS(χ) = FS⋆(χ) on Xdiv, and

vol(χ) = Ẽ(FS(χ)) = Ẽ(FS⋆(χ)) ⩾ vol(χmax).

This yields the result, since χ ⩽ χmax implies

d1(χ, χmax) = vol(χmax) − vol(χ).

As before, Theorem D does not assume the envelope property, but the
proof exploits it through the use of resolution of singularities, see [18, The-
orem 5.20]. Note that closely related results were independently obtained
in [6] in a more general local setting.
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Valuations of linear growth

Finally we use the results above to study the structure of the space X lin

of valuations of linear growth, which we can endow with several metrics.
First, from the embedding X lin ↪→ NR given by v 7→ χv we get a family

of (pseudo)metrics dp, 1 ⩽ p ⩽ ∞. Denoting by vtriv ∈ Xdiv the trivial
valuation, we have in particular

d∞(v, vtriv) = T(v), d1(v, vtriv) = S(v)

where S(v) := vol(χv) is the expected vanishing order of L along v, widely
used in relation to the stability threshold/δ-invariant [5, 44, 53]. The in-
variant dp(v, vtriv) with v ∈ Xdiv also appears (under a slightly different
guise) in [69].

Second, a valuation is of linear growth iff the Dirac mass δv is a measure
of finite energy, and in fact we have

E∨(δv) = S(v)

for any v ∈ X lin, see Theorem 7.22. In particular, we have an embedding
X lin ↪→ M1. Denote by dM1 the pullback of the metric d1 on M1 to X lin.

Corollary E. — The pseudo-metric dp on X lin is an actual metric for
1 ⩽ p ⩽ ∞. Further, the metrics dM1 and dp, 1 ⩽ p ⩽ ∞, on X lin are
equivalent and complete, and they are independent of L up to bi-Lipschitz
equivalence.

Completeness with respect to d∞, as well as independence of L, was
already observed in [18], and the key point is thus to show d∞ ⩽ C dM1 ,
which is done by invoking inequalities involving Monge–Ampère integrals,
as in the proof of Theorem A (see Section 7.6 for details).

In [20] we use the space M1 and its subspace Mdiv to analyze K-stability.
When X is a Fano variety, restricting to Dirac masses δv ∈ M1, with v in
X lin or Xdiv, recovers the valuative criterion of K-stability of Fano varieties
due to Fujita and Li [44, 53].

An interesting type of valuations v ∈ X lin are those for which the asso-
ciated filtration χv is of finite type. If v ∈ Xdiv, this means v is “dreamy”
in the sense of K. Fujita [44], associated to a test configuration with ir-
reducible and reduced central fiber. While valuations v ∈ X lin with χv of
finite type play a crucial role in recent work on K-stability of Fano vari-
eties [7, 8, 9, 10, 49, 57], their role in the general polarized case is less clear
(although see [37, 58]). The condition of χv being of finite type is quite sub-
tle and in particular depends on the ample Q-line bundle L. For this reason
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we believe that it is useful to study K-stability using functionals on spaces
such as Xdiv, X lin, Mdiv or M1, without any finite type assumption.

Organization

After giving some background in Section 1, we study homogenization and
the related Fubini–Study and infimum norm operators in Section 2, prov-
ing part of Theorem A. In Section 3 we make a spectral analysis of norms
on the section ring of (X,L), building upon [14, 27]. After that we give ad-
ditional background on non-Archimedean pluripotential theory from [18];
in particular we revisit the spaces used in Theorem B. In Section 5 we
construct and study the Darvas metrics on E1 and M1, and prove the re-
maining part of Theorem A as well as parts (i)–(iii) of Theorem B. The
classes of divisorial and maximal norms are studied in Section 6, where we
prove Theorem D and also consider the regularized Fubini–Study operator.
In Section 7 we define the Monge–Ampère operator on general norms, and
prove Theorem C as well as Theorem B(iv) and Corollary E. Finally, Ap-
pendix A revisits the relation between test configurations and Fubini–Study
functions, and Appendix B provides some remarks on the toric case.

Notation and conventions

• We work over an algebraically closed field k, of arbitrary character-
istic unless otherwise specified.

• For x, y ∈ R+, x ≲ y means x ⩽ Cny for a constant Cn > 0 only
depending on n, and x ≈ y if x ≲ y and y ≲ x. Here n will be the
dimension of a fixed variety X over k.

• A pseudo-metric on a set Z is a function d : Z × Z → R+ that
is symmetric, vanishes on the diagonal, and satisfies the triangle
inequality. It is a metric if it further separates points.

• The Hausdorff quotient of a pseudo-metric space (Z, d) is the metric
space (ZH , dH) where ZH is the quotient of Z by the equivalence
relation x ∼ y ⇔ d(x, y) = 0, and dH is the induced metric. The
map (Z, d) → (ZH , dH) is the unique isometric map of (Z, d) onto
a metric space, up to unique isomorphism.

• The Hausdorff completion of a pseudo-metric space (Z, d) is the
complete metric space (Ẑ, d̂) defined as the completion of the Haus-
dorff quotient (ZH , dH). It comes with an isometric map (Z, d) →
(Ẑ, d̂) with dense image, which is universal with respect to maps
into complete metric spaces.
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• A quasi-metric on Z is function d : Z×Z → R+ that is symmetric,
vanishes precisely on the diagonal, and satisfies the quasi-triangle
inequality

εd(x, y) ⩽ d(x, z) + d(z, y)
for some constant ε > 0. A quasi-metric space (Z, d) comes with
a Hausdorff topology, and even a uniform structure. In particular,
Cauchy sequences and completeness make sense for (Z, d). Such
uniform structures have a countable basis of entourages, and are
thus metrizable, by general theory.

• We use the standard abbreviations usc for “upper semicontinuous”,
lsc for “lower semicontinuous”, wlog for “without loss of generality”,
and iff for “if and only if”.

• A net is a family indexed by a directed set. On many occasions we
shall consider nets (xd) indexed by d0Z⩾1 for some d0 ⩾ 1, and
ordered by divisibility. Note that the sequence (xm!)m⩾d0 is cofinal
in this net.
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1. Background

In the entire paper, (X,L) denotes a projective variety (reduced and
irreducible) endowed with an ample Q-line bundle. We review a number of
basic facts about norms/filtrations and Berkovich analytification, referring
for instance to [14, 18] for more details.

1.1. Norms on a vector space

As in [23] we will use “additive” terminology, so by a norm on a k-vector
space V we mean a function χ : V → R ∪ {+∞} such that

• χ(v) = +∞ iff v = 0;
• χ(av) = χ(v) for a ∈ k× and v ∈ V ; and
• χ(v + w) ⩾ min{χ(v), χ(w)} for all v, w ∈ V .
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Note that ∥ · ∥χ := e−χ(·) is then a non-Archimedean norm on V with
respect to the trivial absolute value on k in the usual (“multiplicative”)
sense [11]. Setting

FλV := {v ∈ V | χ(v) ⩾ λ}, χ(v) := max{λ ∈ R | v ∈ FλV }

for λ ∈ R yields a 1–1 correspondence between norms on V and (non-
increasing, left-continuous, exhaustive and separated) filtrations of V . We
also write F>λV :=

⋃
λ′>λ F

λ′
V = {χ > λ}, and define the associated

graded space as the R-graded vector space

grχ V :=
⊕
λ∈R

FλV/F>λV.

Each norm χ on V turns it into a (Hausdorff) topological vector space, in
which (FmεV )m∈N forms a countable basis of (open and closed) neighbor-
hood of 0, for any ε > 0. The normed space (V, χ) admits a completion V̂ , a
complete topological vector space containing V as a dense subspace, whose
topology is defined by a (unique) norm on V̂ extending χ. The inclusion
V ↪→ V̂ induces an isomorphism

(1.1) grχ V
∼−→ grχ V̂ .

We denote by NR(V ) the set of norms on V . It has a distinguished element
χtriv, the trivial norm, such that χtriv(v) = 0 for all v ̸= 0, and it admits a
scaling action by R>0 and a partial ordering defined by χ ⩽ χ′ iff χ(v) ⩽
χ′(v) for all v. Any two elements χ, χ′ ∈ NR(V ) admit an infimum χ∧χ′ ∈
NR(V ), defined pointwise by

(χ ∧ χ′)(v) := min{χ(v), χ′(v)}.

For any subgroup Λ ⊂ R, we denote by NΛ(V ) the set of norms with values
in Λ ∪ {+∞}. Thus

{χtriv} = N{0}(V ) ⊂ NΛ(V ) ⊂ NR(V ).

A norm χ ∈ NR(V ) lies in NΛ(V ) iff the R-grading of grχ V reduces to a
Λ-grading.

Assume now that V is finite dimensional. Any norm χ on V admits an
orthogonal basis (ei), i.e. a basis of V such that

χ

(∑
i

aiei

)
= min

ai ̸=0
χ(ei)
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for all ai ∈ k. Up to reordering, an orthogonal basis is simply a compatible
basis for the flag of linear subspaces underlying the filtration defined by χ,
and elementary linear algebra thus implies that any two norms χ, χ′ on V

admit a joint orthogonal basis.
In particular, all norms on V are equivalent, which means, in our additive

terminology, that χ − χ′ is a bounded function on V \ {0} for all χ, χ′ ∈
NR(V ). The classical Goldman–Iwahori metric on NR(V ) is defined by

(1.2) d∞(χ, χ′) = sup
v∈V ∖{0}

|χ(v) − χ′(v)| ,

where the supremum is achieved among the elements of any joint orthogonal
basis for χ and χ′. For later use, note that

(1.3) χ ⩽ χ′ ⩽ χ′′ =⇒ d∞(χ, χ′) ⩽ d∞(χ, χ′′).

The metric space (NR(V ),d∞) is complete, but not locally compact as soon
as dimV ⩾ 2. Note also that NZ(V ) is a closed, discrete subset of NR(V ),
while NQ(V ) is dense. For any χ ∈ NR(V ), we set

(1.4) λmin(χ) := min
v∈V ∖{0}

χ(v), λmax(χ) := max
v∈V ∖{0}

χ(v).

Thus
d∞(χ, χtriv) = max{λmax(χ),−λmin(χ)}.

Any norm χ on V induces a norm on the dual space and on all tensor
powers, in such a way that the bases canonically induced by any given
orthogonal basis of V remain orthogonal. If π : V → V ′ is a surjective
linear map, then χ also induces a quotient norm χ′ on V ′, such that χ′(v′) =
max{χ(v) | π(v) = v′} for all v′ ∈ V ′.

1.2. Norms on a graded algebra

Let now R =
⊕

m∈NRm be a graded k-algebra. It comes with an action
of k× for which a · s = ams for a ∈ k× and s ∈ Rm. We write NR(R) for
the set of vector space norms χ : R → R that are

• superadditive, i.e. χ(fg) ⩾ χ(f) + χ(g) for f, g ∈ R;
• k×-invariant, i.e. χ(a · f) = χ(f) for a ∈ k× and f ∈ R; this is

equivalent to χ being compatible with the grading of R, that is,
χ(
∑

m sm) = minm χ(sm) where sm ∈ Rm;
• linearly bounded, i.e. there exists C > 0 such that |χ| ⩽ Cm on
Rm \ {0} for all m ⩾ 1.
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Norms in NR(R) are in 1–1 correspondence with graded, linearly bounded
filtrations of R as in [13, 68]. Each χ ∈ NR(R) defines a graded algebra

grχ R =
⊕
m∈N

grχ Rm =
⊕

(m,λ)∈N×R

FλRm/F
>λRm.

Lemma 1.1. — A norm χ ∈ NR(R) is a valuation on R, i.e. it satisfies
χ(fg) = χ(f) + χ(g) for all f, g ∈ R, iff grχ R is an integral domain.

The set NR(R) ↪→
∏

m NR(Rm) is stable under the scaling action of
R>0 and infima; it further admits an additive action of R, denoted by
(c, χ) 7→ χ+ c, such that

(1.5) (χ+ c)(s) := χ(s) + cm for s ∈ Rm.

For any subgroup Λ ⊂ R, denote by NΛ(R) ⊂ NR(R) the set of norms with
values in Λ ∪ {+∞}. Norms in NZ(R) and NQ(R) will be called integral
and rational, respectively. Integral norms are in 1–1 correspondence with
Z-filtrations, as considered in [65].

For any norm χ ∈ NR(R), the round-down ⌊χ⌋ ∈ NZ(R), defined by

(1.6) ⌊χ⌋(s) := ⌊χ(s)⌋, s ∈ Rm \ {0},

is an integral norm.

Example 1.2. — Consider the algebra k[z] = k[z1, . . . , zn] of polynomials
in n variables, with the usual grading. For each ξ ∈ Rn, the monomial
valuation

(1.7) χξ

(∑
α∈Nn

cαz
α

)
= min

cα ̸=0
⟨α, ξ⟩ = min

α
{vtriv(cα) + ⟨α, ξ⟩}

defines a norm on the graded algebra k[z]. The completion of (k[z], χξ)
is the algebra k{z; ξ} of formal power series

∑
α cαz

α ∈ k[[z]] such that
limα(vtriv(cα) + ⟨α, ξ⟩) = +∞, whose norm is still defined by (1.7). In
multiplicative notation, k{z; ξ} is the polydisc algebra k{r−1z}, with rj =
e−ξj , a building block of Berkovich spaces [1, 2].

From now on, we assume that R is finitely generated, so that each graded
piece Rm is finite dimensional.

Definition 1.3. — We say that a norm χ ∈ NR(R) is generated in
degree 1 if R is generated in degree 1 and, for any m ⩾ 1, the restriction
χ|Rm

is the quotient norm of Sm(χ|R1) under the canonical surjective map
SmR1 → Rm.
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Concretely, χ is generated in degree 1 iff, given a χ-orthogonal basis (si)
of R1, any s ∈ Rm can be written as s =

∑
|α|=m cα

∏
i s

αi
i with cα ∈ k

and χ(s) = mincα ̸=0
∑

i αiχ(si).

Lemma 1.4. — For any subgroup Λ ⊂ R and χ ∈ NΛ(R), the following
conditions are equivalent:

(i) χ is generated in degree 1;
(ii) grχ R =

⊕
m∈N grχ Rm is generated in degree 1;

(iii) there exists ξ ∈ ΛN and a surjective map of graded k-algebras
π : k[z1, . . . , zN ] → R with respect to which χ is the quotient norm
of χξ as in Example 1.2.

When this holds, we further have χ ∈ NΛ′(R) for some finitely generated
subgroup Λ′ ⊂ Λ.

Proof. — Assume (i). Choose a χ-orthogonal basis (si)1⩽i⩽N of R1, and
set ξi := χ(si). As noted above, any s ∈ Rm ∖ {0} can be written as
s =

∑
|α|=m cα

∏
i s

αi
i with χ(s) = mincα ̸=0

∑
i αiξi. This already yields

the final assertion, with Λ′ :=
∑

i Zξi.
Define A as the set of α achieving mincα ̸=0

∑
i αiξi = χ(s) and set s′ :=∑

α∈A cα

∏
i s

αi
i . Then s− s′ ∈ F>χ(s)Rm, so s = s′ in grχ Rm. This shows

that Sm grχ R1 → grχ Rm is surjective, and hence (i) ⇒ (ii). If we define
π : k[z] → R by π(zi) = si, then it is clear that χ is the quotient norm of
χξ with ξ = (ξi), hence (i) ⇒ (iii).

Conversely, any quotient of a norm generated in degree 1 is plainly gen-
erated in degree 1 as well; hence (iii) ⇒ (i). Assume now (ii), and pick
again a χ-orthogonal basis (si) of R1. Each s ∈ Rm ∖ {0} can then be
written as s =

∑
|α|=m aα

∏
i s

αi
i + s′ where aα ∈ k, χ(s) =

∑
i αiχ(si)

for all α and s′ ∈ F>χ(s)Rm. Repeating the procedure with s′ in place
of s and using the fact that λ 7→ FλRm jumps only finitely many times
(by finite-dimensionality of Rm), we end up with a decomposition s =∑

|α|=m cα

∏
i s

αi
i such that χ(s) = mincα ̸=0

∑
i αiχ(si). This proves that

χ is generated in degree 1, thus (ii) ⇒ (i). □

1.3. Norms on section rings

Recall that L is an ample Q-line bundle on a projective variety X. For
any d ∈ N such that dL is an actual line bundle, we write Rd := H0(X, dL),
and denote by

R(d) = R(X, dL) =
⊕
m∈N

Rmd
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the d-th Veronese algebra, i.e. the section ring of dL; it is generated in
degree 1 for all d sufficiently divisible, since L is ample. When d divides d′,
we have a restriction map NR(R(d)) → NR(R(d′)), and we set

(1.8) NR = NR(X,L) := lim−→
d

NR(R(d)).

The set NR inherits a partial order with finite infima, and commuting
actions of R>0 (by scaling) and R (by translation).

An element χ ∈ NR is represented by a norm on some R(d), two such
norms being identified if they coincide on some further Veronese subalgebra;
for convenience, we simply refer to χ as a norm. For all m sufficiently
divisible, we denote by χ|Rm

∈ NR(Rm) the restriction of χ to Rm.

Remark 1.5. — To define χ|Rm
, one needs to choose a representative of

χ as a norm on some R(d). But any other choice leads to the same norms
χ|Rm ∈ NR(Rm) for m sufficiently divisible, and the choice of representative
can thus safely be ignored.

For any subgroup Λ ⊂ R, we similarly introduce

NΛ := lim−→
d

NΛ(R(d)).

It can be identified with the set of χ ∈ NR such that χ(Rm \ {0}) ⊂ Λ for
m sufficiently divisible. Note that NΛ is invariant under the scaling action
of {t ∈ R>0 | tΛ ⊂ Λ} and the translation action of the divisible group
QΛ ⊂ R, by (1.5).

Example 1.6. — Any (not necessarily ample) test configuration (X ,L)/A1

defines a norm χL ∈ NZ (see Section A.1). In this case, the translation
action by c ∈ Q corresponds to twisting L by cX0, while the scaling action
by d ∈ Z>0 corresponds to the base change A1 → A1 given by z 7→ zd.

The Goldman–Iwahori metric (1.2) induces a pseudo-metric d∞ on NR
by setting

(1.9) d∞(χ, χ′) := lim sup
m

m−1 d∞(χ|Rm , χ
′|Rm) ∈ R⩾0.

The limsup is taken with respect to the partial ordering on Z>0 by divis-
ibility, and it is finite, by linear boundedness of χ, χ′. This pseudo-metric
is not a metric (see however Proposition 2.8):

Example 1.7. — Pick any norm χ ∈ NR, with round-down ⌊χ⌋ ∈ NZ,
see (1.6). For m sufficiently divisible, we then have d∞(χ|Rm , ⌊χ⌋|Rm) ⩽ 1,
and hence d∞(χ, ⌊χ⌋) = 0. In particular, NZ is dense in NR in the d∞-
topology.
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We also introduce

(1.10) λmax(χ) := lim
m
m−1λmax(χ|Rm),

where λmax(χ|Rm
) is defined by (1.4) and the limit exists and is finite be-

causem−1λmax(χ|Rm
) is increasing with respect to divisibility, and bounded

by linear boundedness of χ. Note that

(1.11) χ ⩾ χtriv =⇒ d∞(χ, χtriv) = λmax(χ).

1.4. R-test configurations

Definition 1.8. — We say that a norm χ ∈ NR is of finite type if it
is represented by a norm on some R(d) whose associated graded algebra
grχ R

(d) is of finite type.

Equivalently, a norm χ ∈ NR is of finite type iff it is represented by
a norm on some R(d) that is generated in degree 1, by Lemma 1.4. We
denote by

TR ⊂ NR

the set of such norms. In line with [38, 49], we interpret the elements of TR
as R-test configurations. This is justified by the Rees construction, which
sets up a 1–1 correspondence between the subset

TZ := NZ ∩ TR

of Z-valued norms in TR and the set of (usual) ample test configurations
for (X,L) (see Appendix A). For any χ ∈ NZ, note further that

(1.12) χ∈TZ ⇐⇒
⊕
λ∈Z

FλR(d) of finite type over k for d sufficiently divisible.

More generally, for any subgroup Λ ⊂ R we set

TΛ := NΛ ∩ TR.

As above, TΛ is invariant under the scaling action of {t ∈ R>0 | tΛ ⊂ Λ} and
the translation action of QΛ. In particular, TZ is invariant under translation
by Q. It is also easy to see that

(1.13) χ ∈ TΛ =⇒ λmax(χ) ∈ QΛ.

By Lemma 1.4, we have

TR =
⋃

Λ⊂R finitely generated

TΛ.
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The central fiber of an R-test configuration χ ∈ TR is defined as the
polarized scheme

(1.14) (X0,L0) :=
(

Proj
(

grχ R
(d)
)
, d−1O(1)

)
,

for d ⩾ 1 sufficiently divisible. If χ ∈ TΛ with Λ ≃ Zr finitely generated,
the Λ-grading of grχ R

(d) provides a Gr
m-action on (X0,L0).

The smallest value of r is called the rank of χ; it is equal to 1 iff χ is a
usual test configuration, up to scaling.

Remark 1.9. — For an R-test configuration χ ∈ TR, there does not gen-
erally exist a smallest subgroup Λ ⊂ R such that χ ∈ TΛ, because the
subgroup Λm ⊂ R generated by the values of χ|Rm need not stabilize for
m sufficiently divisible. However, the associated Q-vector space QΛm does
stabilize, its dimension being the rank of χ.

Example 1.10. — Extending Example 1.2, suppose that (X,L) is acted
upon by a torus T = Gr

m. Then each ξ ∈ Rr defines a norm χ = χξ ∈ NR,
given by

χ(s) := min {⟨α, ξ⟩ | α ∈ Zr, sα ̸= 0}
for s ∈ Rm with m sufficiently divisible, where s =

∑
α∈Zr sα is the weight

decomposition. This norm satisfies

grχ R
(d) ≃

⊕
λ∈R

 ⊕
α∈M, ⟨α,ξ⟩=λ

R(d)
α

 = R(d),

which shows that χ ∈ TR is of finite type, with central fiber isomorphic to
(X,L). Further, χ lies in TΛ for the finitely generated subgroup Λ =

∑
i Zξi.

Example 1.11. — Pick an embedding X ↪→ PN in a projective space such
that O(1)|X = dL for some d ⩾ 1, and suppose we are given an action of
a torus T = Gr

m on (PN ,O(1)). By Example 1.10, each ξ ∈ Rr defines
a norm on R(PN ,O(1)), generated in degree 1, which restricts to a norm
in TR. By Lemma 1.4, every element of TR conversely arises in this way
(compare [49, Lemma 2.10]).

Following [49, 50], one can use Example 1.11 to provide a geometric
realization of R-test configurations as equivariant polarized families over a
toric base (see Section A.3 for a brief discussion).

Definition 1.12. — We define the canonical approximants of a norm
χ ∈ NR as the sequence χd ∈ TR defined for d ∈ Z⩾1 sufficiently divisible by
letting χd be the (class of the) norm on R(d) generated in degree 1 by χd.
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If d divides d′ then χd ⩽ χd′ ⩽ χ. As in Remark 1.5, this construction is
not entirely canonical, as it depends on the choice of a representative of χ,
but this can be ignored as any other choice leads to the same approximants
χd for d sufficiently divisible.

A norm χ ∈ NR is of finite type iff χ = χd for all sufficiently divisible d.
Note also that

χ ∈ NΛ =⇒ χd ∈ TΛ

for any subgroup Λ ⊂ R.

1.5. The Berkovich analytification

By a valuation on X we mean a real-valued valuation v : k(X)× → R,
trivial on k. We denote by Xval the space of valuations, endowed with
the topology of pointwise convergence on k(X)×. The trivial valuation
vtriv ∈ Xval is defined by vtriv(f) = 0 for all f ∈ k(X)×.

By [1], the space Xval admits a natural compactification Xan, which as
a set equals Xan =

∐
Y val with Y ranging over all (closed) subvarieties of

X. We somewhat imprecisely refer to the points on Xan as semivaluations
on X. The support of a semivaluation in Y val ⊂ Xan is the subvariety Y .

By the valuative criterion of properness, each valuation v ∈ Xval admits
a center cX(v) ∈ X, characterized as the unique (scheme) point ξ ∈ X

such that v ⩾ 0 on the local ring OX,ξ and v > 0 on its maximal ideal.
This applies to semivaluations as well, replacing X with a subvariety, and
thus defines a map cX : Xan → X (which turns out to be anticontinuous,
i.e. the preimage of an open subset is closed).

The space Xan comes with a natural action of R>0 by scaling (t, v) 7→ tv.
This induces an action (t, φ) 7→ t · φ on functions φ on Xan by setting

(1.15) (t · φ)(v) := tφ(t−1v),

whose fixed points are functions that are homogeneous, i.e. φ(tv) = tφ(v)
for all t ∈ R>0 and v ∈ Xan.

The set Xan is also endowed with a partial order relation, for which
v ⩾ v′ iff cX(v) is a specialization of cX(v′) and v ⩾ v′ pointwise on the
local ring at cX(v). The trivial valuation satisfies v ⩾ vtriv for all v ∈ Xan.

A (rational) divisorial valuation v on X is a valuation of the form v =
t ordE , where E is a prime divisor on a normal, projective birational model
X ′ → X and t ∈ Q>0. The center cX(v) is then the generic point of the
image of E in X. For convenience, we also count the trivial valuation vtriv
as divisorial, i.e. we allow t = 0 above. The set Xdiv of divisorial valuations
is dense in Xan (see for instance [18, Theorem 2.14]).
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1.6. Semivaluations and line bundles

A semivaluation v ∈ Xan can be naturally evaluated on a section s ∈
H0(X,M) of any line bundle M on X, by defining v(s) as the value of v
on the local function corresponding to s in any local trivialization of M at
cX(v). Thus v(s) ∈ [0,+∞], v(s) > 0 iff s vanishes at cX(v), and v(s) = ∞
iff s vanishes along the support of v. Further, v ∈ Xval iff v(s) < +∞ for
all s ∈ H0(X,M) ∖ {0} and all line bundles M . We define a continuous
function |s| : Xan → [0, 1] by setting

(1.16) |s|(v) := exp(−v(s)).

Now suppose L is an (ample) line bundle. The Z-grading of R = R(X,L)
defines an action of Gm on the affine cone Y := SpecR, which comes with
a natural surjective Gm-invariant morphism π : Y ∖ {o} → X, where the
vertex o of Y is the point defined by the maximal ideal

⊕
m>0 Rm. For any

ξ ∈ X, the fiber π−1(ξ) contains a unique Gm-invariant point defined by
the homogeneous prime ideal generated by all sections s ∈ Rm, m ⩾ 1 that
vanish at ξ.

By general properties of the analytification functor in [1], the Gm-action
on Y induces an action of Gm(k) = k× on Y an, and π induces a surjective
k×-invariant map πan : Y an ∖ {wo} → Xan, where wo ∈ Y an is the trivial
semivaluation with support o, which satisfies wo = +∞ on

⊕
m>0 Rm. A

semivaluation w ∈ Y an is k×-invariant iff w(
∑

m sm) = minm w(sm), where
sm ∈ Rm.

It is easy to see [53, Section 4.2] that if v ∈ Xan, then the set of
k×-invariant points in (πan)−1(v) is of the form {wv,c}c∈R, where wv,c is
defined by

(1.17) wv,c(s) = min
m

{v(sm) + cm} for any s =
∑
m

sm ∈ R,

and where the value v(sm) is defined at the top of this section. Note that
wv,c is centered at the vertex o iff c > 0.

1.7. Valuations of linear growth and dreamy valuations

Following [22], we define the maximal vanishing order of (multisections
of) L at v ∈ Xan as

(1.18) T(v) := TL(v) = supm−1v(s) ∈ [0,+∞],
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where the supremum is over m sufficiently divisible and s ∈ Rm \ {0}. We
say that v has linear growth if T(v) < +∞; this notion is independent
of the ample Q-line bundle L. The set X lin ⊂ Xan of valuations of linear
growth satisfies

Xdiv ⊂ X lin ⊂ Xval.

Further, setting

(1.19) d∞(v, w) := supm−1|v(s) − w(s)|,

where the supremum is again over m sufficiently divisible and s ∈ Rm \
{0}, defines a metric on X lin such that (X lin,d∞) is complete (see [18,
Section 11.3]). We refer to the d∞-topology of X lin as the strong topology.

Example 1.13. — If π : X ′ → X is a proper birational morphism, with X ′

normal, and E ⊂ X ′ is a prime divisor which is Q-Cartier, then TL(E) coin-
cides with the pseudoeffective threshold sup{t ⩾ 0 | π∗L− tE ∈ Psef(X ′)}
(see [22, Theorem 2.24]).

Any v ∈ X lin defines a norm χv ∈ NR, given by χv(s) := v(s) for s ∈
Rm with m sufficiently divisible. It satisfies λmax(χv) = T(v) (see (1.10)).
Further, the map

X lin −→ NR, v 7−→ χv

is injective, because the function field of X coincides with the homogeneous
fraction field of R(d) for any d sufficiently divisible.

For any v ∈ X lin and c ∈ R, the norm χv +c can be viewed as a valuation
on the affine cone SpecR(d) for d sufficiently divisible; it coincides with wv,c

in the notation of (1.17). By Lemma 1.1, such norms are characterized as
follows.

Lemma 1.14. — A norm χ ∈ NR is of the form χ = χv +c with v ∈ X lin

and c ∈ R iff grχ R
(d) is an integral domain for some (or any) sufficiently

divisible d.

When χ ∈ TR is of finite type, the latter condition means that the corre-
sponding central fiber X0 is reduced and irreducible, see (1.14).

Example 1.15. — Suppose that a torus T acts on (X,L). By Exam-
ple 1.10, each ξ ∈ NR defines a norm χξ ∈ TR whose associated central
fiber X0 ≃ X is integral. By Lemma 1.14, χξ thus determines a valuation
vξ ∈ X lin, which only depends on the T -action on X, and can be obtained
by the “action” of ξ ∈ NR ⊂ T an on vtriv ∈ Xan in the sense of “peaked
points” (see [1, Section 5.2]).
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In the terminology of [44], a divisorial valuation v ∈ Xdiv such that χv

is of finite type is called dreamy (with respect to L).

Example 1.16. — Assume X is normal and E ⊂ X is a Q-Cartier prime
divisor. If v := ordE is dreamy with respect to L, then the pseudoeffective
threshold

sup{t ⩾ 0 | L− tE ∈ Psef(X)} = TL(v) = λmax(χv)

is necessarily rational (cf. Example 1.13 and (1.13)). Examples with an
irrational threshold are well-known (e.g. when X is an abelian surface of
Picard number at least 2), and therefore provide simple examples of non-
dreamy valuations.

The next result generates examples of divisorial valuations that are not
dreamy for any polarization of X.

Lemma 1.17. — Pick a dreamy valuation v ∈ Xdiv (with respect to a
given ample Q-line bundle L), and assume that v is centered at a closed
point p ∈ X(k), with valuation ideals

am := {f ∈ OX,p | v(f) ⩾ m}.

Then the Rees algebra
⊕

m∈N am is of finite type over OX,p.

In particular, the (local) volume of v

vol(v) = lim
m→∞

n!
mm

dim(OX,p/am)

must be rational (see [41]).
Proof. — After replacing v with a multiple, we may assume that v is

Z-valued, and hence that χv is a Z-filtration. By (1.12), the bigraded k-
algebra

⊕
(λ,m)∈Z×N F

λRdm is finitely generated over k for d sufficiently
divisible, and hence so is the graded subalgebra

⊕
m∈N F

mRdm.
On the other hand, by [22, Lemma 2.17], we can find d ⩾ 1 sufficiently

divisible such that OX(mdL)⊗am is globally generated for all m ∈ N. Since
H0(X,OX(mdL) ⊗ am) = FmRdm, we infer that

⊕
m∈N am is of finite type

over OX,p. □

Example 1.18. — Assume k = C, dimX ⩾ 4, and pick a smooth point
p ∈ X(k). By [51], we can find a divisorial valuation v ∈ Xdiv centered at p
such that vol(v) is irrational. By Lemma 1.17, v is not dreamy with respect
to any ample Q-line bundle L on X.
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1.8. Fubini–Study functions

A Fubini–Study function (for L) is a function φ ∈ C0 = C0(Xan) of the
form

(1.20) φ = 1
m

max
j

{log |sj | + λj},

with m ⩾ 1 such that mL is a (globally generated) line bundle, (sj) a finite
set of Rm without common zeros, and λj ∈ R. Recall that (1.20) means
φ(v) = 1

m maxj{−v(sj) + λj} for all v ∈ Xan, see (1.16).

Remark 1.19. — The function φ defines a continuous metric | · | e−mφ

on the Berkovich analytification of mL. This metric is the pullback of a
standard (non-Archimedean) Fubini–Study (or Weil) metric on O(1) under
the morphism X → PN defined by (sj)0⩽j⩽N , which explains the chosen
terminology.

If the λj in (1.20) can be chosen in a subgroup Λ ⊂ R, we say that φ is a
Λ-Fubini–Study function, and write HΛ = HΛ(L) ⊂ C0 for the set of such
functions. Thus

{0} = H{0} ⊂ HΛ ⊂ HR.

Note that

(1.21) HΛ = HQΛ

and HΛ(dL) = dHΛ(L) for any d ∈ Q>0. The set HΛ is stable under finite
max and under the action of QΛ by translation.

Recall the action (1.15) of R>0 on functions onXan. If φ is given by (1.20)
and t ∈ R>0, then

t · φ = 1
m

max
j

{log |sj | + tλj}.

Thus HR is stable under the action of R>0, while HΛ is stable under the
action of the stabilizer {t ∈ R>0 | tΛ ⊂ Λ}. In particular, HQ is stable
under the action of Q>0.

2. Homogenization and the Fubini–Study operator

In this section we study the homogenization of a norm, and the related
Fubini–Study and infimum norm operators. We show that homogenization
preserves norms of finite type, establish a 1–1 correspondence between ho-
mogeneous norms of finite type and Fubini–Study functions, and we prove
Theorem A in the case p = ∞.
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In what follows, L∞ denotes the space of bounded functions φ : Xan → R,
endowed with its usual supnorm metric d∞(φ,φ′) := supXan |φ− φ′|.

2.1. Homogenization

In this section, R =
⊕

m∈NRm denotes any reduced graded k-algebra.

Definition 2.1. — We say that a norm χ ∈ NR(R) is homogeneous if
χ(fd) = dχ(f) for all f ∈ R and d ∈ N.

In multiplicative terminology, this means that ∥ · ∥χ = e−χ is power-
multiplicative, see [11]. It is easy to see that a norm χ ∈ NR(R) is homo-
geneous iff the associated graded algebra grχ R is reduced. We denote by

N hom
R (R) ⊂ NR(R)

the set of homogeneous norms on R. For any Veronese subalgebra R(d) =⊕
m∈NRdm, d ⩾ 1, the restriction map NR(R) → NR(R(d)) induces a bi-

jection

(2.1) N hom
R (R) ∼−→ N hom

R (R(d)).

Any norm χ ∈ NR(R) is dominated by a minimal homogeneous norm,
namely its homogenization χhom, defined by

(2.2) χhom(f) := sup
d⩾1

1
d
χ(fd) = lim

d→∞

1
d
χ(fd),

where the second equality holds by superadditivity of d 7→ χ(fd) and
Fekete’s Lemma. It is indeed easy to check that (2.2) defines a vector space
norm on R that is superadditive, k×-invariant, linearly bounded and ho-
mogeneous, i.e. an element χhom ∈ N hom

R (R).

Remark 2.2. — Note that ∥ · ∥χhom = e−χhom(·) is the spectral radius
(semi)norm of ∥ · ∥χ in the (multiplicative) terminology of [1].

Using standard but nontrivial results on k-affinoid algebras, we prove:

Theorem 2.3. — Let χ ∈ NR(R) be a norm generated in degree 1, with
homogenization χhom. Then:

(i) there exists C > 0 such that χ(f) ⩽ χhom(f) ⩽ χ(f) + C for all
f ∈ R;

(ii) the k-algebra grχhom R is finitely generated;
(iii) if χ ∈ NΛ(R) for a subgroup Λ ⊂ R, then χhom ∈ NQΛ(R).
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Proof. — Pick a surjective map of graded algebras π : k[z] =
k[z1, . . . , zN ] → R and ξ ∈ RN such that χ is the quotient norm of χξ

(see Lemma 1.4). As in Example 1.2, the completion of k[z] with respect to
χξ is the polydisc algebra k{z; ξ}, and π induces a surjection k{z; ξ} → R̂

onto the completion of R, whose norm is the quotient of the norm χξ of
k{z; ξ}.

As a consequence, R̂ is a k-affinoid algebra in the sense of [1], corre-
sponding geometrically to the affinoid domain Y an ∩D(r) of the Berkovich
analytification Y an ↪→ AN,an of the affine cone Y := SpecR ↪→ AN =
Spec k[z], where D(r) ⊂ AN,an is the closed polydisc of polyradius r =
(e−ξ1 , . . . , e−ξN ).

Since R is assumed to be reduced, it follows from the non-Archimedean
GAGA principle that R̂ is reduced as well (see [40, Théorème 3.3]), and (i)
is now a consequence of [1, Proposition 2.1.4(ii)], which states (in multi-
plicative terminology) that the spectral radius (semi)norm of any reduced
k-affinoid algebra is equivalent to the given norm.

Next, note that grχhom R̂ coincides, by definition, with the graded reduc-
tion of R̂ in the sense of Temkin [66, Section 3]. By [66, Proposition 3.1], the
surjection k{z; ξ} → R̂ therefore induces a finite morphism grχξ

k{z; ξ} →
grχhom R̂. Now we have grχξ

k{z; ξ} ≃ grχξ
k[z] and grχhom R̂ ≃ grχhom R,

see (1.1). Thus grχhom R is finite over grχξ
k[z] ≃ k[T ], which yields (ii).

Finally suppose that χ ∈ NΛ(R) for a subgroup Λ ⊂ R. In this case,
we can choose ξ ∈ ΛN , so k{T ; ξ} and R̂ are both Λ-strict k-affinoid al-
gebras. By [67, 3.1.2.1 (iv)], we thus have χhom(R̂ ∖ {0}) ⊂ QΛ, which
proves (iii). □

2.2. Homogenization of norms on section rings

Returning to the setting of a polarized variety (X,L) and its space of
norms NR (see Section 1.3), we introduce:

Definition 2.4. — Consider a norm χ ∈ NR. Then:
(i) we say that χ is homogeneous if it admits a homogeneous represen-

tative on R(d) = R(X, dL) for some d ;
(ii) we define the homogenization of χ as the norm χhom ∈ NR induced

by the homogenization of any representative of χ.

By (2.2), χhom is well-defined; it satisfies χhom ⩾ χ, and is characterized
as the smallest homogeneous norm with this property.
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Example 2.5. — For any χ ∈ NR we have χhom = (⌊χ⌋)hom. This is
indeed a direct consequence of (2.2).

We denote by
N hom

R ⊂ NR

the subset of homogeneous norms. By (2.1), we have

(2.3) N hom
R ≃ N hom

R (R(d))

for any d such that dL is a line bundle. In other words, a homogeneous
norm χ ∈ NR is well-defined on Rm = H0(X,mL) for any m such that mL
is a line bundle.

Remark 2.6. — An element of χ ∈ NR is a norm on R(d) for some suffi-
ciently divisible d that depends on χ, so in general it does not make sense
to talk about pointwise convergence of sequences or nets in NR. By (2.3),
it does however make sense when the norms are homogeneous, as they are
then defined on R(d) any fixed d such that dL is an honest line bundle.

The subset N hom
R is stable under minima, and under the scaling action

of R>0 and the additive action of R. For any subgroup Λ ⊂ R, we set

N hom
Λ := NΛ ∩ N hom

R .

Recall that NR is equipped with a pseudo-metric d∞, see (1.9). Us-
ing (2.2), it is straightforward to check:

Lemma 2.7. — Homogenization χ 7→ χhom defines a projection NR ↠
N hom

R which is equivariant for the actions of R>0 and R, commutes with
minima, and satisfies

d∞(χhom, χ′hom) ⩽ d∞(χ, χ′), λmax(χhom) = λmax(χ)

for all χ, χ′ ∈ NR.

The restriction of d∞ to N hom
R is further well-behaved:

Proposition 2.8. — The restriction of d∞ to N hom
R is a metric. Fur-

thermore, the metric space (N hom
R ,d∞) is complete, and contains N hom

Z as
a closed subset.

Note that N hom
Z is always a strict subset of N hom

R , thanks to the scaling
action of R>0. In contrast, recall that NZ is d∞-dense in NR (see Exam-
ple 1.7).
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Lemma 2.9. — Pick d ⩾ 1 such that dL is an honest line bundle,
and view d∞ as a pseudo-metric on N hom(R(d)) via (2.3). For all χ, χ′ ∈
N hom(R(d)) we then have

d∞(χ, χ′) = sup
m⩾1

1
md

d∞(χ|Rmd
, χ′|Rmd

).

Proof. — By homogeneity of χ, χ′, we have for all m, l ⩾ 1

d∞(χ|Rmd
, χ′|Rmd

) = sup
s∈Rmd∖{0}

|χ(s) − χ′(s)|

= l−1 sup
s∈Rlmd∖{0}

|χ(sl) − χ′(sl)|

⩽ l−1 sup
t∈Rlmd∖{0}

|χ(t) − χ′(t)|

= l−1 d∞(χ|Rlmd
, χ′|Rlmd

).

Thus m 7→ 1
md d∞(χ|Rmd

, χ′|Rmd
) is increasing with respect to divisibility,

and (1.9) yields the result (recall that the limsup in the latter formula is
understood with respect to the divisibility order). □

Proof of Proposition 2.8. — Pick d as in Lemma 2.9. For each m ⩾ 1,
(NR(Rmd),d∞) is a complete metric space, in which NZ(Rmd) sits as a
closed subspace. This implies that NR(R(d)) ↪→

∏
m⩾1 NR(Rmd) is complete

with respect to the metric

d̃∞(χ, χ′) := sup
m⩾1

1
md

d∞(χ|Rmd
, χ′|Rmd

),

and that NZ(R(d)) ↪→
∏

m⩾1 NZ(Rmd) is closed. It is also clear that
N hom

R (R(d)) is closed in NR(R(d)) with respect to d̃∞, so the result now
follows from Lemma 2.9. □

Note that Lemma 2.9 ensures compatibility of the d∞-metrics on N hom
R

and X lin (see (1.19)):

Corollary 2.10. — The map v 7→ χv defines an isometric embedding
(X lin,d∞) ↪→ (N hom

R ,d∞), i.e. d∞(v, w) = d∞(χv, χw) for all v, w ∈ X lin.

For any subgroup Λ ⊂ R, we denote by

T hom
Λ := TΛ ∩ N hom

R = TR ∩ N hom
Λ .

the set of homogeneous Λ-valued norms of finite type. As a straightforward
consequence of Theorem 2.3, we get:
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Lemma 2.11. — For any χ ∈ TR, the following holds:
(i) χhom ∈ T hom

R ;
(ii) for m sufficiently divisible, d∞(χ|Rm

, χhom|Rm
) is bounded, and

hence d∞(χ, χhom) = 0;
(iii) for any subgroup Λ ⊂ R, χ ∈ TΛ =⇒ χhom ∈ T hom

QΛ .

As we shall see, homogenization in fact maps TΛ onto T hom
QΛ (cf. Corol-

lary 2.18). For Λ = Z, the homogenization map TZ ↠ T hom
Q is closely

related to integral closure (see Appendix A for a detailed discussion).

2.3. The Fubini–Study operator

Assume first that L is a globally generated line bundle. To any norm χ

on R1 = H0(X,L), we associate a function on Xan by setting

(2.4) FSL(χ) := sup
s∈R1∖{0}

{log |s| + χ(s)},

i.e. FSL(χ)(v) = sups∈R1∖{0}{−v(s) + χ(s)} for v ∈ Xan. Given a χ-
orthogonal basis (si) of R1, one easily checks that

(2.5) FSL(χ) = max
i

{log |si| + χ(si)} ∈ HR,

see [14, Lemma 7.17]. This implies

(2.6) λmax(χ) = sup
Xan

FSL(χ) = FSL(χ)(vtriv),

as well as

(2.7) χ ∈ NΛ(R1) =⇒ FSL(χ) ∈ HΛ.

for any subgroup Λ ⊂ R.

Lemma 2.12. — Assume that L is a line bundle, and let χ be a norm
on R = R(X,L). For each m ⩾ 1 we then have

FSmL(χ|Rm
) ⩾ mFSL(χ|R1),

and equality holds if χ is generated in degree 1.

Proof. — For each s ∈ R1 ∖ {0} we have χ(sm) ⩾ mχ(s), and the in-
equality follows, by (2.4). Assume that χ is generated in degree 1. To get
equality, we need to show

v(s) ⩾ χ(s) −mFSL(χ1)(v)
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for all s ∈ Rm ∖ {0} and v ∈ Xan. To see this, pick an orthogonal basis
(si) of R1, and write s =

∑
|α|=m cα

∏
i s

αi
i with χ(s) = minα

∑
i αiχ(si)

for some α with cα ̸= 0. Then FSL(χ)(v) = maxi{χ(si)−v(si)}, and hence

v(s) ⩾ min
cα ̸=0

∑
i

αiv(si)

⩾ min
cα ̸=0

∑
i

αi (χ(si) − FSL(χ1)(v)) = χ(s) −mFSL(χ1)(v),

which concludes the proof. □

Returning to the general case of a Q-line bundle, pick χ ∈ NR, and set

FSm(χ) := m−1 FSmL(χ|Rm) ∈ HR

for m sufficiently divisible. By Lemma 2.12, FSm(χ) is an increasing func-
tion of m with respect to divisibility, and is further uniformly bounded, by
linear boundedness of χ. We may thus introduce:

Definition 2.13. — The Fubini–Study operator FS: NR → L∞ takes
a norm χ ∈ NR to the bounded function FS(χ) : Xan → R defined as the
pointwise limit

FS(χ) := lim
m

FSm(χ) = sup
m

FSm(χ).

Recall that L∞ denotes the space of bounded functions on Xan. The
bounded function FS(χ) is lsc (lower semicontinuous), being a supremum
of continuous functions; it is however not continuous in general (see Theo-
rem 2.19 below). By (2.6) we have

(2.8) λmax(χ) = FS(χ)(vtriv).

Note also that the canonical approximants χd ∈ TR of any norm χ ∈ NR
satisfy

(2.9) FS(χd) = FSd(χ) ∈ HR

for all d sufficiently divisible, by Lemma 2.12. In particular, if χ ∈ TR is of
finite type then the limit in Definition 2.13 is stationary.

The Fubini–Study operator FS: NR → L∞ is increasing with respect to
the partial orderings on NR and L∞, and equivariant under the actions
of R and R>0. It is also easily seen to be 1-Lipschitz with respect to the
d∞-(pseudo)metrics, i.e.

(2.10) d∞(FS(χ),FS(χ′)) ⩽ d∞(χ, χ′) for all χ, χ′ ∈ NR.

As we see below, equality holds when χ, χ′ are homogeneous (see Corol-
lary 2.17).

The next result shows that FS is invariant under homogenization.
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Proposition 2.14. — For any χ ∈ NR we have FS(χ) = FS(χhom).

Proof. — That FS(χ) ⩽ FS(χhom) is clear, since χ ⩽ χhom. Now let
v ∈ Xan and ε > 0. Successively pick m ⩾ 1 sufficiently divisible such
that FS(χhom)(v) ⩽ FSm(χhom)(v) + ε, then s ∈ Rm ∖ {0} such that
mFSm(χhom)(v) ⩽ χhom(s) − v(s) + mε, and finally d ⩾ 1 such that
χhom(s) ⩽ 1

dχ(sd) +mε, see (2.2). Then

FS(χhom)(v) ⩽ 1
md

(χ(sd)−v(sd))+3ε ⩽ FSmd(χ)(v)+3ε ⩽ FS(χ)(v)+3ε,

completing the proof. □

The Fubini–Study operator relates norms of finite type and Fubini–Study
functions, as follows:

Proposition 2.15. — For any subgroup Λ ⊂ R, we have

FS(TΛ) = FS(TQΛ) = FS(T hom
QΛ ) = HΛ = HQΛ.

As we shall see, the map FS: T hom
QΛ → HΛ is further 1–1 (see Corol-

lary 2.18).
Proof. — If χ ∈ TΛ then χ = χm for m sufficiently divisible, and hence

FS(χ) = FS(χm) = FSm(χ) ∈ HΛ by (2.7). Conversely, pick φ ∈ HΛ, and
write φ = d−1 maxi{log |si| + λi} with d ⩾ 1, a finite family (si)1⩽i⩽N in
Rd without common zeros, and λi ∈ Λ. After enlarging the family (si) and
choosing the corresponding λi ≪ 0 in Λ, we may further assume that (si)
spans Rd. Consider the surjective map kN → Rd that takes the canonical
basis (ei) to (si). Denote by χ0 the norm on kN that is diagonal in (ei),
with χ0(ei) = λi, and let χd ∈ NR(Rd) be the quotient norm. It is then
easy to check (see [14, Lemma 7.17]) that

φ = d−1 max
j

{log |sj | + λj} = d−1 FSdL(χd).

By Lemma 2.12, the norm χ ∈ NΛ(R(d)) generated in degree 1 by χd

satisfies FS(χ) = φ, which proves FS(TΛ) = HΛ. By Proposition 2.14 and
Lemma 2.11, we infer

HΛ = FS(TΛ) ⊂ FS(T hom
QΛ ) ⊂ HQΛ,

which concludes the proof since HQΛ = HΛ, see (1.21). □

2.4. The infimum norm and homogenization

Next we define an operator

IN: L∞ −→ N hom
R
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that to a bounded function φ on Xan attaches a homogeneous norm, the
infimum norm χ = IN(φ). For any m ∈ N such that mL is a line bundle, it
is defined on Rm by

(2.11) χ(s) := inf
v∈Xan

{v(s) +mφ(v)} = inf
Xan

{mφ− log |s|}.

In “multiplicative” notation, this is simply the usual supremum norm

∥s∥φ = sup
Xan

|s| e−mφ,

compare for instance [14, Section 6]. The operator IN = INL is increasing,
and equivariant for the actions of R and R>0, i.e.

(2.12) IN(φ+ c) = IN(φ) + c, IN(t · φ) = t IN(φ)

for φ ∈ L∞, c ∈ R and t ∈ R>0. For any φ,φ′ ∈ L∞, it is also easy to see
that

IN(φ ∧ φ′) = IN(φ) ∧ IN(φ′),(2.13)
d∞ (IN(φ), IN(φ′)) ⩽ d∞(φ,φ′)(2.14)

IN(φ) = IN(φ⋆),(2.15)

where φ⋆ ∈ L∞ denotes the lsc regularization of φ, i.e. the largest lsc
function such that φ⋆ ⩽ φ. The following key result relates homogenization
and infimum norms:

Theorem 2.16. — For any χ ∈ NR, we have IN(FS(χ)) = χhom.

Corollary 2.17. — For all χ, χ′ ∈ NR we have d∞(FS(χ),FS(χ′)) =
d∞(χhom, χ′hom). In particular, the Fubini–Study operator defines an iso-
metric embedding of complete metric spaces

FS: (N hom
R ,d∞) ↪−→ (L∞,d∞).

Recall that d∞ also denotes the supnorm metric on the space L∞ of
bounded functions on Xan.

The following result settles the case p = ∞ of Theorem A in the intro-
duction:

Corollary 2.18. — For any subgroup Λ ⊂ R, the Fubini–Study op-
erator defines a surjective isometry FS: (TΛ,d∞) ↠ (HΛ,d∞), which fac-
tors as

• a surjective isometry (TΛ,d∞) ↠ (T hom
QΛ ,d∞) defined by homoge-

nization;
• an isomorphism FS: (T hom

QΛ ,d∞) ∼→ (HΛ,d∞), with inverse
IN: (HΛ,d∞) ∼→ (T hom

QΛ ,d∞).
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For any homogeneous norm χ ∈ N hom
R , we further have FS(χ) ∈ HΛ ⇔

χ ∈ TQΛ.

The last equivalence fails in general for non-homogeneous norms, see
Example 2.22

The proof of Theorem 2.16 uses the Berkovich maximum modulus prin-
ciple as well as the remarks in Section 1.6.

Proof of Theorem 2.16. — After passing to a multiple, we may assume
that L is a line bundle and χ is a norm on R = R(X,L). Let M be the
Berkovich spectrum of the normed ring (R,χ), i.e. the set of semivaluations
w : R → R ∪ {+∞} such that w ⩾ χ. Geometrically, M sits as a compact
subset of the analytification Y an of the affine cone Y = SpecR, and is
obtained as the image of the unit disc bundle in the total space of L∨,
i.e. the blowup of o ∈ Y (compare [42]).

Since homogenization corresponds to the spectral radius seminorm con-
struction (see Remark 2.2), the Berkovich maximum modulus principle [1,
Theorem 1.3.1] (applied to the completion of (R,χ)) yields χhom(f) =
minw∈M w(f) for any f ∈ R, where the infimum is attained by compact-
ness of M . In particular, for any s ∈ Rm ∖ {0}, m ⩾ 1, we have

χhom(s) = min
w∈M

w(s).

Let M inv be the set of k×-invariant semivaluations in M . We have a
projection p : M → M inv defined by

p(w)
(∑

m

sm

)
= min

m
w(sm)

where sm ∈ Rm. Thus p(w) ⩽ w, so in the formula for χhom(s), it suffices to
take the infimum over w ∈ M inv. As in Section 1.6 consider the projection
πan : Y an∖{wo} → Xan, where wo is the trivial semivaluation at the vertex
of the cone; this satisfies wo(f) = +∞ for f ∈

⊕
m>0 Rm and wo(f) = 0

for f ∈ R \
⊕

m>0 Rm. For any v ∈ Xan, the set of k×-invariant points in
(πan)−1(v) is of the form {wv,c}c∈R, where wv,c is the unique k×-invariant
point such that

wv,c(s) = v(s) + cm

for s ∈ Rm, m ⩾ 1, see (1.17).
It follows that M inv ⊂ M ⊂ Y an is the set of semivaluations wv,c, where

v ∈ Xan and v(s) + mc ⩾ χ(s) for all s ∈ Rm, m ⩾ 1. Note that this
condition on c means precisely that c ⩾ FS(χ)(v). Altogether, this means

ANNALES DE L’INSTITUT FOURIER



A NON-ARCHIMEDEAN APPROACH TO K-STABILITY I 863

that if s ∈ Rm, m ⩾ 1, then

χhom(s) = inf{v(s) +mc | v ∈ Xan, c ⩾ FS(χ)(v)}
= inf{v(s) +mFS(χ)(v) | v ∈ Xan}
= IN(FS(χ))(s),

which completes the proof. □

Proof of Corollary 2.17. — By Proposition 2.14, we may assume that
χ, χ′ are homogeneous. By Theorem 2.16, (2.14) and (2.10), we then have

d∞(χ, χ′) = d∞(IN(FS(χ)), IN(FS(χ′))) ⩽ d∞(FS(χ),FS(χ′)) ⩽ d∞(χ, χ′).

Thus equality holds everywhere, and the result follows. □

Proof of Corollary 2.18. — By Corollary 2.17 and Lemma 2.11, the Fu-
bini–Study operator defines a surjective isometry FS: (TΛ,d∞)↠ (HΛ,d∞),
which factors as homogenization followed by FS: (T hom

QΛ ,d∞) ∼→ (HΛ,d∞),
whose inverse is necessarily given by IN, by Theorem 2.16. This implies
that homogenization defines a surjective isometry (TΛ,d∞) ↠ (T hom

QΛ ,d∞).
The final assertion follows, by injectivity of FS on N hom

R . □

2.5. Continuous norms

Building on the previous results, we are now in a position to characterize
the d∞-closure of the set TZ of test configurations, as follows.

Theorem 2.19. — For any norm χ ∈ NR, the following are equivalent:
(i) χ lies in the d∞-closure of TZ;
(ii) χ lies in the d∞-closure of TR;
(iii) the canonical approximants (χd) satisfy d∞(χd, χ) → 0;
(iv) FS(χ) is continuous;
(v) FS(χd) → FS(χ) uniformly on Xan.

Definition 2.20. — We say that χ ∈ NR is continuous when the equiv-
alent properties of Theorem 2.19 holds.

The set N cont
R of continuous norms is thus the d∞-closure of TZ (or TR);

it is a strict subset of NR as soon as dimX ⩾ 1 (see Example 2.21 below).
Proof of Theorem 2.19. — We trivially have (i) ⇒ (ii). Assume (ii), and

pick ε > 0. In view of (1.9), we can find χ′ ∈ TR and d ⩾ 1 such that

(2.16) d∞(χ|Rmd
, χ′|Rmd

) ⩽ mdε for all m ⩾ 1.
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Replacing d with a multiple, we can further assume χ′
d = χ′. For m = 1,

(2.16) yields χ′ ⩽ χ + dε on Rd, and hence χ′ = χ′
d ⩽ χd + mdε on Rmd

for all m ⩾ 1. On the other hand, (2.16) yields χ ⩽ χ′ + mdε on Rmd,
which proves χd ⩽ χ ⩽ χd + 2mdε on Rmd for all m ⩾ 1. This implies
d∞(χd, χ) ⩽ ε. This proves (ii) ⇒ (iii), the converse being obvious since
χd ∈ TR.

Assume (ii). To prove (i), we may replace χ with its round-down and
assume χ ∈ NZ (see Example 1.7). Its canonical approximants then satisfy
χd ∈ TZ, and hence (ii) ⇒ (i), thanks to (iii).

Since FS(χ) is the pointwise limit of the increasing net of continuous
functions (FS(χd)), Dini’s lemma yields (iv) ⇔ (v). Finally, we claim that

(2.17) d∞(χd, χ) = d∞(FS(χd),FS(χ))

for d sufficiently divisible, which will show (iii) ⇔ (v). Note that

χd ⩽ χ ⩽ χhom =⇒ d∞(χd, χ) ⩽ d∞(χd, χ
hom),

see (1.3). Now d∞(χd, (χd)hom)) = 0 (see Lemma 2.11), and hence

d∞(χd, χ
hom) = d∞((χd)hom, χhom) = d∞(FS(χd),FS(χ)),

by Corollary 2.17. This shows d∞(χd, χ) ⩽ d∞(FS(χd),FS(χ)), while the
converse holds by (2.10). This shows (2.17), and concludes the proof. □

Example 2.21. — To each subvariety Z ⊊ X we associate a norm χ =
χZ ∈ N hom

Z by setting, for each nonzero section s ∈ Rm with m sufficiently
divisible

χ(s) =
{
m if s|Z ≡ 0,
0 otherwise.

We claim that χ is not continuous. Indeed, using the description of χd as a
quotient norm, it is easy to check that any s ∈ Rdm locally lies in Ip

Z with
p := χd(s) ∈ N. Choosing s ∈ Rdm = H0(X, dmL) that locally belongs to
IZ but not I2

Z (which is possible for any m large enough, since L is ample),
we get χd(s) = 1, while χ(s) = dm. This shows d∞(χ|Rdm

, χd|Rdm
) ⩾

dm− 1, and hence d∞(χ, χd) ⩾ 1, which proves the claim.
Alternatively, one can show that FS(χ) is identically 1 on Xan \Zan, and

0 on Zan, and hence is not continuous.

Example 2.22. — As a variant of Example 2.21, consider the norm χ ∈
NR defined for s ∈ Rm \ {0} by

χ(s) =
{
m if s|Z ≡ 0,
m−

√
m otherwise,
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which is indeed a norm, by subadditivity of m 7→
√
m. Then χhom =

χtriv + 1, and hence FS(χ) = FS(χhom) ≡ 1. In particular, FS(χ) ∈ HR;
however, χ is not of finite type. Indeed,

d∞(χ|Rm
, χhom|Rm

) =
√
m

is not bounded (see Lemma 2.11).

Remark 2.23. — It follows from Example 2.21 that the set TZ of test
configurations is never d∞-dense in NR when dimX ⩾ 1. In contrast, TZ
is dense with respect to any of the weaker pseudometrics dp, p ∈ [1,∞) to
be introduced in Section 3 (see Corollary 3.19).

We next analyze the behavior of homogenization on continuous norms.

Proposition 2.24. — For each χ ∈ NR, we have

χ ∈ N cont
R ⇐⇒ χhom ∈ N cont

R =⇒ d∞(χ, χhom) = 0.

Further, homogenization induces a surjective isometry

(N cont
R ,d∞) −↠ (N cont,hom

R ,d∞).

Here N cont,hom
R := N cont

R ∩ N hom
R denotes the set of continuous homoge-

neous norms.
Proof. — The first equivalence follows from Proposition 2.14 and The-

orem 2.19(iv). By Lemma 2.11, d∞(χ, χhom) = 0 holds on TR. By d∞-
continuity of homogenization (see Lemma 2.7), this extends to the d∞-
closure N hom

R . This proves the second implication, which in turn yields the
last point, by the triangle inequality. □

When χ ∈ NR is not continuous, the property d∞(χ, χhom) = 0 fails in
general; in other words, homogenization is not a d∞-isometry on the whole
space NR:

Example 2.25. — Pick a subvariety Z ⊊ X, and set for s ∈ Rm \ {0}

χ(s) =


m if s ∈ I2

Z ,

m/2 if s ∈ IZ \ I2
Z ,

0 if s /∈ IZ .

As one easily checks, this defines a norm χ ∈ NQ, such that χhom = χZ

is the norm in Example 2.21. Further, d∞(χ|Rm
, χhom|Rm

) = m/2 for m
sufficiently divisible, and hence d∞(χ, χhom) = 1/2.
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Finally, recall from [18] that the space CPSH of continuous (bounded) L-
psh functions onXan can be described as the closure of HR (or, equivalently,
HQ = HZ) with respect to uniform convergence (see also Section 4.1 below).
We show:

Theorem 2.26. — The Fubini–Study and infimum norm operators in-
duce inverse isomorphic isometries FS: (N cont,hom

R ,d∞) ∼→ (CPSH,d∞),
IN: (CPSH,d∞) ∼→ (N cont,hom

R ,d∞).

Proof. — By Corollary 2.17, the Fubini–Study operator defines an iso-
metric embedding of complete metric spaces FS: (N hom

R ,d∞) ↪→ (L∞,d∞),
which thus maps the closure of any subset onto the closure of its image.
Now FS(T hom

R ) = HR (see Proposition 2.15), where the closure of T hom
R

in (N hom
R ,d∞) is N cont,hom

R (by Proposition 2.24) and the closure of HR

in (L∞,d∞) is CPSH. It follows that FS: (N cont,hom
R ,d∞) ∼→ (CPSH,d∞)

is an isometric isomorphism, whose inverse is necessarily given by IN, by
Theorem 2.16. □

2.6. The Fubini–Study envelope

As in [14, Section 7.5] and [18, Section 5.3], we define the Fubini–Study
envelope of a bounded function φ ∈ L∞ as the pointwise supremum

(2.18) Q(φ) = QL(φ) := sup{ψ ∈ HR | ψ ⩽ φ}.

Since any ψ ∈ HR is a uniform limit of functions in HQ, one can replace
HR with HQ in this definition. We note that

(2.19) QdL(dφ) = dQL(φ), Q(t · φ) = Q(φ), Q(φ+ c) = Q(φ) + c

for all d ∈ Q>0, t ∈ R>0, c ∈ R, and refer to Section 4.4 for more informa-
tion. We view the next result as a “dual” version of Proposition 2.14.

Proposition 2.27. — For any φ ∈ L∞ we have IN(φ) = IN(Q(φ)).

This is in fact a special case of [14, Lemma 7.23] but we repeat the simple
argument for the convenience of the reader.

Lemma 2.28. — If φ ∈ L∞ and s ∈ Rm with m sufficiently divisible,
then log |s| ⩽ mφ iff log |s| ⩽ mQ(φ).

Proof. — We may assume m = 1. Since Q(φ) ⩽ φ, we only need to prove
the direct implication. For t ∈ R, set ψt = max{log |s|,−t}. Then ψt ∈ HR,
and ψt ⩽ φ for t ≫ 0 since φ is bounded. Thus ψt ⩽ Q(φ) by the definition
of Q, so log |s| ⩽ ψt ⩽ Q(φ). □

ANNALES DE L’INSTITUT FOURIER



A NON-ARCHIMEDEAN APPROACH TO K-STABILITY I 867

Proof of Proposition 2.27. — Pick s ∈ Rm with m sufficiently divisible.
We must prove that λ := infXan(mφ− log |s|) equals λ′ := infXan(mQ(φ)−
log |s|). Since Q(φ) ⩽ φ we have λ′ ⩽ λ. The reverse inequality follows
from Lemma 2.28 applied to the bounded function φ − m−1λ, together
with (2.19). □

We similarly have a dual version of Theorem 2.16:

Proposition 2.29. — For any φ ∈ L∞, we have FS(IN(φ)) = Q(φ).

Proof. — After passing to a multiple, we may assume that L is a line
bundle, so that χ := IN(φ) is a norm on R = R(X,L). For all m ⩾ 1 and s ∈
Rm∖{0}, we have log |s| ⩽ mφ−χ(s) on Xan, by definition of the infimum
norm. By Lemma 2.28 and (2.19), this yields log |s| ⩽ mQ(φ) − χ(s), and
hence

FS(χ) = sup{m−1(log |s| + χ(s)) | m ⩾ 1, s ∈ Rm ∖ {0}} ⩽ Q(φ).

For the reverse inequality, pick any ψ ∈ HR with ψ ⩽ φ. Since FS(TR) = HR
(see Proposition 2.15), there exists m ⩾ 1 and a norm χ′ on Rm such that

mψ = FSmL(χ′) = sup
s∈Rm\{0}

{log |s| + χ′(s)}.

Since ψ ⩽ φ, this gives log |s| + χ′(s) ⩽ mφ, i.e. χ′ ⩽ χ|Rm on Rm. As a
result,

ψ = m−1 FSmL(χ′) ⩽ m−1 FSmL(χ|Rm) = FSm(χ) ⩽ FS(χ),

which completes the proof. □

Combining Theorem 2.16 and Proposition 2.29 with Propositions 2.14
and 2.27, we also obtain

Corollary 2.30. — We have

FS ◦ IN ◦ FS = FS on NR, and IN ◦ FS ◦ IN = IN on L∞.

3. Spectral analysis

In this section we define a volume function vol : NR → R as well as
pseudo-metrics dp, p ∈ [1,∞), on the space NR of norms on section rings
of multiples of L. Much of the material is studied for more general non-
Archimedean ground fields in [14, 27], but we present the details for the
convenience of the reader.
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3.1. The finite-dimensional case

We first describe the space NR(V ) of non-Archimedean norms on a k-
vector space V of dimension N < ∞, essentially following [14, 60].

Pick a norm χ ∈ NR(V ), and a χ-orthogonal basis (ej)1⩽j⩽N of V .
After permutation, we may assume that the sequence λj(χ) := χ(ej), j =
1, . . . , N satisfies

λ1(χ) ⩾ · · · ⩾ λN (χ).

It is then independent of the choice of orthogonal basis and is called the
spectrum of χ (i.e. the “jumping values” of the associated filtration in the
terminology of [13]). In terms of (1.4) we have

λ1(χ) = λmax(χ), λN (χ) = λmin(χ).

The volume of χ is defined as the mean value(1) of its spectrum, i.e.

vol(χ) := 1
N

∑
j

λj(χ).

For any basis (ej) of V we have vol(χ) ⩾ N−1∑
j χ(ej) with equality iff

(ej) is χ-orthogonal.
More generally, any two norms χ, χ′ admit a common orthogonal basis

(ej). The relative spectrum of χ with respect to χ′ is the sequence

λ1(χ, χ′) ⩾ · · · ⩾ λN (χ, χ′)

obtained by reordering (χ(ej) − χ′(ej))1⩽j⩽N , and the spectral measure of
χ with respect to χ′ is the corresponding probability measure

σ(χ, χ′) := 1
N

∑
j

δλj(χ,χ′).

Its barycenter satisfies

(3.1)
∫
R
λ dσ(χ, χ′) = 1

N

∑
j

λj(χ, χ′) = vol(χ) − vol(χ′).

When χ′ = χtriv is the trivial norm, we simply write

σ(χ) = σ(χ, χtriv) = 1
N

∑
j

δλi(χ),

(1) Note that a different normalization is used in [14, 16], where the volume is defined
as the sum of the elements of the spectrum.
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and call it the spectral measure of χ. In terms of the associated R-filtration
FλV = {χ ⩾ λ}, we have

(3.2) σ(χ) = 1
N

∑
λ∈R

dim(FλV/F>λV ) δλ.

To any basis e = (ei) of V is associated an apartment Ae ⊂ NR(V ),
defined as the set of norms diagonalized in this basis. We then have a
canonical parametrization

ιe : RN ∼−→ Ae,

and a Gram–Schmidt retraction

ρe : NR(V ) −→ Ae.

The map ιe sends (λj) ∈ RN to the unique χ ∈ Ae such that χ(ei) = λi,
while ρe sends a norm χ to the unique norm ρe(χ) ∈ Ae such that

ρe(χ)(ei) = sup
a∈kN

χ(ei +
∑
j<i

ajej),

i.e. the norm induced, via the basis e, from the natural subquotient norm
on the graded object of the complete flag defined by e. By additivity of the
volume in exact sequences, we have

(3.3) vol(ρe(χ)) = vol(χ),

see [14, Lemma 2.12]. Each Ae is trivially preserved by the translation
action of R, the scaling action by R>0, and by the operation (χ, χ′) 7→ χ∧χ′.
Moreover,

χ ⩽ χ′ =⇒ ρe(χ) ⩽ ρe(χ′).

3.2. Metrics on the space of norms

Generalizing the classical construction of the Tits metric on the Eu-
clidean building NR(V ) (see for instance [60, Section 2.2]), it is shown
in [14, Theorem 3.1] that each SN -invariant norm τ on RN induces a
unique metric dτ on NR(V ) such that ιe : (RN , τ) ↪→ (NR(V ),dτ ) is an
isometry for any basis e. It has the property that ρe : NR(V ) → Ae is a
contraction. All metrics on NR(V ) obtained this way are equivalent. They
turn NR(V ) into a metric space that is complete, but not locally compact.
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In particular, for each p ∈ [1,∞] we define a metric dp on NR(V ) by
setting for any two norms χ, χ′ with relative spectrum (λi) = (λi(χ, χ′))

(3.4) dp(χ, χ′) :=
(
N−1

∑
i

|λi|p
)1/p

for p ∈ [1,∞), and
d∞(χ, χ′) := max

i
|λi|.

Thus dp(χ, χ′) is the Lp-norm of the identity with respect to the spectral
measure σ(χ, χ′). Note that

(3.5) d1 ⩽ dp ⩽ d1− 1
p

∞ d
1
p

1 ⩽ d∞

on NR(V ) for p ∈ (1,∞). The metric d2 is the Tits metric mentioned
above, while d∞ coincides with the Goldman–Iwahori metric (1.2). Our
main interest lies in the metric d1, which is closely related to the volume:

Lemma 3.1. — For all χ, χ′ ∈ NR(V ) and p ∈ [1,∞) we have

(3.6) dp(χ, χ′)p = dp(χ, χ ∧ χ′)p + dp(χ ∧ χ′, χ′)p.

For p = 1, we further have

(3.7) d1(χ, χ′) = vol(χ) + vol(χ′) − 2 vol(χ ∧ χ′).

Proof. — The first assertion follows from the fact that the minimum
χ ∧ χ′ of two norms in an apartment Ae ≃ RN is computed component-
wise, and the trivial identity∑

i

|λi − λ′
i|p =

∑
i

|λi − min{λi, λ
′
i}|p +

∑
i

|min{λi, λ
′
i} − λ′

i|p.

for all λ, λ′ ∈ RN . On the other hand, it follows from (3.1) that χ ⩾ χ′ =⇒
d1(χ, χ′) = vol(χ) − vol(χ′), and (3.7) follows. □

The volume function is trivially 1-Lipschitz with respect to d1, i.e.

(3.8) |vol(χ) − vol(χ′)| ⩽ d1(χ, χ′)

for all χ, χ′ ∈ NR(V ). This is also the case for the min operator:

Lemma 3.2. — Let χi, χ′
i, i = 1, 2, be norms on V . Then

(3.9) d1(χ1 ∧ χ2, χ
′
1 ∧ χ′

2) ⩽ d1(χ1, χ
′
1) + d1(χ2, χ

′
2).

Proof. — First assume χi ⩾ χ′
i, i = 1, 2. Pick a basis e such that χ′

1, χ
′
2 ∈

Ae. Lemma 3.1 together with (3.3) show that replacing χi by ρe(χi), i = 1, 2
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does not change the right-hand side of (3.9). As for the left-hand side,
ρe : NR(V ) → Ae being order preserving implies

ρe(χ1) ∧ ρe(χ2) ⩾ ρe(χ1 ∧ χ2) ⩾ χ′
1 ∧ χ′

2,

which shows that the left-hand side of (3.9) can only increase upon replac-
ing χi by ρe(χi), i = 1, 2, using again (3.3) and (3.7).

As a result, we may in fact assume that all four norms belong to Ae.
Write χi(ej) = λi,j and χ′

i(ej) = λ′
i,j for 1 ⩽ j ⩽ N and i = 1, 2. Then

λi,j ⩾ λ′
i,j for all i, j, and we must prove that∑

j

λ1,j ∧ λ2,j −
∑

j

λ′
1,j ∧ λ′

2,j ⩽
∑

j

(λ1,j − λ′
1,j) +

∑
j

(λ2,j − λ′
2,j);

this is straightforward.
Finally consider arbitrary norms. Set χ′′

i = χi ∧ χ′
i for i = 1, 2. By (3.6)

we have

d1(χ1 ∧ χ2, χ
′
1 ∧ χ′

2) = d1(χ1 ∧ χ2, χ
′′
1 ∧ χ′′

2) + d1(χ′
1 ∧ χ′

2, χ
′′
1 ∧ χ′′

2)

and χi, χ
′
i ⩾ χ′′

i , for i = 1, 2, so (3.9) follows from what precedes, together
with (3.6). □

3.3. Spectral measures and volume

Now we return to the setting of a projective variety X and an ample Q-
line bundle L on X. The following equidistribution result is a special case of
a result of Chen–Maclean [27], which deals with general non-Archimedean
fields.

Theorem 3.3. — For any two norms χ, χ′ ∈ NR, the scaled spectral
measures

(1/m)⋆σ(χ|Rm
, χ′|Rm

)
have uniformly bounded support, and they admit a weak limit.

The limit is taken with respect to the partial order by divisibility. If L is
an actual line bundle and χ, χ′ are norms on R(X,L), then the limit also
exists as m → ∞ in the usual total ordering.

Definition 3.4. — For any χ, χ′ ∈ NR, the spectral measure of χ with
respect to χ′ is the compactly supported (Borel) probability measure on R
defined as

σ(χ, χ′) := lim
m

(1/m)⋆σ(χ|Rm
, χ′|Rm

).
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The spectral measure of χ is σ(χ) := σ(χ, χtriv), and the volume of χ is
the barycenter

vol(χ) =
∫
R
λ dσ(χ).

By (3.1), we have

(3.10) vol(χ) = lim
m
m−1 vol(χ|Rm).

Example 3.5. — For any v ∈ X lin with associated norm χv ∈ N hom
R , the

spectrum of χv|Rm
is the vanishing sequence of Rm with respect to v as

defined in [22], i.e. the (finite) set of values of v on nonzero elements of Rm,
counted with multiplicity, and

(3.11) S(v) = SL(v) := vol(χv)

coincides with the expected vanishing order of [5] (see also [59]).

The existence of the spectral measure σ(χ) (called the limit measure of
the corresponding filtration in [17, Section 5.1]) follows from [13, Theo-
rem A]. When χ ∈ TZ, the limit measure coincides with the Duistermaat–
Heckman measure of the corresponding test configuration, see [17, Propo-
sition 3.12].

As we shall see, a simple trick borrowed from [27] reduces the proof of
Theorem 3.3 to this special case χ′ = χtriv.

Proof of Theorem 3.3. — The uniform boundedness part is a direct
consequence of the linear boundedness condition that we impose on norms
in NR(R). Set Nm := dimRm, denote by (λm,j)1⩽j⩽Nm

the spectrum of
χ|Rm

with respect to χ′|Rm
, and set

σm := (1/m)⋆σ(χ|Rm
, χ′|Rm

) = 1
Nm

Nm∑
j=1

δm−1λm,j
.

As is well-known, in order to prove convergence of σm, it suffices to show
that ∫

R
min{λ, c} dσm = 1

mNm

Nm∑
j=1

max{λm,j ,mc}

converges for all c ∈ R, see [27, Proposition 5.1]. But (min{λm,j , cm})j is
the spectrum of χ|Rm ∧ (χ′|Rm + cm) with respect to χ′|Rm . Replacing χ
with χ ∧ (χ′ + c) (where R acts by translation according to (1.5)), we are
reduced to proving that the barycenter

(mNm)−1
∑

j

λm,j
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of the measure σm converges. Now, this barycenter is the difference of the
barycenters of (1/m)⋆σ(χ|Rm

) and (1/m)⋆σ(χ′|Rm
), each of which admits

a limit by [13, Theorem A], and we are done. □

The proof of Theorem 3.3 shows that

(3.12)
∫

min{λ, c}σ(χ, χ′)(dλ) = vol (χ ∧ (χ′ + c)) − vol(χ′)

for all χ, χ′ ∈ NR and c ∈ R. Some further properties of the spectral
measure σ(χ) are described by the following result.

Theorem 3.6. — Pick χ ∈ NR, with associated filtration FλRm = {s ∈
Rm | χ(s) ⩾ λ}. Then:

(i) for each λ ∈ R, dimFmλRm/dimRm admits a limit vol(χ ⩾ λ) ∈
[0, 1] as m → ∞;

(ii) the function λ 7→ vol(χ ⩾ λ)1/n is positive and concave on
(−∞, λmax(χ)), and vanishes on (λmax(χ),+∞);

(iii) σ(χ) = − d
dλ vol(χ ⩾ λ) in the sense of distributions;

(iv) suppσ(χ) = [λmin(χ), λmax(χ)] with

(3.13) λmin(χ) := inf {λ ∈ R | vol(χ ⩾ λ) < 1} ;

(v) for any a ⩽ λmin(χ), i.e. such that vol(χ ⩾ a) = 1, we have

vol(χ) = a+
∫ +∞

a

vol(χ ⩾ λ) dλ = a+
∫ λmax(χ)

a

vol(χ ⩾ λ) dλ.

Proof. — Properties (i)–(iv) are direct consequence of [13] (see [17, Sec-
tion 3.1]. To see (v), set b := λmax(χ), f(λ) := vol(χ ⩾ λ), and pick a
cut-off function θ ∈ C∞

c (R) such that θ ≡ 1 on [a, b]. Since θ(λ)λ is smooth
and compactly supported, (iii) and (iv) yield

vol(χ) =
∫
R
λ dσ(χ) = −

∫
R
θ(λ)λf ′(λ) dλ

=
∫
R
(θ(λ)λ)′f(λ) dλ =

∫
R
(θ′(λ)λ+ θ(λ))f(λ) dλ.

Since f(λ) = 1 for λ ⩽ a, f(λ) = 0 for λ ⩾ b and θ(λ) = 1 for λ ⩾ a, this
is equal to∫ a

−∞
(θ′(λ)λ+θ(λ)) dλ+

∫ +∞

a

f(λ) dλ = a+
∫ +∞

a

f(λ) dλ = a+
∫ b

a

f(λ) dλ,

by integration by parts. This proves (v). □

The next result shows how spectral measures behave under operations
on norms. It follows from elementary computations of spectra in joint or-
thogonal bases; the details are left to the reader.
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Proposition 3.7. — Let χ, χ′ ∈ NR, and pick c ∈ R, t ∈ R>0. Then:
(i) σ(χ′, χ) is the pushforward of σ(χ, χ′) under λ 7→ −λ;
(ii) σ(χ+ c, χ′) is the pushforward of σ(χ, χ′) under λ 7→ λ+ c;
(iii) σ(χ, χ ∧ χ′) is the pushforward of σ(χ, χ′) under λ 7→ max{λ, 0};
(iv) σ(tχ, tχ′) is the pushforward of σ(χ, χ′) under λ 7→ tλ.

Remark 3.8. — In [8, Theorem 3.3] (which appeared after the first ver-
sion of this article was posted), the authors construct a natural joint spec-
tral measure ρ(χ, χ′) on R2 associated to any pair χ, χ′ ∈ NR, that encodes
the asymptotic behavior of the spectra of χ and χ′ in jointly orthogonal
bases. The spectral measure σ(χ, χ′) is the pushforward of ρ(χ, χ′) under
the map R2 → R given by (λ, λ′) 7→ λ− λ′.

3.4. The dp-pseudometrics and asymptotic equivalence

Pick p ∈ [1,∞) and χ, χ′ ∈ NR. By definition, we have

dp(χ|Rm
, χ′|Rm

)p =
∫
R

|λ|p dσ(χ|Rm
, χ′|Rm

).

Theorem 3.3 thus shows that the limit

dp(χ, χ′) := lim
m
m−1 dp(χ|Rm , χ

′|Rm)

exists in [0,+∞), and coincides with the Lp-norm of the identity with
respect to the spectral measure σ(χ, χ′), i.e.

(3.14) dp(χ, χ′)p =
∫
R

|λ|pσ(χ, χ′).

It is clear that (dp)1⩽p<∞ is a non-decreasing family of pseudo-metrics on
NR. For p = 1, (3.7) further yields

(3.15) d1(χ, χ′) = vol(χ) + vol(χ′) − 2 vol(χ ∧ χ′).

For any p ∈ [1,∞], we have d1 ⩽ dp ⩽ d∞. One also easily checks (using
for instance (3.14) and Proposition 3.7)

(3.16)
dp(tχ, tχ′) = tdp(χ, χ′),

dp(χ+ c, χ′ + c) = dp(χ, χ′),
dp(χ, χ+ c) = |c|

for all χ, χ′ ∈ NR, t ∈ R>0, c ∈ R.
The pseudo-metric d1 defines a (non-Hausdorff) topology on NR, which

is strictly coarser than the dp-topology for any p > 1, when dimX > 0.
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However, (3.5) remains valid on NR, and shows that the dp-topologies with
p < ∞ all agree on d∞-bounded subsets of NR. In particular, they share
the same pairs of non-separated points, which gives rise to:

Definition 3.9. — We say that two norms χ, χ′ ∈ NR are asymptot-
ically equivalent, and write χ ∼ χ′, if the following equivalent conditions
hold:

(i) d1(χ, χ′) = 0;
(ii) dp(χ, χ′) = 0 for all p ∈ [1,∞);
(iii) σ(χ, χ′) = δ0.

The equivalence between (i)–(iii) follows from (3.14). Since d1 ⩽ d∞, we
trivially have

d∞(χ, χ′) = 0 =⇒ χ ∼ χ′.

The converse fails in general, and thus so does the analogue of (3.14) for
the pseudo-metric d∞ (see, however, Corollary 6.26 below for the case of
continuous norms).

Example 3.10. — Pick any subvariety Z ⊊ X, and consider the norm
χ = χZ ∈ NZ as in Example 2.21. Using (3.2), it is easy to see that
σ(χ|Rm

) = εmδ0 + (1 − εm)δm with

εm := dim H0(Z,mL)/ dim H0(X,mL) = O(1/m).

Thus σ(χ) = limm(1/m)⋆σ(χ|Rm) = δ1, and hence χ ∼ χtriv+1 (see Propo-
sition 3.7(ii)). On the other hand, since χ ̸= χtriv+1 are both homogeneous,
we have d∞(χ, χtriv + 1) > 0 (see Proposition 2.8).

By (3.15), we have:

Lemma 3.11. — If χ, χ′ ∈ NR satisfy χ ⩾ χ′, then χ ∼ χ′ ⇐⇒ vol(χ) =
vol(χ′).

As we next show, spectral measures are continuous with respect to the
d1-topology.

Theorem 3.12. — Consider nets (χi), (χ′
i) in NR, converging respec-

tively to χ, χ′ ∈ NR in the d1-topology. Then σ(χi, χ
′
i) → σ(χ, χ′) weakly.

Proof. — Set σi := σ(χi, χ
′
i) and σ := σ(χ, χ′). As in the proof of Theo-

rem 3.3, it suffices to prove that∫
min{λ, c}σi(dλ) = vol(χi ∧ (χ′

i + c)) − vol(χ′
i)

TOME 75 (2025), FASCICULE 2



876 Sébastien BOUCKSOM & Mattias JONSSON

converges to ∫
min{λ, c}σ(dλ) = vol(χ ∧ (χ′ + c)) − vol(χ′)

for all c ∈ R, see (3.12). This follows immediately from the Lipschitz prop-
erty of the volume and min operators, see (3.8) and Lemma 3.2. □

Corollary 3.13. — For any χ, χ′ ∈ NR, the quantities

σ(χ, χ′), λmax(χ) and vol(χ)

only depend on the asymptotic equivalence classes of χ, χ′. Further,

χi ∼ χ′
i, i = 1, 2 =⇒ χ1 ∧ χ2 ∼ χ′

1 ∧ χ′
2.

Proof. — The first claim follows directly from Theorem 3.12. It implies
the second one, as λmax(χ) can be reconstructed from σ(χ) = σ(χ, χtriv),
by Theorem 3.6. Finally, the Lipschitz properties of the volume and the
min operator (see (3.8) and Lemma 3.2) carry over to NR, which takes care
of the last two claims. □

Following [43, 69], we finally show:

Lemma 3.14. — Suppose χ ∈ NR satisfies χ ⩾ χtriv. For any p ∈ [1,∞),
we then have:

(i) dp(χ, χtriv)p = p
∫ +∞

0
λp−1 vol(χ ⩾ λ) dλ

= p
∫ λmax(χ)

0
λp−1 vol(χ ⩾ λ) dλ;

(ii) λmax(χ) = d∞(χ, χtriv) ⩽ Cn,p dp(χ, χtriv) with Cn,p :=
(

n+p
n

)1/p.

Note that Cn,p → 1 as p → ∞, and hence dp(χ, χtriv) → d∞(χ, χtriv).

Proof. — As in the proof of Theorem 3.6, set b := λmax(χ), f(λ) :=
vol(χ ⩾ λ), and pick a smooth function g ∈ C∞

c (R) such that g(λ) = λp

for λ ∈ [0, b]. Then f(λ) = 1 for λ ⩽ 0, f(λ) = 0 for λ > b, and hence

dp(χ, χtriv)p =
∫ b

0
λp dσ(χ) = −

∫
R
g(λ)f ′(λ) dλ =

∫
R
g′(λ)f(λ) dλ

=
∫ 0

−∞
g′(λ)dλ+

∫ +∞

0
pλp−1f(λ) dλ,

where
∫ 0

−∞ g′(λ) dλ = g(0) = 0. This proves (i).
The first equality in (ii) is (1.11). To prove the inequality, we argue as

in [69, Section 5]. By Theorem 3.6, f(λ)1/n is concave on (−∞, b], and
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hence f(λ)1/n ⩾ 1 − λ/b for λ ∈ [0, b]. Using (i), this yields

dp(χ, χtriv)p = p

∫ λmax

0
λp−1f(λ) dλ

⩾ p

∫ b

0
λp−1

(
1 − λ

b

)n

dλ

= bp p

∫ 1

0
tp−1(1 − t)n dt = p!n!

(n+ p)!b
p,

and the result follows. □

3.5. The space of norms modulo translation

For any p ∈ [1,∞], the additive action of R on NR preserves the pseudo-
metric dp, which thus induces a quotient pseudo-metric dp on the space of
norms modulo translation NR/R, such that

dp(χ, χ′) = inf
c∈R

dp(χ, χ′ + c)

for χ, χ′ ∈ NR. This supremum is actually achieved:

Lemma 3.15. — For any χ, χ′ ∈ NR, there exists c ∈ R such that
dp(χ, χ′) = dp(χ, χ′ + c) and |c| ⩽ 2 dp(χ, χ′).

In particular, dp(χ, χ′) = 0 iff χ, χ′ are asymptotically equivalent modulo
translation, in the sense that χ ∼ χ′ + c for some c ∈ R (which is then
uniquely determined by c = vol(χ) − vol(χ′)). When χ′ = χtriv we say that
χ is asymptotically constant.

Proof. — By (3.16) , for all c ∈ R we have

|c| = dp(χ′, χ′ + c) ⩽ dp(χ′, χ) + dp(χ, χ′ + c).

Thus dp(χ, χ′ + c) ⩽ dp(χ, χ′) =⇒ |c| ⩽ 2 dp(χ, χ′), and hence

dp(χ, χ′) = inf {dp(χ, χ′ + c) | c ∈ R, |c| ⩽ 2 dp(χ, χ′)} ,

which is achieved by compactness and Lipschitz continuity of

c 7−→ dp(χ, χ′ + c). □

Definition 3.16. — For each p ∈ [1,∞), we define the Lp-norm of
χ ∈ NR as

∥χ∥p := dp(χ, χtriv + vol(χ)).
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This definition extends the notion in [39] of the Lp-norm of a test con-
figuration, see [17, Remark 6.10]. Indeed, (3.14) yields

∥χ∥p
p =

∫
|λ− λ|p dσ(χ),

the p-th central moment of the spectral measure σ(χ), where λ=
∫
λdσ(χ) =

vol(χ) is its barycenter. Note also that

∥χ+ c∥p = ∥χ∥p, ∥tχ∥p = t∥χ∥p

for c ∈ R, t ∈ R>0.

Proposition 3.17. — Given a norm χ ∈ NR, the following are equiva-
lent:

(i) χ is asymptotically constant;
(ii) ∥χ∥p = 0 for some p ∈ [1,+∞);
(iii) ∥χ∥p = 0 for all p ∈ [1,+∞).

Proof. — If χ ∼ χtriv + c with c ∈ R, then c = vol(χ), by (3.8). The rest
is straightforward. □

3.6. Convergence of the canonical approximants

The next result strengthens the approximation result proved in [13, The-
orem 1.14] (see also [12, Théorème 3.15] and [30]). A version valid for
arbitrary non-Archimedean fields is given in [63, Theorem 4.5.4] (which
appeared after the first version of the current paper).

Recall that the canonical approximants χd ∈ TR of a norm χ ∈ NR,
which are defined for d sufficiently divisible, satisfy χd ⩽ χ and form an
increasing net with respect to divisibility.

Theorem 3.18. — For any χ∈ NR and p∈ [1,∞), we have dp(χd, χ) → 0.

Recall that the result holds for p = ∞ iff χ is continuous (see Theo-
rem 2.19).

Corollary 3.19. — For any p ∈ [1,∞), the set TZ of test configura-
tions is dense in NR in the dp-topology.

Proof. — By Theorem 2.19, TZ is dense in TR for d∞-topology, and hence
also for the dp-topology, since dp ⩽ d∞. It therefore suffices to show that
TR is dp-dense in NR, which follows from Theorem 3.18 since the canonical
approximants of any norm lie in TR. □
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By d1-continuity of spectral measures (see Theorem 3.12) we also get:

Corollary 3.20. — For all χ, χ′ ∈ NR we have limd σ(χd, χ
′
d) =σ(χ, χ′).

Proof of Theorem 3.18. — Since χd ⩽ χ is an increasing net, d∞(χd, χ)
is decreasing, and hence uniformly bounded. In view of (3.5), it is thus
enough to show the result for p = 1, i.e.

d1(χd, χ) = vol(χ) − vol(χd)

tends to 0. Since (χd) is d∞-bounded, we can find a < b such that σ(χ)
and each σ(χd) is has support in [a, b], and hence

vol(χ) − vol(χd) =
∫ b

a

vol(χ ⩾ λ) dλ−
∫ b

a

vol(χd ⩾ λ) dλ,

see Theorem 3.6. By dominated convergence, it will thus suffice to show
limd vol(χd ⩾ λ) = vol(χ ⩾ λ) for each λ ∈ R fixed.

To see this, we may assume, after replacing L by a multiple, that R =
R(X,L) is generated in degree 1 and that χ is defined on R. By definition
(see Theorem 3.6(i)), we have

vol(χ ⩾ λ) = vol(S)
vol(R) = V −1 vol(S),

where S ⊂ R is the graded subalgebra with graded pieces Sm := FmλRm

and vol(S) = limm→∞
n!

mn dimSm. Similarly,

vol(χd ⩾ λ) = (dnV )−1 vol(T (d))

where T (d) ⊂ S(d) is generated in degree 1 by T (d)1 = S
(d)
1 = Sd. The

desired convergence now follows from Lemma 3.21 below. □

Lemma 3.21. — Let S ⊂ R be a graded subalgebra, and suppose we are
given, for each d divisible enough, a graded subalgebra T (d) ⊂ S(d) such
that T (d)1 = S

(d)
1 = Sd. Then limd d

−n vol(T (d)) = vol(S).

Proof. — We use Okounkov bodies, following [12]. Set K := k(X), and
pick a valuation ν : K× → Zn of maximal rational rank, equal to n (e.g. as-
sociated to a flag of subvarieties as in [52]). Set Γm := ν(Sm ∖ {0}) and
Γ(d)m := ν(T (d)m ∖ {0}) for m ⩾ 1. Let ∆(S) and ∆(T (d)) be the closed
convex hull inside Rn of

⋃
m m−1Γm and of

⋃
m m−1Γ(d)m, respectively.

Then vol(S) = n! vol(∆(S)) and vol(T (d)) = n! vol(∆(T (d))), so it suffices
to prove that limd vol(d−1∆(T (d))) = vol(∆(S)).

Since T (d)m ⊂ Sdm, we get Γ(d)m ⊂ Γdm for all d,m, and hence
d−1∆(T (d)) ⊂ ∆(S) for all d. If vol(∆(S)) = 0, we are done, so we may
assume ∆(S) has nonempty interior. Pick compact subsets A and B of Rn
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with A ⋐ B ⋐ ∆(S). It suffices to prove that d−1∆(T (d)) ⊃ A for d suf-
ficiently divisible. Now d−1Zn ∩ B = d−1Γd ∩ B, see [12, Lemme 1.13]. If
∆d is the convex hull of d−1Γd, it follows that ∆d ⊃ A. But T (d)1 = Sd,
so Γ(d)1 = Γd, and hence d−1∆(T (d)) ⊃ ∆d ⊃ A, which completes the
proof. □

4. Non-Archimedean pluripotential theory

In this section we summarize results from [18] that are relevant to our
later purposes.

4.1. L-psh functions

An L-psh function φ : Xan → [−∞,+∞) is defined as the pointwise limit
of any decreasing net in HQ (or HR), excluding φ ≡ −∞. We denote by
PSH = PSH(L) the set of all L-psh functions. If φ ∈ PSH, then φ+c ∈ PSH
for all c ∈ R. If φ,ψ ∈ PSH, then max{φ,ψ} ∈ PSH. If (φj)j is a decreasing
net in PSH, and φ is the pointwise limit of (φj), then φ ∈ PSH, or φ ≡
−∞. We can thus describe PSH as the smallest class of functions which
is invariant under max, translation by a constant, decreasing limits, and
contains all functions of the form m−1 log |s| with m sufficiently divisible
and s ∈ Rm ∖ {0}.

By Dini’s Lemma, the set

CPSH := PSH ∩ C0

of (bounded) continuous L-psh functions is the closure of HQ (or HR) in
C0 (in line with the definition of a semipositive (continuous) metric in [28,
47, 70]).

The set PSH is stable under convex combinations, and under the action
(t, φ) 7→ t · φ of R>0 on functions, see (1.15). If v, v′ ∈ Xan and v ⩽ v′,
then φ(v) ⩾ φ(v′) for all φ ∈ PSH. In particular,

supφ := sup
Xan

φ = φ(vtriv)

for all φ ∈ PSH.
A subset Σ ⊂ Xan is pluripolar if Σ ⊂ {φ = −∞} for some L-psh

function φ. This condition is independent of the choice of ample Q-line
bundle L, and Σ is nonpluripolar iff

(4.1) T(Σ) := sup
φ∈PSH

(
supφ− sup

Σ
φ

)
∈ [0,+∞]
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is finite. If Σ = {v} with v ∈ Xan, then T({v}) = T(v) as defined in (1.18),
and the set X lin ⊂ Xan of valuations of linear growth thus coincides with
the set of non-pluripolar points v ∈ Xan, i.e. such that every φ ∈ PSH is
finite-valued on v.

Since every divisorial valuation has linear growth, L-psh functions are
finite-valued on Xdiv. The restriction map PSH → RXdiv is further injec-
tive [18, Corollary 4.23], and we endow PSH with the induced topology
of pointwise convergence on Xdiv. This is in fact equivalent to pointwise
convergence on X lin [18, Theorem 11.4].

Note that since HR(dL) = dHR(L) we have PSH(dL) = dPSH(L) for
any d ∈ Q>0. To study PSH(L) we may therefore in practice assume that
L is an ample line bundle and that R(X,L) is generated in degree 1.

We refer to [18, Example 4.13] for a concrete description of L-psh func-
tions on curves. See also Appendix B below for the toric case.

4.2. Monge–Ampère operator and energy on HQ

The mixed Monge–Ampère operator on HZ = HQ associates to any tuple
(φ1, . . . , φn) ∈ Hn

Q a Radon probability measure MA(φ1, . . . , φn), defined
as follows. Pick integrally closed, semiample test configurations (X ,Li) for
(X,L) (with the same X ) such that φi = φLi , see Appendix A. Denoting
by X0 =

∑
i biEi the irreducible decomposition of the central fiber, we then

have
MA(φ1, . . . , φn) =

∑
i

bi(L1|Ei
· . . . · Ln|Ei

)δvi
,

where vi ∈ Xdiv is the divisorial valuation defined by Ei.
Following the strategy by Chambert-Loir in [25], the mixed Monge–

Ampère operator admits a unique continuous extension to the space CPSH
of continuous L-psh functions (with respect to uniform convergence), and
this extension is in turn a special case of the with the general theory de-
veloped in [26].

Lemma 4.1. — For any φ1, . . . , φn ∈ HR, the support of MA(φ1, . . . , φn)
is a finite subset of X lin.

Proof. — Set µ := MA(φ1, . . . , φn) and Σ := suppµ. The finiteness of Σ
is proved in [14, Example 8.11], as a consequence of [26, Proposition 6.9.2]
and the invariance under ground field extension of the Chambert-Loir–
Ducros construction. By [18, Proposition 7.21], we further have

∫
φµ >

−∞ for any φ ∈ PSH. Since φ is bounded above, this implies that φ is
finite at each v ∈ Σ; thus v is nonpluripolar, and hence v ∈ X lin. □
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We will use notation such as MA(φ⟨j⟩, ψ⟨n−j⟩), with j copies of φ and
n− j copies of ψ, and write MA(φ) = MA(φ⟨n⟩). Thus MA(0) = δvtriv .

The Monge–Ampère energy E: CPSH → R is the primitive of the
Monge–Ampère operator in the sense that

(4.2) d
dt

∣∣∣∣
t=0

E((1 − t)φ+ tψ) =
∫

(ψ − φ) MA(φ)

for φ,ψ ∈ CPSH, normalized by E(0) = 0. As such, E is monotone in-
creasing, i.e. φ ⩾ ψ =⇒ E(φ) ⩾ E(ψ). Integration along line segments
yields

(4.3) E(φ) − E(ψ) = 1
n+ 1

n∑
j=0

∫
Xan

(φ− ψ) MA(φ(j), ψ(n−j)),

for φ,ψ ∈ CPSH, and hence

E(φ) = 1
n+ 1

n∑
j=0

∫
Xan

φ MA
(
φ⟨j⟩, 0⟨n−j⟩

)
.

If φ ∈ HZ = HQ is represented by a test configuration (X ,L), then

(4.4) E(φ) = (Ln+1)
(n+ 1)(Ln) ,

where (X ,L) → P1 is the canonical compactification of (X ,L) → A1.
The functional E is concave on CPSH, which amounts to

(4.5) E(φ) − E(ψ) ⩽
∫

(φ− ψ) MA(ψ)

for all φ,ψ ∈ CPSH, by (4.2). Combined with (4.3), this implies

(4.6) φ ⩾ ψ =⇒ E(φ) − E(ψ) ≈
∫

(φ− ψ) MA(ψ).

In addition to E, we introduce the translation invariant functional

I(φ,ψ) :=
∫

(φ− ψ) (MA(ψ) − MA(φ)) ⩾ 0,

which satisfies the quasi-triangle inequality

(4.7) I(φ1, φ2) ≲ I(φ1, φ3) + I(φ3, φ2).

We also set
I(φ) := I(φ, 0) := supφ−

∫
φMA(φ).

The Monge–Ampère operator is homogeneous with respect to the action
of R>0 on continuous L-psh functions φ, in the sense that MA(t · φ) =
t⋆ MA(φ) for all t > 0. Similarly, we have E(t ·φ) = tE(φ), I(t ·φ) = t I(φ).
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4.3. Functions and measures of finite energy

The Monge–Ampère energy admits a unique non-decreasing, usc exten-
sion E: PSH → R ∪ {−∞}, given for φ ∈ PSH by

(4.8) E(φ) := inf {E(ψ) | φ ⩽ ψ ∈ CPSH} .

We denote by

E1 := {φ ∈ PSH | E(φ) > −∞}

the set of L-psh functions of finite energy. In other words, functions in E1

are decreasing limits of nets φi ∈ HQ with energy E(φi) uniformly bounded
below. In particular, CPSH ⊂ E1.

The weak topology of E1 is its subspace topology from PSH, and the
strong topology on E1 is the coarsest refinement of the weak topology for
which E becomes continuous.

For a decreasing or increasing net (φj) in E1, strong and weak conver-
gence coincide, i.e. φj → φ strongly in E1 iff φj → φ pointwise on Xdiv,
see Example 12.2 and Theorem 12.5 in [18], respectively.

Denote by M the space of Radon probability measures on Xan, endowed
with the weak topology. The main point in introducing the strong topology
is that the mixed Monge–Ampère operator MA, a priori only defined as a
map (CPSH)n → M, admits a (unique) extension (E1)n → M that is
continuous in the strong topology on both sides.

Further,

(φ0, φ1, . . . , φn) 7−→
∫
φ0 MA(φ1, . . . , φn)

is finite-valued and (strongly) continuous on tuples in E1. In particular, the
functional I from Section 4.2 extend continuously to E1, and it induces a
quasi-metric on E1/R that defines the strong topology.

The energy of a probability measure µ ∈ M on Xan is defined by

(4.9) E∨(µ) := sup
φ∈E1

{
E(φ) −

∫
φdµ

}
,

where the supremum can be restricted to functions in HQ, by approxima-
tion. This defines a convex, lsc function E∨ : M → [0,+∞]. We denote by

M1 :=
{
µ ∈ M | E∨(µ) < +∞

}
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the set of measures of finite energy. It comes with a strong topology, defined
as the coarsest refinement of the weak topology of measures in which E∨

is continuous. The topological space M1 does not depend on L.
By (4.5), for any φ ∈ E1, the measure µ = MA(φ) has finite energy, and

φ achieves the supremum in (4.9), i.e.

(4.10) E∨(MA(φ)) = E(φ) −
∫
φ MA(φ).

Conversely, a measure µ ∈ M1 satisfies µ = MA(φ) with φ ∈ E1 iff
φ achieves the supremum in (4.9). By a main result of [18], the Monge–
Ampère operator induces a topological embedding with dense image

MA: E1/R ↪−→ M1,

with respect to the strong topology on both sides.

4.4. Envelopes

Consider a bounded-above family (φi) of L-psh functions, and set φ :=
supi φi. By definition, the usc regularization φ⋆ : Xan → R ∪ {−∞} is the
smallest usc function such that φ⋆ ⩾ φ.

Lemma 4.2. — The restriction of φ⋆ to Xdiv coincides with φ, and φ⋆

is the smallest usc function on Xan with this property.

Proof. — By [18, Theorem 5.6], points of Xdiv are non-negligible, which
is a reformulation of the first assertion. Consider next a usc function
ψ : Xan → R ∪ {−∞} such that ψ = φ on Xdiv. For each i, we then
have φi ⩽ ψ on Xdiv, and hence on Xan, by [18, Theorem 4.22]. Taking
the supremum over i yields φ ⩽ ψ on Xan, and hence φ⋆ ⩽ ψ, since ψ
is usc. □

We say that (X,L) has the envelope property if φ⋆ is L-psh for each
bounded-above family of L-psh functions, using the above notation. It is
proved in [18, Theorem 5.20] that the envelope property holds if X is
smooth and k has characteristic zero, or in any characteristic if
dimX ⩽ 2 [48]. For later use, we record:

Lemma 4.3. — Let (φi) be a bounded-above, increasing net in E1. Set
φ := supi φi, and assume that φ⋆ is L-psh (e.g. L has the envelope prop-
erty). Then φ⋆ ∈ E1 and φi → φ⋆ strongly in E1.
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Proof. — The first point holds because φ⋆ ⩾ φi, and hence E(φ⋆) ⩾
E(φi) > −∞. As recalled above, we have φ⋆ = φ on Xdiv. Thus φi → φ⋆

pointwise on Xdiv, i.e. weakly in E1, and hence strongly as well, since (φi)
is an increasing net. □

Given a function φ : Xan → R∪{±∞} we define the psh envelope point-
wise as

P(φ) := sup{ψ ∈ PSH | ψ ⩽ φ}.

Note that the Fubini–Study envelope in (2.18) can be written

Q(φ) = sup{ψ ∈ HQ | ψ ⩽ φ} = sup{ψ ∈ CPSH | ψ ⩽ φ}.

In both cases the convention sup ∅ = −∞ applies. Clearly Q(φ) ⩽ P(φ) ⩽
φ, and either inf φ = −∞ ≡ Q(φ), or Q(φ) is (finite-valued and) lsc. In the
latter case,

(4.11) Q(φ) = P(φ⋆)

where φ⋆ is the lsc regularization of φ (see [18, Lemma 5.19]). In particular,
Q(φ) = P(φ) when φ is continuous.

The functions P(φ) and Q(φ) are not psh in general. For any φ ∈ C0,
we have

P(φ) = Q(φ) ⇐⇒ P(φ) ∈ C0 ⇐⇒ P(φ) ∈ PSH,

and these properties hold if (and only if) L has the envelope property. For
the next result, see [18, Corollary 5.18].

Lemma 4.4. — Assume that (X,L) has the envelope property, and con-
sider a usc function φ : Xan → R ∪ {−∞}. Then:

(i) either P(φ) ∈ PSH or P(φ) ≡ −∞;
(ii) if φ is the pointwise limit of a decreasing net of usc functions

φi : Xan → R ∪ {−∞}, then P(φi) ↘ P(φ) pointwise on Xan.

Denote by E∞ ⊂ E1 the space of bounded L-psh functions. A function
φ ∈ E∞ is regularizable from below if there exists an increasing net (φj)j

in CPSH that converges to φ in PSH (i.e. pointwise on Xdiv). Such a net
can then be chosen in HQ, and converges strongly to φ in E1. We write

E∞
↑ ⊂ E∞

for the space of L-psh functions regularizable from below. If the envelope
property holds, then a bounded function φ ∈ E∞ lies in E∞

↑ iff its discon-
tinuity locus {φ⋆ < φ} is pluripolar [18, Theorem 11.23].
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Remark 4.5. — Assuming the envelope property, the inclusion E∞
↑ ⊂ E∞

is strict if n ⩾ 1, whereas CPSH ⊂ E∞
↑ is strict as soon as n ⩾ 2. See

Examples 13.23 and 13.25 in [18].

For any bounded function φ ∈ L∞, denote by Q⋆(φ) := Q(φ)⋆ the usc
regularization of Q(φ).

Lemma 4.6. — Assume that (X,L) has the envelope property. Then:
(i) Q⋆ : L∞ → L∞ is a projection operator onto E∞

↑ ;
(ii) for all φ,ψ ∈ E∞

↑ we have Q⋆(φ ∧ ψ) = P(φ ∧ ψ).

Proof. — (i) follows from [18, Theorem 13.24]. Pick φ,ψ ∈ E∞
↑ . By (4.11)

we have Q(φ∧ψ) = P((φ∧ψ)⋆) = P(φ⋆ ∧ψ⋆). Since φ,ψ are regularizable
from below, their discontinuity locus is pluripolar, i.e. φ⋆ = φ, ψ⋆ = ψ, and
hence φ⋆ ∧ψ⋆ = φ∧ψ, outside a pluripolar set. By [18, Theorem 13.20], it
follows that P(φ⋆ ∧ψ⋆)⋆ = P(φ∧ψ)⋆, which coincides with P(φ∧ψ) since
φ ∧ ψ is usc (see Lemma 4.4). This proves (ii). □

4.5. The extended energy

Recall from [18, Section 8](2) that the extended Monge–Ampère energy
of an arbitrary function φ : Xan → R ∪ {±∞} is defined as

(4.12) Ẽ(φ) := sup{E(ψ) | ψ ∈ PSH, ψ ⩽ φ} ∈ R ∪ {±∞}.

Note that Ẽ(φ) = Ẽ(P(φ)), since any ψ ∈ PSH satisfies ψ ⩽ φ ⇔ ψ ⩽
P(φ). If φ : Xan → R ∪ {+∞} is lsc (and hence bounded below), then
P(φ) = Q(φ), see (4.11), and hence

(4.13) Ẽ(φ) = Ẽ(P(φ)) = Ẽ(Q(φ)) = sup{E(ψ) | ψ ∈ HR, ψ ⩽ φ}.

A Dini-type argument (see [18, Proposition 8.3]) further yields:

Lemma 4.7. — The functional φ 7→ Ẽ(φ) is continuous along increasing
nets of bounded-below lsc functions.

Following [19], we say that (X,L) has the weak envelope property if
there exists a birational model π : X ′ → X and an ample Q-line bundle L′

on X ′ such that π⋆L ⩽ L′ and (X ′, L′) has the envelope property. This is
for instance the case whenever char k = 0, or if dimX ⩽ 2.

(2) In loc. cit., the extended energy was simply denoted by E(φ).
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Lemma 4.8. — Assume (X,L) has the weak envelope property, and pick
any bounded-above family (φi) of L-psh functions. Set φ := supi φi. Then:

(i) φ⋆ = φ on X lin;
(ii) if φ is further bounded below, then Ẽ(φ⋆) = Ẽ(φ).

Proof. — Point (i) means that each v ∈ X lin is non-negligible. Use the
previous notation. Since π is birational, we have π−1({v}) = {v′} with
v′ ∈ X ′lin. By [18, Lemma 5.4], it suffices to show that v′ is non-negligible,
and this follows from [18, Theorem 13.17], which applies because (X ′, L′)
has the envelope property. Finally, (ii) follows from [19, Theorem B], as the
assumption guarantees that P(φ) = φ. □

5. Darvas metrics
In this section, we study the metrics on the spaces HR, E1 and M1

induced by the d1-pseudometric of NR, and prove the main part of Theo-
rem B.

5.1. Volume vs. energy

The next result will be a key tool in what follows.

Theorem 5.1. — For any χ ∈ NR we have vol(χ) = Ẽ(FS(χ)).

Here FS(χ) is bounded and lsc, but not L-psh in general, and Ẽ(FS(χ))
is its extended energy (see Section 4.5).

Proof. — Consider the round-down χ′ := ⌊χ⌋ ∈ NZ. Then d∞(χ, χ′) = 0
(see Example 1.7), and hence FS(χ) = FS(χ′), vol(χ) = vol(χ′). As a
result, we may and do assume χ ∈ NZ. By Theorem 3.18, the canoni-
cal approximants χd ∈ TZ satisfy vol(χd) → vol(χ). On the other hand,
FS(χd) = FSd(χ) increases pointwise to FS(χ) (see (2.9)), and hence
E(FS(χd)) = Ẽ(FS(χd)) → Ẽ(FS(χ)), by Lemma 4.7.

We are thus reduced to the case χ ∈ TZ, which is a consequence of [17]. In-
deed, χ corresponds to an ample test configuration (X ,L) for (X,L) under
the Rees correspondence (see Appendix A). By [17, Proposition 3.12], the
spectral measure σ(χ) coincides with the Duistermaat–Heckman measure
DH(X ,L), and passing to the barycenters yields

vol(χ) = (Ln+1)
(n+ 1)(Ln) ,

by [17, Lemma 7.3]. By (4.4), the right-hand side is also equal to E(FS(χ)) =
Ẽ(FS(χ)), and the result follows. □
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Corollary 5.2. — Any norm χ ∈ NR is asymptotically equivalent to
its homogenization, i.e. χ ∼ χhom.

Proof. — Since χ ⩽ χhom, it suffices to show vol(χ) = vol(χhom) (see
Lemma 3.11). This follows from Theorem 5.1, since FS(χ) = FS(χhom) by
Proposition 2.14. □

Corollary 5.3. — For any φ ∈ L∞ we have vol(IN(φ)) = Ẽ(Q(φ)) =
Ẽ(φ⋆).

Proof. — Since IN(φ⋆) = IN(φ) (see (2.15)), we may assume that φ is
lsc, and hence Ẽ(φ) = Ẽ(Q(φ)), see (4.13). Now FS(IN(φ)) = Q(φ), by
Proposition 2.29, and we conclude by Theorem 5.1. □

5.2. The Darvas metric on HR

Recall from Corollary 2.18 that the operators

FS: (TR,d∞) −↠ (HR,d∞), IN: (HR,d∞) ↪−→ (TR,d∞)

are isometries such that FS ◦ IN = id.
For any p ∈ [1,∞], the pseudo-metric dp on TR ⊂ NR satisfies dp ⩽ d∞;

it is thus constant along the fibers of FS, and hence descends to a pseudo-
metric dp on HR, such that

FS: (TR,dp) −↠ (HR,dp), IN: (HR,dp) ↪−→ (TR,dp)

are isometries. Theorem A asserts that dp is a metric on HR. Since dp ⩾ d1,
this follows from the following more precise result.

Theorem 5.4. — The pseudo-metric d1 on HR is a metric, uniquely
characterized by

φ ⩾ ψ =⇒ d1(φ,ψ) = E(φ) − E(ψ);(5.1)
d1(φ,ψ) = inf{d1(φ, τ) + d1(τ, ψ) | τ ∈ HR, τ ⩽ φ ∧ ψ},(5.2)

for all φ,ψ ∈ HR.

Proof. — We first prove that d1 satisfies (5.1) and (5.2), which will take
care of uniqueness. Pick φ,ψ ∈ HR, and set χ := IN(φ), χ′ := IN(ψ).
Then FS(χ) = φ, FS(χ′) = ψ, and Theorem 5.1 implies vol(χ) = E(φ),
vol(χ′) = E(ψ). If φ ⩾ ψ, then χ ⩾ χ′, and (3.15) yields

d1(φ,ψ) = d1(χ, χ′) = vol(χ) − vol(χ′) = E(φ) − E(ψ),
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which proves (5.1). Next, pick ε > 0. Applying Theorem 3.18 to χ ∧ χ′

yields χ′′ ∈ TR such that χ′′ ⩽ χ ∧ χ′ and d1(χ′′, χ ∧ χ′) ⩽ ε. If we set
τ := FS(χ′′) ∈ HR, then τ ⩽ φ,ψ, and

d1(φ, τ) + d1(τ, ψ) = d1(χ, χ′′) + d1(χ′′, χ′)
⩽ d1(χ, χ ∧ χ′) + d1(χ ∧ χ′, χ′) + 2ε
= d1(χ, χ′) + 2ε = d1(φ,ψ) + 2ε,

where we have used (3.15). This proves (5.2). Assume now d1(φ,ψ) = 0.
By (5.1) and (5.2), there exists a sequence (τi) in HR such that τi ⩽ φ,ψ

and E(τi) → E(φ) and E(τi) → E(ψ). By [18, Proposition 12.6], it follows
that (τi) converges to both φ and ψ in E1, and hence φ = ψ, since the
topology is separated. This proves, as desired, that d1 is a metric on HR
(this conclusion alternatively follows from (5.7) below). □

5.3. The Darvas metric on E1

We next prove that the metric d1 on HR canonically extends to E1,
yielding an analogue in our context of the metric introduced by Darvas [31]
in the complex analytic setting.

Theorem 5.5. — There exists a unique metric d1 on E1 that defines
the strong topology and restricts to the previous metric d1 on HR. Further:

(i) for all φ,ψ ∈ CPSH, we have

(5.3) d1(φ,ψ) = E(φ) + E(ψ) − 2 Ẽ(P(φ ∧ ψ));

(ii) the metric space (E1,d1) is complete iff the envelope property holds
for (X,L);

(iii) if the envelope property holds, then (5.3) remains valid for all φ,ψ ∈
E1, and P(φ ∧ ψ) ∈ E1.

Recall that the envelope property holds whenever X is smooth and
char(k) = 0, and fails if X is not unibranch. We refer to the metric d1
on E1 as the Darvas metric. By [64], (E1,d1) is a geodesic metric space,
assuming the envelope property.

Our strategy to extend d1 to E1 is to compare it to the functional

I(φ,ψ) := I(φ,ψ) + |supφ− supψ|.

It was indeed proven in [18, Section 12.1] that I is a quasi-metric on E1

that defines the strong topology, and further satisfies

(5.4) I(φ,ψ) = I(φ,φ ∨ ψ) + I(φ ∨ ψ,ψ).
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Set
I(φ) := I(φ, 0), d1(φ) := d1(φ, 0).

By the quasi-triangle inequality, (5.4) implies

(5.5) I(φ ∨ ψ) ≲ max{I(φ), I(ψ)}.

Lemma 5.6. — The quasi-metrics d1 and I on HR are Hölder compara-
ble, in the sense that

d1(φ,ψ) ≲ I(φ,ψ)α max{I(φ), I(ψ)}1−α(5.6)

I(φ,ψ) ≲ d1(φ,ψ)α max{d1(φ),d1(ψ)}1−α,(5.7)

with α := 1/2n. In particular, d1(φ) ≈ I(φ).

Proof. — First assume φ ⩾ ψ. Then (5.1) and (4.6) show that

d1(φ,ψ) = E(φ) − E(ψ) ≈
∫

(φ− ψ) MA(ψ),

and hence

I(φ,ψ) =
∫

(φ− ψ)(MA(ψ) − MA(φ)) ≲ d1(φ,ψ).

Now we can write

(5.8) I(φ,ψ) =
∫

(φ− ψ) MA(ψ) +
∫

(φ− ψ)(MA(0) − MA(φ)).

As a special case of [18, Lemma 7.30] we have the estimate∣∣∣∣∫ (φ− ψ)(MA(0) − MA(φ))
∣∣∣∣ ≲ I(φ,ψ)α max{I(φ), I(ψ)}1−α.

Since I ⩽ I, this yields on the one hand

d1(φ,ψ) ≲ I(φ,ψ) + I(φ,ψ)α max{I(φ), I(ψ)}1−α

≲ I(φ,ψ)α max{I(φ,ψ), I(φ), I(ψ)}1−α

≲ I(φ,ψ)α max{I(φ), I(ψ)}1−α.

Since I ≲ d1, we get on the other hand

I(φ,ψ) ≲ d1(φ,ψ) + d1(φ,ψ)α max{d1(φ),d1(ψ)}1−α

≲ d1(φ,ψ)α max{d1(φ),d1(ψ)}1−α.

This proves (5.6), and (5.7) when φ ⩾ ψ.
Now consider arbitrary φ,ψ ∈ HR. To prove (5.6), set σ := φ ∨ ψ ∈ HR.

From what precedes and (5.5), we have

d1(φ, σ) ≲ I(φ, σ)α max{I(φ), I(ψ}1−α
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and

d1(ψ, σ) ≲ I(ψ, σ)α max{I(φ), I(ψ}1−α,

which together with the triangle inequality for d1 yields (5.6).
The proof of (5.7) is similar. By (5.2) we can pick τ ∈ HR with τ ⩽

φ,ψ such that max{d1(τ, φ),d1(τ, ψ)} ≲ d1(φ,ψ), and hence d1(τ) ≲
max{d1(φ),d1(ψ}. Since τ ⩽ φ,ψ, the first step yields

I(φ, τ) ≲ d1(φ, τ)α max{d1(φ),d1(τ)}1−α

≲ d1(φ,ψ)α max{d1(φ),d1(ψ}1−α,

I(ψ, τ) ≲ d1(ψ, τ)α max{d1(ψ),d1(τ)}1−α

≲ d1(φ,ψ)α max{d1(φ),d1(ψ}1−α,

and the quasi-triangle inequality for I yields (5.7). □

Proof of Theorem 5.5. — Since HR is dense in E1, uniqueness is clear.
Given φ,ψ ∈ E1, pick sequences (φi), (ψi) in HR converging strongly to φ
and ψ, respectively (for example, we can use decreasing sequences). Thus
limi I(φi, φ) = limi I(ψi, ψ) = 0. Using (5.6) this implies that (d1(φi, ψi))i

is a Cauchy sequence, so that d1(φ,ψ) := limj d1(φj , ψj) exists. It is easy
to see that it does not depend on the choice of sequence (φi) and (ψi),
and that the extension is a pseudo-metric on E1. Further, the estimates of
Lemma 5.6 still hold for φ,ψ ∈ E1. In particular d1(φ,ψ) = 0 iff I(φ,ψ) = 0
iff φ = ψ, so d1 is a metric on E1. These estimates also show that d1 and
I share the same Cauchy sequences in E1, so that (E1,d1) is complete iff
(E1, I) is complete. By [18, Theorem 12.8], this is also equivalent to the
envelope property for (X,L), which proves (ii).

Next, pick φ,ψ ∈ HR. By (5.1) and (5.2), we have

d1(φ,ψ) = inf {d1(φ, τ) + d1(τ, ψ) | τ ∈ HR, τ ⩽ φ ∧ ψ}
= E(φ) + E(ψ) − 2 sup{E(ψ) | ψ ∈ HR, ψ ⩽ φ ∧ ψ}

= E(φ) + E(ψ) − 2 Ẽ(P(φ ∧ ψ)),

see (4.13). Since d1 ⩽ d∞, all terms are continuous with respect to uni-
form convergence, and the identity therefore remains valid on CPSH, which
yields (i).

Finally, assume that the envelope property holds. Pick φ,ψ ∈ E1, set
ρ := P(φ ∧ ψ), and choose decreasing nets (φi), (ψi) in HR converging to
φ,ψ. By Lemma 4.4, we either have ρ ∈ PSH or ρ ≡ −∞, and P(φi ∧ ψi)
decreases pointwise to ρ. Since (5.3) holds for φi, ψi ∈ HR, it also holds for
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φ,ψ, by continuity of E along decreasing nets. In particular, E(ρ) is finite,
and hence ρ ∈ E1. This proves (iii). □

We also note the following useful Lipschitz property:
Proposition 5.7. — For all φ,ψ ∈ E1 we have | E(φ)−E(ψ)| ⩽ d1(φ,ψ).
Proof. — By continuity, we may assume φ,ψ ∈ HR. Pick ε > 0 and

τ ∈ HR such that τ ⩽ φ ∧ ψ and E(φ) + E(ψ) − 2 E(τ) ⩽ d1(φ,ψ) + ε,
see (5.2). Then

|E(φ) − E(ψ)| ⩽ |E(φ) − E(τ)| + |E(τ) − E(ψ)| = E(φ) + E(ψ) − 2 E(τ)
⩽ d1(φ,ψ) + ε,

and the result follows. □

As in [33, Theorem 3.7], we next provide a comparison of the Darvas
metric d1 on E1 with the functional I1 : E1 × E1 → R⩾0 defined by

I1(φ,ψ) :=
∫

|φ− ψ|(MA(φ) + MA(ψ)).

This functional is obviously symmetric, and it separates points, as a con-
sequence of the Domination Principle (see [18, Corollary 10.6]). For all
φ,ψ ∈ E1, we further have

(5.9) I1(φ,ψ) = I1(φ,φ ∨ ψ) + I1(φ ∨ ψ,ψ).

As with I and I, this follows from the Locality Principle (see [18, Theo-
rem 7.40, Proposition 7.45]).

Theorem 5.8. — For all φ,ψ ∈ E1 we have d1(φ,ψ) ≈ I1(φ,ψ).
The proof relies on the following analogue of [33, Lemma 3.8].
Lemma 5.9. — If φ,ψ ∈ E1 and ρ := 1

2 (φ + ψ), then d1(φ,ψ) ≈
d1(φ, ρ) + d1(ρ, ψ).

Proof. — By approximation, we may assume φ,ψ ∈ HR. Pick any τ ∈
HR with τ ⩽ φ ∧ ψ. Then τ ⩽ φ,ψ, ρ, and (5.1) yields

d1(φ, ρ) + d1(ρ, ψ)
⩽ d1(φ, τ) + d1(ψ, τ) + 2 d1(ρ, τ)
= (E(φ) − E(τ)) + (E(ψ) − E(τ)) + 2(E(ρ) − E(τ))

≈
∫

(φ− τ) MA(τ) +
∫

(ψ − τ) MA(τ) + 2
∫

(ρ− τ) MA(τ)

= 2
∫

(φ− τ) MA(τ) + 2
∫

(ψ − τ) MA(τ)

≈ (E(φ) − E(τ) + E(ψ) − E(τ)) = d1(φ, τ) + d1(ψ, τ).
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Here the first inequality is simply the triangle inequality for d1, whereas
the third and fifth lines follow from (4.6). By (5.2), the infimum over τ of
the right-hand side equals d1(φ,ψ) and we are done. □

Proof of Theorem 5.8. — Since d1(φ,ψ) and I1(φ,ψ) are both continu-
ous along decreasing nets, we may assume wlog φ,ψ ∈ HR. Let us start by
proving d1(φ,ψ) ≲ I1(φ,ψ). By (5.9) and the triangle inequality for d1, it
suffices to consider the case φ ⩾ ψ. But in this case,(4.6) yields

d1(φ,ψ) = E(φ) − E(ψ) ≈
∫

(φ− ψ) MA(ψ) ⩽ I1(φ,ψ).

It remains to prove d1(φ,ψ) ≳ I1(φ,ψ). Set ρ := 1
2 (φ+ψ) ∈ HR, so that

Lemma 5.9 gives d1(φ,ψ) ≈ d1(φ, ρ) + d1(ρ, ψ). Pick ε > 0. By (5.2), we
can find σ, τ ∈ HR such that σ ⩽ φ ∧ ρ, τ ⩽ ρ ∧ ψ, and

d1(φ, ρ) ⩾ d1(φ, σ) + d1(σ, ρ) − ε and d1(ρ, ψ) ⩾ d1(ρ, τ) + d1(τ, ψ) − ε,

and hence
d1(φ,ψ) ≳ d1(σ, ρ) + d1(ρ, τ) − 2ε.

As σ ⩽ ρ, we have

d1(σ, ρ) = E(ρ)−E(σ) ⩾
∫

(ρ−σ) MA(ρ) ⩾ 2−n

∫
(ρ−σ)(MA(φ)+MA(ψ)),

where the last inequality follows by expanding MA(ρ) = MA( 1
2 (φ + ψ)).

Combining this with the analogous lower bound on d1(ρ, τ) yields

d1(φ,ψ) ≳
∫

(2ρ− σ − τ)(MA(φ) + MA(ψ)) − 2ε.

We conclude by noting that 2ρ− σ − τ ⩾ 1
2 |φ− ψ| and letting ε → 0. □

5.4. The Darvas metric on M1

By [18, Proposition 12.7], the Monge–Ampère operator induces a topo-
logical embedding with dense image

MA: E1/R ↪→ M1,

where E1 and M1 are both equipped with the strong topology. In particular,
the quotient topology of E1/R is Hausdorff. Since the action of R on E1 by
translation preserves d1, the topology of E1/R is defined by the quotient
metric

(5.10) d1(φ,ψ) = inf
c∈R

d1(φ+ c, ψ).
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Note also that the isometric surjection FS: (TR,d1) ↠ (HR,d1), being equi-
variant with respect to the action of R, induces an isometric surjection

(5.11) FS: (TR/R,d1) −↠ (HR/R,d1),

where d1 respectively denotes the restriction of the quotient metric on
NR/R and E1/R.

As in the proof of Lemma 3.15, we have:

Lemma 5.10. — For all φ,ψ ∈ E1, there exists c∈R such that d1(φ,ψ) =
d1(φ+ c, ψ) and |c| ⩽ 2 d1(φ,ψ) ≲ max{I(φ), I(ψ)}.

This provides another reason why (5.10) defines a metric on E1/R.

Theorem 5.11. — There exists a unique metric d1 on M1 that defines
the strong topology and restricts to the quotient metric (5.10) on E1/R ↪→
M1. Furthermore, the metric space (M1,d1) is complete.

Note that completeness this time holds with or without the envelope
property, in contrast with Theorem 5.5. As with the latter, the proof
is based on a comparison of d1 with the translation invariant functional
I : E1 × E1 → R⩾0.

Lemma 5.12. — The quasi-metrics d1 and I on E1/R are Hölder com-
parable, i.e.

d1(φ,ψ) ≲ I(φ,ψ)α max{I(φ), I(ψ)}1−α,(5.12)

I(φ,ψ) ≲ d1(φ,ψ)α max{d1(φ),d1(ψ)}1−α(5.13)

for all φ,ψ ∈ E1, with α := 1/2n. In particular, d1(φ) ≈ I(φ).

Proof. — By translation invariance of I and d1, we may assume supφ =
supψ = 0. Then (5.12) follows directly from (5.6), since d1(φ,ψ) ⩽ d1(φ,ψ).
By Lemma 5.10, we can find c ∈ R such that d1(φ,ψ) = d1(φ + c, ψ) and
|c| ≲ max{I(φ), I(ψ)}. By (5.7) we infer

(5.14) I(φ,ψ) ⩽ I(φ+ c, ψ) ≲ d1(φ,ψ)α max{I(φ), I(ψ)}1−α.

In particular, I(φ) ≲ d1(φ)α I(φ)1−α; hence I(φ) ≲ d1(φ), and (5.13) fol-
lows. □

Proof of Theorem 5.11. — Since E1/R ↪→ M1 has dense image, unique-
ness is clear. By [18, Theorem 10.12], the strong topology of M1 is defined
by a certain quasi-metric I∨, that further satisfies I∨(MA(φ),MA(ψ)) ≈
I(φ,ψ). Using the estimates of Lemma 5.12 and arguing just as in the
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proof of Theorem 5.5, we infer the existence of an extension of d1 to a
pseudo-metric d1 on M1 such that

d1(µ, δvtriv) ≈ I∨(µ, δvtriv) ≈ E∨(µ),(5.15)

d1(µ, µ′) ≲ I∨(µ, µ′)α max{E∨(µ),E∨(µ′)}1−α,(5.16)

I∨(µ, µ′) ≲d1(µ, µ′)α max{E∨(µ)),E∨(µ′)}1−α,(5.17)

for all µ, ν ∈ M1 (recalling that MA(0) = δvtriv). This shows that d1
separates points, and hence is a metric on M1, which further shares the
same convergent and Cauchy sequences with I∨. It thus defines the strong
topology of M1, and (M1,d1) is complete, because (M1, I∨) is complete
by [18, Theorem 10.14]. □

Combining the above estimates with a key estimate for Monge–Ampère
integrals from [18], we get the following Hölder continuity property:

Theorem 5.13. — There exist α1, α2, α3 ∈ R>0, only depending on n,
such that

∑
i αi = 1 and

(5.18)
∣∣∣∣∫ |φ− φ′| (µ− µ′)

∣∣∣∣ ≲ d1(φ,φ′)α1 d1(µ, µ′)α2Mα3

for all φ,φ′ ∈ E1 and µ, µ′ ∈ M1, where

M := max{I(φ), I(φ′),E∨(µ),E∨(µ′)}.

Further, there exists α ∈ (0, 1) only depending on n such that

(5.19) ∥φ− φ′∥L1(µ) ≲ d1(φ,φ′)α max{I(φ), I(φ′),E∨(µ)}1−α.

Proof. — By [18, Theorem 10.3], we have∣∣∣∣∫ (φ− φ′)(µ− µ′)
∣∣∣∣ ≲ I(φ,φ′)α I∨(µ, µ′) 1

2M
1
2 −α.

Injecting (5.13) and (5.17) yields

(5.20)
∣∣∣∣∫ (φ− φ′)(µ− µ′)

∣∣∣∣ ≲ d1(φ,φ′)α1 d1(µ, µ′)α2Mα3

with α1, α2, α3 as above. Next, write

|φ− φ′| = 2(τ − φ′) + (φ′ − φ)

with τ := φ ∨ φ′ ∈ E1. On the one hand, we have I(τ) ≲ M . On the other
hand, Theorem 5.8 and (5.9) yield

d1(τ, φ′) ≈ I1(τ, φ′) ⩽ I1(φ,φ′) ≈ d1(φ,φ′).
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Applying (5.20) to τ, φ′ and φ′, φ now yields (5.18). To prove (5.19), set
µ′ = MA(φ). Then E∨(µ) ≈ I(φ), and hence∣∣∣∣∫ |φ− φ′| (µ− MA(φ))

∣∣∣∣ ≲ d1(φ,φ′)α max{I(φ), I(φ′),E∨(µ)}1−α.

By Theorem 5.8, we have on the other hand
∫

|φ−φ′| MA(φ) ≲ d1(φ,φ′),
and summing up these estimates yields (5.19). □

6. Divisorial and maximal norms

The restriction of the pseudometric d1 to the subspace N hom
R ⊂ NR of ho-

mogeneous norms is still not a metric unless dimX = 0, see Example 3.10.
Here we study further subspaces on which d1 does induce a metric.

One such subspace consists of divisorial norms, defined by finitely many
divisorial valuations. These play an important role in the notion of divisorial
stability introduced and studied in [20]. We then show that, at least in
characteristic zero, there is a canonical maximal subspace of N hom

R on which
d1 is a metric. In particular, we prove Theorem D.

6.1. General infimum norms

The following construction generalizes the one in Section 2.4.

Definition 6.1. — For any non-pluripolar set Σ ⊂ Xan, and any
bounded function φ : Σ → R, let INΣ(φ) ∈ N hom

R denote the homogeneous
norm defined for s ∈ Rm by

(6.1) INΣ(φ)(s) = inf
v∈Σ

{v(s) +mφ(v)}.

Note that exp(− INΣ(φ)(s)) coincides with the more usual supnorm
supΣ |s| e−mφ. The filtration corresponding to INΣ(φ) is given by

FλRm = {s ∈ Rm | v(s) +mφ(v) ⩾ λ for all v ∈ Σ} , λ ∈ R.

The condition that Σ is non-pluripolar, which is equivalent to T(Σ) < ∞
(see (4.1)) and holds as soon as Σ ∩ X lin ̸= ∅, guarantees that INΣ(φ) is
indeed a (linearly bounded) norm. More precisely:

Lemma 6.2. — For any subset Σ ⊂ Xan and any bounded function
φ : Σ → R, (6.1) defines a (linearly bounded) norm iff the closure Σ ⊂ Xan

is non-pluripolar. Further, we then have T(Σ) = λmax(INΣ(0)).
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Proof. — Since φ is bounded, it is clear that INΣ(φ) is a norm iff

T′(Σ) := sup
{
m−1 inf

v∈Σ
v(s)

∣∣∣∣ s ∈ Rm \ {0} with m sufficiently divisible
}

is finite. By continuity of v 7→ v(s) for any section s, we have T′(Σ) = T′(Σ),
and we may thus further assume that Σ is closed. It will then be enough to
show that T(Σ) = T′(Σ) (the case of a single point being [18, Lemma 4.46]).
Note that T′(Σ) = supφ(− supΣ φ) where φ runs over L-psh functions of
the form φ = m−1 log |s| with s ∈ Rm \ {0}. Since supXan φ = φ(vtriv) = 0,
we infer T(Σ) ⩾ T′(Σ). Conversely, pick φ ∈ PSH. If φ ∈ HR, then writing
φ as in (1.20) yields supXan φ ⩽ supΣ φ+ T′(Σ). In the general case, write
φ as the limit of a decreasing net in (φi) in HR. Since supXan φi = φi(vtriv)
converges to supXan φ = φ(vtriv), it suffices to show supΣ φi → supΣ φ. As
Xan, and hence Σ, are compact, we can find vi ∈ Σ such that φi(vi) =
supΣ φi, for each i. After passing to a subnet, we may further assume
vi → v ∈ Σ. If i ⩽ j then φi(vj) ⩾ φj(vj) = supΣ φj , and letting j → ∞
yields φi(v) ⩾ limj supΣ φj . Since limi φi(v) = φ(v), we infer supΣ φ ⩾
φ(v) ⩾ limj supΣ φj , and the result follows. □

Remark 6.3. — Except in the trivial case dimX = 0, we can always
find a pluripolar subset Σ ⊂ Xan such that Σ is non-pluripolar. Indeed,
the trivial valuation vtriv, which is non-pluripolar, lies in the closure of
X(k) ⊂ Xan. By [62], vtriv thus lies in the closure of a countable subset
Σ ⊂ X(k), which is necessarily pluripolar (see [18, Lemma 4.37]).

For a fixed non-pluripolar subset Σ ⊂ Xan, we write

N Σ
R ⊂ N hom

R

for the set of norms INΣ(φ), with φ ranging over bounded functions on Σ.

Example 6.4. — If φ : Xan → R is bounded, then INXan(φ) = IN(φ),
and Theorem 2.16 thus yields N Xan

R = N hom
R .

A simple check shows that

INΣ(φ ∧ φ′) = INΣ(φ) ∧ INΣ(φ′),
INΣ(φ+ c) = INΣ(φ) + c,

INtΣ(t · φ) = t INΣ(φ)

and

(6.2) d∞(INΣ(φ), INΣ(φ′)) ⩽ sup
Σ

|φ− φ′|
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for all bounded functions φ,φ′ : Σ → R, c ∈ R and t ∈ R>0. Thus N Σ
R is

invariant under the translation action of R and under minima, and it is
invariant under the scaling action of R>0 whenever Σ is.

Proposition 6.5. — Pick a non-pluripolar subset Σ ⊂ Xan. Then:
(i) each χ ∈ N Σ

R satisfies χ = INΣ(φ) with φ := FS(χ)|Σ, and φ is the
smallest bounded function on Σ with this property;

(ii) if Σ ⊂ Σ′ ⊂ Xan then N Σ
R ⊂ N Σ′

R .
(iii) if Σ is further dense in Σ′, then INΣ(φ) = INΣ′(φ) for each bounded,

usc function φ : Σ′ → R.

Proof. — Pick a bounded function ψ : Σ → R such that χ = INΣ(ψ). For
any v ∈ Σ and any s ∈ Rm \ {0} we have χ(s) ⩽ m−1v(s) + ψ(v). On the
one hand, this implies φ(v) = sups{χ(s) −m−1v(s)} ⩽ ψ(v) for any v ∈ Σ,
and hence INΣ(φ) ⩽ χ. On the other hand, for any s ∈ Rm \ {0} and any
v ∈ Σ, we have m−1v(s) + φ(v) ⩾ χ(s), so INΣ(φ) ⩾ χ. This proves (i).

To see (ii), pick χ ∈ N Σ
R , i.e. χ = INΣ(φ) with φ : Σ → R bounded. Pick

C > 0 such that χ(s) ⩽ mC for s ∈ Rm \ {0}. We claim that χ coincides
with χ′ := INΣ(φ′) ∈ N Σ′

R , where φ′ : Σ′ → R is the extension of φ such
that φ′ ≡ C on Σ′ \ Σ. To see this, pick s ∈ Rm \ {0} For each v′ ∈ Σ′ \ Σ
we have

v′(s) +mφ(v′) ⩾ mC ⩾ χ(s) = inf
v∈Σ

{v(s) +mφ(v)},

which yields, as desired, χ′(s) = infv∈Σ′{v(s) + mφ(v)} = infv∈Σ{v(s) +
mφ(v)} = χ(s).

Finally, the inequality INΣ(φ) ⩾ INΣ′(φ) in (iii) is trivial. Conversely,
pick any s ∈ Rm \ {0}. Then m−1v(s) + φ(v) ⩾ INΣ′(φ)(s) for all v ∈ Σ,
and this inequality extends to Σ′ as v 7→ m−1v(s) + φ(v) is usc on Σ′ and
Σ ⊂ Σ′ is dense. Thus INΣ(φ)(s) ⩽ INΣ′(φ)(s), which proves (iii). □

Corollary 6.6. — Suppose Σ ⊂ Xan is non-pluripolar. If (χi) is a
decreasing net in N Σ

R converging pointwise to χ ∈ N hom
R (see Remark 2.6),

then χ ∈ N Σ
R .

Proof. — Set φi := FS(χi). Then φi is a decreasing net of functions
on Xan bounded below by φ := FS(χ). For any i, Proposition 6.5(i) and
Example 6.4 imply

χi = INΣ(φi) ⩾ INΣ(φ) ⩾ IN(φ) = χ.

Taking the infimum over i yields χ = INΣ(φ) ∈ N Σ
R . □

Next we generalize the homogenization operator.
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Definition 6.7. — For any non-pluripolar subset Σ ⊂ Xan, we define
an operator PΣ : NR → N Σ

R by setting PΣ(χ) := INΣ(FS(χ)) for χ ∈ NR.

The map PΣ is a projection, i.e. PΣ is surjective and PΣ ◦ PΣ = PΣ,
by Proposition 6.5(i); it is further 1-Lipschitz with respect to the d∞-
pseudometric, by (2.10) and (6.2).

The map PXan : NR → N Xan

R = N hom
R coincides with homogenization

(see Theorem 2.16). Further Σ ⊂ Σ′ =⇒ PΣ′(χ) ⩽ PΣ(χ). In particular,
χ ⩽ χhom ⩽ PΣ(χ), and PΣ(χ) can be characterized as the smallest norm
in N Σ

R such that χ ⩽ PΣ(χ). A direct check further yields:

Lemma 6.8. — Let (Σi) be an increasing net of non-pluripolar subsets
of Xan, and set Σ :=

⋃
i Σi. Then PΣi

decreases pointwise to PΣ on NR.

For later use, we also note:

Lemma 6.9. — For any non-pluripolar subset Σ ⊂ Xan and χ ∈ NR, we
have FS(PΣ(χ)) = FS(χ) on Σ.

Proof. — Set φ := FS(χ). Since χ ⩽ PΣ(χ), we have φ ⩽ FS(PΣ(χ)).
Conversely, pick v ∈ Σ. For any s ∈ Rm \ {0}, we then have PΣ(χ)(s) =
INΣ(φ) ⩽ v(s)+mφ(v), and hence FS(PΣ(v)) = sups

1
m (PΣ(χ)(s)−v(s)) ⩽

φ(v), which proves the result. □

6.2. Divisorial norms and PL functions

In the next two subsections we consider two important cases of the con-
struction above.

Definition 6.10. — We define the set N div
R ⊂ N hom

R of divisorial
norms as the (increasing) union of N Σ

R over all finite subsets Σ ⊂ Xdiv.
The set of rational divisorial norms is

N div
Q := N div

R ∩ NQ.

That the union is increasing follows from Proposition 6.5(ii). Also note
that N div

R (resp. N div
Q ) is invariant under finite minima, under the scaling

action by Q>0 and under the translation action by R (resp. Q).
Concretely, a norm χ is divisorial iff it can be written as

(6.3) χ = max
i

{χvi
+ ci}

for a finite set of divisorial valuations (vi) and ci ∈ R, and χ is rational iff
the ci can be chosen in Q. Indeed:
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Lemma 6.11. — For any finite subset Σ ⊂ Xdiv, a norm χ lies in N Σ
Q

iff it can be written χ = INΣ(φ) for some function φ : Σ → Q.

Proof. — The “if” part is clear. Conversely, assume χ ∈ N div
Q , and write

χ = INΣ(φ) for some function φ : Σ → R on a finite subset Σ ⊂ Xdiv. Let
Σ′ := {v ∈ Σ | φ(v) ∈ Q} and let φ′ : Σ → Q be any function such that
φ′ ⩾ φ with equality on Σ′. Then χ′ := INΣ(φ′) equals χ. Indeed, χ′ ⩾ χ,
and if s ∈ Rm \ {0}, then χ(s) = minv∈Σ(mφ(v) − v(s)). As χ(s) ∈ Q and
v(s) ∈ Q for every v ∈ Σ, the minimum cannot be attained on Σ′ \ Σ, so
χ(s) = minv∈Σ′{mφ(v) − v(s)} = χ′(s). □

Recall from [18] that the space PL(X) ⊂ C0(X) of piecewise linear func-
tions φ : Xan → R is defined as the Q-vector space spanned by HQ. It is
independent of the choice of L, stable under max and min, and is dense in
C0(X) with respect to uniform convergence.

As we next show, rational divisorial norms arise precisely as infimum
norms of PL functions:

Theorem 6.12. — A norm χ ∈ NR lies in N div
Q iff χ = IN(φ) with

φ ∈ PL(X).

Corollary 6.13. — Any rational homogeneous norm of finite type is
divisorial, i.e. T hom

Q ⊂ N div
Q . In particular, the homogenization of any test

configuration χ ∈ TZ is a rational divisorial norm.

In contrast, T hom
R is generally not contained in N div

R , see Example B.3.
We refer to Appendix A (especially Theorem A.10) for a more detailed
discussion of the relation between test configurations and rational divisorial
norms.

Corollary 6.14. — The envelope property holds for (X,L) iff
N div

R ⊂ N cont
R .

See Section 2.5 for the space N cont
R of continuous norms.

Example 6.15. — If X is a nodal curve, then the envelope property fails,
and χv ∈ N div

R is indeed not a continuous norm if v is a divisorial valuation
with center at the node.

Proof of Theorem 6.12. — Assume first χ = IN(φ) with φ ∈ PL(X).
By [18, Lemma 4.26], there exists a finite subset Σ ⊂ Xdiv such that
supXan(ψ − φ) = maxΣ(ψ − φ) for all ψ ∈ PSH(L). In particular, for
any s ∈ Rm \ {0} we have

sup
Xan

(m−1 log |s| − φ) = max
Σ

(m−1 log |s| − φ),
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i.e. χ(s) = infv∈Xan{v(s) +mφ(v)} = minv∈Σ{v(s) +mφ(v)}. This proves
IN(φ) = INΣ(φ), which lies in N div

Q since PL functions take rational values
on Xdiv.

Conversely, assume χ ∈ N div
Q , i.e. χ ∈ N Σ

Q for a finite subset Σ ⊂ Xdiv.
By [18, Lemma 2.12], Σ is contained in the set Σa of Rees valuations of
some flag ideal a of X; we may thus assume Σ = Σa, see Proposition 6.5(ii).
By Lemma 6.11, we can write χ = INΣ(φ̃) for some function φ̃ : Σ → Q.
By [18, Lemma 2.28], there exists ρ ∈ PL+(X) and r ≫ 1 such that φ :=
rφa − ρ ∈ PL(X) satisfies φ = φ̃ on Σ, while [18, Lemma 2.12] shows that

sup
Xan

(ψ − φ) = max
Σ

(ψ − φ)

for all ψ ∈ PL+(X), and hence also for all ψ ∈ PSH(L) (as ψ can then
be written as a decreasing limit of functions in HQ ⊂ PL+(X)). As above,
this implies IN(φ) = χ, which concludes the proof. □

Proof of Corollary 6.13. — Any norm χ ∈ T hom
Q satisfies χ = IN(φ)

with φ := FS(χ) ∈ HQ ⊂ PL(X) (see Theorem 2.16 and Proposition 2.15).
By Theorem 6.12, we thus have T hom

Q ⊂ N div
Q . The last point follows from

Lemma 2.11. □

Proof of Corollary 6.14. — By Theorem 6.12, N div
R is contained in N cont

R
iff IN(φ) is continuous for any φ ∈ PL(X), i.e. FS(IN(φ)) ∈ C0(X) (see
Theorem 2.19). Since φ is continuous, we have FS(IN(φ)) = Q(φ) = P(φ)
(see Proposition 2.29). Thus N div

R ⊂ N cont
R holds iff P(φ) is continuous for

each φ ∈ PL(X). By density of PL(X) in C0(X) and the Lipschitz property
of P with respect to the supnorm, this is also equivalent to the continuity
of P(φ) for each φ ∈ C0(X), which holds in turn iff (X,L) has the envelope
property (see [18, Lemma 5.17]). □

6.3. Maximal norms and the regularized Fubini–Study operator

Specializing now the definitions of Section 6.1 to the whole set Σ := Xdiv,
we introduce:

Definition 6.16. — We say that a norm χ ∈ NR is maximal if it lies
in N max

R := N Xdiv

R .

Explicitly, a norm is maximal iff it can be written as

χ = inf
v∈Xdiv

{χv + cv}
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for a bounded set of constants (cv)v∈Xdiv . The (slightly abusive) terminol-
ogy will be justified by Corollary 6.25 below. By Proposition 6.5(ii), we
have

N div
R ⊂ N max

R ⊂ N hom
R ,

both inclusions being strict (except in the trivial case dimX = 0), cf. Ex-
ample 6.23 below.

For each χ ∈ NR we set

χmax := PXdiv(χ) = INXdiv(FS(χ)).

Then χ ⩽ χhom ⩽ χmax, and χmax is the smallest norm in N max
R such that

χ ⩽ χmax.
Before going further, recall from Section 2.3 that the Fubini–Study oper-

ator associates to any norm χ ∈ NR with canonical approximants χd ∈ TR
a bounded, lsc function FS(χ) : Xan → R, such that FS(χ) = supd FS(χd)
with FS(χd) ∈ HR. We denote by FS⋆(χ) := FS(χ)⋆ its usc regulariza-
tion, which is thus a bounded usc function on Xan. The next result will be
instrumental for what follows:

Lemma 6.17. — For any norm χ ∈ NR, the following holds:
(i) FS⋆(χ) = FS(χ) on Xdiv;
(ii) if (X,L) has the weak envelope property, then FS⋆(χ) = FS(χ) on

X lin, and Ẽ(FS⋆(χ)) = Ẽ(FS(χ));
(iii) if FS⋆(χ) is L-psh (e.g., if (X,L) has the envelope property), then

FS⋆(χ) lies in E∞
↑ ⊂ E1, and FS(χd) → FS⋆(χ) strongly in E1.

We refer to Section 4.4 for the (weak) envelope property and the space
E∞

↑ of psh functions approximable from below. Recall that the weak enve-
lope property holds as soon as char k = 0, and that the envelope property
then holds if X is further smooth.

Proof. — Since FS(χ) = supd FS(χd) with FS(χd) L-psh, (i) and (ii)
respectively follow from Lemmas 4.2 and 4.8 (see Section 4.4). If (X,L) has
the envelope property, then FS⋆(χ) is L-psh, and the rest of (iii) follows
from Lemma 4.3. □

Proposition 6.18. — For any χ ∈ NR, we have
(i) χmax = IN(FS⋆(χ));
(ii) χ is maximal iff χ = IN(φ) for some bounded usc function φ on

Xan.
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Corollary 6.19. — The space N max
R is invariant under the scaling

action by R>0, the translation action by R, under finite minima, and under
decreasing limits. Further, any χ ∈ N max

R can be written as the pointwise
limit of a decreasing net in N div

R .

Corollary 6.20. — Each continuous norm χ ∈ N cont
R satisfies χhom =

χmax. In particular, every continuous homogeneous norm is maximal,
i.e. N cont,hom

R ⊂ N max
R .

The first equality fails in general when χ is not continuous (see Exam-
ple 6.23), and the last inclusion is strict in general (see Corollary 6.30
below).

Corollary 6.21. — If (X,L) has the weak envelope property, then
N max

R = N Xlin

R ; in particular, χv is then maximal for any v ∈ X lin.

Proof of Proposition 6.18. — Lemma 6.17(i) implies that χmax =
PXdiv(FS(χ)) coincides with INXdiv(FS⋆(χ)), which is also equal to
IN(FS⋆(χ)), since FS⋆(χ) is usc on Xan and Xdiv is dense (see Propo-
sition 6.5(iii)). This proves (i).

To see (ii), assume χ is maximal. By (i), we then have χ = χmax =
IN(FS⋆(χ)) where FS⋆(χ) is bounded and usc. Conversely, assume χ =
IN(φ) with φ bounded and usc on Xan. By density of Xdiv, Proposi-
tion 6.5(iii) yields χ = INXdiv(φ), and hence χ ∈ N max

R . This proves (ii). □

Proof of Corollary 6.19. — For any non-pluripolar Σ ⊂ Xan, the space
N Σ

R is invariant under the translation action by R, under finite minima,
and under decreasing limits, see Corollary 6.6. By Proposition 6.18(ii)
and (2.12), N max

R is further invariant under the scaling action of R>0 (even
though Xdiv is only invariant under the scaling action of Q>0). The final
assertion is an immediate consequence of Corollary 6.6 and Lemma 6.8. □

Proof of Corollary 6.20. — If χ ∈ N cont
R then FS(χ) is continuous (see

Theorem 2.19), and hence χhom = IN(FS(χ)) = χmax, by Theorem 2.16
and Proposition 6.18(i). □

Proof of Corollary 6.21. — Lemma 6.17(ii) implies that PXlin(χ) =
INXlin(FS(χ)) coincides with INXlin(FS⋆(χ)). By Proposition 6.5(iii), this
is also equal to IN(FS⋆(χ)), which is in turn equal to χmax, by Proposi-
tion 6.18(i). Thus PXlin(χ) = χmax, and hence χ ∈ N Xlin

R ⇔ χ ∈ N max
R . □

We can now state the main result of this section:

Theorem 6.22. — For all norms χ, χ′ ∈ NR, we have χ ∼ χ′ =⇒
χmax = χ′ max. If (X,L) has the weak envelope property (e.g., if char k = 0),
the converse implication holds.
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Example 6.23. — For any subvariety Z ⊊ X, the norm χ = χZ ∈ N hom
Z

of Example 2.21 is not maximal. Indeed, χ is asymptotically equivalent
to the maximal norm χtriv + 1 (see Example 3.10), and hence χmax =
χtriv + 1 ̸= χ.

Corollary 6.24. — The restriction of d1 to N max
R a metric. If (X,L)

has the weak envelope property, then N max
R is further maximal for this

property.

Corollary 6.25. — Assume (X,L) has the weak envelope property,
and pick any norm χ ∈ NR. Then χ is maximal iff it is the largest norm in
its asymptotic equivalence class.

Corollary 6.26. — If χ, χ′ ∈ N cont
R are continuous, then χ ∼ χ′ ⇐⇒

d∞(χ, χ′) = 0.

As a first step towards Theorem 6.22, we show:

Lemma 6.27. — For all χ, χ′ ∈ NR, the following are equivalent:
(i) χmax = χ′ max;
(ii) FS(χ) = FS(χ′) on Xdiv;
(iii) FS⋆(χ) = FS⋆(χ′) on Xan.

Proof. — Since χmax = PXdiv(χ), Lemma 6.9 yields FS(χmax) = FS(χ)
on Xdiv, and similarly for χ′. This implies (i) ⇒ (ii), while Lemma 6.17(i)
yields (ii) ⇔ (iii). Finally, (iii) ⇒ (i) follows from Proposition 6.18(i). □

Lemma 6.28. — For all χ, χ′ ∈ NR, we have

χ ∼ χ′ ⇐⇒ lim
d

d1(FS(χd),FS(χ′
d)) = 0 =⇒ FS(χ) = FS(χ′) on X lin.

Proof. — By construction of the d1-metric on HR, FS: (TR,d1) → (HR,d1)
is an isometry, and hence d1(χd, χ

′
d) = d1(FS(χd),FS(χ′

d)) for all d suffi-
ciently divisible. By Theorem 3.18, we have, on the other hand, d1(χd, χ

′
d) →

d1(χ, χ′). This implies the first equivalence. For any v ∈ X lin, the measure
δv lies in M1. By (5.19), we thus have

d1(FS(χd),FS(χ′
d)) −→ 0 =⇒ FS(χd)(v) − FS(χ′

d)(v) −→ 0,

which yields the right-hand implication, since FS(χd) → FS(χ) and
FS(χ′

d) → FS(χ′) pointwise on Xan. □

Proof of Theorem 6.22. — If χ ∼ χ′, then FS(χ) = FS(χ′) on X lin ⊃
Xdiv, by Lemma 6.28, and hence χmax = χ′ max, by Lemma 6.27. Now
assume the weak envelope property. To prove the converse implication, it
suffices to show χ ∼ χmax for any χ ∈ NR. Since χ ⩽ χmax, this amounts to
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vol(χ) = vol(χmax) (see Lemma 3.11). By Theorem 5.1, we have vol(χ) =
Ẽ(φ) with φ := FS(χ). On the other hand, we have χmax = IN(φ⋆) (see
Proposition 6.18(i)), and hence vol(χmax) = Ẽ((φ⋆)⋆), by Corollary 5.3.
Since φ is lsc, we have φ ⩽ (φ⋆)⋆ ⩽ φ⋆, so by monotonicity of the energy, it
suffices to prove that Ẽ(φ) = Ẽ(φ⋆), which follows from Lemma 6.17. □

Proof of Corollary 6.24. — That d1 restricts to a metric on N max
R is

a direct consequence of Theorem 6.22. If d1 is also a metric on a subset
N ′ ⊂ NR that contains N max

R , then any χ ∈ N ′ satisfies d1(χ, χmax) = 0,
by Theorem 6.22, and hence χ = χmax ∈ N max

R . Thus N ′ = N max
R . □

Proof of Corollary 6.25. — Assume χ is maximal, and pick χ′ ∈ NR with
χ ∼ χ′. Then χ′ ⩽ χ′ max = χmax = χ, by Theorem 6.22, which proves that
χ is the largest norm in its equivalence class. Conversely, this last property
implies χmax ⩽ χ, since χ ∼ χmax by Theorem 6.22, and hence χ = χmax,
i.e. χ ∈ N max

R . □

Proof of Corollary 6.26. — By Theorem 2.19, FS(χ) and FS(χ′) are
continuous, and are equal iff d∞(χ, χ′) = 0. By Lemma 6.27, we thus have
χ ∼ χ′ ⇒ d∞(χ, χ′) = 0, while the converse trivially holds. □

Assuming now the envelope property (e.g. X is smooth and char k = 0),
we finally state:

Theorem 6.29. — If (X,L) has the envelope property, then the regular-
ized Fubini–Study operator defines a surjective isometry FS⋆ : (NR,d1) ↠
(E∞

↑ ,d1), which restricts to an isometric isomorphism FS⋆ : (N max
R ,d1) ∼→

(E∞
↑ ,d1) with inverse IN: (E∞

↑ ,d1) ∼→ (N max
R ,d1).

Proof. — Since (X,L) has the envelope property, FS⋆(χ) lies in E∞
↑ for

each χ ∈ NR (see Lemma 6.17(iii)). Since FS: (TR,d1) → (HR,d1) is an
isometry, the canonical approximants χd, χ

′
d ∈ TR satisfy d1(χd, χ

′
d) =

d1(FS(χd),FS(χ′
d)) for all d sufficiently divisible. Now, Theorem 3.18 im-

plies on the one hand d1(χd, χ
′
d) → d1(χ, χ′). On the other hand,

Lemma 6.17(iii) implies d1(FS(χd),FS(χ′
d)) → d1(FS⋆(χ),FS⋆(χ′)), since

d1 defines the strong topology of E1 (see Theorem 5.5). This proves that
FS⋆ : (NR,d1) → (E∞

↑ ,d1) is an isometry, whose restriction to N max
R is nec-

essarily injective, by Theorem 6.22. Conversely, pick φ ∈ E∞
↑ . Then IN(φ) ∈

N max
R (see Proposition 6.18(ii)). By Proposition 2.29 and Lemma 4.6(i), we

further have FS⋆(IN(φ)) = Q⋆(φ) = φ. This shows that FS⋆ : (N max
R ,d1) ∼→

(E∞
↑ ,d1) is an isometric isomorphism, and the rest follows. □

Corollary 6.30. — Assume (X,L) has the envelope property. Then

N max
R ⊂ N cont

R ⇐⇒ E∞
↑ = CPSH ⇐⇒ dimX ⩽ 1.
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Proof. — The first equivalence follows from Theorem 2.26 and Theo-
rem 6.29, and the second one from [18, Example 13.25]). □

7. The Monge–Ampère measure of a norm

Any ample test configuration for (X,L) defines a measure on Xan with
finite support in Xdiv. This defines a Monge–Ampère operator MA: TZ →
M1. Here we extend this operator to a map NR → M1 whose fibers con-
sist of asymptotic equivalence classes modulo translation, thus completing
the proof of Theorem B. The construction, which works even when in the
absence of the envelope property, restricts to a homeomorphism between
divisorial norms modulo translations and probability measures with finite
support in Xdiv, thus proving Theorem C. We also extend Dervan’s mini-
mum norm functional from TZ to NR.

7.1. Monge–Ampère measures of R-test configurations

We define the Monge–Ampère measure MA(χ) ∈ M1 of an R-test con-
figuration χ ∈ TR as the Monge–Ampère measure of the associated Fubini–
Study function FS(χ) ∈ HR (see Proposition 2.15), i.e.

MA(χ) := MA(FS(χ)).

The invariance/equivariance properties of the operators MA: HR → M1

and FS: TR → HR imply that if χ ∈ TR, c ∈ R and t ∈ R>0, then

MA(χ+ c) = MA(χ) and MA(tχ) = t⋆ MA(χ).

When χ ∈ TZ, the Monge–Ampère measure can be computed geometri-
cally as follows. By the Rees correspondence (A.7), χ is associated to an
ample test configuration. Let (X ,L) be its integral closure, with central
fiber X0 =

∑
i biEi. By Lemma A.12, φ := FS(χ) ∈ HQ satisfies (A.5), so

by [18, Proposition 7.19(ii)] we have

(7.1) MA(χ) =
∑

i

bi

(
L|nEi

)
δvi
,

where vi ∈ Xdiv is the divisorial valuation associated to Ei.
For general χ ∈ TR, the support of MA(χ) is a finite subset of X lin, see

Lemma 4.1.
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Lemma 7.1. — The Monge–Ampère operator above defines an isometry

(7.2) MA: (TR/R,d1) −→ (M1,d1)

with dense image.

Proof. — By (5.11), the Fubini–Study operator defines an isometric sur-
jection FS: (TR/R,d1) → (HR/R,d1). Now HR/R is a dense subspace of
(E1/R,d1), and by definition, the metric d1 on M1 has the property that
MA: (E1/R,d1) → (M1,d1) is an injective isometry with dense image,
see Theorem 5.11. It therefore follows that (7.2) is an isometry with dense
image. □

7.2. Monge–Ampère measures of general norms

We now define the Monge–Ampère operator on general norms.

Theorem 7.2. — The Monge–Ampère operator above extends uniquely
to an isometry

(7.3) MA: (NR/R,d1) −→ (M1,d1),

with dense image.

As (M1,d1) is complete, the Monge–Ampère operator thus realizes
(M1,d1) as the Hausdorff completion of the pseudo-metric spaces (TR/R,d1)
and (NR/R,d1).

Proof. — By Theorem 3.18, TR is dense in (NR,d1). As a consequence,
TR/R sits as a dense subspace of (NR/R,d1), and we conclude using
Lemma 7.1. □

Combining Theorem 7.2 with Lemma 3.15, we get:

Corollary 7.3. — The induced map MA: (NR,d1) → (M1,d1) is 1-
Lipschitz, and its nonempty fibers consist precisely of asymptotic equiva-
lence classes of norms modulo translation.

The induced map MA: NR → M1 satisfies the following properties, the
first of which gives a more concrete description.

Proposition 7.4. — For any norm χ ∈ NR we have:
(i) the canonical approximants (χd) satisfy limd MA(χd) = MA(χ)

strongly in M1;
(ii) for c ∈ R and t ∈ R>0, we have MA(χ+c) = MA(χ) and MA(tχ) =

t⋆ MA(χ);
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(iii) MA(χ) = MA(χhom), where χhom is the homogenization of χ;
(iv) If (X,L) has the weak envelope property, then MA(χ) = MA(χmax).
(v) if FS⋆(χ) is L-psh, then MA(χ) = MA(FS⋆(χ)).

Recall that (v) applies if (X,L) has the envelope property, or for any
continuous norm χ ∈ N cont

R .

Proof. — Theorem 3.18 shows that χd ∈ TR satisfy limd d1(χd, χ) = 0,
which implies (i). The equalities in (ii) follow, since (χ+ c)d = χd + c and
(tχ)d = tχd, whereas (iii) and (iv) follow since χhom ∼ χ and χmax ∼ χ,
respectively, see Corollary 5.2 and Theorem 6.22. If FS⋆(χ) is L-psh, then
FS(χd) → FS⋆(χ) strongly in E1 (see Lemma 6.17), and hence MA(χd) =
MA(FS(χd)) → MA(FS⋆(χ)) in M1. This proves (v), in view of (i). □

Recall the space N max
R = N Xdiv

R from Section 6.3. By Corollary 6.24, the
pseudometric d1 restricts to a metric on N max

R . Lemma 5.10 thus implies
that d1 restricts to a metric on N max

R /R.

Corollary 7.5. — The Monge–Ampère operator MA: NR → M1 in-
duces an isometric embedding

(7.4) MA: (N max
R /R,d1) ↪−→ (M1,d1)

with dense image. If (X,L) has the weak envelope property, then the image
equals MA(NR).

Recall that the weak envelope property holds when chark= 0 or dimX ⩽ 2.

Proof. — Everything except for the last statement is clear by what
precedes, and that statement is an immediate consequence of Theo-
rem 6.22. □

Remark 7.6. — Even if X is smooth (and of positive dimension) and
char k = 0, MA(NR) is a strict subspace of M1, which is not so easy to
describe. See [21] for related questions.

For later use, we also show the following version of Theorem 5.8.

Lemma 7.7. — For all χ, χ′ ∈ NR we have

d1(χ, χ′) ≈
∫

|FS(χ) − FS(χ′)| (MA(χ) + MA(χ′)) .

Proof. — Set φd := FS(χd), φ′
d := FS(χ′

d) and

µd := MA(φd) = MA(χd), µ′
d := MA(φ′

d) = MA(χ′
d),
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with (χd), (χ′
d) the canonical approximants of χ, χ′. Since FS: (TR,d1) →

(HR,d1) is an isometry, Theorem 5.8 yields

d1(χd, χ
′
d) = d1(φd, φ

′
d) ≈

∫
gd (µd + µ′

d),

with gd := |φd − φ′
d|. Since (φd), (φ′

d) are uniformly bounded and µd →
µ := MA(χ), µ′

d → µ′ := MA(χ′) strongly in M1 (see Proposition 7.4(i)),
(5.18) yields

∫
gd (µd + µ′

d) =
∫
gd (µ + µ′) + o(1). Since (gd) is uniformly

bounded and converges pointwise to g := |FS(χ) − FS(χ′)|, dominated
convergence applied to the cofinal sequence (gm!)m further yields

∫
gm!(µ+

µ′) →
∫
g (µ+ µ′). Combining this with Theorem 3.18, we conclude

d1(χ, χ′) = lim
m

d1(χm!, χ
′
m!) ≈ lim

m

∫
gm! (µ+ µ′) =

∫
g (µ+ µ′),

which proves the result. □

7.3. Variational principle

As we next show, the Monge–Ampère equation MA(χ) = µ with χ ∈ NR
and µ ∈ M1 admits a variational characterization, that will be deduced
from its counterpart for L-psh functions.

Proposition 7.8. — For any µ ∈ M1, we have

E∨(µ) = sup
χ∈NR

(
vol(χ) −

∫
FS(χ)µ

)
.

Further, the supremum is achieved by χ ∈ NR iff MA(χ) = µ.

Proof. — We have E∨(µ) = supφ∈HQ

(
E(φ) −

∫
φµ
)
, and any φ ∈ HQ

can be written as φ = FS(χ) with χ := IN(φ) ∈ NR. Since E(φ) = vol(χ),
this yields

E∨(µ) ⩽ sup
χ∈NR

(
vol(χ) −

∫
FS(χ)µ

)
.

For the reverse inequality, pick any χ ∈ NR, and consider the increasing net
(φd) in HR defined by φd := FS(χd), with (χd) the canonical approximants
of χ. Then E(φd) −

∫
φd µ ⩽ E∨(µ). By Theorem 3.18 and Theorem 5.1,

E(φd) = vol(χd) → vol(χ), while
∫
φd µ →

∫
FS(χ)µ, by monotone con-

vergence (applied to the cofinal sequence φd!). Thus vol(χ) −
∫

FS(χ)µ ⩽
E∨(µ), and equality holds iff E(φd) −

∫
φd µ → E∨(µ), i.e. (φd) is a max-

imizing net for µ. By [18, Corollary 10.13], the latter is also equivalent to
MA(φd) → µ strongly in M1, and hence to MA(χ) = µ, since MA(φd) =
MA(χd) → MA(χ) strongly in M1, by Corollary 7.3. □
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Remark 7.9. — With a little bit of extra effort, one can show as in [18,
Corollary 10.13] that a net (χi) in NR computes the supremum, that is
limi

(
vol(χi) −

∫
FS(χi)µ

)
= E∨(µ), iff MA(χi) → µ strongly in M1.

7.4. Divisorial norms and divisorial measures

The image MA(NR) of the Monge–Ampère operator is a strict subset of
M1 and not so easy to describe, but we now exhibit an important class of
measures contained in the image.

Given any compact subset Σ ⊂ Xan, denote by MΣ the set of Radon
probability measures µ on Xan with support in Σ.

Example 7.10. — When Σ ⊂ Xan is finite, each µ ∈ MΣ is of the form
µ =

∑
v∈Σ mvδv, where mv := µ({v}), and it is easy to see that µ 7→ m =

(mv) defines a homeomorphism of MΣ (equipped with the weak topology)
with the simplex

{
m ∈ RΣ

⩾0 |
∑

v mv = 1
}

.

Recall that the strong topology of X lin is defined by the metric d∞
(see (1.19)); the weak topology refers to the subset topology from Xan. For
all v, w ∈ X lin we have

(7.5) d∞(v, w) = sup
φ∈PSH

|φ(v) − φ(w)|,

which shows that d∞ is the smallest metric on X lin such that the restric-
tion to X lin of any L-psh function is 1-Lipschitz. By (7.5), the weak and
strong topologies coincide on a given subset Σ ⊂ X lin iff PSH |Σ is equicon-
tinuous for the weak topology of Σ. This is in particular the case when Σ
is strongly compact (as the identity map (Σ, strong) → (Σ,weak) is then
a homeomorphism, being continuous and bijective on a compact Hausdorff
space).

Example 7.11. — Every finite subset Σ ⊂ X lin is of course strongly com-
pact. If X is smooth and char k = 0, then the dual complex ∆X of any
snc test configurations X also forms a strongly compact subset of X lin,
cf. [18, Theorem A.4].

Lemma 7.12. — For any strongly compact subset Σ ⊂ X lin, we have
MΣ ⊂ M1, and the induced weak and strong topologies on MΣ coincide.

Proof. — Since Σ is strongly compact, C := supv∈Σ T(v) is finite, and
satisfies supφ− φ(v) ⩽ C for each φ ∈ PSH and v ∈ Σ. For each µ ∈ MΣ
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we thus have

E∨(µ) = sup
φ∈E1

{
E(φ) −

∫
φµ

}
⩽ sup

φ∈E1

{
supφ−

∫
φµ

}
⩽ C,

and hence µ ∈ M1. Now pick a weakly convergent net µi → µ in MΣ. Since
PSH |Σ is equicontinuous, we have

∫
φµi →

∫
φµ uniformly for φ ∈ PSH.

Thus

E∨(µi) = sup
φ∈E1

{
E(φ) −

∫
φµ

}
−→ sup

φ∈E1

{
E(φ) −

∫
φµ

}
= E∨(µ)

and hence µi → µ strongly in M1. □

Theorem 7.13. — For any strongly compact subset Σ ⊂ X lin, the
Monge–Ampère operator induces a surjective isometry

MA: (N Σ
R /R,d1) −↠ (MΣ,d1).

If Σ ⊂ Xdiv, or if the weak envelope property holds (e.g., if char k = 0),
then this map is an isometric isomorphism.

Recall that N Σ
R denotes the set of norms of the form χ = INΣ(φ) for

a bounded function φ : Σ → R, see Section 6.1. We emphasize that The-
orem 7.13 is true for an arbitrary polarized variety, whether or not the
envelope property holds. The following important special case illustrates
this.

Example 7.14. — For each v ∈ X lin we have MA(χv) = δv. If the en-
velope property holds for (X,L), then the function φv = FS(χv) belongs
to CPSH, φv(v) = 0 and MA(φv) = δv. However, in general the equation
MA(φ) = δv may not have any solution in E1. This is the case, for example,
when X is a nodal curve and v is a divisorial valuation with center at the
node (compare Example 6.15).

Another important special case is when Σ ⊂ Xdiv is finite. Recall that
the set N div

R of divisorial norms is the union of N Σ
R over all nonempty finite

subset Σ ⊂ Xdiv. We similarly introduce:

Definition 7.15. — The set Mdiv of divisorial measures on Xan is
defined by

(7.6) Mdiv =
⋃

Σ⊂Xdiv finite

MΣ.

The set Mdiv is used in [20] to define the notion of divisorial stability.
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Corollary 7.16. — The Monge–Ampère operator induces an isomet-
ric isomorphism

MA: (N div
R /R,d1) ∼−→ (Mdiv,d1).

Further, for any χ ∈ N div
R , Σ := supp MA(χ) is the smallest finite subset

of Xdiv such that χ ∈ N Σ
R .

Example 7.17. — If v ∈ X lin, then χv is divisorial iff v is divisorial.
Indeed, χv ∈ N div

R =⇒ MA(χv) = δv ∈ Mdiv =⇒ v ∈ Xdiv.

We now turn to the proof of Theorem 7.13. For any χ ∈ NR and φ ∈
C0(X), we set

χ[φ] := IN(FS(χ) + φ) ∈ NR.

Thus χ[0] = χhom (see Theorem 2.16). The main ingredient in the proof is
now the following version of [18, Theorem 8.5] (itself a consequence of [16,
Theorem A]).

Lemma 7.18. — For any χ ∈ NR and φ ∈ C0(X), we have

d
dt

∣∣∣∣
t=0

vol (χ[tφ]) =
∫
φ MA(χ).

Proof. — For d sufficiently divisible, set ψd := FS(χd) ∈ HR. By Theo-
rem 5.1 and Corollary 5.3, we have vol(χ) = Ẽ(FS(χ)) = vol(χ[0]), and

(7.7) vol (χd[φ]) = Ẽ(ψd + φ) −→ Ẽ(FS(χ) + φ) = vol(χ[φ]).

Assume first φ ∈ PL(X). By [18, Theorem 8.5], we then have

Ẽ(ψd + tφ) = E(ψd) + t

∫
φ MA(ψd) +O(t2)

as t → 0, where the implicit contant in O is uniform with respect to d (but
does depend on φ). Now MA(ψd) = MA(χd) → MA(χ) strongly in M1

(see Proposition 7.4(i)); combined with (7.7), this yields

vol (χ[tφ]) = vol(χ) + t

∫
φ MA(χ) +O(t2),

which proves the result for φ ∈ PL(X). Consider now an arbitrary φ ∈
C0(X). Since PL(X) is dense in C0(X) with respect to uniform conver-
gence, we can find a sequence (φi) in PL(X) such that δi := supXan |φi −
φ| → 0. Then φi − δi ⩽ φ ⩽ φi + δi, and hence

vol (χ[tφi]) − tδi ⩽ vol (χ[tφ]) ⩽ vol (χ[tφi]) + tδi.
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By the first part of the proof, this yields∫
φi MA(χ) − δi ⩽ lim inf

t→0+
t−1 (vol (χ[tφ]) − vol(χ))

⩽ lim sup
t→0+

t−1 (vol (χ[tφ]) − vol(χ)) ⩽
∫
φi MA(χ),

and letting i → ∞ yields, as desired, limt→0 t
−1 (vol (χ[tφ]) − vol(χ)) =∫

φ MA(χ). □

Proof of Theorem 7.13. — By Theorem 7.2, MA: (NR/R,d1) → (M1,d1)
is an isometry. Let us first show that it maps N Σ

R /R into MΣ. Pick χ ∈ N Σ
R .

We need to show that
∫
φMA(χ) = 0 for any φ ∈ C0 such that φ|Σ = 0.

Now, for any t ∈ R, we have

χ[tφ] = IN(FS(χ) + tφ) ⩽ INΣ(FS(χ) + tφ) = INΣ(FS(χ)) = χ.

This implies vol(χ[tφ]) ⩽ vol(χ) for all t ∈ R, and hence
∫
φMA(χ) = 0,

thanks to Lemma 7.18.
We next show that MA: N Σ

R → MΣ is onto. Pick µ ∈ MΣ, and choose
a maximizing sequence (φi) in HR for µ, i.e. E(φi) −

∫
φi µ → E∨(µ),

normalized by supφi = 0. Since Σ is strongly compact, the restriction of
PSHsup = {φ ∈ PSH | supφ = 0} to Σ is equicontinuous and bounded,
since 0 ⩽ supv∈Σ(−φ(v)) ⩽ supv∈Σ T(v) < ∞ for φ ∈ PSHsup. By the
Arzelà–Ascoli theorem, we may thus assume, after passing to a subse-
quence, that φi|Σ converges uniformly to some φ ∈ C0(Σ). We claim that
χ := INΣ(φ) ∈ N Σ

R satisfies MA(χ) = µ, which will conclude the proof. By
Proposition 7.8, it suffices to show vol(χ) −

∫
FS(χ)µ ⩾ E∨(µ).

Set χi := INΣ(φi). As φi → φ uniformly on Σ, (6.2) implies d1(χi, χ) →
0, and hence vol(χi) → vol(χ). Further, χi ⩾ IN(φi), and hence vol(χi) ⩾
vol(IN(φi)) = E(φi) (see Corollary 5.3). By Proposition 6.5(i), we also have
FS(χ)|Σ ⩽ φ. This yields, as desired,

vol(χ) −
∫

FS(χ)µ ⩾ vol(χ) −
∫
φµ = lim

i

(
vol(χi) −

∫
φi µ

)
⩾ lim

i

(
E(φi) −

∫
φi µ

)
= E∨(µ).

Finally, if Σ ⊂ Xdiv, or if the weak envelope property holds, then N Σ
R is

contained in N max
R (see Corollary 6.21), and the last point thus follows

from Corollary 7.5. □
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7.5. Dervan’s minimum norm

In [36], Dervan introduced the notion of the minimum norm of a test
configuration. Here we extend his notion to arbitrary norms.

Definition 7.19. — We define the minimum norm ∥χ∥ of χ ∈ NR by

∥χ∥ := E∨(MA(χ)) ∈ R⩾0.

By Corollary 7.3, the minimum norm is a continuous function on (NR,d1).

Proposition 7.20. — For any χ ∈ NR, we have:

(i) if χ ∈ TZ is associated to an ample test configuration, then ∥χ∥
coincides, up to normalization, with the minimum norm defined
in [36];

(ii) the canonical approximants (χd) satisfy ∥χ∥ = limd ∥χd∥;
(iii) for any c ∈ R and t ∈ R>0 we have ∥χ+c∥ = ∥χ∥, and ∥tχ∥ = t∥χ∥;
(iv) ∥χ∥ ≈ d1(χ, χtriv) ≈ ∥χ∥1; in particular, ∥χ∥ = 0 iff χ ∼ χtriv + c

for some c ∈ R;
(v) if χ ∈ TR, then ∥χ∥ = E(φ) −

∫
φ MA(φ) = I(φ) − J(φ) with

φ := FS(χ);
(vi) if χ ∈ TQ, then ∥χ∥ ∈ Q;
(vii) ∥χ∥ = ∥χhom∥;
(viii) if (X,L) has the weak envelope property, then ∥χ∥ = ∥χmax∥.

Here ∥χ∥1 = d1(χ, χtriv +vol(χ)) is the L1-norm of χ, see Definition 3.16.

Proof. — If χ ∈ TR, then MA(χ) = MA(φ) with φ := FS(χ) ∈ HR,
so (4.10) yields ∥χ∥ = E∨(µ) = I(φ) − J(φ), proving (v), and also (vi),
since φ ∈ HQ when χ ∈ TQ. If, further, χ ∈ TZ is a test configuration,
then [17, Remark 7.12] shows that I(φ)−J(φ) coincides (up to normalization
by VL) with the minimum norm of χ as defined in [36, Definition 2.5].
Thus (i) holds. Now (ii), (iii), (vii) and (viii) are immediate consequence
of the corresponding properties in Proposition 7.4.

It remains to prove (iv). That ∥χ∥ ≈ d1(χ, χtriv) follows from (5.15) and
Theorem 7.2, whereas ∥χ∥1 ≈ ∥χ∥ follows from (iv) and [17, Theorem 7.9]
when χ ∈ TR, and hence in general, by density. □

By d1-density of TZ in NR (see Corollary 3.19), we infer:

Corollary 7.21. — The minimum norm functional NR → R⩾0 is the
unique d1-continuous extension of Dervan’s minimum norm from TZ to NR.
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7.6. Valuations of linear growth

In this final section, we specialize the above results to prove:

Theorem 7.22. — For all v, w ∈ X lin with associated norms χv, χw ∈
NR and measures δv, δw ∈ M1, we have:

(i) d∞(v, w) = d∞(χv, χw) ≈ d1(χv, χw) = d1(δv, δw);
(ii) d∞(v, vtriv) = T(v) = λmax(χv);
(iii) S(v) = vol(χv) = ∥χv∥ = E∨(δv).

Since d1 ⩽ d1 ⩽ dp ⩽ d∞ on NR for 1 ⩽ p ⩽ ∞, this implies:

Corollary 7.23. — For any p ∈ [1,∞], the embeddings

(X lin,d∞) ↪→ (M1,d1), (X lin,d∞) ↪→ (NR,dp)

respectively defined by v 7→ δv and v 7→ χv are bi-Lipschitz.

Note that this implies Corollary E in the introduction.
Proof of Theorem 7.22. — By Theorem 7.13, we have MA(χv) = δv,

MA(χw) = δv, and hence

d1(δv, δv) = d1(χv, χw) ⩽ d∞(χv, χw) = d∞(v, w),

by Theorem 7.2 and Corollary 2.10. Next, note that

(7.8) FS(χv)(w) = sup{m−1(v(s) − w(s))},

where s runs over nonzero sections of mL with m sufficiently divisible. In
particular, FS(χv) ⩾ 0, and FS(χv)(v) = 0. Comparing (7.8) with (1.19)
yields

(7.9) d∞(v, w) = max{FS(χv)(w),FS(χw)(v)}.

On the other hand, for each c ∈ R, Lemma 7.7 yields

d1(χv + c, χw) ≈
∫

|FS(χv) + c− FS(χw)|(δv + δw)

= |FS(χv)(w) + c| + |c− FS(χw)(v)|
⩾ FS(χv)(w) + FS(χw)(v) ⩾ d∞(v, w).

Thus
d1(χv, χw) = inf

c∈R
d1(χv, χw + c) ≳ d∞(v, w).

This proves (i), and (ii) follows. Finally, MA(χv) = δv implies ∥χv∥ =
E∨(δv), by definition of the minimum norm. Since FS(χv) vanishes at v,
Proposition 7.8 further yields E∨(δv) = vol(χv), which coincides with S(v)
(see Example 3.5). This proves (iii). □
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Appendix A. Test configurations, integral closure, and
homogenization

In this appendix we revisit the correspondence between test configura-
tions and integral norms [17, 68], and provide a description of homogeniza-
tion in terms of integral closure. We also provide a geometric description
of R-test configurations, following [49, 50].

A.1. The norm associated to a test configuration

A test configuration (X ,L) for (X,L) consists of: a flat projective mor-
phism π : X → A1; a Q-line bundle L on X ; a Gm-action on (X ,L) that
makes π equivariant; and a Gm-equivariant isomorphism

(A.1) (X ,L)|Gm ≃ (X,L) ×Gm.

We denote by z the coordinate on A1 = Spec k[z] and Gm = Spec k[z±].

Example A.1. — The trivial test configuration (Xtriv,Ltriv) is defined by
Xtriv = X × A1, Ltriv = p⋆

1L.

As originally pointed out in [68], to any test configuration (X ,L) is as-
sociated an integral norm χL ∈ NZ, defined on Rm = H0(X,mL) for any
m ∈ N such that mL is a line bundle, as follows. Consider the embedding
H0(X ,mL) ↪→ Rm ⊗ k[z±] induced by (A.1). This yields a decomposition

(A.2) H0(X ,mL) =
⊕
λ∈Z

z−λFλRm,

corresponding to the weight decomposition with respect to the Gm-action,
where

(A.3) FλRm = {s ∈ Rm | z−λs ∈ H0(X ,mL)}

is a Z-filtration of Rm, and we define χL as the associated norm. It is clear
that χL+cX0 = χL + c for any c ∈ Q, and using flat base change, one easily
checks:

Lemma A.2. — If (Xd,Ld) denotes the base change of (X ,L) with re-
spect to z 7→ zd, d ⩾ 1, then χLd

= dχL.

In order to further analyze the norm χL, recall from [18, Section 1.4] that
a test configuration X is integrally closed if X is integrally closed in the
generic fiber of π; when X is normal, this is equivalent to X being normal.
If X0 is reduced, then X is integrally closed.

ANNALES DE L’INSTITUT FOURIER



A NON-ARCHIMEDEAN APPROACH TO K-STABILITY I 917

If X is integrally closed, the local ring of X at the generic point of
any irreducible component E of X0 is a DVR, which defines a divisorial
valuation ordE on X ; we denote by

(A.4) bE := ordE(X0) = ordE(z)

the multiplicity of X0 along E. By (A.1) we have a function field extension
k(X) ↪→ k(X ), and the restriction of b−1

E ordE to k(X) is a divisorial valu-
ation vE ∈ Xdiv, with values in b−1

E Z. Conversely, any divisorial valuation
can be geometrically realized in this way.

Recall also from [18, Section 2.7] that any test configuration (X ,L) for
(X,L) determines a PL function φL ∈ PL(X), whose restriction to the
dense subset Xdiv ⊂ Xan is given as follows. Pick v ∈ Xdiv, and choose an
integrally closed test configuration X ′ for X such that v = vE is associated
to an irreducible component E ⊂ X ′

0 and such that the canonical Gm-
equivariant birational maps µ : X ′ → X and ρ : X ′ → Xtriv are morphisms.
Then µ⋆L − ρ⋆Ltriv = D for a Q-Cartier divisor D supported on X ′

0, and

(A.5) φL(vE) = b−1
E ordE(D).

Conversely, any PL function on Xan can be realized in this way (see [18,
Theorem 2.31]).

Proposition A.3. — Pick an integrally closed test configuration (X ,L),
set φ := φL, and denote by Σ ⊂ Xdiv the (finite) set of valuations attached
to the irreducible components of X0. Then:

(i) χL = ⌊INΣ(φ)⌋ = ⌊IN(φ)⌋;
(ii) χhom

L = INΣ(φ) = IN(φ);
(iii) if X0 is reduced, then χL is homogeneous.

Here INΣ(φ) is defined in Section 6.1.

Lemma A.4. — Under the above assumptions we have

χL = χµ⋆L, φL = φµ⋆L

for any morphism of test configurations µ : X ′ → X .

Proof. — By Zariski’s main theorem, we have µ⋆OX ′ = OX (see [18,
Lemma 1.12]). Combined with the projection formula, this shows
H0(X ,mL) = H0(X ′,mµ⋆L) for m sufficiently divisible. The first point
follows, while the second one holds by (A.5). □

Proof of Proposition A.3. — Pick s ∈ Rm with m sufficiently divisible
and λ ∈ Z. Then z−λs determines a rational section σ of mL which is
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regular outside X0, and hence is regular on X iff ordE(σ) ⩾ 0 for each
irreducible component E of X (see [18, Lemma 1.23]). Now (A.5) implies

b−1
E ordE(σ) = −λ+ vE(s) + φ(vE),

and we infer

χL(s) = max
{
λ ∈ Z

∣∣∣λ ⩽ min
E

{vE(s) + φ(vE)}
}

= ⌊INΣ(φ)(s)⌋.

Next, pick v ∈ Xdiv, and choose an integrally closed test configuration X ′

that dominates X via µ : X ′ → X and such that v lies in the corresponding
set Σ′ ⊂ Xdiv. Lemma A.4 and the first step of the proof yield

χL(s) = χµ⋆L(s) = ⌊INΣ′(φ)(s)⌋ ⩽ v(s) + φ(v).

By density of Xdiv and continuity of φ, we infer

χL(s) ⩽ inf
v∈Xdiv

{v(s) + φ(v)} = IN(φ)(s) ⩽ INΣ(φ)(s).

Since χL = ⌊INΣ(φ)⌋, this proves (i), and (ii) follows, cf. Example 2.5.
Finally, if X0 is reduced, then each v ∈ Σ is integer valued on k(X)×. Since
φ(v) is rational (see (A.5)), we get

INΣ(φ)(s) = min
v∈Σ

{v(s) +mφ(v)} ∈ Z

for s ∈ Rm with m sufficiently divisible, and (iii) now follows from (i)
and (ii). □

Remark A.5. — Proposition A.3(ii) implies χhom
L ∈ N Σ

Q , and hence
MA(χL) = MA(χhom

L ) ∈ MΣ (see Theorem 7.13). The coefficients of
this measure admit an explicit description in terms of positive intersection
classes on the canonical compactification X → P1, see [56, Theorem 1.1].

Consider now an arbitrary test configuration (X ,L), and denote by
(X̃ , L̃) its integral closure, i.e. X̃ → X is the integral closure of X in the
generic fiber of X → A1, and L̃ is the pullback of L.

Theorem A.6. — For any test configuration (X ,L) for (X,L), we have

χhom
L = χhom

L̃
= IN(φL) and χL̃ = ⌊χhom

L ⌋.

In other words, integral closure is the round-down of homogenization.

Lemma A.7. — We have χL ⩽ χL̃ ⩽ χhom
L .

Proof. — Pick s ∈ Rm ∖ {0} with m sufficiently divisible. Since L̃ is the
pullback of L to X̃ , χL(s) ⩽ χL̃(s) =: µ follows directly from (A.3). Since
σ := z−µs ∈ H0(X̃ ,mL̃) is integral over OX , it satisfies σd +

∑d
i=1 σiσ

d−i =
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0 for some d ⩾ 1 and σi ∈ H0(X , imL). By (A.2), we have a Laurent
expansion σi =

∑
λ∈Z σi,λz

−λ with σi,λ ∈ H0(X,mL) such that χL(σi,λ) ⩾
λ, and tracing the coefficient of z−dµ yields sd +

∑d
i=1 σi,iµs

d−i = 0. Since
χhom

L (σi,iµ) ⩾ χL(σi,iµ) ⩾ iµ, we infer

dχhom
L (s) = χhom

L (sd) ⩾ min
1⩽i⩽d

{
iµ+ (d− i)χhom

L (s)
}

;

hence χhom
L (s) ⩾ µ = χL̃(s), and we are done. □

Proof of Theorem A.6. — Lemma A.7 implies χhom
L = χhom

L̃
, which is

equal to IN(φL̃) = IN(φL), by Proposition A.3(ii) and pullback invariance
of φL. The final identity follows from Proposition A.3. □

As a consequence, we get the following geometric description of homog-
enization:

Corollary A.8. — For any test configuration (X ,L), χhom
L lies in

N div
Q , and is equal to d−1χL̃d

for any sufficiently divisible d ∈ Z⩾1.

As above, (Xd,Ld) denotes the base change of (X ,L) with respect to
z 7→ zd, and (X̃d, L̃d) is its integral closure.

Proof. — By [18, Corollary 2.35], the central fiber of (X̃d, L̃d) is reduced
for d sufficiently divisible. Then χhom

Ld
= χhom

L̃d

= χL̃d
, by Theorem A.6

and Proposition A.3(iii). By Lemma A.2, we have, on the other hand,
χLd

= dχL, and hence χhom
Ld

= dχhom
L . Thus χhom

L = d−1χhom
L̃d

, which lies
in N div

Q , by Proposition A.3(ii). □

Remark A.9. — Corollary A.8 can be used to provide a more elementary
proof of Theorem 2.3 in the case of rational norms.

Finally, we relate (integrally closed) test configurations and (rational)
divisorial norms, as follows:

Theorem A.10. — For any χ ∈ NZ, the following are equivalent:
(i) χ = χL is associated to some integrally closed test configuration

(X ,L) for (X,L);
(ii) χ = ⌊χ′⌋ for some χ′ ∈ N div

Q , which is then uniquely determined as
χ′ = χhom.

Proof. — That (i) implies (ii) follows from Proposition A.3. Conversely,
pick χ′ ∈ N div

Q , and set χ := ⌊χ′⌋, so that χ′ = χhom (see Example 2.5). By
Theorem 6.12, we have χ′ = IN(φ) for some φ ∈ PL(X), which can in turn
be written φ = φL for some integrally closed test configuration (X ,L). By
Proposition A.3, we then have χL = ⌊χ′⌋ = χ, which shows (ii) ⇒ (i). □
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A.2. The Rees correspondence

A test configuration (X ,L) is ample if L is ample. For d sufficiently
divisible, the graded k[z]-algebra R(X , dL) =

⊕
m∈N H0(X ,mdL) is then

generated in degree 1, which shows that χ = χL ∈ TZ is of finite type. Note
further that

(A.6) R(X0, dL) ≃ grχ R
(d)

for d sufficiently divisible. Thus (X0,L0) can be identified with the central
fiber of χ (see (1.14)).

Denoting by T the set of ample test configurations, (X ,L) 7→ χL yields
a map T → TZ. A map in the reverse direction is provided by the Rees
construction. Given χ ∈ TZ, pick d ⩾ 1 such that χ is represented by an
integral norm on R(d) = R(X, dL) generated in degree 1, with associated
filtration (FλR(d))λ∈Z. The Rees algebra

R :=
⊕
λ∈Z

z−λFλR(d)

is a graded k[z]-algebra (with respect to the N-grading inherited from
that of R(d)), generated in degree 1, and we set X := Projk[z] R and
L = d−1OX (1). This yields a map TZ → T which is an inverse of the
previous one (see [17, Proposition 2.15]). We shall refer to the 1–1 map

(A.7) T ≃ TZ

so defined as the Rees correspondence.
By (A.6), the central fiber X0 of an ample test configuration (X ,L) is

reduced iff grχL
R(d) is reduced for d sufficiently divisible, which holds iff χL

is homogeneous (i.e. the converse of Proposition A.3(iii) holds for ample test
configurations). The Rees correspondence thus induces a bijection between
T hom
Z and the set of ample test configurations with reduced central fiber.
Denote by T int ⊂ T the set of ample integrally closed test configura-

tions, and by T int
Z ⊂ TZ its image under the Rees correspondence. Any test

configuration with reduced central fiber is integrally closed, and hence

T hom
Z ⊂ T int

Z ⊂ TZ.

Theorem A.11. — Homogenization induces a bijection T int
Z

∼→ T hom
Q ,

with inverse provided by round-down.

Proof. — Pick χ ∈ T int
Z . Then χhom ∈ T hom

Q (see Lemma 2.11, or Corol-
lary A.8), and χ = ⌊χhom⌋ (see Proposition A.3). Conversely, pick χ′ ∈
T hom
Q . By Corollary 2.18, χ′ = χhom for some χ ∈ TZ, i.e. χ = χL for some
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ample test configuration (X ,L). After passing to the integral closure (X̃ , L̃)
(which remains ample, since X̃ → X is finite), we may further assume that
(X ,L) is integrally closed (see Theorem A.6), and hence χ ∈ T int

Z . Then
χ = ⌊χ′⌋, by Proposition A.3 again, and χ′ = χhom, which completes the
proof. □

Finally, we note:

Lemma A.12. — For any ample test configuration (X ,L) for (X,L) we
have

φL = FS(χL) = FS(χhom
L ).

Proof. — The second equality follows from Proposition 2.14. Since
χhom

L = IN(φL) (see Theorem A.6) and φL ∈ HQ, Proposition 2.29 fur-
ther yields FS(χhom

L ) = Q(φL) = φL, which completes the proof. □

Combining Theorem A.11 with the bijection FS: T hom
Q

∼→ HQ, we thus
recover [18, Corollary 2.32]:

Corollary A.13. — The map (X ,L) 7→ φL restricts to a bijection
T int ∼→ HQ.

A.3. The case of higher rank

Following [49, Section 2.2] and [50, Section 2.2], we briefly discuss a
version of the Rees correspondence for R-test configurations.

Definition A.14. — For any r ∈ N, we define a rank r test configura-
tion (X ,L, ξ) for (X,L) as the following data:

• a flat projective scheme morphism π : X → Ar;
• a Q-line bundle L on X ;
• a Gr

m-action on (X ,L) that makes π equivariant (with respect to
the standard action on Ar);

• a Gr
m-equivariant isomorphism (X ,L)|Gr

m
≃ (X,L) ×Gr

m;
• a vector ξ ∈ Rr

+ with Q-linearly independent components.

A usual test configuration as in Section A.1 is thus a rank 1 test config-
uration, up to the scaling factor ξ ∈ R>0.

Denote by z1, . . . , zr the coordinates on Ar = Spec k[z1, . . . , zr] andGr
m =

Spec k[z±
1 , . . . , z

±
r ]. The above data yields an embedding

H0(X ,mL) ↪−→ Rm[z±
1 , . . . , z

±
r ]
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for m sufficiently divisible, and we define a norm χL,ξ ∈ NR by setting

χL,ξ(s) = max
{

⟨ξ, α⟩ | α ∈ Zr, z−αs ∈ H0(X ,mL)
}

for s ∈ Rm, where zα :=
∏

i z
αi
i . Note that

χL,ξ ∈ NΛ with Λ :=
∑

i

Zξi ≃ Zr.

Proposition A.15. — For any rank r test configuration (X ,L, ξ) with
L relatively ample, the associated norm χL,ξ is of finite type; this norm
is further of rank r, and its central fiber can be identified with the fiber
(X0,L0) of π over 0 ∈ Ar. Conversely, any R-test configuration χ ∈ TR
arises in this way.

Proof. — We sketch the argument, and refer to [50, Proposition 2.20] for
details. Assume L is relatively ample, and set χ = χL,ξ. The restriction
map R(X , dL) → R(X0, dL0) is surjective for d sufficiently divisible, and
one checks that it induces an isomorphism grχ R

(d) ≃ R(X0, dL0) as N×Zr-
graded algebras. The rest easily follows.

Conversely, pick χ ∈ TR, of rank r. As in Example 1.11, one can find
an embedding X ↪→ PN such that O(1)|X = dL, an action of a torus
T ≃ Gr

m on (PN ,O(1)) and ξ ∈ NR ≃ Rr, such that the induced norm on
R(PN ,O(1)) restricts to χ. Acting on X defines a T -equivariant morphism
T → Hilb to the Hilbert scheme of PN . Pick a regular top-dimensional cone
σ ⊂ NR that contains ξ in its interior, and denote by B ≃ Ar the corre-
sponding toric affine variety. After passing to a finer cone, one may assume,
by toric resolution of singularities, that the corresponding T -equivariant ra-
tional map B 99K Hilb is a morphism, and pulling back the universal family
yields the desired polarized family (X ,L). □

Appendix B. The toric case

We give a brief account of how some of the main results in the paper
specialize to the toric setting [24, 45]. See also Appendix B in [18].

Consider an algebraic torus T ≃ Gn
m, with associated dual lattices M :=

Hom(T,Gm) and N := Hom(Gm, T ). We have a canonical embedding M ↪→
k(T )× given by α 7→ zα onto the set T -invariant functions, and a dual
canonical embedding NR ↪→ T val given by ξ 7→ vξ onto the set of T (k)-
invariant valuations, such that vξ(zα) = ⟨ξ, α⟩ for all ξ ∈ NR and α ∈
M ↪→ k(T )×.
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A polarized toric variety (X,L) is determined by a rational polytope
P ⊂ MR, such that, for each m sufficiently divisible, the set of weights
α ∈ M of the T (k)-module Rm = H0(X,mL) coincides with mP ∩ M ,
each with multiplicity 1. Denoting by P̂ := R⩾0({1} × P ) ⊂ R × MR the
(rational polyhedral) cone over P , this yields, for d sufficiently divisible, a
1–1 correspondence between:

(a) the set of toric (i.e. T (k)-invariant) norms χ on R(d) = R(X, dL)
and superadditive functions h : Γ(d) → R on the semigroup Γ(d) :=
(dN×M) ∩ P̂ such that h(m,α) = O(m);

(b) the subset of toric homogeneous norms χ and concave, bounded
functions g : P → R, the corresponding superadditive function on
Γ(d) being h(m,α) = mg(m−1α).

Example B.1. — Each ξ ∈ NR determines a toric homogeneous norm χvξ
,

with associated function g(α) = ⟨ξ, α⟩ + c for c ∈ R such that infP g = 0,
i.e. c = − infα∈P ⟨ξ, α⟩.

A function g as in (b) above is automatically lsc on P (see [46]), but
might be discontinuous at some boundary points. Denote by g∨ : NR → R
its (convex) Legendre transform, defined by

g∨(ξ) = sup
α∈P

{⟨α, ξ⟩ + g(α)},

and let also λP be the Lebesgue measure of P , normalized to mass 1. Then:
(i) FS(χ)|NR = g∨ − 0∨, where 0∨ coincides with the support function

of P ;
(ii) vol(χ) =

∫
g λP ;

(iii) d∞(χ, χ′) = supP |g − g′|, and dp(χ, χ′) = ∥g − g′∥Lp(λP ) for p ∈
[1,∞);

(iv) χ ∈ TR (resp. TQ) iff g∨(ξ) = maxi{⟨ξ, αi⟩ + λi} for a finite set
αi ∈ P ∩MQ and λi ∈ R (resp. Q);

(v) χ ∈ N cont
R ⇐⇒ g ∈ C0(P ) ⇐⇒ g usc ⇐⇒ χ ∈ N max

R ;
(vi) χ ∈ N div

R (resp. N div
Q ) iff g(α) = minj{⟨ξj , α⟩ + cj} for a finite set

ξj ∈ NQ and cj ∈ R (resp. Q);
(vii) MA(χ) = MAR(g∨) = (∇g)⋆λP , where MAR is the real Monge–

Ampère operator and ∇g is the (λP -a.e. defined) gradient of g.
By (iv), (vi) and basic convex geometry, it follows that any toric homoge-
neous norm χ satisfies

χ ∈ N div
Q ⇐⇒ χ ∈ TQ.

However, both implications fail when Q is replaced with R.
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Example B.2. — Assume (X,L) = (P1,O(1)), and consider the toric
divisorial norm

χ := min{χv, χtriv + c} ∈ N div
R ,

where v = ord0 with 0 is the origin in A1 ⊂ P1, and c ∈ [0, 1]. The
corresponding concave function is g(α) = min{α, c} with α ∈ P = [0, 1] ⊂
MR = R, and a simple computation yields

g∨(ξ) = max{ξ + c, cξ + c, 0}

for v ∈ NR = R. Using (iv), this shows χ ∈ TR ⇐⇒ c ∈ Q.

Example B.3. — For any ξ ∈ NR ⊂ X lin, χξ is of finite type (see Exam-
ple 1.10). However, χξ is divisorial iff ξ ∈ NQ (see Example 7.17).
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