[États fondamentaux quasi classique. II. Le modèle standard de l’électrodynamique quantique non-relativiste]
On considère un électron non relativiste placé dans un potentiel extérieur et couplé au champ électromagnétique quantifié dans le modèle standard de l’électrodynamique quantique non relativiste. On s’intéresse à la fonctionnelle obtenue en calculant l’énergie du système total en des états produits de la forme , où est un état normalisé pour l’électron et est un état cohérent dans l’espace de Fock pour le champ de photons. La minimisation de cette fonctionnelle fait apparaître, après une renormalisation triviale, l’énergie d’un système de Maxwell–Pauli. On prouve l’existence d’un état fondamental sous des conditions générales portant sur le potentiel extérieur et sur la fonction de couplage. En particulier, il n’est pas nécessaire d’imposer une troncature ultraviolette ni une troncature infrarouge. Nos résultats établissent la convergence dans la limite ultraviolette de l’énergie fondamentale des systèmes de Maxwell–Pauli, ainsi que le développement asymptotique au second ordre de cette énergie par rapport à la constante de couplage.
We consider a non-relativistic electron bound by an external potential and coupled to the quantized electromagnetic field in the standard model of non-relativistic QED. We compute the energy functional of product states of the form , where is a normalized state for the electron and is a coherent state in Fock space for the photon field. The minimization of this functional yields a Maxwell–Pauli system up to a trivial renormalization. We prove the existence of a ground state under general conditions on the external potential and the coupling. In particular, neither an ultraviolet cutoff nor an infrared cutoff needs to be imposed. Our results provide the convergence in the ultraviolet limit and the second-order asymptotic expansion in the coupling constant of the ground state energy of Maxwell–Pauli systems.
Révisé le :
Accepté le :
Première publication :
Keywords: Ground states, quasi-classical limit, non-relativistic quantum electrodynamics, calculus of variations, Pauli-Fierz model, Maxwell-Pauli energy functional, Ultraviolet limit.
Mot clés : États fondamentaux, limite quasi-classique, électrodynamique quantique non relativiste, calcul variationnel, modèle de Pauli–Fierz, fonctionnelle d’énergie de Maxwell–Pauli, Limite ultraviolette.
Breteaux, Sébastien 1 ; Faupin, Jérémy 1 ; Payet, Jimmy 1
@unpublished{AIF_0__0_0_A122_0, author = {Breteaux, S\'ebastien and Faupin, J\'er\'emy and Payet, Jimmy}, title = {Quasi-Classical {Ground} {States.} {II.} {Standard} {Model} of {Non-Relativistic} {QED}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3667}, language = {en}, note = {Online first}, }
TY - UNPB AU - Breteaux, Sébastien AU - Faupin, Jérémy AU - Payet, Jimmy TI - Quasi-Classical Ground States. II. Standard Model of Non-Relativistic QED JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3667 LA - en ID - AIF_0__0_0_A122_0 ER -
%0 Unpublished Work %A Breteaux, Sébastien %A Faupin, Jérémy %A Payet, Jimmy %T Quasi-Classical Ground States. II. Standard Model of Non-Relativistic QED %J Annales de l'Institut Fourier %D 2024 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3667 %G en %F AIF_0__0_0_A122_0
Breteaux, Sébastien; Faupin, Jérémy; Payet, Jimmy. Quasi-Classical Ground States. II. Standard Model of Non-Relativistic QED. Annales de l'Institut Fourier, Online first, 44 p.
[1] Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Volume 9 (2008) no. 8, pp. 1503-1574 | DOI | MR | Zbl
[2] On the existence and uniqueness of ground states of a generalized spin-boson model, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 455-503 | DOI | MR | Zbl
[3] Minimization of the energy of the nonrelativistic one-electron Pauli–Fierz model over quasifree states, Doc. Math., Volume 18 (2013), pp. 1481-1519 | DOI | MR | Zbl
[4] Infrared-finite algorithms in QED. II. The expansion of the groundstate of an atom interacting with the quantized radiation field, Adv. Math., Volume 220 (2009) no. 4, pp. 1023-1074 | DOI | MR | Zbl
[5] Quantum electrodynamics of confined nonrelativistic particles, Adv. Math., Volume 137 (1998) no. 2, pp. 299-395 | DOI | MR | Zbl
[6] Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Commun. Math. Phys., Volume 207 (1999) no. 2, pp. 249-290 | DOI | MR | Zbl
[7] On the ultraviolet limit of the Pauli–Fierz Hamiltonian in the Lieb–Loss model, Ann. Henri Poincaré, Volume 23 (2022) no. 6, pp. 2207-2245 | DOI | MR | Zbl
[8] Global wellposedness in the energy space for the Maxwell–Schrödinger system, Commun. Math. Phys., Volume 288 (2009) no. 1, pp. 145-198 | DOI | MR | Zbl
[9] Solitons in Schrödinger–Maxwell equations, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 101-132 | DOI | MR | Zbl
[10] The Brascamp–Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal., Volume 17 (2008) no. 5, pp. 1343-1415 | DOI | MR | Zbl
[11] Sharpness of the Brascamp–Lieb inequality in Lorentz spaces, Electron. Res. Announc. Math. Sci., Volume 24 (2017), pp. 53-63 | DOI | MR | Zbl
[12] Quasi-classical ground states. I. Linearly coupled Pauli–Fierz Hamiltonians, Doc. Math., Volume 28 (2023) no. 5, pp. 1191-1233 | DOI | MR | Zbl
[13] Cauchy problem for the nonlinear Schrödinger equation coupled with the Maxwell equation, Ann. Henri Lebesgue, Volume 3 (2020), pp. 67-85 | DOI | Numdam | MR | Zbl
[14] Effective potentials generated by field interaction in the quasi-classical limit, Ann. Henri Poincaré, Volume 19 (2018) no. 1, pp. 189-235 | DOI | MR | Zbl
[15] Magnetic Schrödinger operators as the quasi-classical limit of Pauli–Fierz-type models, J. Spectr. Theory, Volume 9 (2019) no. 4, pp. 1287-1325 | DOI | MR | Zbl
[16] Ground state properties in the quasiclassical regime, Anal. PDE, Volume 16 (2023) no. 8, pp. 1745-1798 | DOI | MR | Zbl
[17] Quasi-classical dynamics, J. Eur. Math. Soc., Volume 25 (2023) no. 2, pp. 731-783 | DOI | MR | Zbl
[18] Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer, 1987, x+319 pages | MR | Zbl
[19] Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys., Volume 11 (1999) no. 4, pp. 383-450 | DOI | MR | Zbl
[20] Stability of Coulomb systems with magnetic fields. I. The one-electron atom, Commun. Math. Phys., Volume 104 (1986) no. 2, pp. 251-270 | DOI | MR | Zbl
[21] -gauge invariance of nonrelativistic quantum mechanics, and generalized Hall effects, Commun. Math. Phys., Volume 148 (1992) no. 3, pp. 553-600 | DOI | MR | Zbl
[22] On the existence of ground states for massless Pauli–Fierz Hamiltonians, Ann. Henri Poincaré, Volume 1 (2000) no. 3, pp. 443-459 | DOI | MR | Zbl
[23] Long range scattering for the Maxwell–Schrödinger system with large magnetic field data and small Schrödinger data, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 2, pp. 421-459 | DOI | MR | Zbl
[24] Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, 2014, xviii+638 pages | DOI | MR | Zbl
[25] Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics, J. Funct. Anal., Volume 210 (2004) no. 2, pp. 321-340 | DOI | MR | Zbl
[26] Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation, Ann. Henri Poincaré, Volume 10 (2009) no. 3, pp. 577-621 | DOI | MR | Zbl
[27] Ground states in non-relativistic quantum electrodynamics, Invent. Math., Volume 145 (2001) no. 3, pp. 557-595 | DOI | MR | Zbl
[28] Global finite-energy solutions of the Maxwell-Schrödinger system, Commun. Math. Phys., Volume 170 (1995) no. 1, pp. 181-196 | MR | Zbl
[29] On the self-adjointness and domain of Pauli–Fierz type Hamiltonians, Rev. Math. Phys., Volume 20 (2008) no. 7, pp. 787-800 | DOI | MR | Zbl
[30] Ground state properties in non-relativistic QED, Mathematical results in quantum physics, World Scientific, 2011, pp. 203-207 | DOI | MR | Zbl
[31] Self-adjointness of the Pauli–Fierz Hamiltonian for arbitrary values of coupling constants, Ann. Henri Poincaré, Volume 3 (2002) no. 1, pp. 171-201 | DOI | MR | Zbl
[32] Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 1980 | Zbl
[33] Time global finite-energy weak solutions to the many-body Maxwell–Pauli equations, Commun. Math. Phys., Volume 377 (2020) no. 2, pp. 1131-1162 | DOI | MR | Zbl
[34] Recent developments in the Navier–Stokes problem, CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, 2002, xiv+395 pages | DOI | MR | Zbl
[35] Derivation of the Maxwell-Schrödinger equations from the Pauli–Fierz Hamiltonian, SIAM J. Math. Anal., Volume 52 (2020) no. 5, pp. 4900-4936 | DOI | MR | Zbl
[36] Self-energy of electrons in non-perturbative QED, Differential equations and mathematical physics (Birmingham, AL, 1999) (AMS/IP Studies in Advanced Mathematics), Volume 16, American Mathematical Society, 2000, pp. 279-293 | DOI | MR | Zbl
[37] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | MR | Zbl
[38] The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223-283 | DOI | MR | Zbl
[39] Long range scattering for the Maxwell–Schrödinger system in the Lorenz gauge without any restriction on the size of data, J. Differ. Equations, Volume 269 (2020) no. 4, pp. 2798-2852 | DOI | MR | Zbl
[40] Kramers degeneracy theorem in nonrelativistic QED, Lett. Math. Phys., Volume 89 (2009) no. 1, pp. 21-31 | DOI | MR | Zbl
[41] A Crank–Nicolson finite element method and the optimal error estimates for the modified time-dependent Maxwell–Schrödinger equations, SIAM J. Numer. Anal., Volume 56 (2018) no. 1, pp. 369-396 | DOI | MR | Zbl
[42] The Cauchy problem for the coupled Maxwell–Schrödinger equations, J. Math. Phys., Volume 27 (1986) no. 1, pp. 211-216 | DOI | MR | Zbl
[43] Global existence and uniqueness of solutions to the Maxwell–Schrödinger equations, Commun. Math. Phys., Volume 276 (2007) no. 2, pp. 315-339 | DOI | MR | Zbl
[44] Convolution operators and spaces, Duke Math. J., Volume 30 (1963), pp. 129-142 | DOI | MR | Zbl
[45] Zur Theorie der Emission langwelliger Lichtquanten, Nuovo Cimento, N.S., Volume 15 (1938), pp. 167-188 | DOI | Zbl
[46] Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press Inc., 1975, xv+361 pages | MR | Zbl
[47] Modified wave operators for Maxwell–Schrödinger equations in three space dimensions, Ann. Henri Poincaré, Volume 4 (2003) no. 4, pp. 661-683 | DOI | MR | Zbl
[48] Ground state and resonances in the standard model of the non-relativistic QED, J. Stat. Phys., Volume 134 (2009) no. 5-6, pp. 899-939 | DOI | MR | Zbl
[49] Dynamics of charged particles and their radiation field, Cambridge University Press, 2004, xvi+360 pages | DOI | MR | Zbl
[50] Global existence and asymptotic behavior of solutions for the Maxwell-Schrödinger equations in three space dimensions, Commun. Math. Phys., Volume 151 (1993) no. 3, pp. 543-576 | DOI | MR | Zbl
[51] Smoothing effects for Schrödinger equations with electro-magnetic potentials and applications to the Maxwell–Schrödinger equations, J. Funct. Anal., Volume 263 (2012) no. 1, pp. 1-24 | DOI | MR | Zbl
[52] Some remarks on convolution operators and spaces, Duke Math. J., Volume 36 (1969), pp. 647-658 | DOI | MR | Zbl
Cité par Sources :