[Sur les spectres et les foncteurs affines strictement polynomiaux]
Nous comparons des catégories dérivés de la catégorie des foncteurs strictement polynomiaux sur un domaine et la catégorie des endofoncteurs ordinaires sur la catégorie des espaces vectoriels. Nous introduisons deux catégories intermédiaires : la catégorie de foncteurs -affines strictement polynomiaux et la catégorie des spectres des foncteurs strictement polynomiaux. Ils fournissent un cadre conceptuel pour les théorèmes de calcul de Franjou–Friedlander–Scorichenko–Suslin et clarifient le rôle de l’inversion du morphisme de Frobenius dans la comparaison entre cohomologie rationnelle et discrète.
We compare derived categories of the category of strict polynomial functors over a finite field and the category of ordinary endofunctors on the category of vector spaces. We introduce two intermediate categories: the category of -affine strict polynomial functors and the category of spectra of strict polynomial functors. They provide a conceptual framework for computational theorems of Franjou–Friedlander–Scorichenko–Suslin and clarify the role of inverting the Frobenius morphism in the comparison between rational and discrete cohomology.
Révisé le :
Accepté le :
Première publication :
Keywords: Strict polynomial functor, Affine functor, Spectrum, Ext-group.
Mot clés : Foncteur strictement polynomial, foncteur affine, spectre, Ext-groupe.
Chałupnik, Marcin 1
@unpublished{AIF_0__0_0_A120_0, author = {Cha{\l}upnik, Marcin}, title = {On spectra and affine strict polynomial functors}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3666}, language = {en}, note = {Online first}, }
Chałupnik, Marcin. On spectra and affine strict polynomial functors. Annales de l'Institut Fourier, Online first, 30 p.
[1] Schur-De Rham complex and its cohomology, J. Algebra, Volume 282 (2004) no. 2, pp. 699-727 | DOI | MR | Zbl
[2] Derived Kan extension for strict polynomial functors, Int. Math. Res. Not. (2015) no. 20, pp. 10017-10040 | DOI | MR | Zbl
[3] Affine strict polynomial functors and formality, Adv. Math., Volume 320 (2017), pp. 652-673 | DOI | MR | Zbl
[4] Functor homology over an additive category (2022) (https://arxiv.org/pdf/2111.09719.pdf)
[5] General linear and functor cohomology over finite fields, Ann. Math., Volume 150 (1999) no. 2, pp. 663-728 | DOI | MR | Zbl
[6] Autour de la cohomologie de MacLane des corps finis, Invent. Math., Volume 115 (1994) no. 3, pp. 513-538 | DOI | MR | Zbl
[7] Strict polynomial functors and coherent functors, Manuscr. Math., Volume 127 (2008) no. 1, pp. 23-53 | DOI | MR | Zbl
[8] Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra, Volume 165 (2001) no. 1, pp. 63-127 | DOI | MR | Zbl
[9] Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, 2007 | DOI | Zbl
[10] Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl
[11] Localization theory for triangulated categories, Triangulated categories (London Mathematical Society Lecture Note Series), Volume 375, Cambridge University Press, 2010, pp. 161-235 | DOI | MR | Zbl
[12] Generic representations of the finite general linear groups and the Steenrod algebra. III, -Theory, Volume 9 (1995) no. 3, pp. 273-303 | DOI | MR | Zbl
[13] A stratification of generic representation theory and generalized Schur algebras, -Theory, Volume 26 (2002) no. 1, pp. 15-49 | DOI | MR | Zbl
[14] Universal classes for algebraic groups, Duke Math. J., Volume 151 (2010) no. 2, pp. 219-249 | DOI | MR | Zbl
[15] Troesch complexes and extensions of strict polynomial functors, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 1, pp. 53-99 | DOI | Numdam | MR | Zbl
[16] A construction of the universal classes for algebraic groups with the twisting spectral sequence, Transform. Groups, Volume 18 (2013) no. 2, pp. 539-556 | DOI | MR | Zbl
Cité par Sources :